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We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal
antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and
highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear
oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm
plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique
to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

PACS numbers: 52.27.Jt, 52.35.Mw

Oscillators subjected to a drive with a swept frequency
can become phase-locked to the drive; when this happens,
the oscillator’s amplitude can be controlled by varying
the applied frequency. This phenomenon, called autores-
onance, occurs in a variety of dynamical systems from
plasma modes [1] to orbital dynamics [2]. Nonlinear os-
cillators can be controlled with autoresonance when one
is ignorant of the oscillator’s state, a fact exploited in
applications from controlling Josephson-junctions [3] to
mass-spectrometers [4]. This paper describes the dynam-
ics behind the autoresonant drive that we recently used to
inject antiprotons into a positron plasma, thereby form-
ing antihydrogen that we trapped[6].

Autoresonant (AR) control requires that systems (typ-
ically uncoupled nonlinear oscillators) possess an anhar-
monic potential with a monotonic relationship between
their response frequency and amplitude. Here we study
the autoresonant excitation of a thermally broadened
pure antiproton plasma. Because the total potential that
results from the vacuum and plasma self-electric fields
has a non-monotonic relationship between amplitude and
frequency, test particles will not respond autoresonantly.
Furthermore, only a subset of thermally broadened, un-

coupled test particles in the vacuum potential would have
an autoresonant response. Yet we find that a charged
plasma can behave as a single particle under autoreso-
nant excitation despite its self-fields and thermal distri-
bution. To our knowledge, this is the first direct confir-
mation of a theory developed by Barth et al. that claims
that the repulsive self-forces cause a charged plasma to
stay coherent under the autoresonance drive [5].

This paper compares the behavior of the plasma to a
single particle oscillator of charge −e and mass m, con-
fined on the z-axis in an electrostatic potential with a
time-varying drive electric field Ed of the form: Φ =
−Φ0

(

1 − cos (kz)
)

− Edz cos (
∫

ωdt), where Φ0, k, and
Ed are parameters found by fitting to the actual poten-
tials used in our measurements. Defining θ = kz, ǭ to
be a normalized drive amplitude, and allowing the drive
frequency ω to be time-dependent with a sweep (chirp)
rate magnitude α, the equation of motion is:

θ̈ + ω2
0 sin θ = ǭ cos

(

ωit − αt2/2
)

. (1)

This is the same equation as that of a uniformly driven,
nonlinear pendulum with a linear (small-amplitude) os-
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FIG. 1. (Color online) On-axis (r = 0) potentials used in this
experiment. — Vacuum potential. · · · Typical drive poten-
tial (ǭ/2π ∼ 1.8 · 109 s−2 scaled×100). Inset Total poten-
tial for the plasma (T‖ = 150 K) with - - - 15, 000 (n(0, 0) ∼

6·1012 m−3) and -·- 50, 000 antiprotons (n(0, 0) ∼ 1·1013 m−3).

cillation frequency of ω0 =
√

ek2Φ0/m.
On application of a fixed drive frequency (α = 0), the

amplitude of this oscillator beats in time, never coming
to equilibrium. However, if the drive starts at an initial
frequency ωi > ω0 and sweeps past ω0 to a final frequency
ωf , the oscillator can phase-lock to the drive and will
adjust its nonlinear frequency to match that of the drive.
At a sufficiently high drive amplitude, this process will be
independent of the initial conditions of the oscillator [2].
In this way, the final energy Uf of the oscillator can be
chosen by ωf through the oscillator’s energy–frequency
relationship. This is an autoresonant drive.

The “particle” in the actual experiment is the center-
of-mass longitudinal motion of an antiproton plasma. As
the dynamics of this system are governed by a many-body
equation of motion [5], it is not obvious that this system’s
behavior can be reduced to that of a single particle.

All measurements were conducted in the ALPHA ap-
paratus, located at the Antiproton Decelerator at CERN.
ALPHA contains a minimum-B trap designed for the pro-
duction and trapping of neutral antihydrogen [7] and uses
Penning-Malmberg traps to catch and mix its charged
constituents: antiprotons and positrons . Preparation of
the antiproton plasmas followed the methods described
in [8], and left the antiprotons in the potential shown in
Fig. 1, in which all experiments occur.

We destructively measure the antiproton number by
lowering one side of the confining potential, thereby al-
lowing the antiprotons to escape and annihilate on the
end of the trap. We count the annihilation products
during this “dump” with scintillators. The two plasma
conditions discussed here had approximately 15,000 and
50,000 antiprotons each, although these numbers fluctu-
ated (±30%). We also imaged the radial profile of the
dumped plasmas and found that in both cases their av-
erage diameter was ∼ 1.6 mm [9].

The annihilation times and the potential as a function

of time during a dump are used to determine the approx-
imate longitudinal energy distribution function f(U)dU
of the plasma. By assuming single particle dynamics in
a uniform longitudinal magnetic field and ignoring radial
effects, the longitudinal energy of an antiproton is:

U =
1

2
mv2

z(z) − e(Φ(z) − Φ(0)). (2)

The energy a particle has when it escapes differs from
its initial energy because the dump process performs
work on it. However if a particle’s longitudinal action
J =

∮

mvz · dz is adiabatically conserved, we can equate
J(te) to J(U0), and relate its escape time te to its energy
U0 in the well before the dump. The dumps are slow
enough to dynamically preserve J in our trap, but fast
compared to the antiproton-antiproton collision rate [10].
By ignoring the plasma potential and radial effects, we
introduce energy errors (< 15mV) that are much smaller
than the mean energies discussed here (> 1V). All par-
ticle distributions presented here are calculated this way.

When the plasma is in thermal equilibrium, its longi-
tudinal temperature T‖ can be determined by fitting an
exponential to the high-energy tail of the longitudinal en-
ergy distribution, a method which can be largely insensi-
tive to the plasma’s self-fields [8, 11]. The “cold” antipro-
ton plasmas discussed here had temperatures in the range
of (150 – 300)K. From the particle number, radial profile
and temperature, we can calculate the plasma equilib-
rium density n(r, z), and total potential (Fig. 1)[12].

We find the relationship of a particle energy U to a re-
sponse (bounce) frequency ωb in the potential by solving
for the time τ it takes a particle to traverse the well:

π

ωb(U)
= τ(U) =

∫ zr

zl

dz

|vz|
, (3)

where vz and the left and right turning points zl and zr

are solved from Eq. 2 for a given potential Φ. Figure 2
plots U(ωb), for the potentials shown in Fig. 1.

We applied a drive that chirped from a frequency ωi

that was 2.5% above ω0 to various final frequencies ωf ’s
at a fixed α (2π · 60 MHz s−1). The resultant energy dis-
tributions were measured with 10ms dumps performed
2 ms after the drive. As shown in Fig. 2, the mean en-
ergy of each distribution agrees with U(ωf ) calculated
from Eq. 3, indicating that the bounce frequency of the
plasma matched the drive frequency. This implies that
the plasma response was phase-locked to the drive.

Figure 3 shows a decrease in the mean U of distribu-
tions measured at different times after applying the same
drive to similar plasmas. After the excitation, parallel en-
ergy redistributes itself via collisions and can change to
perpendicular motion or be lost through “evaporation” of
high energy particles out of the well [8, 18]. Based on the
measurements, we see that the single-particle assumption
is valid for the 10 ms dumps used in the measurements.
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FIG. 2. (Color online) Energy versus frequency measure-
ments and calculations (frequencies normalized to ω0/2π =
410 kHz). (a) Distributions of ∼ 15, 000 antiprotons driven
to different final frequencies. (b) U(ωb) calculated from Eq. 3
for — Vacuum potential. - - - Total potential with 15,000 and
-·- 50,000 antiprotons (see Fig. 1). 2 Mean U of each distri-
bution plotted against its final drive frequency.
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FIG. 3. (Color online) Plot of the time-evolution of the lon-
gitudinal distribution f(U)dU for plasmas with ∼ 50, 000 an-
tiprotons excited with an autoresonant drive. Inset: Their
mean longitudinal energy as a function of the time between
the autoresonant drive and the energy measurement dump.

One feature of autoresonantly-driven systems is the ex-
istence of a critical drive amplitude ǭc that scales as a dis-
tinctive α3/4 power law [13]. Specifically for oscillators
obeying Eq. 1, the threshold is [2]:

ǭc = 8
√

ω0

(α

3

)3/4

. (4)

Above this threshold, the oscillator will lock to the drive,
and the amplitude will follow the drive frequency; below
the threshold, the oscillator will not lock to the drive.

This threshold is derived by modeling the phase differ-
ence between oscillator and drive as the coordinate of a
“pseudoparticle” in a “pseudopotential”. Phase-locking
requires confinement of the pseudoparticle in a well of the
pseudopotential, with a perfect phase-lock correspond-
ing to a stationary pseudoparticle. Generally, however,
the pseudoparticle oscillates around one minimum of the
pseudopotential, manifesting as a modulation of the am-
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FIG. 4. (Color online) Chirp and drive amplitude thresh-
old measurements on 15,000 antiprotons. (a) Amplitude
threshold measurement for fixed drive parameters (α/2π =
200 MHz/s, ωi/2π = 420 kHz, ωf/2π = 360 kHz), with longi-
tudinal energy U normalized to Uf ∼ 2.9 eV. + Mean energy
of final distributions plotted against their drive amplitude and
normalized to scale the threshold to 1. — Single oscillator
final energy calculated as a function of drive amplitude, sim-
ilarly scaled. (b) 2 Measured ǭc for a given chirp rate α. —

Scaling law α3/4 (Eq. 4) fit to the data.

plitude of the real system. Near the threshold, if α is too
large or ǭ too small, the pseudopotential well will become
so shallow over the course of the sweep that the pseu-
doparticle will escape. Thereafter, no phase-lock exists
and the system’s energy will remain roughly constant,
even as the drive continues [2].

Experimentally, we determined the autoresonance
threshold in our system by driving the plasma at dif-
ferent amplitudes while holding ωi, ωf , and α con-
stant. The threshold amplitude ǭc is the value that
causes the plasma’s mean energy to rise sharply. Fig-
ure 4a shows the data used to measure the threshold at
α/2π ∼ 200 MHzs−1. A curve of ǭc as a function of α is
shown in Fig. 4b, and adheres to the scaling of Eq. 4.

We compared the threshold measurements with cal-
culations for a single particle following Eq. 1 and found
that the data agrees with the simulation after a uniform
reduction of the simulation ǭ by ∼ 20% (consistent with
an uncertainty in our estimate of the coupling between
the drive electronics and the electrode); the blue curve
in Fig. 4a includes this correction factor, and coincides
with the measurements. The shape of the simulation
curve is governed by details of the pseudoparticle oscil-
lations present in the time evolution of the oscillator. In
measurements of the energy after the drive, they influ-
ence the slow rise in final energy before the jump at the
threshold and the fluctuations after ǭc. The measured
data, in matching the calculations, are consistent with a
pseudoparticle oscillation of the driven plasma.

These results strongly indicate that the cold plasma
behaves as a single-particle oscillator under an autoreso-
nance drive. We find, however, that a hot plasma does
not respond as a single particle. We heated the cold
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plasma to T ∼ 1, 800 K by applying a strong drive near
ω0 and waited 25 s after the heating to allow for ther-
malization before applying the AR drive. We measured
the capture-threshold in the manner described above. We
found that, while it started following the drive at approx-
imately ǭc for the equivalent cold plasma, the hot plasma
split into two distinct populations: one that followed the
drive and another that remained at low energy (Fig. 5).
Increasing the amplitude captured more antiprotons.

This behavior is consistent with the model proposed
in [5], where it is shown that a thermal plasma will have
an ǭc that scales as α3/4. In the case of a high tem-
perature and/or low density, the threshold is broad be-
cause the plasma phase space filaments during the exci-
tation and only a fraction of the plasma (monotonically
increasing with ǭ) is captured by the drive. The model
further predicts that increasing the density actually nar-
rows the transition, because the repulsive self-fields cause
the plasma to act as a single particle.

Though our plasmas are not modeled exactly in [5],
their behaviors follow the expected trend of the the-
ory. Barth et al. define a parameter η2 = ω2

p/ω2
0 which

quantifies the importance of the self-field of the plasma
(ωp =

√

ne2/mǫ0 is the plasma frequency). For instance,
they find that, for a plasma with T‖ ∼ 2, 300 K, η2 must
be greater than ∼ 4 to behave like a single particle. Our
hot plasma, with η2 ∼ 0.5, has a fractional response while
our cold plasma, with η2 ∼ 1.6, behaved as a single par-
ticle. Though the comparison of η2 should be made at
the same temperatures, we expect collective effects to
play a more important role in our cold plasma because
the its Debye length was shorter than any of its spa-
tial dimensions, while it is longer in the case of the hot
plasma [14]. We assessed the threshold behavior with-
out collective effects for our plasmas by solving Eq. 1 for
thermal ensembles (at our plasma temperatures) of non-
interacting particles, and determined the capture fraction
for ǭ’s around ǭc. Figure 5 shows that this calculation,
lacking self-interactions, does not predict the sharp tran-
sition at ǭc that we observe for the cold plasma.

In conclusion, we have demonstrated the controlled au-
toresonant excitation of the mean longitudinal energy
of a thermal antiproton plasma. A cold, dense plasma
behaves like a single particle oscillator, while a warm,
tenuous plasma filaments under the drive, displaying a
broad autoresonance threshold. This behavior is consis-
tent with a recently published model [5].

In this paper, we have discussed finite excitation of the
plasma; by extending the sweep to lower frequencies, the
antiprotons can be driven out of their well and directly
into a confined positron plasma [15]. These un-confined
antiprotons lose phase-lock to the drive, pass through
confined positrons and form antihydrogen. Many previ-
ously used methods for mixing antiprotons with positrons
produced antihydrogen with too much kinetic energy to
be trapped (typical traps cannot hold anti-atoms with ki-
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FIG. 5. (Color online) Plot of the fraction of plasma that fol-
lows the autoresonant drive (α/2π = 60 MHz s−1, ωi/2π =
420 kHz, ωf/2π = 360 kHz). 2 Cold plasma and © Hot
plasma of 15,000 antiprotons. — Expected fraction for a
single oscillator (T‖ = 0K). + Calculations for an ensemble
of cold oscillators (T‖ = 150 K). × Calculations for an en-
semble of hot oscillators (T‖ = 1, 800 K). Inset: Distribution
functions of an heated (pink) and an unheated (blue) plasma
after the drive (ǭ/ǭc ∼ 1.05).

netic energies more than ∼ 5·10−5 eV [7]). For example in
[16], antiprotons were launched into the positrons by tip-
ping them over a several eV barrier and produced antihy-
drogen measurably too warm to trap. In [17], antiprotons
were heated over a few eV barrier into positrons with a
fixed-frequency drive. In both cases, antiprotons entered
the positrons with an excess of energy: either an initial
excess of U or significant transverse energy gained from
collisional energy redistribution; both reduce the likeli-
hood of forming trappable antihydrogen [18]. In contrast,
autoresonance injects the antiprotons into the positrons
with little excess longitudinal energy, and if done suffi-
ciently quickly, with minimal increase in the antiprotons’
original transverse energy. Once the drive parameters
were tuned tuned to those reported in [6], we found that
autoresonant injection was reproducible in the face of
fluctuations (∼ 10%) in the number and radial profile of
the initial antiproton and positron plasmas.
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