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Abstract
Two widely proposed kt-dependent gluon distributions in the small-x saturation regime are

investigated using two particle back-to-back correlations in high energy scattering processes. The

Weizsäcker-Williams gluon distribution, interpreted as the number density of gluon inside nucleus,

is studied in the quark-antiquark jet correlation in deep inelastic scattering. On the other hand, the

unintegrated gluon distribution, defined as the Fourier transform of the color-dipole cross section,

is probed in the direct photon-jet correlation in pA collisions. Dijet-correlation in pA collisions

depends on both gluon distributions through combination and convolution in the large Nc limit.
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As the foundation of high energy hadronic physics, QCD factorization enables us to sepa-
rate the short distance perturbative physics from the long distance non-perturbative effects.
Its prediction power relies on the universality of the parton distributions among different
processes. Recent studies [1–7] have shown that the naive kt-factorization is violated in two-
particle production in hadron-hadron collisions. Nevertheless, in this letter, we establish
an effective factorization in hard processes in nuclei scattered by a dilute probe by modi-
fying the parton distributions at small-x. Although the parton distributions are no longer
universal, they can be constructed from several universal individual building blocks.

The saturation phenomena in high energy hadronic interactions have attracted great
attention in recent years. It has long been recognized that the gluon dynamics in QCD
at small-x is responsible for these phenomena [8–11]. An effective theory, the color glass
condensate (CGC), was proposed to systematically study this physics [11]. On the exper-
imental side, there exist strong indications of the saturation from the structure function
measurements in deep inelastic scattering (DIS) at HERA and the shadowing effects found
in inclusive hadron production in dA collisions at RHIC [11]. Ongoing and future experi-
ments from both RHIC and LHC, and in particular, the planned Electron-Ion Collider [12],
shall provide further information on this.

An important aspect of the small-x gluon distribution function in nucleons and nuclei
is the resummation of the multiple interactions of the hadronic probe with the target, be-
cause the gluon density is so high and these interactions have to be taken into account. In
order to study the resummation effects, a transverse momentum dependence is introduced.
They are referred to as the kt-dependent gluon distributions, also called unintegrated gluon
distribution (UGD) functions. Two different forms of the UGDs have been used in the lit-
erature. The first gluon distribution, also known as the Weizsäcker-Williams (WW) gluon
distribution, measures the number density of gluons in the CGC formalism [10], whereas the
second one defined as the Fourier transform of the color dipole cross section, appears in the
calculations for, e.g., single inclusive particle production in pA collisions [11]. However, it
has been argued that they can not be distinguished especially in the small k⊥ region though
they differ dramatically, and both of them are often used [13].

In this paper, we study two particle correlations in various high energy scattering pro-
cesses as probes to these UGDs. There have been intensive investigations of these processes
in the last few years [1–7]. Taking the quark distribution as an example, it was shown in
Ref. [7] that, in the large nuclear number limit, an effective factorization can be achieved
with modified parton distributions of nucleus in pA and γ∗A scattering processes where
the multiple interaction effects can be resummed in the small-x formalism. Following this
argument, we focus on the processes with a dilute system scattering on a dense target,

B + A→ H1(k1) +H2(k2) +X , (1)

where A represents the dense target (such as a nucleus), B stands for the dilute projectile
(such as nucleon or photon), H1 and H2 are the two final state particles with momenta
k1 and k2, respectively. We are interested in the kinematic region where the transverse
momentum imbalance between them is much smaller than the individual momentum: q⊥ =

|~k1⊥ + ~k2⊥| ≪ P⊥ where ~P⊥ is defined as (~k1⊥ − ~k2⊥)/2. This is referred as the back-to-
back correlation limit (the correlation limit) in the following discussions. An important
advantage of taking this limit is that we can apply the power counting method to obtain the
leading order contribution of q⊥/P⊥ where the differential cross section directly depends on
the UGDs of the nuclei. For example, the quark-antiquark jet correlation in deep inelastic

2



scattering (DIS) directly probes the first type of the UGD, whereas the direct photon-
quark jet correlation in pA collisions probes the second type of UGD. The dijet (di-hadron)
correlations in pA collisions can probe both gluon distributions, though the connection is
more complicated.

Let us first discuss the conventional gluon distribution, generalized to include the trans-
verse momentum dependence [14, 15],

xG(1)(x, k⊥) =

∫

dξ−d2ξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥

×〈P |F+i(ξ−, ξ⊥)L†
ξL0F

+i(0)|P 〉 , (2)

where F µν is the gauge field strength tensor F µν
a = ∂µAν

a−∂
νAµ

a−gfabcA
µ
bA

ν
c with fabc the an-

tisymmetric structure constants for SU(3), and Lξ = P exp{−ig
∫ ∞

ξ−
dζ−A+(ζ, ξ⊥)}P exp{−ig

∫ ∞

ξ⊥
dζ⊥·

A⊥(ζ− = ∞, ζ⊥)} is the gauge link in the adjoint representation Aµ = Aµ
ata with ta = −ifabc.

It contains a transverse gauge link at spatial infinity which is important to make the def-
inition gauge invariant [16]. These gauge links have to be made non-light-like to regulate
the light-cone singularities when gluon radiation contributions are taken into account [14].
This does not affect the following analysis, because there is no light-cone singularity in
the calculation. By choosing the light-cone gauge with certain boundary condition for the
gauge potential (for example, in the above definition, A⊥(ζ− = ∞) = 0), we can drop out
the gauge link contribution, and find that this gluon distribution has the number density
interpretation. Then, it can be calculated from the wave functions or the WW field of the
nucleus target [10, 17]. At small-x for a large nucleus, it was found [10]

xG(1)(x, k⊥) =
S⊥

π2αs

N2
c − 1

Nc

∫

d2r⊥
(2π)2

e−ik⊥·r⊥

r2
⊥

(

1 − e−
r2
⊥

Q2
s

4

)

, (3)

where Nc = 3 is the number of colors and Qs is the gluon saturation scale [11]. We have
cross checked this result by directly calculating the gluon distribution function in Eq. (2)
following the similar calculation for the quark in Ref. [16, 18].

Despite the nice physical interpretation, it has been argued that the gluon distribution
in Eq. (2) is not directly related to physical observables in the CGC formalism. However,
we will show that xG(1) can be directly probed through the quark-antiquark jet correlation
in DIS,

γ∗TA→ q(k1) + q̄(k2) +X . (4)

The calculations are performed for Q2 in the same order of P 2
⊥ and the quarks are massless.

Extension to the real photon scattering and/or massive quarks in the final state is straight-
forward. We will show the results for the transversely polarized photon, and that for the
longitudinal one follows accordingly. We plot the typical Feynman diagram for the process
of (4) in Fig. 1, where the bubble in the partonic part represents the hard interaction vertex
including gluon attachments to both quark and antiquark lines. Fig. 1(a) is the leading
Born diagram whose contributions can be associated with the hard partonic cross section
times the gluon distribution from Eq. (2) [3]. In high energy scattering with the nucleus
target, additional gluon attachments are important and we have to resum these contribu-
tions in the large nuclear number limit. Figs. 1(b,c) represent the diagrams contributing at
two-gluon exchange order, where the second gluon can attach to either the quark line or the
antiquark line. By applying the power counting method in the correlation limit (q⊥ ≪ P⊥),
we can simplify the scattering amplitudes with the Eikonal approximation [3]. For example,
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FIG. 1. Typical Feynman diagrams contributing to the quark-antiquark jet correlation in deep

inelastic scattering (a,b,c) and photon-jet correlation in pA collisions (d,e,f): (a,d) leading order,

where the bubble represents the gluon attachments to both quark lines; (b,c,e,f) two-gluon exchange

diagrams.

Fig. 1(b) can be reduced to: g/(−q+
2 + iǫ)T bΓa in the above limit, where q2 is the gluon mo-

mentum, T b is the SU(3) color matrix in the fundamental representation and Γa represents
the rest of the partonic scattering amplitude with color indices for the two gluons a and b.
Similarly, Fig. 1(c) can be reduced to: −g/(−q+

2 + iǫ)ΓaT b. The sum of these two diagrams
will be g/(−q+

2 + iǫ)
[

T bΓa − ΓaT b
]

. Because of the unique color index in Γa, we find the
effective vertex as,

Fig. 1(b, c) ∼
i

−q+
2 + iǫ

(−ig)(−ifbca)T
c , (5)

which is exactly the first order expansion of the gauge link contribution in the gluon distri-
bution defined in Eq. (2). Here, the crossing diagrams of Figs.1(b,c), by interchanging the
two gluons, are included in the calculations to compare to the gauge link expansion results
(see also Ref. [19]). For all high order contributions, we can follow the procedure outlined
in Ref. [16] to derive the gluon distribution. Therefore, we obtain the following differential
cross section for the quark-antiquark jet correlation in DIS process

dσγ∗

T
A→qq̄+X

dP.S.
= δ(xγ∗ − 1)xgG

(1)(xg, q⊥)Hγ∗

T
g→qq̄ , (6)

where xg is the momentum fraction carried by the gluon and is determined by the kinematics,
xγ∗ = zq + zq̄ with zq and zq̄ being the momentum fractions of the virtual photon carried
by the quark and antiquark, respectively. The phase space factor is defined as dP.S. =
dy1dy2d

2P⊥d
2q⊥, and y1 and y2 are rapidities of the two outgoing particles. The leading

order hard partonic cross section reads Hγ∗

T
g→qq̄ = αsαeme

2
q(ŝ

2 +Q4)/(ŝ+Q2)4×
(

û/t̂+ t̂/û
)

with the usually defined partonic Mandelstam variables ŝ, t̂ and û. By taking Q2 = 0, we
can extend the above result to the case of dijet productions in real photons scattering on
nuclei. The above process (4) can also be analyzed following the procedure in Ref. [2], where
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the gluon distribution Eq. (2) is written in the fundamental representation,

xG(1)(x, k⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥

×〈P |Tr
[

F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]
]

|P 〉 , (7)

where the gauge link U
[+]
ξ = Un [0,+∞; 0]Un [+∞, ξ−; ξ⊥] with Un being the light-like Wil-

son line in covariant gauge.
The quark-antiquark jet correlation in DIS (4) can also be calculated directly in the color-

dipole and CGC formalism [20]. The basic element is the qq̄ (color-dipole) wave function of
the virtual photon, combined with the multi-scattering of the dipole on the nuclear target.
Following this formalism, the amplitude can be written as

|A|2 = Ncαeme
2
q

∫

d2x

(2π)2

d2x′

(2π)2

d2b

(2π)2

d2b′

(2π)2
e−ik1⊥·(x−x′)

×e−ik2⊥·(b−b′)
∑

ψ∗
T (x− b)ψT (x′ − b′)

×
[

1 + S(4)
xg

(x, b; b′, x′) − S(2)
xg

(x, b) − S(2)
xg

(b′, x′)
]

, (8)

where ψT is the qq̄ Fock state wave function of a transversely polarized photon depend-

ing on ǫ2f = z(1 − z)Q2 with z = zq, S
(2)
xg (x, b) = 1

Nc

〈

TrU(x)U †(b)
〉

xg
, S

(4)
xg (x, b; b′, x′) =

1
Nc

〈

TrU(x)U †(x′)U(b′)U †(b)
〉

xg
, and U is the Wilson line describing the multiple scatterings

of a single quark with the nuclear target. The expectation value of multiple Wilson lines can
be found in Refs. [20–22]. In order to study the differential cross section in the correlation
limit, we substitute u = x− b and v = zx+ (1− z)b. Thus, the exponential factor becomes

e−iq⊥·(v−v′)e−iP̃⊥·(u−u′) where P̃⊥ = (1 − z)k1⊥ − zk2⊥ ≈ P⊥. Then, we can expand the in-
teraction part of the bracket at small u and u′, but keep v and v′ fixed. We find that the
remaining contribution comes from the term involving inelastic scatterings while the elastic
scattering part cancels out. Therefore, the square bracket in the above equation becomes
1

Nc
uiu

′
j

〈

Tr∂iU(v)U †(v′)∂jU(v′)U †(v)
〉

xg
. With this expansion result, we further find that

the wave function integral with uiu
′
j leads to δij(P

4
⊥ + ǫ4f)/(P

2
⊥ + ǫ2f)

2, and the differential
cross section can be simplified as,

dσγ∗

T
A→qq̄X

dP.S.
= αeme

2
qαsδ (xγ∗ − 1) z(1 − z)

(

z2 + (1 − z)2
) P 4

⊥ + ǫ4f
(P 2

⊥ + ǫ2f )
4

×(16π3)

∫

d3vd3v′

(2π)6
e−iq⊥·(v−v′)2

〈

TrF i+(v)U [+]†F i+(v′)U [+]
〉

xg
. (9)

To compare with the differential cross section in Eq. (6), we notice that the partonic
Mandelstam variables can be expressed in terms of P⊥ and z as: ŝ = P 2

⊥/(z(1 − z)),
t̂ = −(P 2

⊥+ǫ2f )/(1−z), and û = −(P 2
⊥+ǫ2f )/z. Substituting these relations into Eq. (9), tak-

ing the small-x approximation for the gluon distribution, and correcting the normalization
for the states in the calculation of the associated matrix elements, we find that it agrees with
the factorization result (6) completely. This consistency is very important to demonstrate
that we have a unified picture for the quark-antiquark correlation in DIS.

On the other hand, the direct photon-quark jet correlation in pA collisions,

pA→ γ(k1) + q(k2) +X , (10)
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probes a different gluon distribution. We plot the relevant diagrams in Fig. 1 (d,e,f), again
for the leading one gluon exchange and two gluon exchanges. Similarly, the two gluon
exchange contributions can be summarized as

Fig. 1(e, f) ∼
i

−q+
2 + iǫ

(−ig)
(

T bΓa + ΓaT b
)

, (11)

where the plus sign comes from the fact that the second gluon attaches to the quark line in
the initial and final states. Since there is no color structure corresponding to Eq. (11), we
can only express it in the fundamental representation. Following Ref. [2], we find that the
gluon distribution in this process can be written as

xG(2)(x, k⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥〈P |Tr
[

F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]
]

|P 〉 , (12)

where the gauge link U
[−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥]. This gluon distribution can also

be calculated in the CGC formalism where it is found to be xG(2)(x, q⊥) ≃
q2
⊥

Nc

2π2αs
S⊥Fxg

(q⊥)

with the normalized unintegrated gluon distribution Fxg
(q⊥) =

∫

d2r⊥
(2π)2

e−iq⊥·r⊥S
(2)
xg (0, r⊥).

Therefore, the differential cross section of (10) can be written as

dσ(pA→γq+X)

dP.S.
=

∑

f

x1q(x1)xgG
(2)(xg, q⊥)Hqg→γq , (13)

where q(x1) is the integrated quark distribution from the projectile nucleon. Because we are
taking large nuclear number limit, the intrinsic transverse momentum associated with it can
be neglected compared to that from the gluon distribution of nucleus. The hard partonic
cross section is Hqg→γq = αsαee

2
q/(Ncŝ

2) (−ŝ/û− û/ŝ). We can calculate process (10) in the
CGC formalism directly [23], and again we find that these two calculations are consistent
with each other.

The gluon distributions defined in Eqs. (2) and (12) have the same perturbative behavior
and they reduce to the same gluon distribution after integrating over k⊥. However, they do
differ in the low transverse momentum region [11, 13]. It will be very important to measure
the low k⊥ behavior of the correlation processes of (4) and (10) to test these predictions. In
particular, the planed EIC machine will be able to study the quark-antiquark jet correlation
in DIS process, whereas RHIC and future LHC experiments shall provide information on
direct photon-quark jet correlation in pA collisions.

The extension to the dijet-correlation in pA collisions is straightforward. The relevant
initial and final state interaction phases have been calculated in Ref. [2]. To obtain the
differential cross section in the correlation limit, we have to take the large Nc limit and the
mean field approximation [7, 24]. After a lengthy calculation, we find

dσ(pA→Dijet+X)

dP.S.

=
∑

q

x1q(x1)
α2

s

ŝ2

[

F (1)
qg H

(1)
qg→qg + F (2)

qg H
(2)
qg→qg

]

+ x1g(x1)
α2

s

ŝ2

[

F (1)
gg

(

H
(1)
gg→qq̄ +

1

2
H(1)

gg→gg

)

+F (2)
gg

(

H
(2)
gg→qq̄ +

1

2
H(2)

gg→gg

)

+
1

2
F (3)

gg H
(3)
gg→gg

]

, (14)
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where again q(x1) and g(x1) are integrated quark and gluon distributions from the projectile
nucleon. The hard partonic cross sections are defined as

H(1)
qg→qg =

û2 (ŝ2 + û2)

−2ŝût̂2
, H(2)

qg→qg =
ŝ2 (ŝ2 + û2)

−2ŝût̂2

H
(1)
gg→qq̄ =

1

4Nc

2
(

t̂2 + û2
)2

ŝ2ût̂
, H

(2)
gg→qq̄ =

1

4Nc

4
(

t̂2 + û2
)

ŝ2

H(1)
gg→gg =

2
(

t̂2 + û2
) (

ŝ2 − t̂û
)2

û2t̂2ŝ2
, H(2)

gg→gg =
4
(

ŝ2 − t̂û
)2

ût̂ŝ2

H(3)
gg→gg =

2
(

ŝ2 − t̂û
)2

û2t̂2
, (15)

and the various gluon distributions of nucleus A are defined as

F (1)
qg = xG(2)(x, q⊥), F (2)

qg =

∫

xG(1)(q1) ⊗ F (q2) ,

F (1)
gg =

∫

xG(2)(q1) ⊗ F (q2), F (2)
gg = −

∫

q1⊥ · q2⊥
q2
1⊥

xG(2)(q1) ⊗ F (q2) ,

F (3)
gg =

∫

xG(1)(q1) ⊗ F (q2) ⊗ F (q3) , (16)

where ⊗ represents the convolution in momentum space:
∫

⊗ =
∫

d2q1d
2q2δ

(2)(q⊥ − q1 −
q2). Clearly, this process depends on both UGDs in a complicated way, and the naive kt-
factorization does not hold. We have checked the above results in different kinematics. First,
we recover the inclusive dijet cross section by integrating over q⊥. Second, in the dilute limit
of A, or equivalently at large q⊥: P⊥ ≫ q⊥ ≫ QS,ΛQCD, we reproduce the dijet-correlation
in the collinear factorization approach [3]. Last but not least, we find the CGC calculation
agrees with above results perfectly.

Recently, both STAR and PHENIX Collaborations have published experimental results
on di-hadron correlations in dAu collisions, where a strong back-to-back de-correlation of
the two hadrons was found in the forward rapidity region of the deuteron [25]. These
results have been compared to a number of theoretical calculations in the CGC formalism,
where different assumptions have been made in the formulations [26–28]. In particular, the
numerical evaluation in Ref. [26] only contains the first term in the qg channel in Eq.(14).
The missing term is equally important and should be taken into account to interpret the
STAR data. We plan to compare our results to these calculations and those in Ref. [29] for
qq̄ production in pA collisions in a future publication[24], together with detailed derivations
of generalized results illustrated in this paper.

In summary, we have studied the kt-factorization for dijet production at small-x in nuclei.
We found that different gluon distributions probed in different dijet production processes
can be built from two basic building blocks, the Weizsäcker-Williams distribution and the
Fourier transform of the dipole cross section. The most important result is that the DIS
dijet process can directly measure the well-known WW gluon distribution which would be
very interesting physics to pursue at the planned EIC.
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