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Using holography, we study the collision of planar shock waves in strongly coupled N = 4 super-
symmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial
value problem in asymptotically anti-de Sitter spacetime.

Introduction.— The recognition that the quark-gluon
plasma (QGP) produced in relativistic heavy ion col-
lisions is strongly coupled [1], combined with the ad-
vent of gauge/gravity duality (or “holography”) [2, 3],
has prompted much work exploring both equilibrium and
non-equilibrium properties of strongly coupled N = 4 su-
persymmetric Yang-Mills theory (SYM), which may be
viewed as a theoretically tractable toy model for real
QGP. Multiple authors have discussed collisions of in-
finitely extended planar shock waves in SYM, which may
be viewed as instructive caricatures of collisions of large,
highly Lorentz-contracted nuclei. In the dual description
of strongly coupled (and large Nc) SYM, this becomes a
problem of colliding gravitational shock waves in asymp-
totically anti-de Sitter (AdS5) spacetime. Previous work
has examined qualitative properties and trapped surfaces
[4–7], possible early time behavior [8–10], and expected
late time asymptotics [11, 12]. As no analytic solution is
known for this gravitational problem, solving the gravita-
tional initial value problem numerically is the only way to
obtain quantitative results which properly connect early
and late time behavior. In this letter, we report the re-
sults of such a calculation, and examine the evolution of
the post-collision stress-energy tensor.

Unlike previous work considering singular shocks with
vanishing thickness [5, 9], or shocks driven by non-
vanishing sources in the bulk [5, 6], we choose to study
planar gravitational “shocks” which are regular, non-
singular, source-less solutions to Einstein’s equations.
Equivalently, we study the evolution of initial states in
SYM with finite energy density concentrated on two pla-
nar sheets of finite thickness (and Gaussian profile), prop-
agating toward each other at the speed of light. The
dual description only involves gravity in asymptotically
AdS5 spacetime; the complementary 5D internal mani-
fold plays no role and may be ignored. Consequently, our
results apply to all strongly coupled 4D conformal gauge
theories with a pure gravitational dual description.

Gravitational description.— Diffeomorphism invari-
ance plus translation invariance in two spatial directions
allows one to write the 5D spacetime metric in the form

ds2 = −Adv2+Σ2
[
eBdx2

⊥ + e−2Bdz2
]
+2dv (dr+Fdz) ,

(1)

where A, B, Σ, and F are all functions of the bulk radial
coordinate r, time v, and longitudinal coordinate z. We
employ generalized infalling Eddington-Finkelstein coor-
dinates. Lines along which all coordinates except r are
constant are infalling radial null geodesics; the radial co-
ordinate r is an affine parameter along these geodesics.
At the boundary, located at r = ∞, v coincides with
time in the dual quantum field theory. The geometry in
the bulk at v ≥ 0 is the causal future of v = 0 on the
boundary. The ansatz (1) is invariant under the residual
diffeomorphism r → r + ξ, with ξ an arbitrary function
of v and z.

For a metric of the form (1), Einstein’s equations (with
cosmological constant Λ ≡ −6) imply

0 = Σ′′ + 1
2 (B′)2 Σ , (2a)

0 = Σ2 [F ′′ − 2(d3B)′ − 3B′d3B] + 4Σ′d3Σ ,

− Σ [3Σ′F ′ + 4(d3Σ)′ + 6B′d3Σ] , (2b)

0 = Σ4 [A′′ + 3B′d+B + 4]− 12Σ2Σ′d+Σ

+ e2B
{

Σ2
[
1
2 (F ′)2− 7

2 (d3B)2−2d2
3B
]

+ 2(d3Σ)2 − 4Σ
[
2(d3B)d3Σ + d2

3Σ
]}
, (2c)

0 = 6Σ3(d+Σ)′ + 12Σ2(Σ′d+Σ− Σ2)− e2B {2(d3Σ)2

+ Σ2
[
1
2 (F ′)2+(d3F )′+2F ′d3B− 7

2 (d3B)2−2d2
3B
]

+ Σ
[
(F ′−8d3B) d3Σ− 4d2

3Σ
]}
. (2d)

0 = 6Σ4(d+B)′ + 9Σ3(Σ′d+B +B′d+Σ)

+ e2B
{

Σ2[(F ′)2+2(d3F )′+F ′d3B−(d3B)2−d2
3B]

+ 4(d3Σ)2 − Σ
[
(4F ′+d3B) d3Σ + 2d2

3Σ
]}
, (2e)

0 = 6Σ2d2
+Σ− 3Σ2A′d+Σ + 3Σ3(d+B)2

− e2B {(d3Σ + 2Σd3B)(2d+F + d3A)

+ Σ
[
2d3(d+F ) + d2

3A
]}
, (2f)

0 = Σ [2d+(d3Σ) + 2d3(d+Σ) + 3F ′d+Σ]

+ Σ2 [d+(F ′) + d3(A′) + 4d3(d+B)− 2d+(d3B)]
+ 3Σ (Σd3B + 2d3Σ) d+B − 4(d3Σ)d+Σ , (2g)

where, for any function h(v, z, r), h′ ≡ ∂rh and

d+h ≡ ∂vh+ 1
2A∂rh , d3h ≡ ∂zh− F ∂rh . (3)



2

Note that h′ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
[
1 +

2ξ
r

+
ξ2−2∂vξ

r2
+
a4

r4
+O(r−5)

]
, (4a)

F = ∂zξ +
f2
r2

+O(r−3) . (4b)

B =
b4
r4

+O(r−5) , (4c)

Σ = r + ξ +O(r−7) , (4d)

The coefficient ξ is a gauge dependent parameter which
encodes the residual diffeomorphism invariance of the
metric. The coefficients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

∂va4 = − 4
3 ∂zf2 , ∂vf2 = −∂z( 1

4a4 + 2b4) . (5)

These coefficients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµν [13].
Defining E ≡ 2π2

N
2
c
T 00, P⊥ ≡ 2π2

N
2
c
T⊥⊥, S ≡ 2π2

N
2
c
T 0z, and

P‖ ≡ 2π2

N
2
c
T zz, one finds

E = − 3
4a4 , P⊥ = − 1

4a4 + b4 , (6a)

S = −f2 , P‖ = − 1
4a4 − 2b4 . (6b)

Eqs. (5) and (6) imply ∂µTµν = 0 and Tµµ = 0.
Numerics overview.— Our equations (2) have a natu-

ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find Σ. With B and Σ known, Eq. (2b)
may be integrated to find F . With B, Σ and F known,
Eq. (2d) may be integrated to find d+Σ. With B, Σ, F
and d+Σ known, Eq. (2e) may be integrated to find d+B.
Last, with B, Σ, F , d+Σ and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ∂vB = d+B − 1

2AB
′, evolve B forward

in time to the next time step, and repeat the process.
In this scheme, each nested equation is a linear ODE

for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coefficients a4 and f2 — all specified at some constant v
— and the gauge parameter ξ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are effectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3Σ2 d+Σ− ∂z(F Σ e2B) + 3
2F

2 Σ′e2B , (7)

which is implemented as a boundary condition to deter-
mine ξ and its evolution. Horizon excision is performed
by restricting the computational domain to r ∈ [1,∞].

Another issue is the presence of a singular point at
r =∞ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =∞, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fefferman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ∓z direction may be
easily found and reads [11],

ds2 = r2[−dx+dx− + dx2
⊥] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ≡ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ≡ µ3 (2πw2)−1/2 e−
1
2x

2
±/w

2
. (9)

The energy per unit area of the shock is µ3(N2
c /2π

2). If
the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the diffeomorphism trans-
forming the single shock metric (8) from Fefferman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ +B−. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = − 4
3 [h(v0+z)+h(v0−z)] , f2 = h(v0+z)−h(v0−z).

(10)
A complication with this initial data is that the metric

functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant δ.
This introduces a small background energy density in
the dual quantum theory. Increasing δ causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is ∆z = 6.2/µ. We chose
δ = 0.014µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v= 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-
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dynamics, Fig. 3 also plots (as dashed lines) the pressures
Phydro
⊥ and Phydro

‖ predicted by the first-order viscous
hydrodynamic constitutive relations [18]. At z = 0 the
hydrodynamic constitutive relations hold within 15% at
time vhydro = 2.4/µ, with improving accuracy thereafter.
At z = 3/µ, they hold within 15% or better accuracy
after vhydro = 2.1/µ.

At z = 0, where the flux S = 0, the constitutive rela-
tions imply that the difference between Phydro

⊥ and Phydro
‖

is purely due to viscous effects. Fig. 3 shows that there is
a large difference between P⊥ and P‖ when hydrodynam-
ics first becomes applicable, implying that viscous effects
are substantial.

We have also examined the influence of second-order
corrections in the hydrodynamic constitutive relations.
At z = 0, the second-order corrections only change vhydro

by about 1%, whereas at z = 3/µ their addition increases
vhydro by 20%. Evidently, in front of the receding maxima
in E and S, second-order corrections are large, the system
is still far from equilibrium, and agreement with the first-
order constitutive relation is largely fortuitous.

Hydrodynamic simulations of heavy ion collisions at
RHIC suggest that the produced QGP thermalizes in a
time perhaps shorter than 1 fm/c [19]. Crudely modeling
the boosted gold nuclei by our translationally invariant
Gaussian shocks, for RHIC energies we estimate µ ∼ 2.3
GeV. Our results from Fig. 3 then imply that the total
time required for apparent thermalization, from when the
Gaussian shocks start to overlap significantly to the onset
of validity of hydrodynamics, is ∆vtot ∼ 4/µ ∼ 0.35 fm/c.
Similar results for far-from-equilibrium relaxation times
in SYM were also reported in Ref. [20].

We conclude by discussing the effect of the background
energy density on our results. In the absence of a colli-
sion, the presence of the background energy density will
cause a propagating shock to slowly attenuate in ampli-
tude and eventually thermalize. We have computed sin-
gle shock propagation with the background energy den-
sity used above, and found that the shock attenuates in
amplitude by 2.5% in a time ∆v = 1/Tbkgd. We have also
studied the effect of increasing or decreasing the back-
ground energy density by a factor of 1.5. This results in
a spacetime dependent O(δ) change in the stress tensor
and perturbs the thermalization time vhydro (at z = 0)
by 1%. Lastly, we have also studied an expanding sheet
of plasma which is initially localized at z = 0 and sur-
rounded by vacuum. The initial conditions consisted of
B = 0, a Gaussian profile in the energy density, and
vanishing energy flux. At late times the stress has two
outward moving maxima, just as it does for the colliding
shocks. Furthermore, the tails in the stress move out-
wards at the speed of light whereas the maxima move at
a speed around 15% less. Consequently, we are confident
that the deviation of the speed of the maxima from 1 in
Figs. 1 and 2 is not an artifact caused by the background

energy density.
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