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 We present an alternative approach to the usual perturbative S-matrix evaluation of 

quantum field theories which is non-perturbative and provides full space-time resolution.  This 

method is used to study the dynamical development of the force between two fermion wave packets 

for a one-dimensional Yukawa system.  The spatial distribution of the virtual bosons that act as 

mediators of the force can be analyzed along with the fermionic densities.  The fermion-fermion 

interaction can be approximated by a potential function, which is used to develop classical and 

quantum models.  It is shown that these models are good approximations to the exact field 

theoretical calculations when the Fock space is restricted to only one boson, but in the full quantum 

field theory the fermion-fermion force is enhanced by higher-order multi-boson processes.  

Furthermore, the normally attractive fermion-fermion Yukawa force can in principle be 

manipulated to even be repulsive if the momentum modes available to the virtual bosons are 

restricted.  
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 Quantum electrodynamics is one of the most successful and well-tested theories in physics.  

Its typical treatment is based on a perturbative S-matrix approach [1].  While this approach has 

proven to have incredible predictive power in beam experiments and the measurement of the 

electron's anomalous magnetic moment, it has two disadvantages; first, only the perturbative 

approximation to the theory can be calculated, and second, only the asymptotic in- and out-states 

are relevant and therefore there is no knowledge of the underlying space- and time-resolved 

dynamics of the system.  This theory relates the origin of all forces to the emission and absorption 

of virtual bosons as essential mediators of force.  The dynamical aspects of how the exchange of 

intermediary bosons can lead to repulsive or attractive forces between two fermions of equal or 

opposite charge is presently not fully understood.  For example, how is the state of the bosons 

modified during this exchange, or are there measurable time delays between emission and 

absorption? 

 In this work we examine a model fermion-boson Yukawa system using a numerical 

approach [2] that is non-perturbative and also allows for the visualization of the space-time 

dynamics of both fermionic and bosonic densities.  Our initial goal is not to make quantitative 

predictions for a specific experimental realization, but to introduce a theoretical framework to 

better understand the role virtual and dressing bosons play in the fermion-fermion interaction.  If 

the dynamical states of the bosons can be manipulated externally, the resulting fundamental forces 

can be controlled.   

 In order to focus on the fermion-boson dynamics, antifermions are neglected in this model.  

This not only reduces the size of the Hilbert space, thus making computations more feasible, but 

also removes ultraviolet divergences in the boson propagator, thereby eliminating the need for 

renormalization of the theory.  We denote the quantum field operators for the fermions (modeling 

electrons) and neutral scalar bosons (modeling photons) with ˆ Ψ (z) and ˆ ϕ (z), where z denotes the 

(one-dimensional) spatial coordinate.  We can expand these operators in momentum states 

 

 ˆ Ψ (z) ≡ ∫dp ˆ b (p) (2π)-1/2 u(p) exp(ipz/ )   (1a) 

 ˆ ϕ (z) ≡ ∫dk c 1/2 (4πω(k))-1/2 ˆ a (k) exp(ikz/ ) + h.c. (1b) 

 

where the fermionic and bosonic creation and annihilation operators fulfill the anticommutator and 
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commutator relationships [ ˆ b (p), ˆ b (p′)†]+=δ(p-p′) and [ ˆ a (k), ˆ a (k′)†]–= δ(k-k′).  As is customary in 

atomic physics and quantum optics, from now on we will use units where the speed of light c=137 

a.u., the electron's mass and charge m=e=1 a.u., and =1 a.u.   The two-component spinor 

coefficient is defined as u(p)≡[1+(pc/(Mc2+E(p)))2]-1/2 [1, pc/(Mc2+E(p))]T, where we use Dirac 

matrices represented here in terms of the Pauli matrices, γ0=σ3 and γ1=σ1.  We denote the free 

energies by E(p)≡√[M2c4+c2p2] and ω(k)≡√[m2c4+c2k2], where the bare masses of the fermion 

and boson are M and m, respectively.  The Hamiltonian of this system is then given by: 

 

 H = ∫dp E(p) ˆ b (p)† ˆ b (p) + ∫dk ω(k) ˆ a (k)† ˆ a (k) + V (2a) 

 V = γ c5/2 ∫dp ∫dk Γ(p, k) ˆ b (p+k)† ˆ b (p) [ ˆ a (k)+ ˆ a (-k)†]  (2b) 

 

The coupling function Γ(p,k)≡ [E(p+k)E(p)+M2c4-p(p+k)c2]1/2 [8πω(k)E(p+k)E(p)]-1/2 is the 

result of the scalar product among the Dirac spinors and acts as a natural cut-off function as it 

decreases with increasing momenta p and k.   

 In order to examine the dynamics, we have to compute the time evolution of the quantum 

field theoretical state ||Φ(t)>> as a solution to the equation of motion, i ∂||Φ(t)>>/∂t = H ||Φ(t)>> for 

a given initial state ||Φ(0)>>.  Solving this equation is aided by the existence of two conserved 

quantum numbers, the fermion number ∫dp ˆ b (p)† ˆ b (p) and the total momentum ∫dp p ˆ b (p)† ˆ b (p) + 

∫dk k ˆ a (k)† ˆ a (k).  The system is discretized by placing it in a box with periodic boundary conditions, 

and then the still infinite-dimensional Fock space is further restricted to only the dynamically 

relevant bosonic states.  We have verified that other boson modes have only very low occupation 

and the results are only minimally affected by restricting the maximum occupation number.  Due to 

momentum conservation, each momentum block can be diagonalized separately, permitting us to 

diagonalize numerically a 105×105 Hamiltonian matrix.  The eigenvalues and eigenvectors are used 

to construct the time evolution of the state, which is used to calculate the spatial probability density 

of the (bare) fermions via ρf(z,t) ≡ <<Φ(t) || ˆ Ψ (z)† ˆ Ψ (z) || Φ(t)>> and similarly for the bosons. 

 In order to compare the quantum field theoretical dynamics based on the annihilation and 
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creation of particles with quantum and classical mechanical descriptions, we need to approximate 

the interaction Eq. (2.b) by a potential.  Such an effective fermion-fermion potential can be obtained 

in the non-relativistic limit if the momenta are small. Under the Greenberg-Schweber 

approximation [3], the energy of the fermion is assumed to be independent of momentum and is 

approximated by the rest energy, E(p)≈Mc2.  The factor Γ(p,k) appearing in Eq. (2b) becomes 

independent of p.  The bare annihilation operators ˆ b (p) and ˆ a (k) can then be transformed into 

dressed operators ˆ B (p) and ˆ A (k) by a unitary transformation 

 

 UGS = exp{ γ c3/2 ∫dp ∫dk (4π ω(k)3)-1/2 ˆ b (p)† ˆ b (p+k) [ ˆ a (k)† - ˆ a (-k)] }  (3) 

 

This transformation is very similar to the interaction picture transformation U(-∞,∞) but with the 

integration beginning from t=0 instead, U(0, ∞).  When the Hamiltonian is rewritten in the new 

dressed operator variables ˆ B  and ˆ B †, it is found to contain a term 

 

                 VGS = ∫ dz ∫ dz′ ˆ B (z)† ˆ B (z) V(z-z′) ˆ B (z′)† ˆ B (z′) (4) 

 

where the non-local interaction potential is  

 

                         V(z-z′) = – (γ2 c2/2m) exp[– c m |z-z′|] (5) 

  

We note that the same expression for the Yukawa potential can also be obtained by starting with the 

first term in the perturbative expansion of the fermion-fermion and antifermion-fermion elastic 

scattering S-matrix element and comparing the resulting differential cross section with what one 

would obtain by using the Born approximation with the above potential [4]. 

 In Figure 1a we show the fully space- and time-resolved dynamics for two initially Gaussian 

distributed fermions.  In contrast to the construction of a single physical fermion wave packet and 

its bosonic component [5], the required dressed two-fermion state is more complicated.   If the 

associated bosonic clouds do not spatially overlap, the state can be obtained from antisymmetrized 

products of the dressed (single-fermion) creation operators applied to the vacuum.  The spatial 

distribution under the influence of interactions is the curve labeled t=T, while the spreading 
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behavior that would occur in the absence of any interaction (γ=0) is shown for comparison as the 

dashed curve.  In the region around z=0, we see that the fermionic density is much higher when 

interactions are turned on, indicating that the two fermions are attracted to each other.  Furthermore, 

we see that the fermion density on the wings of the distribution with and without interactions are in 

close agreement; in this region the two fermions are too far away from each other, such that the 

force is nearly zero.  
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Figure 1. 
(a) The fermions’ spatial probability density ρf(z) at the initial and final time T.  To measure the 
impact of the virtual bosons, the dashed curve (denoted by γ=0) is the fermions’ final density without 
any interaction.  The inset shows the corresponding densities obtained from a classical mechanical 
ensemble of 107 two-particle pairs and a quantum mechanical wave function solution to the 
relativistic two-particle Schrödinger equation based on the attractive Yukawa force, enlarged for the 
small central region between both fermions -0.05 a.u. < z < 0.05 a.u.  The top curve in the inset is 
quantum field theoretical density where the Fock space has been restricted to only 1 boson.  
(b) Five snapshots of the spatial density of the corresponding virtual bosons ρb(z) at times t=n×2.5 
10-3 a.u. (n=0,1,2,3,4).  [Parameters:  fermion and boson masses M=1 a.u. and m=0.05 a.u. 
respectively, box length L=1 a.u., coupling γ=0.05 a.u., Fock space restricted to a maximum of 3 
bosons, and the initial state is two Gaussians located at z0=±0.16 a.u. with width Δz=0.05 a.u.  Both 
Gaussians have zero average momentum]. 

 

 The attraction between the dressed fermions shown in the Figure was due to the virtual 

bosons.  A pair of initially bare fermions would produce a rapidly oscillating bosonic field at short 

times [6].  The associated virtual bosonic cloud surrounding each fermion is shown in Fig. 1b.  

These dressing bosons attached to a fermion can be regarded as the "electric field" produced by the 

"charge".  In contrast to the fermions’ initial densities, which do not overlap initially, the virtual 

boson cloud associated with one fermion overlaps with the other fermion, leading to an immediate 

attraction.  Also note that at the final time, the virtual bosons, acting now as force-mediators, have 

moved to the region between the two fermions. 
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 The quantum field theoretical system can be modeled by classical and quantum mechanical 

approximations based on the Yukawa potential V(z-z′).  For the classical mechanical model, the 

Bakamjian-Thomas construction [7] can be used.  This technique allows for the introduction of an 

instantaneous action-at-a-distance potential energy function while still preserving the relativistic 

Poisson bracket algebra [8-10] for the boost k, the total momentum p and the Hamilton function h, 

{h,k}=p, {p,k}=h/c2, and {h,p}=0.  The fact that action-at-a-distance can be combined with a 

relativistic algebra is highly non-trivial [11].  In this formalism the two-particle Hamiltonian h is 

written as h = [ (Mr+V(r)/c2)2 c4 + (p1+p2)2 c2 ]1/2, where V(r) is the Yukawa potential Eq. (5).  The 

variable r≡z1-z2+(z1−z2)(p1+p2)2/Mr [(h1+h2+Mrc
2)-1−4p2 (h1+h2)-1 Mr

-2c-2)] is the relativistic 

equivalent of the non-relativistic relative position (z1−z2), h1,2≡[M2c4+c2p1,2
2]1/2 is the 

singe-particle free Hamiltonian, and z1, z2, p1, and p2 are the positions and momenta of the two 

particles.  The mass function Mr≡[(h1+h2)2−c2(p1+p2)2]1/2/c2 plays the role of the total effective 

relativistic mass of the system.  The Gaussian distributed 2-fermion initial state is simulated in 

classical mechanics by an ensemble of 2×107 point particles with appropriate position and 

momentum distributions corresponding to the quantum field theory densities.  The results of the 

classical model are shown in Fig. 1a and its inset. 

 The quantum mechanical model is obtained by the numerical solution to the two-particle 

Schrödinger equation i ∂Ψ(z1,z2,t)/∂t = [h1 +h2 +V(z1-z2)]Ψ(z1,z2,t), where h1,2≡[M2c4 − 

c2∂2/∂z1,2
2]1/2, and V(z1-z2) is again the Yukawa potential.  Because the system consists of two 

identical fermions, the initial wave function was chosen to be anti-symmetric, 

Ψ(z1,z2,t=0)=φ1(z1)φ2(z2)−φ1(z2)φ2(z1), where φ1 and φ2 are single particle wave functions.  A 

corresponding symmetrized two-electron state would lead to a different time evolution but these 

differences are negligible for our parameters.  The effective single-particle quantum mechanical 

density ∫ dz2 ⏐Ψ(z,z2,t)⏐
2 is also shown in Figure 1a. 

 As seen in the Figure, the classical and quantum mechanical models are in remarkably close 

agreement with each other, and as expected both show an attraction between the two fermions when 

compared with the non-interacting spreading (dashed curve).  However, the quantum field theory 

result shows a substantially greater attraction.  Although the classical and quantum models are 

evaluated non-perturbatively, they are both based on the Yukawa potential, which was derived 
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perturbatively by assuming the exchange of only a single boson between the fermions.  We might 

therefore speculate that the difference between the field theory result and the two models is due to 

higher-order multi-boson processes.  To test this hypothesis, the quantum field theory calculation 

was performed, but with the Fock space restricted to only those states containing at most one boson.  

As seen in the inset of Fig. 1, the one-boson result is now almost in perfect agreement with the 

classical and quantum models suggesting that the excess attraction seen in the unrestricted quantum 

field theory is indeed a result of such multi-boson processes. 

 In order to gain greater insight into the nature of the interactions and the resulting effective 

force, we now turn to an analysis of the effects of the individual momentum modes of the bosonic 

field.  In Figure 2, the results of a field theoretical calculation are shown where the Fock space was 

restricted to a maximum of one boson, and only a single bosonic momentum mode was allowed, as 

indicated in the Figure.  The initial state was chosen again to represent two Gaussian distributed 

fermions with centers located at a distance of 0.5 a.u. from each other and with a narrow spatial 

width.  For k=1Δk (where Δk=2π/L, with L the box length), we again see that the force between the 

two fermions is attractive as there is an excess density of fermions in the region between the two 

initial locations, z≈0.  It is also evident that there is a slight overall translation of the distribution to 

the left.  This can most easily be seen by comparing it with the graph for no interactions (dashed 

line), since the non-interacting graph is perfectly symmetric with respect to the origin.  This shift 

occurs because the only active boson mode has positive momentum (k=+1Δk), so by conservation 

of momentum the fermion distribution must pick up a negative momentum and move slightly to the 

left. 

 For k=2Δk, the situation is more complicated.  There is an excess of bosons in the central 

region, again indicating an attractive force between the two fermions.  However, there is also an 

excess density over the non-interacting curve in the outer wings of the distribution.  Such an excess 

in this region indicates that here the force must be repulsive.  Therefore, the k=2Δk portion of the 

interaction appears to be attractive at short distances and repulsive at long range.  For k=3Δk, there 

is a deficit in the density distribution in the central region and an excess on the outermost wings, 

showing that the force is repulsive across the entire range.  Finally, for k=4Δk, when including the 

effects of the overall translation of the system to the left, there is a very slight deficit in fermionic 

density in the central region, indicating a repulsive force at these short distances, and there is also a 

deficit on the wings, which indicates an attractive force at longer ranges. 
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Figure 2.  Fermion densities after time T=0.01 a.u. where the interaction is associated with only a 
single bosonic momentum mode k=1, 2, 3, or 4 Δk.  For comparison, the dashed line is the density 
without any interaction between the dressed fermions. The inset of each Figure shows the force 
Fk(z-z′) associated with the specific mode of the virtual bosons as a function of the relative 
coordinate z-z′.  The plus (minus) sign indicates a region of mutual repulsion (attraction).  Note that 
0.5 a.u. is the average distance between the fermions.   
[Parameters:  fermion and boson masses M=1 a.u. and m=0.05 a.u. respectively, box length L=2 a.u. 
(full box length not shown in figure), coupling γ=0.3 a.u., and the initial state is two Gaussians 
located at z0=±0.25 a.u. with width Δz=0.03 a.u.  Both Gaussians have zero average momentum]. 

 

 These results can be understood by examining the contributions of each boson mode to the 

potential V(z-z′).  When confined to a box with periodic boundary conditions, the potential 

becomes the discrete sum V(z-z′)=−(γ2 c5/2π)Δk Σk ωk
-2 exp[i(z−z′)k Δk], where Δk is again the 

spacing between modes and k is now an integer.  If we consider only a pair of modes ±k′, then we 

may write an effective potential for these two modes Vk(z-z′)=−(γ2 c5/π) Δk ωk
-2 cos[(z−z′) k′ Δk].  

Each potential leads to a characteristic force Fk(z-z′) = -dVk(z-z′)/dz associated with each mode of 

the virtual bosons.  The effective forces created by these virtual bosons are shown in the insets on 
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top of each figure. 

 We see that the force caused by the virtual bosons of low momentum k=1 is negative and 

therefore attractive over the entire box length.  Other bosons can be either attractive or repulsive in 

different spatial regions.  For example, virtual bosons with momentum k=2 lead to an attraction for 

fermions that are close to each other |z-z′|<0.5, while those that are further apart repel.  For the 

parameters used in Figure 2, the distance between the centers of the two Gaussian wave packets was 

0.5 a.u.  Therefore the force Fk=2(z-z′) predicts that the inside wings of the two Gaussians should 

move towards each other, while the outside wings move apart.  This is exactly the behavior that is 

observed in the Figure.  Furthermore, the k=3 mode is purely repulsive around 0.5 a.u.  There are 

two trends that make virtual bosons with larger momentum less important; first the regions of 

attraction and repulsion become shorter and therefore their dynamical impact self-averages out to 

zero as the two fermions evolve, and, second, the amplitude of the force decreases. 

 An important question concerns the applicability of these results to the case of a boson of 

mass zero and spin 1.  While the massive bosons of spin zero modeled by the Yukawa Hamiltonian 

are much easier to be treated computationally, the ultimate goal would be to use the exact QED 

Hamiltonian to study the full three-dimensional time-evolution of Coulombic electron-electron and 

electron-positron interactions through a photon field.  While the simplified model presented here 

yielded finite results, quantum electrodynamics would not converge without a further analysis of 

the issue of renormalization. 
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