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Active flow control can achieve substantial performance gains and meet the challenges of next-generation
air vehicles and energy-harvesting devices. The use of active flow control techniques with the moving flap
or morphing surfaces has been shown to be a viable path to regulating the flow-induced vibration of the foil.
However, due to the complex nature of flow over morphing surfaces, all physical phenomena are intertwined,
which prevents a clear understanding of the underlying flow physics and, therefore, a successful design of a
controlling action to optimally modify them. In this research, an active flow control framework with the model
predictive control theory is proposed to modulate the flow-induced flutter of a foil using the morphing flap
surface. The geometrically weighted dynamic-relevant modes are used to build surrogate models to achieve
rapid model-based active control of complex systems. It is shown that the flap is capable of both facilitating and
eliminating fluid-induced vibrations by regulating the lift forces exerted on the foil. Furthermore, the control
framework provides full knowledge of how the structure modifies the flow and has the potential to identify the
ambient environmental change simultaneously.

I. INTRODUCTION7

Fluid-structure coupled phenomena such as flutter or limit cycle oscillations have an impact on various engineering systems,8

such as the stability of the aircraft or the performance of wind turbines and hydrofoil energy extractors. Hence, regulating such9

phenomena has been a central topic in the fluid community. However, due to the complex nonlinear nature of the problem, the10

traditional control theories accustomed to linearized systems often fail to provide a simple control law. To capture the aeroelastic11

responses induced by the shedding of the leading-edge vortex and other unsteady vortex separations along the body, different12

nonlinear models have been proposed to capture the essential nonlinear responses, such as the model developed by Goman and13

Khrabrov [1], ONERA model [2], and many other models [3]. Some of these models also incorporate the effect of morphing14

flaps, such as the ones proposed by Librescu et al.[4] or Block and Stragnac[5]. Following these models, control strategies have15

been designed to mitigate or regulate the foil response. For example, Wang et al. [6] used a multi-input system with active16

control surfaces at both leading and trailing edges and designed a full-state feedforward/feedback controller with a high-gain17

observer; Zhang et al. [7] adopted an adaptive control scheme to account for unsteady flow and eliminate vibration with a multi-18

DoF trailing edge flap; Lee and Singh [8] designed a robust sliding-mode control that only considers the variables within finite19

horizon to suppress the unwanted oscillation; Pohl et al. [9] mitigates the gust impact with a feedforward-feedbackward control20

strategy designed with a simplified ONERA model. Experiments such as that carried out by Herrmann et al. [10] or Platanitis et21

al. [11] proved that these control strategies designed with experimentally-tuned models work well under the intended working22

conditions.23

Many of the models and control strategies developed so far have been based on simplified aerodynamic loading models24

stemming from Theodorsen’s theory [12], where the airfoil is often seen as a flat plate, and the vortex shedding and local25

separation effects are captured through nonlinear force coefficients. Theodorsen’s theory is an algebraic model based on the26

potential flow theory, where a low Reynolds number and small deflection of the foil or flap are assumed. These simplified models27

allow quick iteration and provide a test bed for different control strategies. Their simple structure is also ideal for incorporating28

other effects related to unsteady disturbances such as flow fluctuations or impending gusts. However, the assumption of small29

deflection about the equilibrium point can be rendered invalid in many practical highly nonlinear systems. Also, these models30

rely on experimentally-tuned coefficients and often fail to respond properly to environmental condition changes [13]. Moreover,31

the lack of complete knowledge of the actual flow pattern induced by the interaction between the foil, flap, and ambient flow32

makes it difficult to fully understand how the actuation regulates the flow system. Some of these issues can be improved by33

increasing the degrees of freedom of the model or switching between different models, but along with it, the complexity of34

the model also rises and over-fitting or longer evaluation time becomes a problem. Overall, the models designed based on35

Theodorsen’s theory and its extensions have been proven to be effective when limited to specific settings but are not able to36

provide detailed physical insight into how the control implemented impacts the fluid around the structure.37
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Recently, there has been a surge of modern control methods for nonlinear high-dimensional dynamical systems utilizing modal38

analysis techniques. The key is building and updating reduced-order models rapidly with modal information, which can then be39

used to design control strategies that adapt to environmental change. The data-driven nature of the modal analysis techniques40

allow the model construction to be flexible with different data set, and also provide ample design possibility due to its relatively41

simple mathematical representation compared to the aforementioned nonlinear simplified models based on Theodorsen’s theory.42

One major branch of this is using the modal analysis techniques to construct state space models via Galerkin projection of the43

Navier-Stokes equations onto the orthogonal vector space identified by proper orthogonal decomposition (POD) [14–16]. POD44

decomposes the data into orthogonal subspaces spanning the data space, and Galerkin projection can determine the dominant45

dynamics in each direction by orthogonal projection of the governing equations. In the case of Navier-Stokes equation, this46

procedure transformed it into a set of ODEs that can be solved to acquire the coefficients for the state space model. An extension47

to this method is identifying linear input-output systems with balanced POD that considers the input with balanced truncation48

[17, 18]. These methods have shown great results in modeling and controlling complex flows.49

Another branch of methods that has become popular in recent years is based on the Koopman operator theory [19, 20]. This is50

the route we took in this research since the Koopman operator is fully data-driven (while Galerkin projection requires knowledge51

about the governing equation), and the model is easily scalable. Furthermore, the Koopman theory captures the system’s dy-52

namics, which is straightforward in controller design, and the operator is linear, making it easy to manipulate the model. These53

Koopman theory-based reduced-order models are good candidates for the model predictive control (MPC) framework [21–24],54

which is a receding horizon type control scheme that is widely adopted in various disciplines. The usage of MPC with Koopman55

theory was introduced into the fluid community very recently and has shown promising outcomes controlling chaotic systems56

such as the wall-driven cavity flow [25], fluidic pinball [26], or simplified aeroelastic models [27]. Here, the MPC scheme along57

with DMD with control (DMDc) reduced-order model, is used to implement feedback closed-loop control of the flow-induced58

fluttering of a foil with an active flap as a controller. In the author’s previous publications, the geometrical information of the59

deforming solid is introduced into the fluidic motion in the form of spatial stretching [28] and this methodology will be com-60

bined with DMDc to incorporate the effect of the morphing surface into identifying the reduced order model. This will provide61

additional knowledge on how the flap affects the flow around it when actively actuated compared to the simplified models based62

on Theodorsen’s theory.63

In the following sections, we will introduce the background of the Koopman operator, how we can approximate it with finite-64

dimensional DMD algorithms, and how we can perform system identification with it to build high-accuracy state-space model65

for our foil-and-flap system in§II. The procedure to implement the model into a MPC framework to control complex dynamical66

systems to regulate the heaving motion of the foil-flap system and the results will be discussed in §III. Finally, we will give some67

remarks and future directions about this research in §IV.68

II. DATA-DRIVEN MODELING OF FOIL-AND-FLAP SYSTEM69

In this section, we will introduce the principle of the Koopman operator, how we can approximate it in a data-driven fashion70

with DMD, then introduce the control input into the DMD to form state-space models. In the second section, we will discuss71

how we used this procedure to produce state space model of the foil-and-flap system then evaluate the accuracy of the model.72

A. Koopman Operator Theory and Data-driven System Identification73

We will review the basics of the Koopman operator for discrete-time dynamical systems to align with the time-stepping74

simulations and DMD. Please note that many reviews, e.g. [20, 29], can be referred to for a more thorough discussion on the75

Koopman operator, including the continuous description.76

Let us consider a dynamical system x+ =Tt(x) defined on a state space M, where the discrete function Tt is characterized with77

the time t. We can call any function g : M →R an observable of the system. The Koopman operator Kt is a linear transformation78

acting on the vector space of the observables given by79

(Ktg)(x) = g(Tt(x)). (1)

wherein the Koopman operator is essentially an infinite-dimension operator that updates the observable g based on the evolution80

of the trajectories in the state space. In other words, the Koopman operator captures the dynamics of the system. To cast81

this into a discrete-time description, consider the function to be a t-fold composition of the single time step operator T , i.e.82

Tt(x) = T (T (T ...T (x))) and likewise the discrete Koopman operator K is defined as83

gk+1 = K (gk). (2)
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The most intriguing property of the Koopman operator that makes it popular is that it is a linear operator as long as the84

observable space G consists of the observables g is linear:85

K (αg1(x)+βg2(x)) = αg1(T (x))+βg2(T (x))
= αK (g1(x))+βK (g2(x)).

(3)

and more importantly, this property holds whether the original system T is linear or not, which means that the Koopman operator86

can approximate a nonlinear system with a linear state space.87

The Koopman eigenfunctions ψ(x) corresponding to the eigenvalues λ are defined as88

ψ(xk+1) = K ψ(xk) = λψ(xk). (4)

and with this relation, one can rewrite the observables formed as linear combinations of the Koopman eigenfunctions under the89

Koopman operator by90

g(x) = ∑
k

vkψk ⇒ Kt g(x) = ∑
k

vkλ
t
kψk. (5)

In practice, we often need to handle multiple measurements at once. For example, computational fluid dynamic (CFD)91

simulations provide refined spatial information about the flow velocity and pressure; experimentally, particle image velocimetry92

(PIV) calculates the flow velocity by correlating the movement of particles in the flow. To expand Koopman decomposition into93

multiple measurements of a system, we can arrange them into a vector g:94

g =


g1(x)
g2(x)

...
gp(x)

 , (6)

and each of these observables can be expanded with the eigenfunctions in the form of Eq. 5:95

gi(x) =
∞

∑
j=1

vi jψ j(x). (7)

The vector of measurements can then be expanded in matrix form as96

g =


g1(x)
g2(x)

...
gp(x)

=
∞

∑
j=1

ψ j(x)v j, (8)

where v j consists of the coefficients vi j and is called the Koopman mode. The evolution of the multiple measurements can then97

be decomposed as98

g(xt) = Ktg(x0) =
∞

∑
j=1

Ktψ j(x0)v j =
∞

∑
j=1

λ
t
jψ j(x0)v j. (9)

This process is called the Koopman mode decomposition [30]. Often, this process is approximated with the dynamic mode99

decomposition (DMD). We will now provide a short introduction to DMD.100

Dynamic mode decomposition (DMD), first proposed by Schmid [31], decomposes data into modes and corresponding char-101

acteristic frequencies. Consider a data series X = {x1,x2, . . . ,xm}, which can be partitioned into two time-consecutive sets102

X1:m−1 = {x1,x2, . . . ,xm−1} and X2:m = {x2,x3, . . . ,xm} (which don’t have to be strictly one frame apart), DMD aims to find103

the best-fit revolution, or dynamics, between the two sets, i.e., find the best-fit matrix A that approximates104

X2:m = AX1:m−1. (10)

The most common best-fit definition is the minimum Frobenius norm105

C =
m−1

∑
i=1

||x2,i −Ax1,i||2, (11)
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where x1,i and x2,i are the i-th columns of the matrices X1:m−1 and X2:m, respectively. The solution to this problem is106

A = X2:mX+
1:m−1, (12)

where X+
1:m−1 = (X∗

1:m−1X1:m−1)
−1X∗

1:m−1 is the Moore-Penrose left inverse of the matrix X1:m−1. The eigenvectors of A107

are defined as the DMD modes ψ j, and the frequencies and growth/decay rates for these modes are the imaginary and real parts108

of the corresponding eigenvalues µ j, repectively.109

A system can be represented with the low-rank projected solution reconstructed at time t with the decomposition110

xDMD(t) =
K

∑
k=1

bk(0)ψk eµ jt , (13)

where K is the reduced approximation rank and bk(0) is the initial amplitude of the k-th mode. This equation can be represented111

in matrix form:112

xDMD(t) = Ψdiag(eµ jt)b, (14)

where Ψ is the matrix consists of DMD modes ψ , diag(eµ jt) has eµ jt as diagonal entries, and b is a vector calculated by113

b = Ψ+ x1, (15)

where x1 is the initial snapshot and b is a vector formed from the initial amplitude bk(0).114

We can now see the similarity between the Koopman mode decomposition and the DMD comparing Eqs. 9 and 13: both115

operators approximate the dynamics of a nonlinear system with the combination of linear modes. In fact, DMD is the finite-116

dimensional approximation of the Koopman operator! The DMD eigenvalues, DMD modes and DMD mode amplitudes are the117

finite-dimensional approximations of the Koopman eigenvalues λ j, Koopman modes v j and Koopman eigenfunctions ψ j(x0),118

respectively. Hence, it is common to adopt DMD for the representation of system’s dynamics due to its simplicity of operation119

and linear nature. Readers are recommended to refer to Mezić [20], Bagheri [32], and Tu et al. [33] for more details on the120

connections between DMD and Koopman mode decomposition. We will adopt DMD, especially the variant of DMD with121

control proposed by Proctor et al. [34], as our tool for modeling the system dynamics in the following sections.122

B. Dynamic Mode Decomposition with Control123

For the purpose of developing a control strategy for nonlinear systems, it is beneficial to approximate the system with linear124

systems utilizing the Koopman operators (or the approximated versions). Furthermore, advanced methods are developed to125

differentiate the effects of the autonomous system response and control input, such as the DMD with control (DMDc) [34],126

Extended DMD with control [35], interpolated Koopman generators [26], among others. From the research on the selection127

of basis functions conducted in literature [29, 36], we decided that DMDc with delayed embedded coordinates is a suitable128

candidate for deriving the linear model for our foil-and-flap system along with the embedded geometrical weighting for its129

accuracy and data-efficiency shown in modeling various dynamic systems.130

DMDc, proposed by Proctor et al. [34], aims to extend DMD to actuated systems. On top of the dynamical system described131

in §II A, where for the measured state x the evolution is captured with xk+1 ≈Axk. Additionally, we now have a control input132

u and the dynamical model of the system is now described with133

xk+1 ≈Axk +Buk. (16)

If we organize the system states, or measurements, and the control input sequences into matrices134

X ′ =

 | | |
x2 x3 · · · xm
| | |

 , X =

 | | |
x1 x2 · · · xm−1
| | |

 , (17)

and135

Y =

 | | |
u1 u2 · · · um−1
| | |

 , (18)

then the problem of finding the best-fit A and B matrices for the system136

X ′ ≈AX +BY (19)
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can be recast into solving the below least-squares optimization problem:137

min
[AB]

∥∥∥∥ X ′− [A B]

[
X
Y

] ∥∥∥∥2

2
. (20)

This problem conveniently has a solution given by138

[A B] = X ′
[

X
Y

]+
, (21)

where the subscript + again represents the Moore-Penrose left inverse. The DMDc provides a pure data-driven procedure to139

perform system identification, even when the data is acquired with undersampled measurement or from highly nonlinear systems140

[37]. We can increase the identification accuracy even more by adopting the delay embedding technique, which is a classic tech-141

nique to increase the DoF of the identified systems and hence increase the accuracy [38–40]. For example, if a set of observables142

(e.g. measurements at different spatial locations) x1,x2, · · · ,xp at time tk can be represented as g(tk) = [x1(tk),x2(tk), · · · ,xp(tk)],143

then the time-delayed vector of time step nd can be constructed as zk = [g(tk−nd ),g(tk−nd+1), · · · ,g(tk)]T and the data matrix is144

now145

Z ′ =

 | | |
z2 z3 · · · zm
| | |

 , Z =

 | | |
z1 z2 · · · zm−1
| | |

 , (22)

and the system identification of the dynamical system is now finding the best-fit (A, B) pairs that approximates146

Z ′ ≈AZ +BY . (23)

The above relation has the same solution as Eq. 21. This operation allows better tracking in long-term system dynamics and also147

increases the model DoF for low-data scenarios such as limited available sensors. In the following section, we will show how148

we utilize this procedure to build a dynamic model for the dynamic foil-and-flap system to capture the response to different flap149

actuation.150

C. DMDc Model for Foil-and-flap System151

To demonstrate how the DMDc model works, we will be looking at a heaving airfoil with an active flap. A previous publication152

by the authors [41] has done extensive research on how the frequencies and amplitudes of the sinusoidally oscillating flap153

affect the foil heaving motion. The foil-and-flap system is depicted in Fig. 1(a), with a set of translational spring-and-damper154

representing the aeroelastic characteristic of the foil. In the current study, the angle of attack (AoA) of the foil is fixed at 10◦155

and the foil is allowed to heave freely. The Reynolds number based on the chord length is set to be Re = U∞ L
ν

= 1000, which156

is sufficiently large to allow the complex vortex shedding that leads to fluttering phenomena at this AoA setting. The numerical157

fluid-structure interaction solver, which is explained in detail and validated in the cited paper, solves the flow equations in the158

conformally transformed domain which provides a natural geometric weighting that represents the solid deformation [28]. This159

procedure offers a mean to apply DMDc to flow around a deforming object. The results shown in later sections encode the160

geometrical information into the identified dynamic systems naturally by performing system identification in the transformed161

domain. Note that although this detail fades into the background as we will focus on the control aspect more in this paper, without162

this transformation, DMD and its variants do not work with deforming volumetric structures as they are data-driven and don’t163

have spatial recognition. Readers could refer to the previous publications for more details on this geometrically weighted modal164

decomposition (GW-MD) technique, how the authors used it to look into the foil-and-flap system, and the detailed simulation165

setup [28, 41].166

In the previous research, it is observed that with different actuation amplitude and frequency, at moderate angles of attack, the167

foil can heave with either periodic, quasiperiodic, or chaotic motion patterns. Also through GW-MD, we proved that the flap168

induces flow structures that interact with the wake forming from the pitching leading edge, which is the primary mechanism the169

flap affects the fluid-induced vibration. We will now show how the active flow control can be employed by actively commanding170

the flap motion to regulate the heaving motion, or more directly regulating the lift force acting on the foil through a data-driven171

modeling technique. The first step to that goal is to build a reduced-order model of the system with DMDc, so we can design a172

control strategy later on the identified linear system.173

The working principle of using the Koopman-based operators like DMDc to conduct system identification is finding the174

system trajectory evolution by observing the data collected from actuating the system with different inputs. A diverse input set175

can be seen as moving the starting point of a system trajectory to a different spot in the response phase space. Assuming there176
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Input type Trajectory
type & count

Delayed
dimension

Random Single
frequency

Transitional

θ random, 10 10 11.48% 15.91% 17.6%
θ random, 10 20 10.37% 10.87% 17.35%
θ random, 10 40 8.41% 7.76% 16.17%
θ random, 10 80 8.27% 5.23% 11.02%
θ random, 5 80 7.92% 5.92% 10.6%
θ mixed, 10 80 10.48% 4.62% 12.12%
θ & θ̇ random, 10 80 7.68% 5.65% 9.84%
θ & θ̇ mixed, 15 80 8.92% 4.14% 9.83%

TABLE I. Tracking error of the DMDc model constructed with different parameters.

is a single attracting limit cycle or sink, eventually, every trajectory would converge to them and not much data will be needed177

to reconstruct the system; but when there are multiple attractors, distributed starting points are required to observe more of the178

system dynamics. Hence, the first step to building the data-driven state-space model for our foil-and-flap system is to actuate the179

flap in different settings.180

Three types of flap angle input are prescribed to the active flap: random input trajectories, each consisting of 25 cycles of181

sinusoidal flapping motion with the same amplitude but randomized frequencies from St f = [0.05,1.5]; the periodic trajectories182

with fixed oscillating amplitude and frequency chosen from St f = [0.1,1.5]; and the transitional trajectories having different183

combinations of smoothly changing amplitude and frequencies. The lift, drag, heaving motion, and flow field information are184

recorded for each input trajectory. Figure 1 demonstrates three different types of input flap angle trajectory and the corresponding185

lift coefficient, drag coefficient, and the flow kinetic energy recorded at specified points on the foil shown in Fig. 1(a). The flow186

kinetic energy is collected at the foil surface, as this is comparable to the actual application scenarios where the sensors embedded187

in the foil are generally limited to detecting the flow states adjacent to the foil. While incorporating more flow states might188

enhance predictive performance, expanding the states could result in potential overfitting and increased model complexity. To189

balance applicability and model efficiency, we opted to constrain the states to the current selection. It is important to emphasize190

that the flow kinetic energy, in this context, is derived from the geometrically weighted space, encompassing both structural191

deformation and flow velocity. This formulation results in a geometrically weighted (GW) DMDc. For the sake of conciseness,192

we will omit the GW-prefix in this paper.193194

The calculated responses for different flap trajectories are collected to build the state-space model with DMDc. There are four195

parameters that could potentially affect the model accuracy: the trajectory type, the number of trajectories used for identification,196

the number of delay-embedded time steps, and the type of input included. Table I reports the tracking error of using models197

constructed by different parameter combinations to track the system evolution with the same set of initial conditions. For each198

trajectory type, three different initial conditions and input sequences (flap angle θ or both θ and θ̇ ) not in the training data are199

used to evaluate the tracking error, which is defined as200

T E = rms
[

Cref
L −Cmodel

L

Cref
L

]
, (24)

where Cref
L is the lift coefficient recorded from the response of the full-scale CFD simulation of the foil-and-flap plant, and Cmodel

L201

is recorded from the DMDc model with the same input sequence and initial state.202203

From table I, we can make some key observations, demonstrated graphically in Fig. 2. First, increasing the number of204

delayed time steps vastly improves the tracking performance, where in some cases, up to 300% improvement can be obtained.205

Including more data allows long-term memory for the model, which helps capture slower dynamics better. Secondly, reducing206

the number of trajectories included in the system identification from 10 to 5 minimally changes the accuracy, which aligns with207

the observation in [37] that with delay embedding, the Koopman operator-based models work relatively well at very low-data208

conditions. Another observation is that including high-frequency periodic trajectories in the model, construction improves the209

model performance for periodic cases. From the previous study [41], we learned that at certain flap oscillation frequencies,210

quasiperiodic motion is present, and this phenomenon is not obvious in the randomly actuated cases. Although the tracking211

error is not that much different, only the mixed trajectory cases can capture the quasiperiodic nature of those higher frequency212

periodic cases. Finally, including an extra DoF for the control by including the θ̇ in the input sequences improves the tracking213

of the extrema, but only marginally better since our two control DoFs are related.214215

However, in practice, there are some limitations for implementing what was found to be "good" for the model. Increasing216

the delayed time step also increases the dimension of the data matrix and hence causes difficulty in the optimization of the217

controller design. The more delayed time step also means data over a longer period has to be stored, which in realistic cases218

could be demanding for the hardware. Increasing the numbers of included trajectories also requires more delayed embedded time219



7

FIG. 1. (a) Numerical model and the sampling points for the flow kinetic energy. Input flap angle trajectories and corresponding lift coefficients,
drag coefficients, and flow kinetic energy at specified sampling points for (b) random frequency, (c) single frequency sinusoidal and (d)
transitional frequency and amplitude oscillating case. (For flow kinetic energy, blue solid line:top; black broken line: trailing edge; red dotted
line: bottom sampling point)

steps or/and finer temporal resolution to capture finer details of different scales. Adding an extra DoF of θ̇ improves the model220

accuracy; however, in practice, this poses a strong constraint for finding the optimal control sequence, requiring ∑∆t θ̇ dt = θ over221

each time step which could cause the optimization to fail. Considering all these trade-offs, in this research, we determined the222

suitable model uses 80 delayed time steps, 10 mixed trajectories including randomly actuated and some high-frequency periodic223

cases and the input will be solely θ . From table I, we can see that this combination offers reasonable tracking performance over224

all scenarios tested.225

Now that we have the linear model capable of capturing the essential dynamics of a nonlinear system, in the next section, we226

will discuss how to implement this model into the MPC scheme to achieve rapid control of the flow-induced fluttering of our227

foil-and-flap system.228
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𝜃 only, random*10, delay 10(a)

(b)

(c)

𝜃 only, random*10, delay 80

𝜃 only, random*10, delay 40 𝜃 only, random*10, delay 80

𝜃 only, random*10, delay 80 𝜃 only, mixed*10, delay 80

𝜃 only, random*10, delay 80 𝜃 & ሶ𝜃 only, random*10, delay 80

Random freq. & amplitude

Transitional freq. & amplitude

FIG. 2. Model performance evaluation for (a) delay-embedded time step, (b) trajectory type, and (c) input type. (red thin line: ground truth;
blue thick line: model reconstruction)

III. MODEL PREDICTIVE CONTROL FRAMEWORK FOR THE FOIL-AND-FLAP SYSTEM229

With the DMDc model that can recover the foil-and-flap system dynamics in hand, a control strategy can be found to regulate230

the flow-induced flutter. The control scheme we decided to adopt here is the Koopman-MPC innovated by Korda and Mezić231

[35]. MPC, overall, is not a specific control law but a control framework and here we will provide a simple introduction. For232

more information, readers can refer to reviews and books e.g. [42, 43]. The standard procedure of MPC consists of three steps:233

first, a model is built for the plant, which we have done through the DMDc process. Then at each time step of controlling, an234

optimization problem is solved to find the optimal input that drives the model from the initial state acquired from the plant to the235

desired state. Finally, the optimal control input is applied back to the actual plant and the modified state is fed into the optimizer236

again in the next loop. These three steps are shown graphically in Fig. 3. Note that for MPC framework, the control input is237

actually produced in an open-loop fashion by solving the optimization problem in the model space and no feedback from the238

plant is given until the next instance when the controller is called. This is also where using the Koopman-based model in the239

MPC framework shines: the Koopman-based models are linear, and hence, the optimization problem can be cast into a convex240

quadratic problem which can be solved rapidly by a plethora of available solvers, e.g. qpOASES [44], OSQP [45], and the241
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FIG. 3. Schematic representation of the MPC control framework.

Fortran version of the quadprog [46] adopted in this work. Next, we will explain how we can cast our control problem into a242

solvable form, then we will show the results of applying active control to the foil-and-flap plant later in this section.243244

A. Define Control Problem and Quadratic Programming Formulation for MPC245

The goal of this project is to control the flow-induced flutter phenomena with the active flap as the actuator. In other words,246

we want to regulate the lift force of the system. The control problem can be recast into a trajectory tracking problem, where we247

want the lift coefficient of the foil to follow the designated reference trajectory. If this trajectory is a constant, then the flutter is248

eliminated; the trajectory can also be oscillatory for the purpose of enhanced energy extraction. For each control time step t j, we249

have the dynamic model250

x j+1 =Ax j +Bu j

y j =Cx j
, (25)

where x j ∈ Rn×1 are the state vector at current control time step and x j+1 at the next time step. In our case, each xk consists251

of the delay-embedded lift coefficient, drag coefficient and flow kinetic energy at selected points on the foil (as shown in Fig.252

1(a)). The positions of these data acquisition points are chosen at the spot where the flow shows more fluctuation. The input253

vector u j ∈ Rm×1 contains the specified flap angle. A ∈ Rn×n and B ∈ Rn×m is the state-transition matrix and loading matrix,254

respectively, acquired from the DMDc system identification process. y j ∈Rp×1 is the observation vector that contains the desired255

measurements of the system, which is the lift coefficient at the current time step in our case here. C ∈Rp×n is the user-specified256

measurement-sensitivity matrix and here it will be 1 at where the lift at current time step is and 0 at all the other locations. The257

control problem of lift trajectory tracking can be expressed in terms of optimizing the input to minimize the tracking error over258

the next N time steps, written in the form of the objective function:259

min
u0,··· ,uN−1

1
2

N

∑
k=0

[(
yk − yk,ref

)T
Qk

(
yk − yk,ref

)]
(26)

subject to Eq. 25. yk,ref ∈ Rp×1 is the reference trajectories, and Qk ∈ Rp×p defines the weighting at each time step. Common260

choices for the weighting Qk are uniform, or descending function to improve the short-term control accuracy. However, for a261
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standard QP problem, the control target and the control input should be in the same input space, i.e.262

min
x

1
2

xT Hx+ f T x, s.t.


Ax ≤ b
y j =Cx j

lb ≤ x ≤ ub
. (27)

To write Eq. 26 into the form of Eq. 27, we will have to utilize the evolutionary property of Eq. 25,263

yk+1 =Cxk+1 =C(Axk +Buk) =CAxk +CBuk , (28)

and for the following time step,264

yk+2 =Cxk+2 =C(Axk+1 +Buk+1)

=C [A(Axk +Buk)+Buk+1]

=CA2xk +CABuk +CBuk+1 .

(29)

We can see that there is a pattern in this. Derive this for N step, collect all the states into a new state vector and all input into an265

input vector,266

ỹk ≡
[
yT

k , yT
k+1, · · · ,yT

k+N
]T

, and ũk ≡
[
uT

k , uT
k+1, · · · ,uT

k+N−1
]T

, (30)

then267

ỹk = Ãxk + B̃ũk , (31)

where268

Ã≡


C
CA
CA2

...
CAN

 , B̃ ≡


0 0 0

CB 0 0
CAB CB · · · 0

...
...

...
CAN−1B CAN−2B B

 . (32)

The dimensions of these vectors and matrices are ỹk ∈Rp(N+1)×1, ũk ∈RmN×1, Ã ∈Rp(N+1)×n and B̃ ∈Rp(N+1)×mN . Note that269

in Eq. 31, the xk is the known initial state measured from the plant. If Eq. 31 is substituted to the objective function Eq. 26, we270

arrive at271

J(xk, ỹk,ref, ũk) =
N+1

∑
k=1

[(
yk − ỹk,ref

)T
Qk

(
yk − ỹk,ref

)]
=
(
Ãxk + B̃ũk − ỹk,ref

)T
Q̃

(
Ãxk + B̃ũk − ỹk,ref

)
=
(
xT

k Ã
T Q̃Ãxk + ỹT

k,ref Q̃ ỹk,ref −2xT
k Ã

T Q̃ ỹk,ref
)

+ ũT
k
(
B̃T Q̃B̃

)
ũk +2

(
xT

k Ã
T Q̃B̃− ỹT

k,refQ̃B̃
)

ũk

. (33)

The weighting matrix Q̃ ∈ Rp(N+1)×p(N+1) has all the Q j, j ∈ [k,k+N] on the diagonal axis. Notice that the first three terms of272

the last expansion of Eq. 33 are constants with the same initial state xk and reference trajectory ỹk,ref since the modified state-273

transition matrix Ã and loading matrix B̃ are derived outside of the optimization process. This allows dropping these terms in274

the optimization problem and forming the equivalent QP problem of Eq. 26 as275

min
ũk

{
ũT

k
(
B̃T Q̃B̃

)
ũk +2

(
xT

k Ã
T Q̃B̃− ỹT

k,refQ̃B̃
)

ũk
}
, s.t.

{
ũmin ≤ ũk ≤ ũmax

xk, ỹk,ref given
. (34)

Compare this to the standard QP formulation, Eq. 27, it is clear that this has the exact same form and the existing tools can be276

readily deployed to solve this problem.277

Two constraints are enforced through the inequality matrix ũmax and ũmin. The first constraints are the range of the flap motion,278

limited to −50◦ ≤ uk ≤ 50◦. This range is determined from apriori and here is set based on the stability of the computational279

solver. When the flap deflects over 50◦, a sharp angle is generated at the connection point between the flap and the main foil280

body, rendering the conformal mapping to be invalid. Another constraint is named the continuity constraint, |uk+1−uk| ≤ urange .281
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FIG. 4. Block diagram for the open-loop model-based control.

We call this continuity constraint since this condition ensures the flap does not perform any sudden acceleration, which could282

make the FSI solver unstable due to the interpolation required to generate a new computational grid at each time. If we include283

the angular flap velocity θ̇ in the input vector, we will have to enforce another constraint to connect the flap angle and velocity,284

e.g. central difference scheme θ̇k = (θk+1−θk−1)/dt. In practice, this is proven to be too strong of a constraint, and the optimizer285

used here could not always find the optimal solution. Hence, we only use the flap angle as the input.286

Once the QP problem, Eq. 34, is solved, we get an input sequence ũk for time step tk to tk+N−1 that returns the minimal287

objective function over the next N time step. For closed-loop MPC control, We will only apply the first element of this input288

sequence to the plant, then at the next control time step, new states are collected to be the initial condition of the new optimization289

process. This is called the receding horizon MPC control which provides the feedback mechanism for the MPC framework.290

B. Open-loop Model-based Control291

Now, let us design the controller for the foil-and-flap system using the DMDc model derived above. First, an open-loop292

model-based control is employed to serves as a baseline case where no system feedback is given, or the feedback time interval293

is infinite. The block diagram of the open-loop control is shown in Fig. 4. The open-loop term here means that there is no294

feedback from the plant and trajectory planning is done offline. At t = t0, we acquire the delay-embedded initial states from the295

plant as x̃0, then start the control with the reference trajectories ỹref. After completing optimization at each control time step,296

we apply the first element of the optimal control sequence to the model, then take the states returned from the model as the new297

initial state. following the calculation for a specified time span, the collected control sequence is fed to the plant and let it evolve298

on its own. This control strategy has no feedback from the plant and is hence called the open-loop model-based control. Note299

that to reduce the computational resource requirement and facilitate real-time application, the control time step dtctrl is much300

larger than the FSI simulation time step. We have dtctrl U∞/L = 0.05 for all of our controlled cases, and the trajectory planning301

block is in charge of producing the input trajectory in between. For the current controller, where only the flap angle serves as302

the control target, the trajectory is connected piece-wise linearly, and the flap angular velocity is calculated with the slope of the303

linear piece. This works the same for the closed-loop cases discussed later.304305

Since our ultimate goal is to regulate the flow-induced flutter, we choose a scenario that is realistic to the possible application306

for energy extraction, which is the sinusoidal lift coefficient with transitioning amplitude and frequency. The reference lift307

coefficient is acquired by prescribing flap motion to the plant. Figure 5 shows three trajectories of the input flap angle and308

corresponding lift coefficients in thin red lines. It also shows the results from the open-loop model-based control in thick blue309

lines, and the vertical broken line marks where the control is initiated after the flap follows the original prescribed trajectory.310
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(b)

(c)

(a)

FIG. 5. Open-loop model-based control performance evaluation for (a) trajectory A: low-frequency, (b) trajectory B: high-frequency, and (c)
trajectory C: high-to-low frequency test cases. (red thin line: ground truth; blue thick line: controlled cases; vertical broken line: control
initiation)

trajectory case t = 15 → 30 30 → 45 45 → 60 60 → 75
A 14.63% 21.26% 10.04% 10.79%
B 10.66% 12.93% 10.38% 12.48%
C 9.71% 10.0% 12.78% 13.78%

TABLE II. Average tracking error with open-loop model-based control corresponding to the three cases shown in Fig. 5.

Three different sample trajectories will be used to demonstrate the control efficacy: trajectory A is the low-frequency trajectory311

with flap waving at St f = 0.075 to 0.1 with slightly decreasing amplitude; trajectory B oscillates at a higher-frequency range312

St f = 0.5 to 0.6; and frequency of trajectory C gradually reduces from St f = 0.5 to 0.4.313314

The results show that the open-loop control can keep the system responses within 20% range from the desired trajectories.315

Table II shows the average tracking error of applying the open-loop control over every 300 control time steps, i.e. ∆t U∞/L = 15.316

For all three cases, we can see that at the initiation of the control engagement, a large flap deflection is requested by the317

controller. This stems from the discrepancy between the desired states and the model-predicted states using the plant-provided318

initial condition. As the open-loop controller has no feedback from the plant, this error will require some time to be mitigated,319

and after that the overall range of the lift force can be reasonably recovered. Given that this control strategy lacks feedback320

from the system response, the paramount factor influencing control effectiveness is the accuracy of the model predictions. For321

cases with higher oscillation frequencies, the control input deviates significantly from the reference input after a brief control322

action interval, sometimes exhibiting an almost 180◦ phase difference. Surprisingly, the overall error remains insubstantial. This323

is attributed to the DMDc model, which, despite its imperfect reconstruction of detailed higher frequency pulsing responses in324

quasiperiodic systems, effectively captures the general trend of fluidic forces and states (see Fig. 2(b)). Given the controller’s325

ability to follow the average, the overall tracking error is consequently confined to a lower range. However, for trajectory A,326

characterized by a larger amplitude, it is evident that the initial error propagates and leads to intense fluctuations in the control327

input. After t U∞/L > 60, the controller is able to track the lift coefficient well since the DMDc model performs better at small328

amplitude cases and the initial error is mostly mitigated.329330

Overall, open-loop model-based control could not achieve accurate trajectory tracking. Moreover, owing to model inaccura-331

cies, the controller tends to demand excessive actuation. Across all three cases, an overshoot of the control signal compared to the332
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FIG. 6. Block diagram for the closed-loop MPC control.

originally prescribed motion is evident, presenting an undesirable characteristic for real-world actuators. Nonetheless, the con-333

troller maintains the response within a reasonable range. We will now explore enhancements to the controller by incorporating334

system response feedback.335

C. Closed-loop MPC Control336

To further improve the effectiveness of our control scheme, we can take the systems states acquired from the plant and re-337

initiate the optimization procedure at each control time step. The block diagram of this closed-loop MPC control scheme is338

shown in Fig. 6. We can see that compared to the open-loop design, the plant is now included in the control cycle to feed back339

the state altered by the last control input.340341

The same three cases used in the open-loop cases are shown here to demonstrate how the closed-loop MPC performs. The342

reference lift coefficient and the original input sequence, along with the results of the controlled cases, are shown in Fig. 7. It343

is evident that closed-loop control works better than the open-loop case, especially for the low-frequency cases, where the lift344

coefficient nearly perfectly follows the reference trajectory shortly after the control is engaged. The large error at the initialization345

is quickly corrected by the optimization, and within 300 iteration cycles after initiation (t U∞/L = 15), the controller settles down346

on its steady input sequence. Table III indicates the tracking error in different time span, which demonstrates that the closed-loop347

controller can track the lift coefficient to a great sub-5% error range for most cases. However, for high-frequency cases, again,348

the trend is recovered very well but the high-amplitude pulsing behavior is suboptimally captured. We can see from the input349

sequence that the input θ never goes to the extrema even though the peak is not matched, which reflects the observation that the350

DMDc model could not capture the full-rank dynamics of the system. In the authors’ previous publication [41], we concluded351

that the quasiperiodic motion is caused by the interaction between the flow-induced mode and the flap-induced mode. Think352

in the phase-space perspective, this means these two trajectories get so close in the phase space, they intersect with each other353

and the system keeps switching between the two trajectories. DMDc cannot distinguish them either due to the smoothing effect354

when multiple trajectories are considered or because the data acquisition time step should be smaller to preserve more details355

for the identification procedure to recognize the difference between the trajectories. From the control perspective, at higher-356

frequency conditions, this foil-and-flap system is not controllable only by the active flap actuation, or that the system state space357

cannot be reached entirely by moving the flap. From the various tests conducted for the open-loop and closed-loop control, we358

conclude that the active control is especially valid within the flap oscillating frequency range of St f < 0.5 as seen in Fig. 6359

and 7. This range matches with that found in the cited previous research, where the flap-induced modes are the dominant flow360

mechanism only when separated further enough from the flow-induced mode. Still, for the high-frequency cases, the tracking361
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(c)

(a)

FIG. 7. Closed-loop MPC control performance evaluation for (a) low-frequency, (b) high-frequency, and (c) high-to-low frequency test cases.
(red thin line: ground truth; blue thick line: controlled cases)

trajectory case t = 15 → 30 30 → 45 45 → 60 60 → 75
A 2.97% 2.47% 2.0% 3.17%
B 4.27% 4.23% 3.78% 4.17%
C 3.27% 4.27% 6.82% 8.87%

TABLE III. Average tracking error with closed-loop MPC control corresponding to the three cases shown in Fig. 7.

error is minimal since the long-term average behaviors are still captured well by the DMDc model and the flap can impact the362

slower long-range trends.363364

A crucial parameter distinguishing the open-loop and closed-loop cases is the feedback interval, as the open-loop case can be365

regarded as the extreme scenario with an infinite feedback interval. To further assess the influence of the feedback interval on366

control effectiveness, we examine four cases with varying settings of ∆t,U∞/L = 0.1,0.2,0.4,0.8, all employing the same low-367

frequency trajectory as in the preceding instances (refer to Fig. 5(a) and Fig.7(a)). Fig. 8 and Table IV show, respectively, the flap368

angle with corresponding lift coefficient and average tracking error for the four cases along with the original ∆t,U∞/L = 0.05369

case. We can see that when the feedback interval increases beyond a certain threshold, the controller performance suddenly370

drops to an undesirable extent – over 500%, which is worse than the open-loop approach. Upon further inspection, the reason371

behind this is that when there is no system state feedback, the system slowly sways away from the target trajectory as the planned372

piecewise trajectory does not optimally track. This does not present an issue if the target trajectory exhibits a trend with a low373

frequency, as the open-loop approach is proven to have good tracking performance, given the model is well-constructed. When374

a new feedback signal arrives, the controller is able to regain control. Yet, as the tracking frequency increases, the state feedback375

introduces a notable discrepancy between the current state and the desired state, as observed in the open-loop scenario. In such376

instances, the Model Predictive Control (MPC) controller fails to find a feasible solution, resulting in the propagation of errors377

and eventual destabilization of the system. Conversely, when the feedback interval is sufficiently small, the tracking performance378

seems to exhibit reduced dependence on the interval.379380

The previous tests aim to demonstrate how the flap can help facilitate a large amplitude of flow-induced vibration; how about381

the opposite end, trying to use the flap to stop the vibration? We will now tackle this problem. Figure 9 shows the desired382

lift coefficient and the closed-loop MPC controlled results. In this set of tests, two lift coefficient trajectories are tested, both383

start with the same oscillating lift and settle down at the average lift of waving the flap at a large range (−30◦ to 30◦), which384
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FIG. 8. Closed-loop MPC control performance with feedback interval ∆t U∞/L = (a) 0.1, (b) 0.2, (c) 0.4, and (d) 0.8. (red thin line: ground
truth; blue thick line: controlled cases)

∆t U∞/L t = 15 → 30 30 → 45 45 → 60 60 → 75
0.05 2.97% 2.47% 2.0% 3.17%
0.1 2.95% 2.46% 2.0% 2.27%
0.2 2.50% 2.43% 1.91% 2.49%
0.4 3.42% 2.82% 2.74% 3.24%
0.8 3.75% 500.03% - -

TABLE IV. Average tracking error with closed-loop MPC control corresponding to the four cases shown in Fig. 8.

is about CL = 0.189. Then the target lift coefficient shifts to the other constant value after a period, then to another. The flap385

angle trajectories generated by the closed-loop MPC controller to track these lift trajectories are shown, where we can see the386

flap has to be constantly adjusted to cope with the shedding leading edge vortices so that the lift can stay at a constant value.387

The oscillation especially becomes intense when the flap goes to negative values (pointing upward), which creates stronger388

nonlinear interaction with the vortex wake created at the leading edge. Nonetheless, the constant lift target is well achieved, with389

the average tracking error between all piecewise segments being 3.19%. This shows that the presented control mechanism can390

successfully eliminate the flow-induced vibration.391392

The closed-loop control achieves the goal that we set at the beginning of this work: regulation of the flow-induced flutter393

of a foil with the active flap as the actuator. With the Koopman-based MPC, this task is satisfied with great accuracy for low-394

frequency oscillation and constant lift scenarios (no vibration), and reasonable response for high-frequency oscillation. Let us395

further consider the practical application situation, where the speed of the controller is crucial. Different from the simulation396
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FIG. 9. Closed-loop MPC control performance evaluation for two different step-function trajectories. (red thin line: ground truth; blue thick
line: controlled cases)

where we can wait until the optimization is finished before evolving the flow, in practice the flow just keeps going. If the397

controller is not fast enough, when the optimized input is acquired, the flow is already in a different state. The performance398

of utilizing QP solvers to perform MPC depends on many factors, including the model type, the number of inputs to optimize,399

the number of states considered, the tolerance required, etc., and it is also an iterative process so there is no single performance400

criteria that can describe its efficiency. The readers are referred to papers with benchmark tests, such as Kouzoupis et al. [47],401

that compare the performance of different QP solvers to learn more on this aspect. A crucial benefit of using Koopman-based402

model is that solving the convex optimization problem can be rapid to enable real-time controlling of nonlinear systems. For our403

case, each call of the quadprog in MATLAB takes about 0.006 second to perform with the delayed dimension 80 and control404

horizon N = 10 using a desktop PC equipped with the Intel Xeon CPU E5-1603 v4 running at 2.8 GHz.405

D. Flow Field Observations406

As elaborated in §I, another benefit of using the DMDc-based MPC structure is that the control is designed on-the-fly and407

applied to the nonlinear full-scale plant. This allows us to examine how the flow responds to the flap actuation and this could408

provide real-time insight on the actuator impact and inform about the optimal sensor placement. Combining the MPC framework409

with methods that can incorporate new observations online [48, 49], one can create more accurate models without conducting410

system identification again. This property could be crucial to practically implement this control method to real-world systems,411

as the ambient environment can provide more accurate working conditions to improve the model prediction.412

Let us take a look at the flow field of the low-frequency and high-frequency cases shown in the previous sections. The vorticity413

field snapshots of the ground-truth simulations with prescribed flap motion compared with the closed-loop MPC controlled cases414

are shown in Fig. 10 and 11. We can now see why MPC controller cannot fully capture the high-frequency response regimes.415

The smoothing effect of the DMDc model treats the desired lift trajectory as a slowly varying sinusoidal pattern and categorizes416

the behavior into a simple limit cycle oscillation. However, the spiking peaks come from the nonlinear interaction between the417

leading and trailing edge vortex shedding, which creates a much more chaotic wake in the ground truth case. The small MPC-418

generated flap amplitude could not excite the intense trailing edge separation that kicks the system out of the stable limit cycle.419

Including an online state estimator in the system could improve the identification of this kind of behavior. On the other hand, in420

the low-frequency cases, the two scenarios exhibit almost identical wake patterns after the control sequence settles down after421

the initial error is mitigated.422423

E. Unsteady Ambient Flow Conditions Identification424

Although the optimization process of the MPC framework could be sufficiently fast for real-world scenarios, in practice425

robustness of the solver against environmental condition disturbances is another crucial factor for the controller to work. For426

example, for a flying airfoil, the flow conditions constantly change due to humidity, temperature, turbulence, and many other427

factors to consider. The model used here is built with just one set of environmental conditions (uniform ambient flow) and428
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FIG. 10. Vorticity field of the low-frequency flap trajectory case for the (a) prescribed flap motion and (b) closed-loop MPC controlled cases.

FIG. 11. Vorticity field of the high-frequency flap trajectory case for the (a) prescribed flap motion and (b) closed-loop MPC controlled cases.

it showed good potential at tracking different kinds of trajectories produced from diverse flap motion. However, how it will429

respond to other forms of disturbances remains to be explored. For the control purpose, MPC is very robust at hiding the430

model’s inaccuracy [29], but a model that inherently considers unsteady conditions could provide more robust control of the431

system and, in addition to that, a better understanding of the underlying physics. This remains an open question to be scrutinized432

thoroughly with realistic environmental conditions, but here we will provide a preliminary discussion with simplified conditions.433

There are a number of reduced order models developed for flow-induced fluttering systems that also take unsteadiness into434

account [50], and some of them can be easily fitted into the current MPC structure. For example, Deem et al. [51] designed an435

adaptive separation control of a laminar boundary layer based on online DMD [48]. By periodically updating the DMD model436

after modifying the flow, the control gain based on the new flow state can be adjusted accordingly. Another example is the DMD437

with exogenous input proposed by Kou and Zhang [52] that models the disturbance as an external input and separates the effect438

of the natural unperturbed response and the external input. We will adopt this idea and treat the flow fluctuations as an external439

input characterized by certain parameters and test our MPC control framework on a foil subject to unsteady flow.440

We will use a simple model to represent the unsteady condition caused by the incoming gust. This canonical disturbance can441

be described with a sinusoidal oscillating streamwise velocity and is a classic case described in Theodorsen’s original work [12],442

which has then been adopted by various research [53, 54]. The streamwise ambient flow velocity is represented as443

U∞(t) =Umean +UA(t) sin [ω∞(t) t +φ∞(t)] , (35)

where UA(t) is the oscillation amplitude of the free stream velocity, and ω∞(t) and φ∞(t) are the frequency and the phase of the444

ambient flow oscillation, respectively. Recall that in §III, we defined the control input u as the flap angle. To incorporate the445

effect of the oscillating flow, we can treat the ambient flow velocity as a separate external input and write the control input at446

time tk as447

uk =
[

θk,U∞,k
]T

, (36)

and the rest of the optimization procedure follows Eq. 21 and onward. Figure 12 shows an example of a foil subject to oscillating448

flap actuation and streamwise oscillating gust. Both the frequency of the flap motion and that of the ambient flow transition from449

0.1 to 0.05 in this specific case.450451
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FIG. 12. Vorticity field and the corresponding magnitude of the flap angle θ and ambient flow velocity U∞.

FIG. 13. The lift coefficients, flap angle and ambient flow velocity trajectories. (red broken line: reference; blue dotted line: model response
with original input; black solid line: open-loop model-based control results)

The GW-DMDc model with both flap angle and ambient flow velocity as input is again constructed with 10 different trajec-452

tories consisting of lift and drag coefficients and flow kinetic energy sampled on the foil surface. These trajectories all have453

smoothly transitioned input magnitudes. The following cases are not a part of the training data. Performing the same open-loop454

model-based control described in §III B on the case shown in Fig. 12, we are able to recover the trajectory of both the flap motion455

and ambient flow oscillation to a reasonable accuracy, as shown in Fig. 13. A similar issue that with open-loop model-based456

control, the lift coefficient cannot be perfectly recovered due to the model imperfection is still present, and the amplitude of the457

flap angle is incorrect. Still, even with the added disturbance in the ambient flow velocity, the model exhibits decent simultaneous458

predictability for the ambient environmental conditions and the active actuation required to follow the reference lift coefficients459

trajectory.460461

With this simple example, we see the potential in both control and identification of the MPC framework. Moreover, with the462

geometrically weighted DMDc, the identification process can be extended to identify spatial structure changes. The nonlinear463

impact of the actuators on the flow can finally be scrutinized. This could enable a new territory of morphing control development,464

with multiple actuators responsible for mitigating different kinds of disturbances. Furthermore, the modal information can be465

used to reconstruct the whole flow field with limited available sensors.466
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IV. CONCLUSION467

In this paper, we introduce how we can build a linear model with control input utilizing a geometrically weighted DMDc468

procedure. This model is then used to derive the objective function used in the MPC scheme to satisfy trajectory tracking469

requirements. Both open-loop model-based control and closed-loop MPC control are tested on our foil-and-flap system which470

exhibits good tracking performance. The results show that we successfully regulate the flow-induced flutter with the active flap471

by directly controlling the lift forces acting on the foil.472

However, the controllability of the flap actuator and the limitation of DMDc model offer some restrictions on the control473

scheme, mainly in tracking high-frequency nonlinear pulsing responses. From the previous study [41], we know active flap474

interacts with the flow-induced mode very differently at different amplitudes and frequencies, and at high flapping frequency475

limit, the flow-induced mode is more dominant. If one wish to track these higher-frequency dynamics, adding another high-476

frequency actuator such as a fluidic actuator at the leading edge of the foil is a possible solution. Another possible solution to477

this problem is to utilize some forms of state estimators to update the model to match the observed responses. For example,478

Kalman filter [55] is a recursive state estimation technique that can estimate the future state with the recorded state history.479

Through Kalman filter, the underlying nonlinear interactions between the flap- and flow-induced modes can be estimated in480

real-time and provide another layer of predictability to the GW-DMDc model. Another benefit of including a state estimator is481

the improvement of the controller’s robustness. As discussed in §III E, by adding an extra control input, the effects of coherent482

flow structures can possibly be isolated to provide better control sequence design. On top of that, the state estimator could help483

screen the turbulence fluctuation, model inaccuracy, or other unknown non-coherent disturbances and identify the dynamics484

controllable by the available controller.485

In this work, we adopted the idea of linear modeling with the Koopman operator, which has the benefits of data-driven and486

linearity. There are still many options of models that can fit into the MPC framework, as the only requirement is the prediction487

the system response with a certain accuracy, and that the model can be evaluated quickly. The classical Theodorsen’s model is488

constantly being improved and could be a great candidate for the model used in the MPC framework. For example, the work489

by Pohl, Hermann et al. [9, 10] links multiple models acquired from different airfoil postures to capture the hysteresis effect of490

the foil-and-flap system. Other works aim to expand the modeling horizon of Theodorsen’s model, such as those conducted by491

Wang et al. [6] which formulates the effects of gust, or that by Platanitis et al. [11] which considers the interaction of multiple492

morphing surfaces. These efforts have been improving the elegant classical model and could be used in the MPC framework.493

Another branch of methods worth mentioning is the vortex model which can capture the vortex distribution and evolution in the494

wake. For example, Darakananda et al. [56] represented the flux of vorticity into the wake by a continual release of time-variable495

vortex elements from both edges of the airfoil, and the strengths of the vortices are corrected by a Kalman filter based on local496

measurements. Mathieu et al. [57] further extended the model to identify the possible connection between the vortex strength497

and a cluster of variables to reject disturbances of the local measurement. These methods are all part of a continuous effort for498

better modeling of aerodynamic flows with moving/deforming structures, and the authors are excited to see how the combined499

effort of the community can bring a better control and design philosophy to the FSI systems.500
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