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First principles calculations of the Urbach tail in the optical absorption of silica glass
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We present density-functional theory calculations of the optical absorption spectra of silica glass for tem-

peratures up to 2400 K. The calculated spectra exhibit exponential tails near the fundamental absorption edge

that follow the Urbach rule, in good agreement with experiments. We discuss the accuracy of our results by

comparing to hybrid exchange correlation functionals. By deriving a simple relationship between the exponen-

tial tails of the absorption coefficient and the electronic density-of-states, we establish a direct link between

photoemission and absorption spectra near the absorption edge. This relationship is subsequently employed to

determine the lower bound to the Urbach regime. In this frequency interval the optical absorption is Poisson

distributed with very large statistical fluctuations. Finally, we identify the upper bound to the Urbach regime as

the frequency at which the transition to a Poisson distribution occurs.

PACS numbers: 78.40.Pg, 78.20.Bh, 71.23.An, 71.15.Mb

At finite temperatures absorption spectra of insulators ex-

hibit an exponential energy dependence near the fundamental

absorption edge that varies with temperature according to [1]

α(ω, T ) = α0 exp

[

−σ
h̄ω0(T ) − h̄ω

kT

]

. (1)

Here ω0(T ) is a linear function of temperature, which at zero

K is defined to be the optical gap, while σ and α0 are constants

that can be extracted from experiments. The Urbach rule,

Eq. (1), has been observed universally in crystals as well as

glasses. Extensive research over many decades [2] has shown

that it arises from transitions between localized electronic lev-

els resulting from fluctuations of band-edge states into the

band gap and extended states [3, 4]. In a pioneering work on

amorphous Si, the fluctuations in the single-particle energies

at the band edges obtained from ab-initio molecular-dynamics

(MD) simulations in the local density approximation (LDA)

were found to be in good agreement with experimentally mea-

sured band tail widths.[5] While this demonstrates the appli-

cability of ab-initio MD in the adiabatic approximation, the

question remains whether single-particle theories can provide

a quantitative description of the Urbach tail in wide band gap

materials. On the one hand, it has been shown that charge lo-

calization due to excitonic binding is responsible for the low-

energy absorption peaks in these systems [6, 7]. On the other

hand, at elevated temperatures the phonon-induced localiza-

tion of the single-particle states may very well be sufficient to

provide a quantitative description of the observed exponential

tails in optical spectra. In this Letter we address this issue by

investigating the Urbach rule in defect-free silica glass using

ab-initio MD simulations. A detailed comparison with ex-

periments shows that the Urbach behavior can be accurately

described within a single-particle picture for this system.

The present work has been motivated by the need to de-

velop a better understanding of the process of laser damage

to silica optics, which is of importance to diverse fields rang-

ing from opto-electronics to inertial confinement fusion. Re-

cently, the role of temperature has been emphasized by exper-

iments where damage was generated far below the bulk ma-

terial threshold by photons of energy 3.55 eV at about 2200 K

[11]. The Urbach rule plays a crucial role here since the expo-

nential dependence of absorption on temperature in Eq. (1) ne-

cessitates the existence of a critical temperature Tc, at which

the glass absorbs more photon energy than it can dissipate

leading to thermal run-away and macroscopic damage [11].

However, extrapolation of experimental spectra [12] predicts

a Tc that is several hundred K higher than the measured value.

Therefore better understanding of the kinetics of absorption

in the Urbach regime is needed. The objective of this Let-

ter is to study the physical processes that lead to absorption

in a temperature and energy range for which experiments are

not available. The key finding is that in the Urbach regime

absorption is best described as a Poisson process of localized

bursts that occur at sub-terahertz frequencies. On this basis,

quantitative models for prediction of Tc can be obtained.

The MD simulations presented in this work are performed

within DFT-GGA using the PW91 parametrization [13, 14] as

implemented in the Vienna ab-initio simulation package [15]

using the projector augmented wave method [16]. Calcula-

tions involve supercells containing 24 SiO2 formula units and

the Brillouin zone is sampled by a 2×2×2 Monkhorst-Pack k-

point grid. In order to obtain a realistic glass model, we started

from a liquid silica model obtained previously [17], which

was quenched down to zero K over a period of about 10 ps.

The examination of the electronic structure of the resulting

configurations revealed defect states due to the presence of

stretched and broken bonds. [8] The defect states were elimi-

nated from the model by optimization via a bond-switching

Monte Carlo (BSMC) technique [9, 18]. Several BSMC-

refined configurations were generated, each representing a

random network with fixed bond lengths and angles. Sub-

sequently, the configurations were structurally relaxed to the

local GGA total energy minimum. The final glass model that

was chosen from this set had preserved its bond lengths and

angles after the relaxation process. The electronic density-

of-states (DOS) of this configuration is shown in Fig. 1(a) in

comparison with the PBE0 hybrid functional, which incorpo-

rates 25% exact exchange [19, 20]. The GGA DOS includes

a band gap shift of ∆g = 2.6 eV to account for the systematic

underestimation of the band gap. We find excellent agree-
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FIG. 1: (a) Density-of-states for the perfect glass at zero K calcu-

lated using the PBE0 hybrid functional and the PW91 functional

with scissors correction (PW91+∆g . Also shown is the density of

states obtained from MD simulations at three different temperatures

using PW91+∆g . (b) Single-particle energies of the four topmost

valence band states and the two lowermost conduction band states

(thick lines, large circles) as well as the total energy (thin lines, small

circles) along a MD trajectory (generated using PW91) obtained us-

ing a hybrid functionals (PBE0) in comparison with the PW91+∆g

approach.

ment between the two calculations for the perfect glass. As

a further test, we have explicitly compared the time evolution

of the band edge states and the total energy at 2200 K, cal-

culated from GGA with PBE0 as well as HSE06 [21] (a hy-

brid functional that includes screened exchange) calculations

[Fig. 1(b)]. It appears that with a constant band gap shift (2.6

eV for GGA and 0.9 eV for HSE06), all calculations can be

brought in agreement with each other. A similar conclusion

was reached in studying point defects [10].

The absorption coefficient for photons of energy h̄ω of an

atomic configuration X , can be calculated as follows

α(ω; X) =
√

2
ω

c

√

|ǫ(ω; X)| − ǫR(ω; X), (2)

where ǫ(ω; X) is the complex dielectric function ǫ = ǫR+iǫI .

In the velocity gauge, ǫI can be directly computed from the

single-particle wave functions and energies [22, 23] as well as

their occupancies fnk as follows

ǫI(ω; X) =
4π2e2

m2
eω

2

∑

n,n′

(fn′k − fnk)
∣

∣Mk

nn′(X)
∣

∣

2

× δ (∆g + en′k(X) − enk(X) − h̄ω) , (3)

where Mk

nn′(X) are the polarization-averaged dipole matrix

elements between the states nk in the valence band and n′
k

in the conduction band. The summations in Eq. (3) run over

bands and spins, and the real part ǫR can be obtained from ǫI

through a Kramers-Kronig relation. Since the latter involves

an integration over the entire frequency spectrum, we have in-

cluded as many as 1000 unoccupied bands in our calculations.

At finite temperatures, the response functions as well as

the DOS are calculated by classical ensemble averaging over

ionic displacements in the Born-Oppenheimer approximation,

treating the electronic transitions as instantaneous. Figure 1(a)

shows the average DOS at three different temperatures. The

gray region depicts the narrowing of the band gap with in-

creasing temperature, leading to an exponential increase of

the free carrier densities. While at 2400 K the density of free

carriers can be as large as 1017 cm−3, it is still too small to

have any measurable impact on the absorption in the Urbach

regime.

The DOS can be linked to optical absorption via the

joint density-of-states (JDOS), which at zero K is defined as

J(ω) =
∫

ρv(ω′)ρc(ω
′ + ω) dω′, where ρv(c)(ω) is the DOS

of the valence (conduction) bands. At finite temperatures, a

direct relationship between the JDOS and the DOS only ex-

ists if the fluctuations in the valence and the conduction bands

are independent

〈J (ω)〉T ≈
∫

〈ρv(ω′)〉T 〈ρc(ω
′ + ω)〉T dω′. (4)

We find that the above is a very good approximation over the

entire frequency range, which implies that knowledge of the

DOS is sufficient to determine of the JDOS. In the Urbach

regime, the JDOS can be linked to the dielectric function via

〈ǫI(ω)〉T ≈ µ(T ) 〈J (ω)〉T . (5)

This is illustrated in Fig. 2(a), where the low-frequency ex-

ponential tail of the dielectric function and the JDOS are

shown to coincide when the latter is scaled by a temperature-

dependent effective dipole transition probability (DTP) µ(T ).
This result suggests that the frequency dependence of the Ur-

bach tail originates from the exponential decay of the JDOS,

while the matrix elements provide an effective temperature-

dependent prefactor. As shown in the inset of Fig. 2(a),

1/µ(T ) decreases linearly with temperature, resulting in a

reduction by a factor of two between 1200 and 2400 K. As

was noted by Chang et al. [7], the inclusion of excitonic ef-

fects has a small impact on the JDOS. The excitonic peaks

that appear in the optical absorption of α-quartz are instead

due to enhanced oscillator strength of transitions to correlated

electron-hole states that are spatially localized. The inclusion

of electron-hole interactions in the calculations may thus mod-

ify the prefactor µ(T ) but not the overall shape of the Urbach

tail. Furthermore, we expect the inclusion of electron-hole in-

teractions to lead only to small modifications of µ(T ) as the

single-particle states in the tail region are already localized

due to phonons.
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FIG. 2: (a) JDOS rescaled by µ(T ) (solid lines) and imaginary di-

electric function (symbols). The inset shows µ(T )−1 as a function

of temperature. (b) Absorption coefficient in the Urbach regime

calculated using PW91+∆g . The inset shows the result of a fit to

Eq. (1) and the comparison with the experimental data from Saito

and Ikushima [12]. The shaded region depicts the Urbach regime.

After obtaining the dielectric functions at different temper-

atures, it is straightforward to calculate the absorption spectra

shown in Fig. 2(b) via Eq. (2). Fitting the exponential tails

of these spectra to Eq. (1) yields a linear temperature depen-

dence for ω0(T ) as shown in the inset of Fig. 2(b), extending

the Urbach rule to 2400 K. The fit also gives σ = 0.473 in fair

agreement with the experimental value of σ = 0.585. [12]

The Tauc gap, which is the threshold energy for the onset of

extended-to-extended electronic transitions, can be extracted

as well. Following Ref. 12, where the Tauc gap was defined

as the photon energy corresponding to 5 × 103 cm−1 absorp-

tion, one obtains the data shown in the inset of Fig. 2(b) again

demonstrating excellent agreement.

The good agreement between the calculated and experi-

mental Tauc gaps is the most definite evidence that a single-

particle picture is sufficient for describing optical absorption

in the Urbach regime. Since excitonic effects lead to increased

absorption at low energies, our calculated Tauc gaps would

have been significantly higher than experiment if electron-

hole interactions were essential. Following the same argu-

ment, it is expected that excitonic effects should extend the

Urbach tail to lower frequencies by lowering σ in Eq. (1). Yet,

since our calculations already underestimate σ, this deviation

is unlikely to be due to excitonic effects.

In the Urbach regime the ratio 〈ǫI(ω)〉T / 〈ǫR(ω)〉T ≪ 1.

A first order Taylor expansion of Eq. (2) with respect to this

quantity yields the following expressions for the absorption

coefficient

〈α(ω)〉T ≈ ω

c

〈ǫI(ω)〉T
√

〈ǫR(ω)〉T
≈ ω

c

µ(T )
√

〈ǫR(0)〉T
〈J (ω)〉T . (6)

The second approximation above is obtained by a zeroth order

expansion about the static dielectric constant 〈ǫR(0)〉T , and

utilizes our earlier finding that the Urbach tail of the imagi-

nary dielectric function can be obtained from the JDOS, see

Eq. (5). Using Eqs. (4) and (6), we can establish a simple re-

lationship between the absorption coefficient and the DOS in

the vicinity of the absorption edge, where the temperature de-

pendence of the prefactor mainly enters through the effective

DTP µ(T ), while 〈ǫR(0)〉T varies only weakly with tempera-

ture, i.e. from 1.81 at 0 K to 1.99 at 2400 K. Since experimen-

tally the DOS is obtained via photoemission spectroscopy, the

above result provides a direct link between photoemission and

optical absorption experiments in the Urbach regime.

We now discuss fluctuations in the optical absorption due

to atomic vibrations. A lower bound can be obtained by using

Eq. (6) and only considering fluctuations in the JDOS. Figure

3(a) shows unexpectedly large fluctuations in the JDOS in the

Urbach regime with the ratio
〈

J 2(ω)
〉

T
/ 〈J (ω)〉2T reaching

104. Hence the standard deviation from mean absorption in

the Urbach tail can be up to two orders of magnitude larger

than 〈α(ω)〉T .

The large fluctuations in the Urbach regime originate from

the discrete nature of the JDOS itself. Even if 〈J (ω)〉T ≪ 1,

there can only exist an integer numberN of pairs of electronic

states available for transition at any instant of time. Hence the

absorption coefficient locally vary between zero and µ2 ×N ,

which can amount to fluctuations much larger than the mean

value 〈J 〉T itself. This behavior is a consequence of the quan-

tum nature of matter. Let us define an absorption event as the

instant of time when N > 0. Whenever absorption events oc-

cur rarely enough to be considered independent, the absorp-

tion process is Poisson distributed with 〈J (ω)〉T interpreted

as the average rate of occurrence. An important signature of

the Poisson distribution is that its standard deviation is equal

to the square root of its average. As shown in Fig. 3(b) in the

Urbach regime, this is indeed the case with the ratio sharply

decreasing for higher energies. The abrupt transition provides

a natural definition for the upper bound to the Urbach region

ωU . Figure 3(d) shows that in the temperature range consid-

ered here, ωU decreases linearly. These observations bestow

the finite-temperature JDOS in the Urbach tail with distinct

physical significance as it represents the average rate of oc-

currence of absorption events in this frequency interval.

The Urbach tail region is a closed frequency interval in

the optical spectrum. Above, we have determined the upper

bound for this interval. We can also determine its lower bound

using Eq. (4) to compute 〈J (ω)〉T down to very small val-

ues with good statistical accuracy. Figure 3(c) shows that at
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FIG. 3: (a) First and second moment of the joint density of states

(JDOS) as well as their ratio at 2400 K. (b) In the Urbach regime

the standard deviation of the JDOS equals the square root of the

average indicative of a Poisson distribution. The energy at which

the ratio deviates from one (indicated by the arrow) provides a sim-

ple measure for the upper limit of the Urbach regime. (c) At low

energies the JDOS exhibits two distinct regions corresponding to

localized-delocalized (Urbach regime) and localized-localized tran-

sitions. Each region is described by a different exponential whose

crossing point defines a lower limit for the Urbach regime. Note

that the Tauc gap lies above the region in which the JDOS exhibits

exponential tails. (d) Upper and lower limits of the Urbach regime

extracted from the data presented in (b) and (c).

very low energies the slope of the signature exponential decay

of the Urbach tail changes. The frequency ωL at which this

transition occurs can be used to identify the lower bound of

the Urbach regime, the temperature dependence of which is

shown in Fig. 3(d). This lower-frequency region corresponds

to transitions between localized levels in the exponential tails

of the valence and the conduction bands while the Urbach tail

originates from transitions between localized tail states and

extended band-like states.

Finally, let us discuss modeling laser heating in silica

which can be described by a heat conduction equation with

a source term. The latter incorporates energy deposition by

linear coupling to laser light, α (ω, T ) I(r), where I(r) is

the laser light intensity. Neglecting fluctuations, this term

can be parametrized by α(ω, T ) = 〈α(ω)〉T . However, the

rare event nature of absorption in the Urbach regime calls for

α(ω, T ) to be treated as a discrete Poisson process, where at a

rate proportional to 〈J (ω)〉T an absorption event of strength

ωµ2/c
√

〈ǫR(0)〉T takes place. The large fluctuations intro-

duced in this way can reduce the predicted thermal run-away

temperature leading to better agreement with experiments.
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[8] G. Pacchioni and G. Ieranó, Phys. Rev. B 56, 7304 (1997).

[9] T. Bakos, S. N. Rashkeev, and S. T. Pantelides, Phys. Rev. B 70,

075203 (2004).

[10] A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. Lett.

101, 046405 (2008).

[11] J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, SPIE pro-

ceedings 6720, 672009 (2007).

[12] K. Saito and A. J. Ikushima, Phys. Rev. B 62, 8584 (2000).

[13] J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).

[14] J. P. Perdew, in Electronic structure of solids, edited by P. Zi-

esche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11.

[15] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); ibid. 49,

14251 (1994); G. Kresse and J. Furthmüller, ibid. 54, 11169

(1996); Comp. Mater. Sci. 6, 15 (1996).
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