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We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner
shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to
a distinct class of quantum critical points in graphene, where the Kondo temperature scales as
TK ∝ |J − Jc|

1/3 near the critical coupling Jc , and the local spin is effectively screened by a super-

ohmic bath. For this class, the RKKY interaction decays spatially with a fast power law ∼ 1/R7.
Away from half filling, we show that the exchange coupling in graphene can be controlled across
the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical
point can be directly accessed with scanning tunneling probes and gating.

PACS numbers: 71.27.+a,73.20.Hb,75.30.Hx

Graphene is a single atomic sheet of carbon atoms with
elementary electronic quasiparticles that behave as mass-
less Dirac fermions[1]. The Kondo effect has been re-
cently observed in graphene[2, 3], and the formation of
a Kondo screening cloud around a magnetic adatom is
quantum critical at half filling[4, 5], crossing over at weak
coupling to the standard Fermi liquid case, when the
DOS is locally restored by disorder[6] or gating effects[7].
The Kondo resonance in graphene is also strongly sen-
sitive to the position of the adatom in the honeycomb
lattice, where the interplay of orbital and spin degrees of
freedom may give rise to an SU(4) Kondo effect[8].

In this letter, after establishing a generic one-level ex-
change interaction Hamiltonian for magnetic adatoms in
graphene, we show there is a symmetry class of orbitals
in which quantum interference between the different hy-
bridization paths leads to a fixed point where the Kondo
temperature TK ∝ |J − Jc|ν , scales with the mean field
exponent ν = 1/3, with J as the Kondo coupling near
criticality. In the ν = 1/3 class, graphene behaves as a
super-ohmic bath for the local spin and the RKKY in-
teraction is strongly suppressed, decaying spatially with
a fast power law ∼ 1/R7. Furthermore, we show that
the exchange coupling in graphene can be controlled by
gating. This effect opens the possibility of exploring the
proximity to the Kondo quantum critical point (QCP) in
graphene directly with scanning tunneling probe (STM)
measurements[9–12].

We start from the graphene Hamiltonian, Hg =
−t
∑

σ,〈ij〉 a
†
σ(Ri)bσ(Rj) + h.c., where a, b are fermionic

operators on sublattices A and B, respectively, t ∼ 2.8
eV is the nearest neighbors hopping energy and σ =↑↓
labels the spin. In the momentum space,

Hg = −t
∑

pσ

φpa
†
σ,pbσ,p + h.c., (1)

where φp =
∑3
i=1 eip·ai , and a1 = x̂, a2 = −x̂/2+

√
3ŷ/2,

and a3 = −x̂/2−
√

3ŷ/2 are the lattice nearest neighbor
vectors.

In the presence of a localized level, the problem is de-
scribed by the single impurity Anderson Hamiltonian[13,
14], H = Hg+Hf +HU +HV , where Hf =

∑

σ ǫ0 n̂f,σ is
the Hamiltonian of the localized electrons, with n̂f,σ =
f †σfσ as the number operator, and ǫ0 is the energy of
the local state measured relative to the Dirac point,
HU = Un̂f,↑n̂f,↓ gives the electronic repulsion in the lo-
calized level, andHV describes the hybridization between
the local level and the graphene electrons.

The adatoms in graphene can sit for instance on top
of a carbon atom, where the hybridization Hamilto-
nian is HAV = V

∑

σ f
†
σa
†
σ(0) + h.c., or in the hollow

site in the center of the honeycomb hexagon, where
the adatom hybridizes with the two sublattices, HHV =
∑

σ

∑3
i=1

[

Va,ia
†
σ(ai) + Vb,ib

†
σ(−ai)

]

fσ + h.c., with Vx,i
(x = a, b) representing the hybridization strength of the
localized orbital with each of the three surrounding car-
bon atoms sitting on a given sublattice. In momentum
representation [9],

HV =
∑

pσ

[

Vb,pb
†
σ,p + V ∗a,pa

†
σ,p

]

fσ + h.c. , (2)

where Vap ≡ V , and Vb,p = 0 for a top carbon site,
say on sublattice A (A-site). When the adatom sits in
the center of the hexagon (H-site), or else for a sub-
stitutional impurity in a single vacancy[15] (S-site), the

c)b)a)

Figure 1: Representation of (a) an s-wave and (b) an f -wave
orbital, when the adatom sits in the center of the graphene
honeycomb hexagon. (c) Substitutional impurity in a single
vacancy. In the three cases, the adatom hybridizes equally
with the neighboring carbons on the same sublattice.
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hybridization function is Vx,p =
∑3
i=1 Vx,ie

ip·ai . On H-
sites, for an s-wave orbital, Vx,i ≡ V , giving Vx,p ≡ V φp,
whereas for an in-plane f -wave orbital, as shown in
Fig. 1b, where the orbital is odd in the two sublattices,
Vb,i = −Va,i ≡ V , resulting in −Va,p = Vb,p ≡ V φp. In
the case of an s or in-plane f -wave orbital on an S-site
on sublattice A, Va,p = 0, and Vb,p ≡ V φp, whereas for
a substitutional impurity on a B-site, Va,p ≡ V φp, and
Vb,p = 0 (see Fig. 1c).

Diagonalizing the non-interacting part of the Hamilto-
nian H in the A, B sublattices,

Hg =
∑

pασ

Eα(p)c†α,σ,pcα,σ,p , (3)

whereEα(p) = αt|φp| is the graphene tight-binding spec-
trum, with α = ± labeling the conduction and valence
bands, and c±,σ,k = (bσ,k±φ∗k/|φk|aσ,k)/

√
2 are the new

operators in the diagonal basis. The hybridization term
in the rotated basis is

HV = V
∑

α=±

∑

p,σ

[

Θα,pc
†
α,pσfσ + h.c.

]

, (4)

where

Θα,p = (Vb,p + αV ∗a,pφ
∗
p/|φp|)/(

√
2V ). (5)

In particular, ΘAα,p = 1/
√

2 when the adatom is on top

of an A-site, ΘBα,p = αφ∗p/(
√

2|φp|) on a B-site, and

ΘH,γα,p = [φp + (−1)γαφ∗2p /|φp|]/
√

2 when the adatom
sits on an H-site, where γ = 0 for an s-wave orbital
and γ = 1 in-plane f -wave orbital. In the substitutional
case, ΘSAα,p = φp/

√
2 for an impurity on sublattice A, and

ΘSBα,p = αφ∗2p /(|φp|
√

2) on sublattice B.
For all possible symmetries, the orbitals of adatoms

sitting on S or H sites can be classified among those
that either break or preserve the C3v point group sym-
metry of the triangular sublattice in graphene. Since |φp|
scales with |ω|/t, the orbital level broadening, ∆(ω) =
πV 2
∑

α,p |Θα,p|2δ(ω − αt|φp|) is either ∆(ω) ∝ V 2ρ(ω)
for orbitals that explicitly break the C3v point group sym-
metry, in which case |Θα,p| scales to a constant near
the Dirac points, where ρ ∝ |ω| is the graphene den-
sity of states (DOS), or else ∆(ω) ∝ V 2ρ(ω)|ω|2/t2,
for C3v invariant orbitals, when |Θα,p| ∝ |φp| scales to
zero at small energy. The first class of orbitals, where
∆(ω) ∝ |ω| (say, type I), represents the standard case
of ohmic dissipation[16], and is described for instance
by adatoms on top carbon sites, by E1(dxz,dyz) and
E2(dxy, dx2−y2) representations of d-wave orbitals and
fxz2 , fyz2 , fxyz, fz(x2−y2) orbitals in H/S sites. The sec-
ond class, where ∆(ω) ∝ |ω|3/t2 (type II), represents a
new class of super-ohmic dissipation[16], and is described
by s, dzz , fz3 , fx(x2−3y2), and fy(3x2−y2) orbitals in H or
S sites (see Fig.1), where the adatom hybridizes equally
with the three nearest carbon atoms on a given sublat-
tice. On physical grounds, this new class emerges from

quantum mechanical interference between the different
hybridization paths in the honeycomb lattice, as the elec-
trons hop in and out of the localized level. As we will
show, these two classes of orbitals are described by two
distinct types of Kondo QCP.

The Anderson Hamiltonian in graphene can be sepa-
rated in two terms, H = H0 + HV , and then mapped
into a spin exchange Hamiltonian through a standard
canonical transformation, H̄ = eSHe−S = H + [S,H] +
1
2 [S, [S,H]] + ... , where S = −

∑

p,ασ V [(1− n̂f,−σ)(ǫ0 −
αt|φp|)−1 + n̂f,−σ(ǫ0 +U−αt|φp|)−1]Θα,pc

†
α,pσfσ−h.c. ,

which results in a Hamiltonian that is quadratic in V to
leading order, H̄ = H0 +[S,HV ]/2+O(V 3)[17]. At large
U , the exchange Hamiltonian is given by

He = −J
∑

kk′

∑

αα′

Θ∗αkΘα′k′ S · c†α′,σ′,k′~σcα,σ,k , (6)

where ~σ = (σ1, σ2, σ3) are Pauli matrices and

J(µ) ≈ V 2U/[(ǫ0 − µ)(ǫ0 + U − µ)] < 0 , (7)

is the exchange coupling defined at the Fermi level, µ.
The validity of the exchange Hamiltonian (6) is con-

trolled by the ratio ∆(ǫ0)/|ǫ0−µ| ≪ 1, when the valence
of the localized level is unitary (and hence, the local spin
is a good quantum number) and perturbation theory is
well defined in the original Anderson parameters[18]. In
graphene, where ∆(ω) ∝ πV 2ρ(ω)(|ω|/t)η, (η = 0, or 2),
with ρ(ω) = |ω|/D2, and D ∼ 7eV as the bandwidth, this
criterion becomes |J | ∼ V 2/(µ− ǫ0)≪ D2tη/(π|ǫ0|1+η).
When the level is exactly at the Dirac point, ǫ0 = 0, the
level broadening is zero[14] and the exchange coupling
|J | ∼ V 2/µ has no upper bound and can be shifted by
gating towards the strong coupling limit of the Kondo
problem, J → ∞, when the Fermi level is tuned to the
Dirac point, µ → 0+[19]. Since the experimentally ac-
cessible range of gate voltage for graphene on a 300 nm
thick SiO2 substrate is µ ∈ [−0.3, 0.3] eV, the exchange
coupling of a magnetic Co adatom, for instance, with
V = 1 eV and ǫ0 = −0.4 eV, can be tuned continu-
ously in the range between |J | ∈ 1.4− 10 eV. This effect,
which is allowed by the low DOS in graphene, brings the
unprecedented experimental possibility of controlling the
exchange coupling and switching magnetic adatoms be-
tween different Kondo coupling regimes in the proximity
of a QCP, as we show in Fig. 2a.

Since the determinant of the exchange coupling ma-
trix in Eq. (6), det[Ĵαα′ ], is identically zero, the
exchange Hamiltonian (6) can be diagonalized into a
new basis where one of the channels decouples from
the bath[20]. The eigenvalues in the new basis are
Ju,k,k′ = J

∑

αΘ∗αkΘαk′ and Jv = 0, and hence, the
generic one-level exchange Hamiltonian (6) maps into
the problem of a single channel Kondo Hamiltonian,
He = −2

∑

k Ju,kk′S · sk,k′ , where s is the itinerant spin,
regardless the implicit valley degeneracy, or else the num-
ber of sublattices.
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In the one-level problem, the renormalization of the
constant J due to the coupling of the local spin with the
bath is given by: J ′ = J − 2NsJ

2ρ(D)(D/t)η δD/D, af-
ter integrating out the high energy modes with energy D
at the bottom of the band, where Ns = 1, 2 describes the
number of sublattices the adatom effectively hybridizes.
Since a DOS in the form ρ(ω) ∝ |ω|r has a scaling dimen-
sion r, where r = 1 in graphene, the restoration of the
cut-off in the “poor man’s scaling” analysis requires an
additional rescaling J ′ → [(D + δD)/D]r+ηJ ′[4], which
results in the beta function

β(J) =
dJ

d lnD
= −(r + η)J − 2NsJ

2ρ(D)(D/t)η . (8)

The renormalization group (RG) flow leads to a in-
termediate coupling (IC) fixed point at Jc = −(r +
η)tη/[2Nsρ(D)Dη], which separates the weak and strong
coupling sectors. For type I orbitals (ohmic bath), one
recovers the usual IC fixed point Jc = −r/[2Nsρ(D)][4],
whereas for type II (super-ohmic bath, η = 2) Jc ≈
−3t2/(2NsD) in the Dirac case (r = 1). In graphene, this
new fixed point describes a one-channel Kondo problem
in the presence of an effective fermionic bath with DOS
ρ ∝ |ω|r̄, where r̄ ≡ r + η = 3. Since the tree level
scaling dimension of the hybridization V in the Ander-
son model is (1− r̄)/2, the case r̄ = 1 corresponds to an
upper critical scaling dimension, above which (r̄ > 1) V
is an irrelevant perturbation in the RG sense[22]. In this
situation, fluctuations are not important near the QCP,
and the critical exponents are expected to be mean-field

like, in contrast with the marginal case (r̄ = 1), where
mean field cannot be trusted[23].

The RG analysis derived from the exchange Hamil-
tonian (6) can be verified directly from the hybridiza-
tion Hamiltonian (2). In the large N limit near the
critical regime, singly occupied level states are en-
forced at the mean field level through the constraint
λ(
∑N
m f
†
mfm − 1) = 0[21], with N = 2 in the spin

1/2 case. The minimization of the energy ∂〈H〉/∂λ =
0 gives λ = N

π

∫∞

−∞
dω n(ω) Im[Gff (ω)Σff (ω)], where

n(ω) = [e(ω−µ)/T + 1]−1 is the Fermi distribution, T is
the temperature, and Gff (τ) = −〈T [fσ(τ)f

†
σ(0)]〉 is the

f -electrons Green’s function, Gff (ω) = [ω − ǫ0 − λ +

Σff (ω) + i0+]−1. Σff (ω) = V 2
∑

α,p |Θα,p|2 Ĝ0R
αp (ω) is

the self-energy of the f -electrons in the presence of the
graphene bath, where ∆(ω) = −ImΣff(ω) defines the
level broadening and G0R

α,p(ω) = (ω − α|φp| + i0+)−1 is
the retarded Green’s function of the c-electrons in the di-
agonal basis, G0

α(τ) = −〈T [cα(τ)c†α(0)]〉. In the critical
regime, where λ = µ− ǫ0 ≡ V 2/|J |, the Kondo tempera-
ture in graphene is extracted to leading order in V from
the equation

1

J
= −N

2

∑

p,α

|Θα,p|2
αt|φp|+ µ

tanh

[

αt|φp|+ µ
2TK

]

. (9)
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Figure 2: (color online) a) Kondo coupling vs. gate µ for
U/t = 1 and V/t = 0.3. The dot illustrates a typical value
for the critical coupling Jc. b) Kondo temperature TK/t vs.
J for C3v invariant orbitals. Red (light) curve: µ = 0; black:
µ/D =0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. The line J ∼ Jc sets
the crossover scale between the Kondo weak coupling (WC)
and strong coupling (SC) regimes. Inset: TK/t vs. J/Jc − 1
near the QCP (µ = 0), in log scale. Red (light) line: type II
orbitals (ν = 1/3); black: type I (ν = 1) (see text).

In the Dirac cone approximation, the Kondo tempera-
ture for orbitals of type II (η = 2) is

TK = (D/2) (1− Jc/J)
1/3

(10)

at half filling, where Jc = −3t2/(NsND) is the same crit-
ical coupling derived from the RG equation (8). Away
from half filling, Jc defines the crossover between the
Fermi liquid weak coupling regime, at J/Jc ≪ 1, where
TK = (|µ|/2) exp[D3/(3|µ|3)(1−Jc/J(µ)+3µ2/D2)], and
the strong coupling regime, for |J | & |Jc| ≈ (2/Ns)eV,
where TK ≈ (D/2)[1 − Jc/J(µ) + 3µ2/D2]1/3, as shown
in Fig. 2b. At the critical coupling (J = Jc),

TK = (D/2)|3µ2/D2|1/3 , (11)

and the fingerprint of the QCP at µ = 0 can be observed
in the scaling of the Kondo temperature with µ in the
vicinity of the QCP, at J ∼ Jc. This scaling can be mea-
sured in STM, where the signature of the Kondo effect is
manifested in the form of a Kondo resonance in the DOS
at the Fermi level, for T < TK .

In Fig. 2b, we numerically calculate the scaling of the
Kondo temperature in tight-binding. For type II orbitals,
the ν = 1/3 exponent in the Kondo temperature, TK ∝
|J−Jc|ν , found in the linear cone approximation persists
over a few decades above room temperature (red curves).
In the more standard ohmic case, for spins on top carbon
sites (black curve of the inset), the scaling is linear (ν =
1) at the mean-field level.

Tracing the conduction electrons in the exchange
Hamiltonian (6), the RKKY Hamiltonian of a spin lat-
tice in graphene is HRKKY = −J2

∑

ij χ
x,y
ij Si ·Sj , where

χx,yij ≡ χx,y(Ri −Rj) is the spin susceptibility, with i, j
indexing the local spins, and x, y = A, B, H, SA, SB la-
bel the position of the magnetic adatoms in lattice. In
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Figure 3: (color online) a) χ(R) vs distance R, along a zigzag
direction (in lattice units), for A-sites (black triangles), H-
sites (blue squares), and S sites for spins on the same sublat-
tice (red circles). Solid lines: µ = 0; dashed: µ = t. Inset:
|χij | plot in a log scale. Orange (light) guide line: 1/R3;
black: 1/R7. On the right: χ(q) for A site spins, plotted in
the graphene BZ at b) µ = 0 and c) µ = t. Red (dark) regions
represent χ(q) > 0 and blue (light) regions χ(q) < 0.

momentum space,

χx,y(q) =
∑

αα′,p

Mx,yα,α′p,q
n[Eα′(p + q)]− n[Eα(p)]

Eα′(p + q)− Eα(p)
,

(12)
whereMxyα,α′,p,q = Θ∗xαpΘyαpΘxα′p+qΘ∗yα′p+q.

For spins on the same sublattice, MAA =
1/4, whereas on opposite sublattices MAB =
αα′φpφ

∗
p+q/(4|φp||φp+q|), in agreement with Ref.[25], in

the Dirac cone limit. For an H-site[26],

MHH = |ΘHα,p|2|ΘHα′,p+q|2, (13)

where |ΘH,γα,p |2 = |φp|2
[

1 + (−1)γαRe(φ3
p)/|φp|3

]

for or-

bitals of type II; for S-sites, MSASA = |φp|2|φp+q|2/4
for spins on the same sublattice, and MSASB =
αα′φ3

pφ
∗ 3
p+q/(4|φp||φp+q|) for opposite ones.

In Fig. 3a, we show the spacial decay of the RKKY
interaction on the lattice for type II orbitals on A, H
and SA site spins. At half filling, the RKKY interac-
tion is always ferromagnetic for same sublattice spins,
substitutional or not, and antiferro for spins on opposite
sublattices[24, 25]. The H case on the other hand, is
ferromagnetic for nearest neighbor spins and antiferro-
magetic at longer distances (blue squares). In the H and
S cases, the interaction is short ranged and decays with
a fast power law ∼ 1/R7, in contrast to the known 1/R3

decay in the A site case[24, 25, 27, 28], as shown in the
inset of Fig. 3. This fast decay is consistent with the
case of carbon nanotubes, where the RKKY interaction
decays with 1/R for top carbon sites and with 1/R5 for
isotropic orbitals on H sites[29].

Fig. 3b and 3c display the magnetic peaks in the sus-
ceptibility in the A-site case for µ = 0, and µ = t. For
µ < t, χ(q) has a strong ferromagnetic forward scattering
peak around the center of the BZ (q = 0), and six sub-
dominant antiferromagnetic peaks at corners of the BZ.

Exactly at µ = t, a strong peak emerges at the M point
due to the nesting of the Van-Hove singularities (VHS)
of the graphene band (see Fig. 3c), where the DOS di-
verges logarithmically. This peak reverses the ordering
pattern of the RKKY interaction in comparison to the
µ = 0 regime in all studied cases, as shown in the dashed
lines of Fig. 3a. When µ is at the VHS, the interaction
between spins on same (opposite) sublattices, substitu-
tional or not, is always antiferromagnetic (ferro). In the
same way, the RKKY interaction in the H site case be-
comes antiferromagnetic for nearest neighbor sites and
ferromagnetic at long distances.

In conclusion, we have derived the one-level exchange
Hamiltonian for magnetic adatoms in graphene and
shown the existence of two symmetry classes of mag-
netic orbitals that correspond to distinct classes of Kondo
QCP. We also showed that the exchange coupling can be
controlled across the quantum critical region with the
application of a gate voltage.
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