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The “squirmer model” is a classical hydrodynamic model for the motion of interfacially-driven
microswimmers, such as self-phoretic colloids or volvocine green algae. To date, most studies using
the squirmer model have considered spherical particles with axisymmetric distribution of surface
slip. Here, we develop a general approach to the pairing and scattering dynamics of two spheroidal
squirmers. We assume that the direction of motion of the squirmers is restricted to a plane, which is
approximately realized in many experimental systems. In the framework of an analytically tractable
kinetic model, we predict that, for identical squirmers, an immotile “head-to-head” configuration
is stable only when the particles have oblate shape and a non-axisymmetric distribution of surface
slip. We also obtain conditions for stability of a motile “head-to-tail” configuration: for instance, the
two particles must have unequal self-propulsion velocities. Our analytical predictions are compared
against detailed numerical calculations obtained using the boundary element method.

INTRODUCTION

Self-assembly [1–4], clustering [5–9], and particle motil-
ity alignment [10–14] are among the most discussed
topics in the active matter community. In each of
these phenomena, collective behavior emerges from non-
equilibrium interactions between self-motile microscopic
particles. These particles usually self-propel through liq-
uid, making hydrodynamic interactions – interactions
mediated by flow in the suspending medium – an im-
portant and ubiquitous non-equilibrium effect [15].

A broad class of synthetic and biological microswim-
mers propel themselves by driving flow within a thin
layer at the fluid/solid interface. For instance, cili-
ated microorganisms are covered by a thin carpet of
thread-like appendages that beat in a coordinated fash-
ion. The squirmer model, first introduced by Lighthill
[16] and Blake [17], was originally developed to describe
the motion of ciliated, spherical micro-organisms [18]. In
the simplest version of this model, the detailed, time-
dependent motion of the cilia is coarse-grained as a pre-
scribed steady tangential slip velocity. This slip velocity
provides the interfacial actuation (i.e., thrust) needed for
self-propulsion. Additionally, the slip velocity drives flow
in the surrounding solution, leading to long-ranged hy-
drodynamic interactions between the squirmer and other
objects in the solution. These features have made the
squirmer model a popular approach for understanding
the flow-mediated interactions between swimming mi-
croorganisms, as well as between microorganisms and
bounding surfaces [19–25]. For instance, Ishikawa et al.
exhaustively cataloged the collision and scattering dy-
namics of squirmer pairs [19]. As another example, var-
ious studies have addressed nutrient uptake (i.e., feed-
ing) of microorganisms in the framework of the squirmer
model [26, 27].

Since its original development, the squirmer model has
found applications well beyond its initial purpose. For in-

stance, synthetic active colloids driven by self-generated
gradients of a thermodynamic variable (e.g., tempera-
ture, chemical potential, or electrical potential [28–31])
can often be approximated as “effective squirmers.” In-
stead of resolving the propulsion mechanism in detail, a
slip velocity on the surface of the particle is prescribed
[32]. The slip determines two major swimming proper-
ties, speed Us and stresslet S [33, 34]. As an example
that justifies this approach, it was recently observed that
metallo-dielectric Janus discoids, energized by AC fields,
tend to form “head-to-head” bound pairs [35]. Model-
ing of the propulsion mechanism (induced charge elec-
trophoresis [36, 37]) revealed that hydrodynamic interac-
tions dominated interactions between particles, i.e., the
particles behaved as effective squirmers.

One microscopic property that has proven to be impor-
tant in active matter is particle geometry [38–41]. Shape
can impact the swimming speed of an active particle, the
rate of working, and the flow field sourced by the particle
[42–47]. Collisions between rod-like particles can lead to
nematic ordering in an active suspension [48]. In view
of the importance of shape, various studies have consid-
ered non-spherical squirmers – usually prolate spheroids
[23, 42, 49, 50]. For instance, Ishikawa and Hoto modeled
the paramecium P. caudatum with a prolate spheroid
acutuated by interfacial slip. The slip was assumed to be
a superposition of five harmonic functions of the elevation
angle [51]. In an effort to fully generalize the squirmer
model to both prolate and oblate spheroids, we recently
developed and characterized a complete set of orthogonal,
axisymmetric squirming modes in spheroidal coordinates
[52]. We found that the odd-numbered squirming modes
contribute to the self-propulsion velocity, while the even-
numbered contribute to the the stresslet.

For interfacially-driven microswimmers, a second
means of controlling their motion is offered by breaking
symmetries of the slip velocity. This symmetry breaking
can imposed, as when a self-phoretic particle is fabricated
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with non-axisymmetric surface chemistry [53, 54], or can
emerge in situ, due to effects of confinement [37, 55] or
symmetry-breaking fields [36, 56]. So far, applications
of the squirmer model have mostly been restricted to ax-
isymmetric slip, although more general slip has been con-
sidered for spherical squirmers [57–60]. For instance, Bu-
rada et al. consider the far-field interaction of two spher-
ical squirmers with a chiral distribution of slip. They
find that these spheres can exhibit oscillatory “bounded
states” in which they orbit around a common average
trajectory [61].

THEORY

In this work, we develop a framework to study the
consequences of particle shape and non-axisymmetry of
the surface slip for interactions between interfacially-
driven microswimmers. We develop analytical predic-
tions in a far-field, “point-particle” model, building on
the Saintillan-Shelley kinetic theory of microswimmers
[62–65]. Our analytical predictions are supported by
high resolution numerical calculations using the squirmer
model, which resolve the finite size of the particle and
near-field hydrodynamic interactions. We show that both
non-spherical shape and breaking of the axisymmetry
are necessary conditions to form stable “head-to-head”
bound pairs. These immotile bound states are held to-
gether by (far-field) hydrodynamic interactions. Simi-
larly, we find that motile “head-to-tail” bound pairs can
be stable only when the particles are non-spherical (al-
though they can be axisymmetric.) Overall, we find good
agreement between theory and numerics, suggesting that
our framework offers a promising approach for studying
self-organization in hetereogeneous active suspensions.

Minimal model

We model swimmer α ∈ {1, 2} as a point-like particle

with swimming direction d̂(α) and self-propulsion veloc-

ity U
(α)
s ≥ 0. Swimmers are coupled by the flows they

generate. The velocity of swimmer α is

U(α) = U (α)
s d̂(α) + u(xα). (1)

In the second term, the swimmer is advected by the am-
bient flow, evaluated at its position xα. (The finite size
of the swimmer is neglected.) For the rotation of the
swimmer, we write the Jeffery equation [64]

˙̂
d(α) =

(
I − d̂(α)d̂(α)

)
· (ΓαE(xα) +W(xα)) · d̂(α). (2)

Here, Γα is a shape parameter that is zero for a sphere,
positive for a prolate spheroid that has its major axis
aligned with d̂(α), and negative for an oblate spheroid

that has its minor axis aligned with d̂(α). The tensors
E(xα) and W(xα) are the rate-of-strain and vorticity,
respectively, evaluated at xα, where E = 1

2

(
∇u+∇uT

)
and W = 1

2

(
∇u−∇uT

)
. I is the identity tensor.

To model swimmer-generated flow, we associate an
active “stresslet” with each swimmer. In general, the
stresslet provides the slowest decaying contribution of a
force-free, rigid microswimmer to the surrounding flow
field. It can be obtained from the surface traction [19, 66]:

S
(α)
ij =

1

2

∫
Σα

[σikn̂kxj+σjkn̂kxi] dS−
1

3

∫
Σα

σlkn̂kxl dS δij .

(3)
The integral is taken over the surface Σα of particle α, n̂
points from the surface of the particle into the surround-
ing fluid, and σ = −pI + µ(∇u + ∇uT ) is the stress
tensor for a Newtonian fluid. Here, p(x) is the pressure
and µ is the dynamic viscosity of the fluid. The velocity
field due to a stresslet located at the origin is given by:

ui =
1

8πµ

(
xiδjk
r3

− 3xixjxk

r5

)
S
(α)
jk , (4)

where r is distance from the origin and xi is a location in
the fluid. For a swimmer with an axisymmetric surface
actuation, the stresslet can be written as [67]

S(α) = σ
(α)
0

(
d̂(α)d̂(α) − I

3

)
. (5)

The sign of σ
(α)
0 determines the “pusher” (σ

(α)
0 < 0) or

“puller” (σ
(α)
0 > 0) character of the swimmer.

However, not all microswimmers have axisymmetric
actuation. For instance, consider metallo-dielectric par-
ticles that are energized by an AC electric field and swim
via induced charge electrophoresis (ICEP) [36]. The ap-
plied field can break axisymmetry. Thus, we consider a
more general stresslet, written in a frame aligned with
the principal axes ĉ, d̂, and ê of S(α):

S(α) = S(α)
cc ĉĉ+ S

(α)
dd d̂d̂+ S(α)

ee êê, (6)

with tr(S(α)) = 0. Since S(α) is symmetric and real-
valued, its principal axes are orthogonal, and we define
ĉ × d̂ = ê. This form of the stresslet tensor is generic.
However, for simplicity, we make the assumption that
the direction of propulsion of an isolated particle is d̂,
i.e., aligned with a principal axis. This assumption is
realized by an ICEP particle with spheroidal shape and
axisymmetric metal coverage, swimming in unbounded
solution (Fig. 1(a)). If the electric field is in the ẑ di-

rection and the particle axis of symmetry is given by d̂,
the particle will rotate such that d̂ is perpendicular to ẑ
[36, 40]. After rotation, the particle will swim strictly in

d̂ with a stresslet tensor in the form of Eq. 6. A detailed
technical discussion of S and the assumption concerning
d̂ is provided in the Supplemental Material (SM) [68].
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FIG. 1. (a) An oblate particle that self-propels in the pres-
ence of an AC electric field (black arrow) by ICEP. The back-
ground color indicates the electrostatic potential (arbitrary
units) on the particle surface for the half-period in which the
field is pointing in the negative z’ direction. White arrows
show the surface slip, which is non-axisymmetric. (b) Distri-
bution of slip for the first squirming modeB1. (c) Distribution

of slip for B2. (d) Non-axisymmetric slip for B̃, following the
definition in Eq. 7. In all panels, re = 5.

Additionally, we note that Eq. 6 reduces to Eq. 5 when

S
(α)
dd = 2/3σ0 and S

(α)
cc = S

(α)
ee = −σ0/3.

In the following, we restrict our consideration to two
swimmers moving in the xy plane, and study conditions
for obtaining stable bound states. The instantaneous
configuration of the system is specified by the center-to-
center distance d and the angles ϕ1 and ϕ2, where ϕα is
the angle between d̂(α) and a fixed axis, chosen as the x-
axis (see Fig. 1 in the SM). We assume that ĉ(α) and d̂(α)

lie within the xy plane. For convenience, we specify that
swimmer 1 is instantaneously at x1 = (0, 0, 0). Swimmer
2 has position x2 = (x, y, 0). We construct ẋ, ẏ, ϕ̇1, and
ϕ̇2 as functions of x, y, ϕ1, and ϕ2, and look for fixed
point configurations at which these functions evaluate to
zero, representing a bound state. For simplicity, we con-
sider only bound states in which the propulsion axes are
aligned with the center-to-center axis.

The point-particle model is analytically tractable and
yields a wealth of predictions. However, we wish to com-
pare these predictions against numerical results that ac-
count for finite size and do not truncate the particle-
generated flow field to the leading-order term.

Squirmer model

We consider N ∈ {1, 2} spheroidal particles in un-
bounded Newtonian fluid. Following Ref. 52, for particle
α, we take the length of the semi-axis of symmetry to de-

fine b
(α)
y , and the length of the other semi-axes to define

b
(α)
x . Thus, each particle has an aspect ratio r

(α)
e de-

fined by re ≡ bx/by, with re < 1 for an prolate spheroid,
re = 1 for a sphere, and re > 1 for an oblate spheroid.

The quantity Γα is related to r
(α)
e by Γ = (1−r2e)/(1+r2e).

The characteristic size of the particle, L
(α)
0 , is chosen as

b
(α)
y .
The center of particle α is located at xα. The fluid

velocity u(x) is governed by the Stokes equation −∇p+
µ∇2u = 0 and the incompressibility condition ∇ · u = 0.
On the surface Σα of particle α, the velocity obeys u =

U(α) +Ω(α) × (x− xα) + v
(α)
s (x). Additionally, |u| → 0

as |x| → ∞. Each particle is force-free and torque-free:∫
Σα

σ · n̂ dS = 0 and
∫
Σα

(x− xα)× σ · n̂ dS = 0.

For each swimmer, the slip v
(α)
s is fixed in a frame at-

tached to the swimmer. It is specified via a set of squirm-
ing mode amplitudes. In previous work, we generalized
the axisymmetric squirming modes to spheroidal parti-

cles. The amplitudes are denoted by B
(α)
i , with i ≥ 1

[52], and here are assumed to be given in units of an ar-
bitrary characteristic velocity. The first two modes are
shown in Fig. 1(b) and (c). Here, in order to break
axisymmetry, we develop a new squirming mode B̃(α) in-
spired by the slip profile of ICEP particles. This squirm-
ing mode has slip distribution

v(α)
s (x) = B̃(α)[sign(z′)(cos(φ)êξ − êφ(êξ · êz′)) (7)

− sign(x′)(sin(φ)êξ − êφ(êξ · êx′))] ·H(y′),

shown in Fig. 1(d). Here, H(y′) is the step function,
and êφ and êξ are two surface tangential basis vectors in
a particle-centered spheroidal coordinate system. (The
prime symbol is used to distinguish the coordinate system
in Fig. 1 from the coordinate system used for studying
pair interactions.)

We briefly discuss the properties of a single squirmer.
From solution of the governing equations, we obtain Us

and S for a given re and set of squirming mode am-
plitudes. Due to the linearity of the Stokes equation,
the contribution of each squirming mode can be calcu-
lated individually and superposed. For the axisymmetric
modes, Fig. 2 in the SM shows how the Bi contribute

to U
(α)
s and σ

(α)
0 . For the non-axisymmetric mode, we

show S
(α)
cc , S

(α)
dd and S

(α)
ee as a function of re in SM Fig.

5. This squirming mode makes no contribution to S
(α)
dd

or U
(α)
s , and contributes anti-symmetrically to S

(α)
cc and

S
(α)
ee .
For N = 2, we solve for the particle velocities numer-

ically, using the boundary element method (BEM) [69].
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We obtain trajectories using a rigid body dynamics en-

gine [42]. For simplicity, we assume that L
(1)
0 = L

(2)
0 .

(The point-particle model has no inherent length scale.
Since Sij ∼ L3

0 and Us ∼ L2
0 for a squirmer, differences

in size can be straightforwardly accommodated in our
model.)

RESULTS

Head-to-head pairing

We look for fixed point solutions of the point-particle
model with (x, y, ϕ1, ϕ2) = (d0, 0, 0, π). Through a de-
tailed derivation in the SM, we obtain

d0 =

√√√√√ −3
(
S
(1)
dd + S

(2)
dd

)
8πµ

(
U

(1)
s + U

(2)
s

) . (8)

Given that U
(α)
s > 0, to obtain a finite separation d > 0,

it is required that (S
(1)
dd + S

(2)
dd ) < 0. In other words,

the pair must have a net “pusher” character. In the SM,
we present a general linear stability analysis. Here, we

discuss identical swimmers, i.e., U
(1)
s = U

(2)
s , S(1) = S(2),

and Γ1 = Γ2. As conditions for stability, we obtain Γ <
−1/3 and [Scc(−1+Γ)+Sdd(1+2Γ)][Scc(−1+Γ)−Sdd(1+
4Γ)] < 0, given that Sdd < 0. Notably, the requirement
Γ < −1/3 corresponds to an oblate shape, recalling the
discoidal particles in Ref. 35. Intriguingly, head-to-head
pairing cannot be obtained for axisymmetric swimmers
(Eq. 5). For Sdd = 2σ0/3 and Scc = See = −σ0/3,
with σ0 < 0, the second condition reduces to Γ > −1/9.
This cannot be reconciled with Γ < −1/3. Thus, this
work completes the analysis of Ref. 35, which assumed
an axisymmetric stresslet. Here, we have shown that
non-axisymmetry is a necessary ingredient in the pairing
observed in Ref. 35.

To further investigate deviation from axisymmetry, we
consider stresslets of the form

S = Sax + σ0 δ (ĉĉ− êê) , (9)

where Sax is equal to the right hand side of Eq. 5,
and δ is dimensionless. We obtain Γ < −1/3 and
(−1+3Γ(−3+ δ)− 3δ)(1+Γ+ δ(−1+Γ)) < 0. Notably,
these requirements are independent of σ0 and Us. In Fig.
2(a), the background color shows the predicted phase
map. We also show two types of numerical data. Crosses
represent squirmers with a non-axisymmetric squirming
mode. This mode introduces the perturbation δ in a con-
trollable manner (see Fig. 5 in the SM). Circles show the
results for an effective squirmer model for ICEP parti-
cles. Red symbols indicate pairs without a stable bound
state. The theoretical and numerical results largely agree
with each other. The one area of significant mismatch is

unstable

(a)

(b)

initial state, 
particle 1

initial state,
particle 2

�nal state, 
bound pair

stable

-1 -0.8 -0.6 -0.4 -0.2 0 0.2-0.5
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FIG. 2. (a) Phase map for head-to-head pairs. The back-
ground colors show the stability predicted by the analytical
model. Crosses represent the results of numerical calcula-
tions for non-axisymmetric squirmers (Eq. 7) with modes

B
(α)
1 = 0.1, B

(α)
2 = −1 and varying B̃ and Γ. Circles indi-

cate numerical data for the ICEP effective squirmer model,
and are connected by a line to guide the eye. Green and blue
symbols indicate pairs with with a stable bound state; red
symbols represent unstable pairs. (b) Trajectory obtained for

Γ = −0.835 and B̃ = 1.68.

for Γ ≈ −1, i.e., oblate spheroids with large re. Recalling
that by was chosen as a characteristic length, oblate par-
ticles with large re also have large bx. When bx ≫ d0, the
point particle assumption is expected to be erroneous. In
Fig. 2(b), we show pair formation for Γ = −0.835 and
B̃ = 1.68.

The condition Γ < −1/3 has a straightforward physical
interpretation. At the location of a particle, the rate-of-
strain tensor E has two principal axes. Spheroidal par-
ticles tend to align their long axes with the local axis
of extension [70, 71]. For an axisymmetric stresslet (Eq.
5) located at the origin and oriented in the x-direction,
we evaluate Eax at the position x = d, y = 0. From
the eigenvalues and eigenvectors of this quantity, we find
that the axis of extension is indeed in the y-direction.
Thus, the straining component of flow will tend to stabi-
lize the orientation of oblate spheroids in a head-on colli-
sion. Furthermore, we note that δ does not appear in the
condition Γ < −1/3. As a consistency check, we form the
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FIG. 3. (a) Flow field due to a non-axisymmetric stresslet
located at the origin, with ĉ in the x′ direction and ê in the
z′ direction. The direction of the flow is shown for the case
σ0δ < 0. The flow is radially outward, but the magnitude is
anisotropic. An oblate spheroid is shown for comparison with
(b). (b) Flow field due to the non-axisymmetric B̃ mode for
the oblate spheroidal particle shown in Fig. 1(d). In both (a)
and (b), the flow velocity is zero at x′ = 0.

rate-of-strain tensor Eδ for the non-axisymmetric contri-
bution to flow (second term in Eq. 9), assuming that

d̂ = x̂ and ĉ = −ŷ. We find that it indeed evaluates to
zero at x = d, y = 0. Additionally, in Fig. 3(a), we plot
the flow from the idealized non-axisymmetric stresslet.
On the d̂ axis (in the figure, the y′ axis), it evaluates to
zero, which explains why d0 is determined by the axisym-
metric component of the stresslet (Eq. 8).

The second requirement for linear stability, (−1 +
3Γ(−3+ δ)−3δ)(1+Γ+ δ(−1+Γ)) < 0, is more difficult
to interpret. The quantities Γ and δ are implicated, both
individually and as a product with each other. Addition-
ally, by introducing dummy variables into the Jacobian,
we have confirmed that both vorticity and transverse ad-

vection (i.e., motion in y, transverse to the center-to-
center vector) contribute to this condition. Some in-
sight can be obtained from the form of the Jacobian
in SM Eq. 40. The stresslet component Scc appears
only in off-diagonal terms that couple transversal dis-
placements and particle rotations. This suggests that
the non-axisymmetric stresslet is important in the intri-
cate dance in which particles simultaneously rotate to
face each other and slide laterally into register, as shown
in Fig. 2 (b). In contrast, it is known that spherical
squirmers in a head-on collision are unstable to maneu-
vering past each other in a process involving rotations
and transversal motion [35]. Looking at the flow for the
non-axisymmetric stresslet in Fig. 3(a), some stabilizing
roles of this radially outward flow may be in hindering
the particles from moving past each other and in con-
tributing to alignment. Regarding alignment, we recall
that the magnitude and sign of the contribution of the
rate-of-strain tensor to rotation is controlled by the shape
parameter Γ (Eq. 2). We also note that while the flow
fields close to the particle can differ significantly between
the idealized non-axisymmetric stresslet in Fig. 3(a) and
the non-axisymmetric squirming mode in Fig. 3(b), far
from the particle, both flow fields are radially outward.

Head-to-tail pairs

Now we look for fixed point solutions with
(x, y, ϕ1, ϕ2) = (d0, 0, 0, 0). We obtain

d0 =

√√√√ 3
(
S
(1)
dd + S

(2)
dd

)
8πµ(U

(2)
s − U

(1)
s )

. (10)

Notably, the two particles must have unequal speeds Us

for d0 > 0. The bound pair moves with a steady speed
given by Eq. 27 in the SM. Regarding stability against
displacements in x, we again obtain the “net pusher”

condition (S
(1)
dd + S

(2)
dd ) < 0. From Eq. 10, this im-

plies U
(1)
s > U

(2)
s . The other stability conditions are

S
(2)
dd (1 + 3Γ1) + S

(1)
dd (1 + Γ2) > 0 and Eq. 48 in the SM.

For axisymmetric swimmers, we can obtain stable pair-

ing. Specifically, σ
(1)
0 +σ

(2)
0 +3(σ

(2)
0 Γ1+σ

(1)
0 Γ2) > 0 and

Eq. 13 in the SI. Overall, the phase behavior is deter-

mined by four parameters: Γ1, Γ2, S ≡ σ
(2)
0 /σ

(1)
0 , and

V ≡ U
(2)
s /U

(1)
s . For the slice of phase space in Fig. 4

(a), we fix V = 0.8 and Γ2 = −0.8, but vary Γ1 and
S. In the numerics, B1 and B2 are chosen to vary S
while keeping V = 0.8. The model has good agreement
with the numerics. There are two areas of significant
disagreement. Similar to head-to-head pairs, one is for
oblate particles with large re. The other is the slim area
bordering S = −1, where d0 → 0. An example trajectory
is shown in Fig. 4 (b).
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FIG. 4. (a) Phase map for head-to-tail pairs with Γ2 = −0.8
and V = 0.8 and varying S and Γ1. The background colors
show the stability predicted by our model and symbols rep-
resent the results of numerical calculations. Green and blue
symbols indicate pairs with a stable bound state; red symbols
indicate pairs without a stable bound state. (b) Snapshots
of an example trajectory for S = 2.2 and Γ1 = −0.7. This
pair is represented by a blue cross in (a). The particles are
initially separated by x2,initial = 3 and y2,initial = 20.

CONCLUSIONS

We have shown that non-spherical active particles can
form bound pairs through far-field hydrodynamic inter-
actions. A surprising finding of our work is that squirm-
ers with non-axisymmetric surface slip may be capable of
pairing behaviors that are not obtainable for squirmers
with axisymmetric slip.

We restricted our consideration to swimmers moving
in the plane containing their center-to-center vector (the
xy plane). For non-axisymmetric particles defined by

Eq. 9, a 90◦ rotation of both particles around their d̂
axes will invert the sign of δ. Therefore, when head-
to-head bound states, aligned with x, are stable against
perturbations in the xy plane, they will be unstable in the
yz plane. However, our quasi-2D assumption is realized
in most active matter experiments. For head-to-tail pairs
of axisymmetric particles, the stability conditions found
here apply to general three-dimensional motions.
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BEM
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FIG. 5. (a) Separation d for two squirmers forming a stable
bound state. For the head-to-tail pair, Γ1 = −0.7, Γ2 =
−0.8, S = 2.2 and U = 0.8, with x2,initial = 3 and y2,initial =

10. For the head-to-head pair, B1 = 0.1, B2 = −1, B̃ =
1.6833 and Γ = −0.835, with xinitial = 2 and yinitial = 55.
The particle parameters correspond to Figs. 2 (b) and 4 (b),
respectively. (b) The predicted and numerically calculated
steady separations for head-to-tail pairs with Γ1 = −0.7, Γ2 =
−0.8, V = 0.8 and varying S, corresponding to the second row
from the bottom in Fig. 4 (a). Symbols indicate values of S
for which theory and numerics disagree concerning stability.

Future work could incorporate the effects of inertia
and/or near-field hydrodynamic interactions [25, 72]. Lu-
brication interactions can induce bound states for spheri-
cal squirmers near contact [21, 25]. Additionally, making
use of the Faxén relations for spheroids would account
for the finite size of a particle in its response to ambient
flow [66, 73]. Our model may have stable bound states in
which particle orientations are not aligned in the direc-
tion of propulsion. Finally, the bound states found here
may have implications for hierarchical self-organization
and collective behavior. For instance, Ref. 35 observed
that initial formation of immotile head-to-head bound
states locally promoted formation of additional bound
states in a feedback loop, ultimately leading to phase sep-
aration. This mechanism could be studied in the frame-
work of the present work.

ACKNOWLEDGMENTS

We gratefully acknowledge donors of the American
Chemical Society Petroleum Research Fund for support
of this research through Grant No. 60809-DNI9. This re-
search was also sponsored by the Army Research Office
and was accomplished under Grant Number W911NF-
23-1-0190. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or
the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation
herein. The technical support and advanced computing
resources from University of Hawaii Information Technol-
ogy Services – Cyberinfrastructure, funded in part by the
National Science Foundation CC* awards #2201428 and



7

#2232862 are gratefully acknowledged. We also thank
Rumen Georgiev for insightful discussions.

∗ uspal@hawaii.edu
[1] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann,

and Z. Dogic, Spontaneous motion in hierarchically as-
sembled active matter, Nature 491, 431 (2012).

[2] A. Aubret, M. Youssef, S. Sacanna, and J. Palacci, Tar-
geted assembly and synchronization of self-spinning mi-
crogears, Nature Physics 14, 1114 (2018).

[3] A. M. Boymelgreen, T. Balli, T. Miloh, and G. Yossi-
fon, Active colloids as mobile microelectrodes for unified
label-free selective cargo transport, Nature communica-
tions 9, 760 (2018).

[4] P. Arora, A. K. Sood, and R. Ganapathy, Emergent stere-
oselective interactions and self-recognition in polar chiral
active ellipsoids, Science Advances 7, eabd0331 (2021).

[5] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and
P. M. Chaikin, Living crystals of light-activated colloidal
surfers, Science 339, 936 (2013).

[6] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen,
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chiral squirmers, Physical Review E 105, 024603 (2022).

[62] D. Saintillan and M. J. Shelley, Orientational order and
instabilities in suspensions of self-locomoting rods, Phys-
ical review letters 99, 058102 (2007).

[63] D. Saintillan and M. J. Shelley, Instabilities, pattern for-
mation, and mixing in active suspensions, Physics of Flu-
ids 20 (2008).

[64] D. Saintillan and M. Shelley, Active suspensions and
their nonlinear models, Comptes Rendus Physique 14,
497 (2013).

[65] E. Lushi and C. S. Peskin, Modeling and simulation of
active suspensions containing large numbers of interact-
ing micro-swimmers, Computers & Structures 122, 239
(2013).

[66] S. Kim and S. J. Karrila,Microhydrodynamics: principles
and selected applications (Courier Corporation, 2013).

[67] D. Saintillan, Rheology of active fluids, Ann. Rev. Fluid
Mech. 50, 563–92 (2017).

[68] See Supplemental Material at http://link.aps.org/

supplemental/XXX for technical discussion of the
stresslet tensor, detailed mathematical derivations of re-
sults given in the main text, details concerning implemen-
tation of the spheroidal squirmer model, and numerical
results obtained with the spheroidal squirmer model. The
Supplemental Material also contains Refs. 35, 37, 52, 74.

[69] C. Pozrikidis, A Practical Guide to Boundary Element
Methods with the Software Library BEMLIB (CRC Press,
Boca Raton, 2002).

[70] G. B. Jeffery, The motion of ellipsoidal particles im-
mersed in a viscous fluid, Proceedings of the Royal Soci-
ety of London. Series A, Containing papers of a mathe-
matical and physical character 102, 161 (1922).

[71] M. D. Graham, Microhydrodynamics, Brownian motion,
and complex fluids, Vol. 58 (Cambridge University Press,
2018).

[72] Z. Ouyang, Z. Lin, J. Lin, Z. Yu, and N. Phan-Thien,
Cargo carrying with an inertial squirmer in a newtonian
fluid, Journal of Fluid Mechanics 959, A25 (2023).

[73] I. L. Claeys and J. F. Brady, Suspensions of prolate
spheroids in stokes flow. part 1. dynamics of a finite num-
ber of particles in an unbounded fluid, Journal of Fluid
Mechanics 251, 411 (1993).

[74] G. Dassios, M. Hadjinicolaou, and A. Payatakes, Gen-
eralized eigenfunctions and complete semiseparable solu-
tions for stokes flow in spheroidal coordinates, Quarterly
of Applied Mathematics 52, 157 (1994).

http://link.aps.org/supplemental/XXX
http://link.aps.org/supplemental/XXX

	Shape-induced pairing of spheroidal squirmers
	Abstract
	Introduction
	Theory
	Minimal model
	Squirmer model

	Results
	Head-to-head pairing
	Head-to-tail pairs

	Conclusions
	Acknowledgments
	References


