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We introduce a formalism to compute the neutron magnetic form factor FM (q) within a first-
principles Density Functional Theory (DFT) + Dynamical Mean Field Theory (DMFT). The ap-
proach treats spin and orbital interactions on the same footing and reduces to earlier methods in
the fully localized or the fully itinerant limit. We test the method on various actinides of current
interest NpCoGa5, PuSb and PuCoGa5, and we show that PuCoGa5 is in mixed valent state, which
naturally explains the measured magnetic form factor.

PACS numbers: 71.27.+a, 74.20.Mn, 75.25.-j

Compounds including elements from the actinide series provide a beautiful illustration of the challenges posed
by correlated materials. The 5f electrons in these systems display simultaneously itinerant (i.e. band-like) and
localized (atomic-like) properties. Describing the impact of this wave-particle duality on different physical observables,
measured using different spectroscopic probes, is an outstanding theoretical challenge.

Neutron scattering[1] is a time-honored probe to investigate the dynamics of the magnetic degrees of freedom. It
probes the dynamic susceptibility, describing the spatial and temporal distribution of magnetic fluctuations. In the
itinerant limit, it can be modeled in terms of a particle hole continuum of quasiparticles, while in the localized limit
it can be describe in terms of propagating spin waves. It is generally accepted that in many materials neither a fully
itinerant nor a fully localized picture is adequate and some combination of both is required to model the dynamics of
the spin fluctuations as in the duality model of Ref. 2.
The intensity in the magnetic Bragg peaks can be used to obtain a real picture of the magnetization inside the unit cell.
This can be done even for materials that do not exhibit magnetic long range order, by applying an external magnetic
field. Classical techniques can handle a fully itinerant or a fully localized picture [3]. However these approaches are
not sufficient for many compounds of considerable scientific interest. It has been known for a while that intermediate
valence rare-earth semiconductors show puzzling magnetic properties that can be explained only by a theory which
explicitly considers the spatial extend of the magnetic excitations [4]. Similarly only magnetic orbitals of strong
covalent nature can correctly account for the neutron intensity in the cuprates [5]. A theory able to describe the
magnetic form factor for partly itinerant systems from first principles is needed.

Important recent experiments of Hiess et. al. determined the magnetic field induced form factor of PuCoGa5, a
material which superconducts at the remarkably high transition temperature Tc ≃ 18.5 K, a record in the heavy-
fermion family [6]. The degree of itinerancy of the f electrons is the subject of active debate and has important
consequences for the mechanism of superconductivity. Neither the localized nor the itinerant model of the neutron
form factors fits the data well, providing strong motivation for our theoretical developments.

In this letter we develop a method to compute the form factor for magnetic neutron scattering within
DFT+DMFT [7]. We test the method on several actinide materials. The PuCoGa5 induced magnetic form fac-
tor is consistent with correlated mixed valent nature of the material, where both the 5f5 and 5f6 configuration are
important. This is reminiscent of the mixed valent nature of elemental plutonium [8].

The magnetic form factor FM (q) is defined by

FM (q) = −
1

2µB

〈

MT (q)
〉

, (1)

where MT (q) = M
spin

T (q) + M orb
T (q) is the Fourier transform of the transverse component of the magnetization

density q̂ ×
(

M(r) × q̂
)

, µB is the Bohr magneton and q is the scattering wave vector at the Bragg peak. To avoid
ambiguity in definition of magnetization [9], we express the form factor in terms of the Fourier transform of the current
density J(q) =

∫

dr e−iq·rJ(r). The current and the transverse magnetization are related by MT (q) = i
c
q×J(q)/q2.

The current has two contributions, the spin part Jspin(r) and the orbital part Jorb(r). Expressing the definition of
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Jorb(r) and Jspin(r) in terms of field operators Ψs(r), we find for the form factor the following expression

FM (q) =
1

q2

∑

ss′

∫

dr e−iq·r×

Ψ†
s(r) q ×

[

1

2
~σss′ × q + δss′

~∇

]

Ψs′(r) ,

(2)

where ~σ is the vector of the Pauli matrices and s, s′ are the spin indexes. For a more detailed derivation see the
on-line supplementary material [10]. It is useful to notice that the limit limq→0 FM (q) can be well defined, but it is
subtle [11]. However the form factor FM (q) is measured only at finite q values and hence it is free from ambiguities.

FM (q) is measured in polarized-neutron diffraction experiments directly through the flipping ratio technique. In
this method an external magnetic field B is applied to the sample, and the ratio R = (dσ/dΩ)+ / (dσ/dΩ)− between
the cross section for neutrons polarized parallel and anti-parallel to B is measured. In a centrosymmetric crystal

structure with collinear magnetic moments and q ⊥ B the flipping ratio R satisfies
(√

R−1√
R+1

)

= γr0FM (q)/b where

b is the known nuclear scattering amplitude, FM (q) the component of the magnetic structure factor parallel to B,
γ = 1.9132 and r0 = ~e2/mc2 is the classical electron radius. More general formulas which relate the form factor to
the flipping ratio for other crystal structures and experimental setups are given in Ref. 12. For localized electrons the
form factor is commonly fitted to the following radial dependence FM (q) = − µ

2µB

(

〈j0(q)〉+C2〈j2(q)〉
)

, where 〈jk(q)〉

stands for the spatial average over the atomic wave function of the magnetic atom (which is usually solved in the
isolation). This should be understood in the so called dipole approximation. The exponent e−i~q ~r is expanded around
the center of the atom as e−i~q ~r ≈ j0(qr)− i(~q ·~r)(j0(qr)+ j2(qr)), where jk(qr) are spherical Bessel functions of order
k. Within this approximation, the form factor is greatly simplified and in the common experimental set up (q ⊥ B,
B = Bẑ), it reduces to

FM (q) =
〈

szj0(qr) +
1

2
lz {j0(qr) + j2(qr)}

〉

. (3)

Here r is the distance from the magnetic atom, and 〈· · · 〉 stands for the spatial and temporal average. The first and
the second term in Eq. (3) come from the spin and the orbital contribution, respectively. The comparison of the
above expansion with Eq. (3) shows that µ = −µB〈2sz + lz〉 and µC2 = −µB〈lz〉, hence C2 = µL/(µL + µS). Clearly
the ratio C2, which is given by the shape of the form factor, uniquely determines the size of the orbital and spin
component within the dipole approximation. Even so, caution is necessary in interpreting experiments with Eq. (3),
since a priori the magnitude of higher order terms beyond the dipole approximation is not known [13, 14].

To compute the form factor within DFT+DMFT, we apply a small magnetic field B = Bẑ to induce a finite
magnetic moment. We solve the DMFT problem in the presence of magnetic field, and evaluate the correlation
function Eq. (2). When expressed in the Kohn-Sham basis, Eq. (2) takes the form

FM (q) =
1

q2

∑

k,ij,ss′

nDMFT
k,ij

×

∫

unit cell

dre−iq·rψ∗
ki(r, s) q ×

[

1

2
~σss′ × q + δss′

~∇

]

ψkj(r, s
′),

(4)

where ψki(r, s) are the Kohn-Sham orbitals, i runs over the Kohn-Sham bands, and k over the first Brillouin zone.
The “DMFT density matrix” nDMFT

k,ij is expressed in terms of the DMFT Green function Gij(k, ω) in the solid

nDMFT
ijk = 1

2πi

∫

dω
(

G∗
ij(k, ω) −Gji(k, ω)

)

f(ω) , where f(ω) is the Fermi function. The form factor is thus expressed
in terms of the one particle correlation function, which is easily accessible within DMFT. Moreover, the spatial integral
is local and runs over one unit cell, which makes local DMFT approximation particularly suitable for this problem.
We implemented Eq. (4) within the recent realization of DFT+DMFT [15] based on Linear Augmented Plane Wave
(LAPW) basis set as implemented in the full potential electronic structure code Wien2k [16]. The explicit formulas for
the form factor evaluation within this basis set, as well as detail derivation of Eq. (4) are given in the on line material
[10]. To solve the impurity problem in the presence of magnetic field, we used the Non-Crossing Approximation [15].
Our calculations show small anisotropic corrections to dipole approximation for the materials studied here, suggesting
that the dipole approximation is a good approximation for these compounds. For comparison, we also compute the
form factor within Local Spin Density Approximation (LSDA) as first discussed in Ref. 17. In practice we evaluate
the mean value of Eq. (3) inside the atomic sphere following the lines of Ref. 18. We perform the LSDA calculation
in the presence of external magnetic field, as implemented in Wien2K [19].
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FIG. 1: (Color on line) A) panel: magnetic form factor for NpCoGa5. Red dots are experimental data reproduced from 6.
The blue curve with squares is the DFT+DMFT calculation, and the black curve with triangles is the LSDA calculation. The
DFT+DMFT form factor agrees with experiment with value of the Pearson correlation coefficient RPMCC = 0.95. B) panel:
spectral function Ajmj

(ω) for Np f-electrons. Blue curves correspond to the j = 5/2 multiplet and green curves to the j = 7/2
multiplet. The experimental and theoretical DMFT temperature is T = 52 K.
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FIG. 2: (Color on line) A) panel: magnetic form factor for PuSb at T = 20 K. Red dots are experimental data [24], the blue
curve with square is the DFT+DMFT calculation and the black curve with triangles the LSDA calculation. The DFT+DMFT
curve agrees with experiment with a Pearson Correlation coefficient RPMCC = 0.95. B) panel: Spectral function for PuSb. The
color legend is the same as in Fig. 1.

In Fig. 1(A) we compare theoretical DFT+DMFT and LSDA form factors with experiments on NpCoGa5 in
the paramagnetic state [6]. Our DFT+DMFT form factor is in excellent agreement with experiment, while the
LSDA dramatically fails in this material. The LSDA form factor shows a minimum at finite wave vector q. Such
a large minimum can be explained by C2 ∼ −9.5; this occurs since µL and µs almost cancel, but |µL| < |µs|. An
underestimation of the orbital moment is typical of LSDA. Within DFT+DMFT the atomic degrees of freedom are
treated exactly by the exact diagonalization of the atomic 5f -shell in the presence of magnetic field. This ensures
that Hund’s rule coupling is properly treated, leading to anti-parallel µL and µS , but |µL| > |µS |, hence C2 > 0. For
NpCoGa5 we determine the value of the coefficient C2 = 2.16. This value is consistent with localized 5f -electrons
in the configuration 5f4, in agreement with Mössbauer spectroscopy [20] and neutron diffraction experiments [6, 21].
At the same time NMR [22] and inelastic neutron scattering [23] suggest that NpCoGa5 shows also itinerant aspects
of the 5f -electrons. A signature of this moderate delocalization is also apparent in our calculated spectral function
at T = 52 K displayed in Fig. 1(B). A small quasiparticle peak is formed at the Fermi level, a signature of
electron itinerancy at low energy. Next we compute the form factor for PuSb in the ferromagnetic state. PuSb is
a metal [25], which orders antiferromagnetically below TN = 85 K and becomes a ferromagnet at T = 67 K [26].
Theoretically it has been showed that in PuSb valence fluctuations are suppressed with the consequent absence of a
quasiparticle multiplet structure in the spectral function [27]. This result is consistent with neutron diffraction data:
the form factor curve has a characteristic maximum at finite q, feature typical of a pure f5 configuration state for
the Pu atom [24]. The LSDA calculation underestimates the orbital moment and finds a negative C2 coefficient. Our
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DFT+DMFT calculation reproduces the f -electrons occupation value 〈nf 〉 ∼ 5.0 of the previous experimental and
theoretical works [24, 27] and indeed it is in good agreement with the measured data, see (see Fig. 2A). In particular
we find that there is a large cancellation between orbital and spin moment with µS/µL = −0.74 and C2 = 3.92.
We now turn to PuCoGa5. Photo emission spectra show the formation of a quasiparticle peak at the Fermi level,
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FIG. 3: (Color on line) A) panel : magnetic form factor for PuCoGa5. The blue curve with squares corresponds to the full
DFT+DMFT calculation, the black curve with triangles to the LDA calculation. Red dots are experimental data [6] The
DFT+DMFT curve agrees with experiment with a Pearson correlation coefficient RPMCC = 0.70 . B) panel: spectral function
Ajmj

(ω) for Pu f-electrons. The color legend is the same as in Fig. 1

however there is a large discrepancy in the peak height between different measurements [28, 29]. First magnetic
susceptibility measurements suggested that 5f -electrons behave as unquenched local moments until they enter in the
superconducting state [30]. In turn neutron scattering shows a temperature independent magnetic susceptibility,
implying the absence of magnetic moments such as in δ-Pu [6, 31]. Electronic structure calculations qualitatively
support the picture of delocalized 5f -states, however they predict a Pu ion close to magnetic order and a form factor
shape not observed in experiments [32, 33]. Since our understanding of superconductivity in PuCoGa5 depends on
the itinerant or localized nature of correlated electrons [34], further theoretical and experimental investigations are
compelling. Within our DFT+DMFT calculation we find that a quasiparticle peak appears at the Fermi level, see
Fig. 3(B). These results are consistent with a specific heat coefficient γ ∼ 70 mJ/(K2mol), which compares well with
experiments [30], and go beyond the pioneer DFT+DMFT calculations, solved within the T-matrix and fluctuating
exchange technique [35]. Together with a quasiparticle peak, a mixed valent state forms, where the 5f -electrons have
a finite probability to be both in the configuration state f5 and f6. Our theoretical prediction for the 5f6 occupation
probability is Pf6 = 0.26, corresponding to 〈nf 〉 ∼ 5.26 and a coefficient C2 = 2.35. We plot the corresponding form
factor curve in Fig. 3(A) together with the form factor obtained from the LSDA calculation. As for the previous
materials, LSDA underestimates the orbital moment and it obtains a negative C2 coefficient that is inconsistent with
experimental data. The DFT+DMFT form factor with C2 = 2.35 well describes the neutrons data and it accounts also
for the magnetic susceptibility ( see the supplementary material [10]). The value of C2 = 2.35 is naturally explained
by the mixed valence picture obtained theoretically for PuCoGa5. For a free Pu3+ ion solved in the intermediate
coupling C2 = 3.83, hence µL/µS = −1.83 [3]; As a mixture of the configuration f6 is included in the many body
ground state, the ratio µL/µS becomes more negative and therefore C2 decreases. As pointed out in Ref. 6 the FM (q)
shape is very different from the one expected for a pure 5f5 configuration of an isolated Pu ion, as for example is
found in PuSb, see Fig. 2(a). At the same time it is very different from the LSDA prediction. Hence, the magnetic
properties of PuCoGa5 are not captured either by a free moment picture or by an itinerant picture.

In conclusion in this letter we presented a new approach to compute the neutron magnetic form factor. The LSDA
treatment fails to reproduce the correct form factor since the exchange energy is orbital-independent and therefore
Hund’s rules are not respected. On the contrary DFT+DMFT includes the atomic physics needed to describe strongly
correlated systems. Application of DFT+DMFT to PuCoGa5 suggest an explanation of the results of Ref. 6 in terms
of a mixed valence picture where the ground state of Pu fluctuates between two distinct configurations: f5 and f6. We
indeed checked that this picture accounts for the values of the specific heat and susceptibility as well as for the shape
of photo-emission spectra. We find a close similarity between the DFT+DMFT valence histogram of PuCoGa5 and
δ−Pu, suggesting a close analogy of the local physics in these two materials; the magnetic form factor of PuCoGa5

would then be very similar to that of δ−Pu, for which experiments are notoriously difficult. Finally, mixed valence is
an attractive mechanism for pairing in heavy electrons compounds [36], which could account for the high temperature
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