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This article presents the evolutionary history of Immersed Boundary Methods (IBMs), tracing
their origins to the very beginning of computational fluid dynamics in the late 1950s all the way to
the present day. The article highlights the advancements in this simulation methodology over the
last fifty years and explores the interplay between IBMs and body-conformal grid (BCG) methods
during this time. Drawing upon the author’s combined experience of over forty years in this arena,
the perspective offered is personal and subjective. By employing a critical and comparative approach
through the chronological lens, we hope that this article empowers the reader to understand both
the capabilities and limitations of these methods, and to pursue advancements that fill the key gaps
and break new ground.

I. ORIGINS

The groundbreaking doctoral dissertation of Charles
Peskin, titled “Flow Patterns around Heart Valves: A
Digital Computer Method for Solving the Equations of
Motion,” published almost exactly fifty years ago [1] in-
troduced the method that would later become known as
the ‘Immersed Boundary Method (IBM).’ However, the
roots of this method can be traced back to the late 1950s,
when digital computers started to be adopted by vari-
ous national laboratories in the U.S and concerted efforts
to compute solutions for a wide range of flow and heat
transfer problems were initiated. Indeed, within a few
years of these computers arriving at these labs, simula-
tions of two-dimensional, time-dependent, incompressible
flows also began to appear. The first simulation of the
Karman vortex street in the wake of a normal flat plate
[2] and a square cylinder [3] was certainly a watershed
moment in the history of computational fluid dynamics
(CFD).

However, all of these early simulations were on
Cartesian grids and could not address curved geome-
tries/boundaries. The first glimpse of a curved interface
appears in the ‘marker-and-cell’ (MAC) method by Har-
low and Welsh [4] at Los Alamos National Lab (LANL),
which was designed to simulate the evolution of free-
surfaces on a Cartesian grid. In this method, Lagrangian
markers that identified the liquid phase were advected in
the flow on a stationary Cartesian grid. These markers
were used to identify ‘surface cells,’ at the liquid-gas in-
terface and an ambient pressure boundary condition was
specified for these cells to solve for the sloshing of the
liquid on a Cartesian grid.

Not too much later, Viecelli, also at LANL, modified
the MAC method for curved solid boundaries by impos-
ing a normal pressure gradient condition that enforced
vanishing velocity of the marker particles normal to the
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curved solid boundary, i.e. the no-penetration condi-
tion, and demonstrated sloshing flow inside a circular
container using this method [5]. Viecelli extended his
method to flows with moving immersed boundaries [6],
although it seems that the method continued to be lim-
ited to free-slip boundaries.

II. PESKIN’S METHOD

Peskin’s research was centered around simulating two-
way coupled fluid-structure interaction in heart valves
and given that Viecelli’s method [6] was specifically de-
signed for simulating flow around immersed boundaries
with prescribed motion, Peskin concluded that it was not
suitable for his intended application.
The method that Peskin ended up developing for

his unique application, departed from contemporary ap-
proaches in a number of important ways. First and most
significantly, instead of the standard approach of incor-
porating the boundary conditions as a constraint on the
governing equations, Peskin imposed the boundary con-
ditions on the immersed boundary through the stresses
that they induced on the flow via a body-force in the
momentum equation, viz.

∂ρu⃗

∂t
+ u⃗ · ∇⃗ρu⃗ = −∇⃗p+ µ∇2u⃗+ f⃗b, (1)

where ρ and µ are the fluid density and dynamic viscosity
u⃗ and p are the fluid velocity and pressure respectively,

and f⃗b is the body force that is used to apply the veloc-
ity boundary conditions on the immersed boundary (see
Fig.1).
Second, following the Euler-Lagrange formulations of

the MAC and Viecelli’s methods, he formed the body sur-
face from a set of Lagrangian points (the position of each

point defined by a position vector X⃗(s, t)) which move

with the local velocity, i.e. ∂X⃗/∂t = u⃗
(
X⃗, t

)
. Depart-

ing from Viecelli’s method, Peskin connected these La-
grangian points with massless elastic fibers which were
deformed and stretched by the flow, generating a fiber
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FIG. 1. Schematic of a viscous incompressible flow inside
a rectangular two dimensional domain Ωf containing an im-
mersed elastic boundary Γb.

tension, T , that was determined via a general Hooke’s

law of the form: T = ϵ
(∣∣∣∂X⃗/∂s

∣∣∣ ; s, t) where ϵ is the

local strain in the fiber.
Third, the effect of the fiber on the flow was imposed

by transmitting the tension force density along the fiber,

given by F⃗ (s, t) = ∂ (T τ̂) /∂s where τ̂ is the unit vector
tangent to the fiber, to the fluid. This transmission of
forces from the solid to the fluid is akin to the stress-
continuity condition applied at fluid-fluid interfaces. The
underlying notion was that a solid wall would be created
by increasing the density and stiffness of fibers.

Since the underlying Cartesian grid did not coincide
with the Lagrangian marker body points, a method was
needed to transfer quantities such as flow velocity and
fiber force density between the two sets of points and the
fourth innovation of the method was the use of the Dirac-
δ to execute this transfer. For instance, the following
integral would transfer the fiber force density from the
Lagrangian marker points to the Eulerian flow field:

f⃗(x⃗, t) =

∫
Γb

F⃗ (s, t) δ
(
x⃗− X⃗

)
ds (2)

However, the Dirac-δ function creates problems for the
discrete evaluation of the above integral and to over-
come these issues, Peskin “regularized” the δ function
by spreading it across a finite width across the immersed
boundary

f⃗(x⃗i,j , t) =
∑
k

F⃗k D
(
|x⃗i,j − X⃗k|

)
(3)

where D is the regularized δ-function (see Fig. 1).
This fifth step was highly inventive and a key enabler

of the method, but it also became the Achilles heel of
the method since it lead to a “diffuse” interface, i.e. the
boundary condition not being applied precisely at the
location of the immersed boundary but instead, over a

FIG. 2. Figure adapted from Peskin’s Thesis[1] showing re-
sults from the modeling of flow in the left heart, including
flow-induced deformation of the heart valve. This figure is
reproduced with permission from Charles Peskin.

region spanning several grid points across the boundary
(See Fig. 1). Furthermore, the degree to which the no-
slip, no-penetration boundary condition was satisfied also
became dependent on the local grid resolution.
Nevertheless, the method allowed Peskin to produce

impressive results for his problem. Figure 2 are plots
from his dissertation[1] that show the formation of vor-
tices from the tips of the valve leaflets. It bears em-
phasizing the degree to which this method represented
an advance in the state-of-the-art in computational fluid
dynamics at that time. Not only was this one of the first
two-dimensional Navier-Stokes simulations of flow with
geometrically complicated, no-slip, moving boundaries,
it seemed to also be the first simulation that included
large-scale fluid-structure interaction.

III. THE NEXT TWENTY YEARS

A. The Rise of Body-Conformal Grid (BCG)
Methods

Interestingly, despite the versatility of Peskin’s
method, it’s adoption into the wider CFD community
was slow. Computational fluid dynamics at that time
was driven primarily by disciplines such as aerospace and
naval engineering, and meteorology that mostly involved
flow over solid bodies/surfaces. It was therefore not clear
how Peskin’s method, which incorporated flexible fibers
to construct solid bodies, and therefore required specifi-
cation of stress-strain relationships inside the solid, could
be applied to such problems. The early 1970s also saw
the emergence of other approaches for dealing with com-
plex geometries in computational fluid dynamics: finite-
difference and finite-volume methods on body-conformal
structured grids based on coordinate transformations [7–
12] and finite-element methods on unstructured grids
[13–15]. Flows in many of the above applications were
at high Reynolds numbers and mostly involved station-
ary solid boundaries, and for such flows, body-fitted grids
with the ability to provide high resolution in the bound-
ary layers, offered many advantages such as accurate pre-
diction of surface shear and flow separation.
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Rapid advances in methods for generating curvilin-
ear grids [16] as well as the formulation of discretiza-
tion schemes that enabled strict satisfaction of conser-
vation laws on such grids [8, 17, 18] increased the reach
and robustness of these methods. At about the same
time, Hirt et al. [19, 20] introduced the so-called ar-
bitrary Lagrangian-Eulerian (ALE) method, which com-
bined curvilinear grids with grid deformation/movement,
and enabled the simulation of flows with moving bound-
aries. The “overset grid” approach, which employed-
curvilinear BCGs “patched” or overlaid onto a Cartesian
background mesh appeared in the early 1980s [21, 22].
This approach enabled the simulation of flows with mov-
ing solid bodies, all accomplished without necessitating
grid deformation. Driven by these advances, CFD meth-
ods with BCGs became, for at least the next few decades,
the mainstay of computational fluid dynamics.

B. Peskin-Type Methods Pick up Steam

Peskin’s method continued to be employed mostly for
problems in the field of cardiovascular mechanics, and
primarily by him and his collaborators and students till
the late 1980s [23–28]. Thus, for about 20 years, this
powerful method remained hidden in plain sight of com-
putational fluid dynamicists! However, starting in the
late 1980s and early 1990’s, applications of the method
to problems beyond cardiovascular biomechanics began
to appear [29–33]. Second, other methods that employed
body forces on Cartesian grids to impose wall bound-
ary conditions on immersed boundaries began to appear.
One such method was the so-called ‘mask method’ [34]
for simulation of flow over solid bodies that appeared
around this time. This method essentially convolves the
intermediate velocity field with a function (the ‘mask’)
that zeroes out the velocity inside the immersed body
and can be viewed as the application of a momentum
forcing that extends over the volume of the solid body. In
fact, the mask method could be considered a progenitor
of the ‘penalization’ type methods that appeared in the
late 1990s [35]. An important contribution in the early
1990s to immersed boundary methods was the “feedback
forcing method” [36, 37], which was formulated to simu-
late incompressible viscous flow past solid bodies.

C. Cartesian Grid Methods Appear on the Scene

A class of methods for simulating flows on body-non-
conformal Cartesian grids also appeared in the 1980s.
One of the first among these was the method of Clark
et al. [38] who used a Cartesian grid finite-volume ap-
proach to solve the 2D Euler equations for transonic flow
over a multi-element airfoil (see Fig. 3). This “cut-cell”
method was extended to 3D problems [39] as well as
to steady, laminar viscous flows [40]. Berger and Lev-
eque [41] presented a finite-volume based Cartesian grid

FIG. 3. Schematic of cut-cell method developed by Clark et
al. [38]. The boundary condition on point 3 was computed
by 1D extrapolation using points 1, 2, and 4. Small cells
(such as ABC) were incorporated into adjacent cells to avoid
instability.

method for simulating inviscid supersonic flow over grid
non-conforming boundaries and also introduced adaptive
mesh refinement (AMR) to resolve shocks as well as the
flow gradients near the immersed boundaries. This over-
all approach was adopted by other groups [42, 43] and
also became the basis for the NASA code Cart3D [44, 45].

The fundamental difference between these methods,
which are collectively referred to as “Cartesian grid meth-
ods (CGMs),” and Peskin’s method was that these meth-
ods employed the conventional approach of modifying the
discretization scheme in the vicinity of the boundary to
add the boundary condition as a constraint. Perhaps due
to this difference as well as the initial emphasis on inviscid
external aerodynamics, it seems that these Cartesian grid
methods were developed without recognizing any signifi-
cant connections to Peskin’s method.
The early history of IBM methods summarized above

is by no means comprehensive, and the interested reader
is referred to the historical perspective of IB methods in
the article by Verzicco [46].

IV. THE 1990’S AND BEYOND - LIMITATIONS
OF BCG METHODS SPUR ADVANCEMENTS IN

IB METHODS

As discussed above, in the roughly ten-year period
from 1975 to 1985, significant advances were made
in body-conformal grid (BCG) methods for simulating
flows. However, as the CFD community moved beyond
simple geometries and targeted configurations with in-
creasing geometric complexity such as complete air vehi-
cles, the limitations of the BCG approaches started to be-
come apparent. Many different methods to address these
limitations began to appear, including body-conformal
multi-block and overset grid methods [47].
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Among these developments were methods inspired
from Peskin’s approach including the ‘front-tracking’
method [48] and the ‘immersed-interface’ method [49],
both of which were designed for simulating flows with
evolving fluid-fluid interfaces. As mentioned before, the
formulation of the “feedback forcing method” of Gold-
stein et al. [36] and Saiki & Biringen [37], was a sig-
nificant advancement because it enabled simulation of
incompressible viscous flow past solid bodies. Lai and
Peskin [50] also proposed a modification of Peskin’s orig-
inal method for simulating flow past solid bodies. All of
these extensions and modifications brought the immersed
boundary method out from the niche area of biofluid
dynamics into the wider arena of aero/hydrodynamics.
Within this genealogy of methods, Fadlun et al. [51] and
Verzicco et al. [52] presented an approach inspired from
the work of Mohd-Yusof [53] that employed a forcing term
in the discretized Navier-Stokes equations, and in doing
so, addressed the numerical difficulties associated with
the method of [36].

Extensions of the cut-cell method to unsteady viscous
flows appeared in the work of Udaykumar [54] and a cut-
cell method for unsteady viscous flows with a strictly 2nd-
order accurate, ‘sharp-interface’ boundary treatment of
the immersed boundary for stationary as well as moving
boundaries was presented by Ye et al. [55] and Udayku-
mar et al. [56], respectively.

As CFD applications progressed towards complex 3D
configurations involving moving/deforming geometries
and multiphysics setups, the limitations of BCG methods
became apparent. Generating smooth and high-quality
BCGs around intricate configurations, which typically
consumes the majority of person-hours in complex CFD
projects, became even more challenging when dealing
with body movement/deformation. ALE and overset grid
methods, while offering solutions, introduced additional
errors in interpolation and increased computational costs
for moving boundary problems. While these challenges
could potentially be mitigated with increased computa-
tional power, certain problems, such as those featuring
extremely complex geometries, large-scale deformation,
contact, and fragmentation, remained practically beyond
the reach of BCG methods.

For IB methods, grid generation is a trivial step and
often requires a few dozen lines of code and a few sec-
onds of computational time. Furthermore, for IB meth-
ods, movement of the immersed body directly affects the
discretization scheme only on points on or near the im-
mersed boundary, leaving the rest of the grid unaffected.
This eases the inclusion of moving boundaries and main-
tains global discrete operators that are relatively agnostic
to the movement of the boundary. And finally, there is
virtually no configuration ranging from crystal growth
[57], bubble coalescence [48, 58], droplet fragmentation
[59, 60], contact between solids [61] that IB methods
could not tackle.

Recognition of these capabilities among the broader
scientific and engineering communities led to a explosion

of interest in IBM methods and the 2000’s mark the start
of a Cambrian-like period for IBMs with a proliferation of
immersed boundary methodologies. Improvements in ac-
curacy, stability, conservation, computational efficiency,
versatility, simplicity and parallelizability were just some
of the developments that were targeted by the CFD com-
munity. Even the finite-element (FEM) CFD community
recognized the power of simulating flows on body non-
conformal grids and embarked on developing IB methods
within the FEM framework [62, 63].

We conclude this section by pointing out that the last
three decades have seen tremendous advancements in
methods for automated generation of unstructured grids
over complex geometries [64, 65] but the geometry prepa-
ration step, particularly the construction of “water-tight”
geometries from computer-aided design models, remains
a challenge for BCG as well as IBM methods.

V. CLASSIFICATION OF IBMS

In their 2005 review article, Mittal and Iaccarino [66]
referred to all finite-difference and finite-volume meth-
ods that employed body-non conformal grids including
methods derived from Peskin’s approach as well as the
Cartesian grid methods as ‘immersed boundary methods’
and based on the stage in the method where forcing is de-
ployed, classified all IBMs into “continuous forcing” and
“discrete forcing” methods.

A. Continuous Forcing IBMs

These are IB methods where the forcing term is intro-
duced in the continuous form of the governing equations,
before the equations are discretized. The original method
of Peskin [23] as well as the feedback forcing [36], ficti-
tious domain [36], front tracking [48] and penalization
methods [35] all fall in this category.

The primary advantage of these continuous forcing
IBMs is their relative simplicity. These IBMs can be im-
plemented in conjunction with a variety of discretization
methods such as finite-difference [24], spectral [34, 36]
and even finite-element methods [62, 67]. These methods
though also have some shortcomings; the representation
of the discontinuous force on a grid with finite spacing
leads to a diffuse-interface representation. It can also di-
minish the formal order-of-accuracy [50] and conservation
properties of the method. Furthermore, the prescription
of the body force can introduce ad-hoc parameters that
affect the fidelity of the solution, as well as the stiffness
and computational efficiency of the solution procedure.
Finally, the discretized equations are now solved in the
entire domain including the region inside the body and
this represents wasted computational effort especially for
high Reynolds number flows [66].
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FIG. 4. Figure from Ye et al. [55] depicting the cut-cell
methodology, including the nodes employed to implement
boundary conditions on the immersed boundary to 2nd-order
accuracy by using a two-dimensional polynomial interpola-
tion. Reproduced from Ref.[55] with permission from Else-
vier.

B. Discrete Forcing IBMs

In discrete forcing methods the forcing term for bound-
ary condition imposition is added to the equations af-
ter they are discretized. The forcing may be based
on ‘jump conditions’ such as in the immersed interface
method [32, 68, 69] or methods such as those in Refs.
[51, 52], which combine spatial interpolation with a tem-
porally extrapolative approach to estimate the forcing
term. This category also includes methods where no ex-
plicit forcing term is employed but instead, the boundary
condition are implemented directly as constraints on the
discretized equations such as via cut-cells [55, 70], ghost-
cells [71–73] or one-sided interpolation schemes [74].

1. Cut-Cell Methods and CGMs

All Cartesian grid methods of Refs. [41–43] as well as
cut-cell based methods [12, 54–56, 75] are discrete forcing
methods. In cut-cell methods, which are typically based
on finite-volume discretizations, the cells intersected by
the immersed boundary are ‘reshaped’ to conform to the
local boundary (see Fig. 4) and the discretization in
these cells is also modified concomitantly. Implementa-
tions of cut-cell methods to 3D problems are difficult and
rare since these method have to contend with cut-cells of
many different topologies [70, 75]. To alleviate this diffi-
culty, Seo and Mittal [76] introduced a “virtual” cut-cell
method that was implemented in conjunction with a 3D
finite-difference ghost-cell IBM [73] and which provided
a higher degree of discrete conservation without the at-
tendant problems of 3D cut-cells.

FIG. 5. Schematic of sharp-interface methodology of [73] that
implements a 2nd-order boundary condition on the immersed
boundary using ghost-cells. Reprinted from Ref.[73] with per-
mission from Elsevier.

2. Ghost-Cell Based Methods

Within the category of discrete forcing methods are
also methods that employ ‘ghost-cells’ (see Fig.5) to im-
pose the boundary conditions on the immersed boundary.
Using a layer of cells immediately outside the computa-
tional boundary to impose external boundary conditions
is a well-established procedure in many BCG codes [77–
79]. This idea has been adopted as a way of imposing
boundary conditions on immersed no-slip boundaries in
body-nonconformal grid codes [71–73, 76, 80] as well as
for multi-fluid interfaces [81, 82]. These ghost-cell ap-
proaches are typically based on finite-difference methods
and do not reshape boundary cells. Instead they intro-
duce an auxiliary equation for the ghost-cells that en-
forces the boundary condition on the immersed bound-
ary, and this equation is coupled to the variables in the
flow adjacent to the immersed boundary. The variable
value on the ghost cell (GC) is determined by a 2nd-order
interpolation using the boundary condition on the ‘body-
intercept’ (BI) point and the flow variable interpolated
on the ‘image-point’ (IP).

The ghost-cell method (GCM) can also be extended to
higher orders. In the work of Seo and Mittal [83], the
ghost-cell value is obtained from an n-th order approx-
imating polynomial interpolation by using an arbitrar-
ily large number of stencil points around the immersed
boundary (see Fig. 6). This high-order GCM has been
employed for the wave propagation [83, 84] and compress-
ible flow problems [85].

3. Pros and Cons

Since discrete forcing methods do not employ a Dirac-δ
function, there is no need for regularization, nor is there
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FIG. 6. Schematic of the high-order ghost-cell method of
Seo & Mittal [83]. The ghost-cell value is obtained from nth-
order approximating polynomial interpolation by using arbi-
trary number of stencil points around the immersed boundary
in the range of R.

the need for any ad-hoc forcing parameters such as in
[36] and [50]. This avoids the boundary diffusion that
results from the regularization of the Dirac-δ function
and also obviates the compromise between accuracy and
numerical stability that is required in these methods [36].
This also allows these methods to more easily achieve
higher than first-order accuracy.

The cut-cell method is the one IBM that allows
for strict discrete conservation of mass and momentum
[55] but as pointed out earlier, higher-order conserva-
tion properties have been embedded into finite-difference
based ghost-cell IBMs as well [76]. Cut-cell methods
though have their own disadvantages: an increased com-
plexity that is particularly severe for 3D problems [75],
as well as the issue of ‘small cells’ [55]. Finally, discrete
forcing methods also have to contend with the issue of
‘fresh cells’ for moving boundary problems [76]. Fresh
cells are computational cells that emerge from the solid
into the fluid due to the movement of the body on the
stationary grid and the temporal discretization of the
governing equations for these cells is problematic. Con-
tinuous forcing methods experience neither of the above
problems due to the diffuse nature of the interface.

VI. SHARP-INTERFACE IB METHODS

The ‘diffuse’ and ‘sharp’ interface terminology in IBM
originates from the physics of interfaces between two
fluids [86, 87] but translating these notions into a pre-
cise definition for what constitutes a sharp-interface IBM
is challenging. When an IBM method is labeled as a
“sharp-interface” method, the implication is that the
method applies boundary conditions on the immersed
boundary with the same level of accuracy and precision
as an equivalent BCG method.

This equivalence to BCG methods (see Fig. 7) can

FIG. 7. Schematic of a (A) curvilinear body-fitted grid and
(B) Cartesian grid and cut-cells around a curved boundary

be distilled down to the following set of conditions for
sharp-interface IBMs:

1. The imposition of no-slip, no-penetration bound-
ary conditions is at a set of discrete points located
precisely on the immersed boundary and nowhere
else within the flow domain.

2. The spacing and resolution of these boundary
points aligns with the underlying fluid grid.

3. The boundary conditions on these boundary points
is imposed with an accuracy that is consistent with
the underlying numerical scheme employed.

4. All grid points/cells in the flow domain impose the
“native” governing equation, i.e. the Navier-Stokes
equation, and not any other augmented or auxiliary
equation.

5. The governing equations of flow are not solved in-
side the immersed body.

A. Categorization of IB Methods

All continuous forcing methods such as those of Pe-
skin [1] and Goldstein et al. [36] as well as the fictitious
domain [88] and front tracking methods [48] are diffuse-
interface methods since they do not satisfy any of the
conditions enumerated above.
Cut-cell methods [54–56, 75] are unequivocally sharp-

interface methods since they clearly satisfy the above
conditions. In fact, the cut-cell method can be viewed as
a body-conformal finite-volume method where the finite-
volumes are Cartesian everywhere in the domain ex-
cept at the boundary, where they assume non-Cartesian
shapes (see Fig. 7B).
Discrete forcing methods such as the ghost-cell meth-

ods of Tseng and Ferziger [71], Ghias et al. [72], Mittal et
al. [73], Seo and Mittal [76], embedded boundary meth-
ods of Balaras and others [61, 74, 89, 90], immersed in-
terface based methods [70] and the level-set based Carte-
sian grid methods of Udaykumar and co-workers [60, 91]
satisfy the above conditions, and therefore function as
sharp-interface methods. In fact, most if not all of these
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above mentioned methods impose the velocity boundary
conditions on the immersed boundary with local 2nd-
order accuracy, which is higher than that needed to en-
sure global 2nd-order accuracy and in doing so, provide
high resolution to the boundary layers that develop on
the immersed surfaces. The sharp-interface method of
Seo and Mittal [76] even incorporates regional discrete
conservation via a virtual cut-cell method, which further
improves the accuracy of boundary layer flows.

All discrete forcing methods do not however satisfy the
five conditions enumerated above. For instance, the mask
method [34] spreads the discrete force over a layer of grid
cells and is therefore a diffuse-interface method. Another
exception is that of the so-called “stair-step” or “stair-
case” method [92]. In this discrete forcing method, the
immersed boundary is represented by a stair-step shaped
surface that conforms to the underlying Cartesian grid.
This method does not satisfy the first condition enumer-
ated above, and consequently, is not a sharp-interface
method.

The fifth condition seems innocuous but it has im-
portant implications for IB methods. This condition is
generally associated with the fact that some IB methods
(such as all the continuous forcing methods, and most pe-
nalization methods) do not impose an explicit boundary
condition for pressure on the immersed surface and con-
sequently, have to compute the pressure and the velocity
everywhere on the grid including the region inside the
body. This can significantly reduce the computational
cost of the simulation since the inclusion of a boundary
condition for pressure on the immersed surface can signif-
icantly amplify the computational effort for solving the
pressure Poisson equation.

In the context of the fractional-step method, which is
the standard choice for these solvers, the slip and pen-
etration on a surface at the end of the pressure cor-
rection step is O [(∆t)

m
∂p/∂τ ] and O [(∆t)

m
∂p/∂n] re-

spectively, where m is the order of the fractional step
method and τ and n are the directions tangential and
normal to the immersed body. For standard fractional-
step schemes, m = 1, but second-order implementations
[93] also exist. In BCG methods, it is standard to apply
∂p/∂n = 0 on all boundaries since it is consistent with
the fractional-step method [94, 95] and this results in sat-
isfaction of no-penetration to machine zero at the end of
the time-step irrespective of the size of the time-step ∆t
as well as the magnitude of the normal pressure gradient.
The latter can be large, especially in regions where the
flow impacts normal to the body. All the discrete forcing
methods described in the third paragraph of this section
explicitly impose the Neumann condition for pressure on
the immersed boundary and this allows them to enforce
no-penetration to machine zero at the boundary points
at the end of the time-step. This also decouples the grid
points inside the immersed body from those outside, and
eliminates the need to solve for the flow variables inside
the body.

As pointed out in the previous paragraph, penaliza-

tion methods, at least in their classic form, do not sat-
isfy the fifth condition. The method of Fadlun et. al.
[51] satisfies the first three conditions but not the fourth
and fifth. We note however that the five conditions for
sharpness enumerated earlier in this section may neither
be necessary nor sufficient for generating high quality
results from IBM simulations. This is because other fac-
tors such as the accuracy and dissipative nature of the
spatial discretization scheme [96], and the choice of tem-
poral discretization may be entangled with any specific
implementation of IBM in a way as to impose additional
constraints on its accuracy and fidelity.

B. Predictions from Sharp and Diffuse Interface
Methods

Udaykumar and co-workers [97, 98] conducted a sys-
tematic head-to-head comparison of sharp-interface and
diffuse-interface methods. They examined the effect of
the interface treatment for flow Reynolds numbers rang-
ing from O(100) to O(1000) and noted that the diffuse-
interface method provided better prediction of drag on
relatively coarse grids, but the sharp-interface method
was more accurate on fine grids. This is not surpris-
ing given that on a sufficiently coarse grid, a lower-order
method can have a lower absolute truncation errors than
a higher-order method. The authors also found that
diffuse-interface IBM under-predicted the surface vortic-
ity on all grids and this was a consequence of the regu-
larization of the forcing term.
The generality of the above conclusions, which are nec-

essarily based on specific implementations of interface
treatments, remains to be fully established. However,
the experience of the current authors with other variants
of the sharp-interface method [55, 73, 76, 83] is consis-
tent with the above observations. Accurate prediction of
surface vorticity, especially for higher Reynolds number
flows where instabilities and transition to turbulence may
occur, as well as the general equivalence to BCG meth-
ods are, in our view, the primary advantages of sharp-
interface methods over their diffuse counterparts.

C. Are Sharp Interface IB Methods ≡ Body
Conformal Grid Methods?

If sharp-interface IB methods satisfy the five condi-
tions that derive from BCG methods, are there any dif-
ferences between sharp-interface IB methods and BCG
methods that have implications for the numerical accu-
racy of the flow near the immersed boundary? In our
experience, there are some subtle issues that bear point-
ing out and we do this with reference to Figure 7, which
shows schematics of a notional BCG as well the second-
order cut-cell grid of Ye et al. [55] for a curved boundary.
We choose the cut-cell method for comparison since as
pointed out earlier, this is the IBM that is closest in its
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implementation to a BCG method.

The first difference to note is that while the shapes and
sizes of the cells/finite volumes adjacent to the boundary
generally vary smoothly for the BCG, for the cut-cell
method, the finite-volumes can vary discontinuously for
boundary cells in regions where the boundary crosses a
layer of Cartesian grid points. This discontinuous varia-
tion in local boundary discretization is symptomatic not
just of cut-cell methods but of all IB methods. As the
boundary layer encounters these cells, it can affect the
variation of surface quantities such as surface shear and
pressure. Fortunately, this variation in the size of the cell
is however limited to between ±50% of a nominal cell,
and this boundary cell “unsmoothness” typically occur
only for a small fraction of the cells in the entire domain.

Grid unsmoothness starts to manifest its impact pri-
marily when the gradients within the boundary layer lack
proper resolution. This issue becomes particularly pro-
nounced in scenarios characterized by complex bound-
ary conditions, and is accentuated by under-resolved
wall processes—such as reacting flows, multiphase flows,
radiation transport, and surfactant models. Address-
ing these challenges in the immersed boundary method
(IBM) might necessitate case-specific adjustments. For
instance, while wall models for turbulence can be incor-
porated within the IBM framework [99, 100], this process
might not be as straightforward as it is for BCG methods.

One solution for IB methods is to increase the resolu-
tion in the boundary region, but this is not always feasi-
ble. Another well-known technique to enhance solution
quality in cases of marginal resolution is the imposition
of discrete conservation. In the context of IBMs, cut-cells
[55, 56, 75] or “virtual” cut-cell [76] methods provide dis-
crete conservation and lead to improvements in solution
quality.

We observe that BCG methods are not entirely imper-
vious to the influence of grid unsmoothness. Instances of
discontinuous variations in the boundary cells can mani-
fest due to inherent grid irregularities. This phenomenon
is particularly notable in regions characterized by signif-
icant surface curvature, corners, branch-cuts, or other
intricate topological transitions.

Another difference between BCG methods and sharp-
interface IBMs is for problems with moving or deforming
boundaries. For such problems, IBM methods encounter
the so called “fresh cell” problem [56, 73], where cells
that were inside the body at one time-step emerge into
the fluid at the subsequent time-step. For sharp-interface
IBMs, these fresh cells do not have a valid time-history
and one has to temporarily employ some space-time in-
terpolation [73] or cell-merging [56] to advance the equa-
tion in time for these cells. For the small number of fresh-
cells that typically emerge at a given time-step, this can
reduce the local accuracy of the solution.

BCG methods such as ALE employ deforming meshes
coupled with time-evolving control-volume formulations
and do not have the fresh-cell problem as long as the
movement of the boundary is limited. Once the boundary

motion is large enough so as to require a local and even
a global remeshing [101, 102], ALE methods also have to
resort to interpolation schemes for the remeshed cells in
order to advance the governing equation for these cells.
Thus, while the fresh-cell problem in sharp-interface IBM
is limited to a few boundary cells, it can occur on a much
larger scale for ALE methods.
IBMs also have a subtle advantage over conventional

BCG methods that in our view, is not fully appreci-
ated. It is well known that grid skewness (i.e. non-
orthogonality in the shape of cells) generates additional
dissipation and dispersion errors that have the poten-
tial to affect the evolution and advection of vortex struc-
tures, waves and turbulence on the grid [103]. The use
of Cartesian grids eliminates this additional source of er-
ror in IBM simulations and enhances the ability of IBM
methods to more accurately simulate turbulent flows.

VII. GALLERY OF IBM SIMULATIONS

Applications of IBMs span virtually all scientific and
engineering domains in fluid mechanics and it is not pos-
sible to summarize this vast literature here. Instead, we
present eleven curated cases that demonstrate not only
the unique capabilities of IBMmethods but also the accu-
racy and fidelity of these methods. While four examples
are from our own work, case-studies from other research
groups are also included in order to highlight the diver-
sity of IBM approaches and their applications.

C

FIG. 8. Direct numerical simulation of a school of 9 fish. A:
Fish school model immersed in the Cartesian grid. B: 3D
vortical structures. C: Net force in the surge direction nor-
malized by the mean thrust of a single fish. Number indicates
individual fish in the school shown in B. Figure provided by
Ji Zhou.
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A. Simulation of Fish Swimming in a School

This is a direct numerical simulation of a school of
nine fish swimming with prescribed carangiform kinemat-
ics [104] against an incoming flow. The Reynolds num-
ber based on the tail-beat frequency(f) and the body
length(L) is Re = fL2/ν = 5000. Simulations are
performed using our sharp-interface incompressible im-
mersed boundary flow solver (ViCar3D) [73, 76] on a
fixed non-uniform Cartesian grid (See Fig. 8A) with a
total of 54 million grid points and Fig. 8B shows the vor-
tex structures generated by the school. Figure 8C shows
the time-averaged net force in the surge direction gener-
ated by each fish normalized by the mean thrust for a
single fish, and we note that for the tail-beat phase and
inter-fish distance chosen for this case (which is based
on an earlier investigation of two fish by Seo and Mit-
tal [104]), most fish in the school experience an increase
in net surge force due to the hydrodynamic interactions
with the wakes of upstream fish.

This case is shown primarily to highlight the complex-
ity of the flow configurations and immersed bodies that
can be handled by IBMs. Simulation of such a flow that
contains multiple moving/deforming bodies and mem-
branes (the caudal fin) in close proximity would represent
a nearly insurmountable challenge for any BCG method.
Indeed, the vast majority of computational studies of the
fluid dynamics of swimming and flying employ IBMs be-
cause of this reason although there are some notable ex-
ceptions [105–108].

B. Effect of Dimple Shapes on Golf Ball Drag

It has been known that passive roughness such as dim-
ples are effective in reducing the drag force on bluff
bodies. A well-known example of this application is a
golf ball and Smith et al.[109] performed direct numer-
ical simulations of flow over a golf ball at a Reynolds
number of 1.1 × 105 by using a sharp-interface IBM.
Beratlis et al.[110] investigated the drag reduction on
spheres by tessellation using the IBM. Figure 9A shows
the vortex structure for a ball with tessellated dimples
at Re=1.1 × 105. A 1100 × 1500 × 3000 point grid was
used in this simulation, and each dimple on the sphere
was resolved by 40× 50× 70 grid points. The simulation
ran on 1500 CPU cores for 2 weeks and the drag coeffi-
cients obtained from the IBM simulations were in good
agreement with the experiments (see Fig. 9B).

Other examples of IBM based simulations of high
Reynolds number bluff body wake flows with validation
against experimental data are by Meyer et al. (Re=3900
flow past a cylinder) [70] and Xu et al. [111] (flow past
a sphere at Re=3,700-10,000). Data from compressible
flow IBM simulations of bluff-body wakes flows is also
highlighted later in this section.

A

B

FIG. 9. A: Isosurface of the Q-criterion visualizing vortical
structures near the top of the tesselated sphere at Re=1.1 ×
105. B: Drag coefficient versus Re for three different golf
balls, with dimples, tessellated with 162 polyhedron faces, and
192 faces. Wind tunnel measurements are shown with solid
line and DNS values are shown with dots. Figures provided
courtesy of Dr. Elias Balaras.

C. Turbulent Boundary Layer over Sharkskin
Denticles

Boomsma and Sotiropoulos [112] performed direct nu-
merical simulations of flow over sharkskin denticles in
turbulent channel flow using a sharp-interface IBM[113].
A representative denticle from Isurus oxyrinchus (short-
fin Mako) was scanned using micro-CT and a total of 324
individual denticles were used to cover the channel wall.
In the baseline simulation, the Reynolds number based
on the bulk flow velocity was Re = 2800 (Reτ = 180),
and about 130 million grid points were used to resolve the
turbulent flow over the surface covered by the denticles.
Figure 10 shows a close-up view of the flow field around
the denticles. The denticles were found to increase the
total drag on the wall (see Fig.10), and the change in
drag force due to the denticles compared reasonably well
to the experimental measurement [114].

IBM based simulations of transitional and turbulent
wall bounded flows with and without complex surface ge-
ometries have also been simulated in several other stud-
ies; see for instance Refs. [115, 116].
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FIG. 10. Direct numerical simulation of a turbulent bound-
ary layer at Reτ = 180 over a surface with modeled sharkskin
denticles using a sharp-interface IBM [112]. Top figure shows
views of mean streamwise vorticity for a staggered arrange-
ment of denticles. Inset shows the spanwise location of side
view. Bottom figure shows the ratio between total drag with
and without sharkskin (and with/without riblets) from the
present DNS. Fitted curves, open squares/circles, and filled
circles are experimental data. The + and × mark IBM based
DNS data for the staggered and aligned denticle cases, re-
spectively. The open star is the IBM based DNS result for
the riblets. Reprinted from Ref.[112] with the permission of
AIP Publishing.

D. Flight Aerodynamics of a Hummingbird

Figure 11 shows the simulation of humming bird hover-
ing performed by Song et al. [118]. 3D high-fidelity wing
kinematics of hummingbird hovering was reconstructed
from high-speed videos and was used as input for simu-
lation of the unsteady aerodynamics of a hovering hum-
mingbird. As shown in Fig. 11A, the 3D model of hum-
mingbird was immersed in the Cartesian grid, and the
flow simulation was done by a sharp-interface IBM [119].
The flow Reynolds number based on the average wingtip
velocity was 3000 and a total of 30 million grid points
were used to resolve the flow field. For the validation
of the simulation, the phase-averaged circulation around
the wing was compare with the experiment data of War-
rick et al. [117], and Fig. 11C shows that the circulation
at 50% wingspan matches reasonably well with the ex-
perimental data.

Other examples of IBM simulations in the arena of bi-
olocomotion that have been verified against experiments
are those for a hovering moth [120], a pectoral fin of a

A B

C

FIG. 11. IBM simulation of hummingbird hovering. A: 3D
kinematic model of hummingbird immersed in the Cartesian
grid. B: Three dimensional vortical structures in the flow. C:
Comparison of circulation around the wing with experiment
of Warrick et al. [117]. Figures provided courtesy of Dr.
Haoxiang Luo.

fish [121].

E. Impact of a Sphere with an Elastic Membrane
in Fluid

This case highlights the ability of IB methods to
model complex fluid-structure interaction (FSI) prob-
lems. Verzicco and Querzoli [61] analyzed the impact
of a rigid spherical pendula impacting on rubber mem-
branes (Fig 12A) in a fluid at different Reynolds num-
bers to understand the contact dynamics in deformable
bodies in a viscous fluid. They investigated the prob-
lem both by laboratory and numerical experiments (Fig
12B) and a developed a new contact model to perform
the simulations. The simulations were carried out using
the sharp-interface IB method of De Tullio and Pascazio
[90]. Simulations employed grids with O(100) million grid
points and Reynolds numbers extended up to 1000. They
found that the collision dynamics depended on many
parameters, the most important ones being the impact
Stokes number and the ratio of the membrane thickness-
to-sphere diameter. Extensive comparisons were made
with the experimental results (Fig 12C) and the simula-
tions were found to accurately predict the features of the
impact on the sphere and the membrane.
Other studies involving IB simulations of FSI problems

with verification against experiments can be found in the
literature (see for instance Refs. [122–124]) and the in-
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FIG. 12. A: Schematic of the problem configuration. B: (up-
per) Experimental visualisations of the pendulum approach-
ing the membrane.(lower) Numerical results for Re=1000 of
the vertical velocity component overlaid with velocity vec-
tors in the symmetry y–z-plane. The thin solid line shows
the computed membrane profile. C: Comparison of numeri-
cal (symbols) and experimental (line) time evolution of the
vertical coordinate of the pendulum centre for a membrane
for a selected case. Figures provided courtesy of Dr. Roberto
Verzicco.

terested reader is referred to the review article of Griffith
and Patankar [125] for a comprehensive discussion on this
topic.

F. Generation of Wing Tones by Flying Mosquitoes

Multiphysics modeling such as the FSI modeling shown
in the previous section, is a particular strength of IB
methods. In this subsection, as well as the next, we
show two additional examples of multi-physics simula-
tions done using IBMs.

Seo et al. [126] studied wing tone generation by
mosquitoes using the IBM flow simulation coupled with
aeroacoustic sound prediction based on the Ffowcs
Williams and Hawkings (FW-H) equation [127]. Figure
13A shows the instantaneous vortical structure around

A B

C

FIG. 13. Prediction of wing tones by a flying mosquito. A:
Vortex structures around flapping wing of mosquito resolved
by the IBM simulation. B: 3D sound pressure level (SPL)
directivity pattern for the fundamental wing beat frequency
at 10 cm distance. C: Comparison of SPL directivity on the
coronal plane at 10 cm distance. sim: Prediction form the
simulation. exp: Experimental measurements by microphone
arrays. Error bars denote cycle-to-cycle variation.

the flapping mosquito wing at the phase of peak lift
during down stroke. The wing tone was then predicted
by the FW-H equation with the time dependent surface
pressure data obtained from the flow simulations. Figure
13B shows 3D sound pressure level (SPL) directivity pat-
tern. The predicted wing tone compared well with the
measurement of Arthur et al. [128].

In order to further validate the computational meth-
ods, a joint experimental-computational study has also
been performed [129]. In the study, tethered mosquitoes
were imaged via a high-speed video camera and the wing
tone sounds were recorded by a microphone array. Simu-
lations of the flow and acoustics were carried out with the
wing kinematics extracted from the experiments and Fig.
13C shows the wing tone SPL directivity on the coro-
nal plane at 10 cm distance for the fundamental wing-
beat frequency. The agreement between the experimental
measurements and the predictions from the simulations
was found to be excellent, indicating the fidelity of the
IBM based aeroacoustic modeling approach.
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A

B

FIG. 14. A: Modeling of heart murmur generated by a con-
striction in an artery. (Left): Schematic of the set-up Tur-
bulent flow in the stenosed tube embedded within a tissue
mimicking viscoelastic cylinder (Middle): Turbulent flow in
the stenosed tube. (Right): Elastic waves in the viscoelastic
media resolved by the simulation. B: Comparisons between
the simulation results and the experimental measurements.
(Left): Frequency spectra of radial accelerations measured on
the outer surface of gel material. Exp-BIOPAC: measurement
by BIOPAC contact microphone, Exp-HP: measurement by
HP accelerometer. (Right): Variation of spectral energy of
the signal for three different frequency bands; solid line with
filled symbol: simulation; dashed line with hollow symbol and
error bar: experimental measurement.

G. Heart Murmurs Generated by Turbulent Flow
in the Aorta

This case is specifically for the heart murmurs gener-
ated by a valvular constriction [84] in the human aorta
but it generally relates to structural acoustics associated
with turbulent wall pressure fluctuations such as in hy-
droacoustic noise [130].

The in-vitro model consisted of a stenosed tube em-
bedded inside a cylinder made of a tissue mimicking
viscoelastic material (see Fig. 14A, middle). The flow
through the tube, which was at a ReD = 4, 000, transi-
tions to turbulence downstream of the constriction and
generates wall pressure fluctuations which subsequently
generate acoustic waves that propagate through the sur-
rounding viscoelastic material to the surface. Surface
measurements of the acoustic wave for this set-up were
conducted in an anechoic chamber with a contact micro-

phone (BIOPAC) and an accelerometer (HP).
The configuration was modeled computationally with

a sharp-interface incompressible immersed boundary flow
solver (ViCar3D) [73] coupled with a high-order, sharp-
interface immersed boundary solver for acoustic wave
propagation [84] in viscoelastic media. Figure 14A shows
the turbulent flow structures in the stenosed tube as well
as the elastic waves generated in the surrounding vis-
coelastic medium by the wall pressure fluctuation. The
comparison of the surface fluctuations between the sim-
ulations and experiment (Fig. 14B) showed excellent
agreement over a wide range of frequencies and spatial
location [84]. This study showcased the ability of the
sharp-interface IB approach to not only predict turbu-
lent wall pressure fluctuations but also the multiphysics
problem of flow-noise and acoustic wave propagation.

H. Flow Past a Caudal-Fin Inspired Pitching Panel

Figure 15 shows the simulation of flow past a pitching
panel at Re=10,200 and Strouhal number of 0.27. The
panel was sinusoidally pitched with a peak-to-peak am-
plitude of 15◦. The simulation was carried out by Zhang
et al. [131] using a sharp-interface immersed bound-
ary method with local grid refinement. The computa-
tional domains with different refinement levels and base-
line Cartesian mesh are shown in Fig. 15A. To resolve the
flow structures at this high Reynolds number, two layers
of refined mesh blocks were employed, and the finest res-
olution around the panel was 0.0052C (C is the chord
length of the panel). The total number of grid points
used was around 15.4 million. The comparisons of com-
puted wake structures against the PIV measurements of
King et al. [132] are shown at two time-instances in the
pitching cycle in Fig.15B, and the simulation results were
found to match very well with the experiment.

I. High-Speed Wake Flows

Figures 16 & 17 show the results of a high-order sharp-
interface IBM (ViCAS3D [85]) applied to compressible
flows. The simulation of flow past a circular cylinder at
Re = 200, 000 and flow Mach number, M = 1.7 is shown
in Fig. 16. A sharp-interface IBM with high-order poly-
nomial interpolation [83] was used and the cylinder di-
ameter was resolved by 400 grid points. Density gradient
magnitude contours shown in Fig. 16A indicate various
flow features typical of a high speed compressible flow in-
cluding bow, separation, and oblique shocks. The pres-
sure coefficient (Cp) on the cylinder surface computed
from this IBM simulation is compared with the results
from other BCG as well as IBM simulations in Fig.16B
and found to match reasonably well.
Figure 17 shows the simulation of flow past a sphere

at Re = 50, 000 and M = 4.0. A total of 90 million grid
points were used in this simulation. A bow shock in front
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FIG. 15. Simulation of flow past a pitching panel at
Re=10,200 and Strouhal number of 0.27 carried out by Zhang
et al. using a sharp-interface immersed boundary method
[131]. Comparison of the computed wake against the exper-
iments of King et al. [132] are shown at two time-instances
in the pitching cycle. Figures provided courtesy of Dr. Haibo
Dong.

of the sphere and complex vortex structures in the wake
are clearly visible. The drag coefficient obtained from the
simulation was 0.98, which is within 6% of the reported
value 1.04 [133].

Other compressible flow simulations using IBM that
have been verified against experiments or BCG methods
are by De Tulio et al. [134], Nam & Lien[135], Al-Marouf
& Samtaney [136], and Mao et al. [137].

J. Shock-Void Interaction

IB methods have been applied to a variety of com-
pressible multiphase and multimaterial flows. Figure
18 shows the collapse of a void pore in the polymethyl
methacrylate (PMMA) medium by the interaction with
the shock wave at 2.3 km/s which was simulated by the
sharp-interface IBM based multi-phase flow solver SCIM-
ITAR3D [138, 139]. The interface was represented via
level sets and resolved by a ghost-fluid method. Figure

A

B

FIG. 16. Flow past a circular cylinder at Re = 200, 000
and flow Mach number, M = 1.7 using the code described
by Turner et al.[85] A: Density gradient magnitude |∇ρ∗|
produced by a circular cylinder. B: Comparison of cylin-
der pressure coefficient Cp with other simulation results. IB:
Immersed Boundary, URANS: Unsteady Reynolds Averaged
Navier-Stokes, DNS: Direct Numerical Simulation. Figure
provided by Dr. Jacob Turner.

18A shows a three dimensional void interface and tem-
perature contours on the cross section, and the evolution
of the void interface is found to compare reasonable well
with experimental measurements (Fig. 18B).

K. Wall-Modeled LES of Hypersonic Ramp Flow

The final case presented in this section is of a wall-
modeled large-eddy simulation of a hypersonic turbu-
lent boundary layer traversing a compression ramp. The
Reynolds and Mach numbers for the flow are 1.89× 107

and 7.2 respectively. The finite-difference method em-
ployed here has a spatial accuracy that ranges between
2nd and 3rd order and the IB method implemented in
the solver employs ghost-point based interpolations to
impose the boundary conditions. As pointed out earlier,
sharp-interface methods experience localized grid discon-
tinuities in the boundary cells and these can be partic-
ularly important in scenarios characterized by complex
boundary conditions and the implementation of wall-
models for turbulence can be more difficult than for BCG
methods. This case therefore addresses both of these
challenges.
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FIG. 17. Flow past a sphere at Re = 50, 000 and flow Mach
number, M = 4.0. Flow field at an early time in the flow
development visualized by Q-criterion colored by streamwise
vorticity with the temperature contours shown in the z/D = 0
plane. Figure provided by Dr. Jacob Turner.

A

B

FIG. 18. Simulation of shock-void interaction. A: Instanta-
neous Void interface and temperature contours on the cross
section. B: Time evolution of void interface compared with
experimental measurement. Black: Experiment. Blue: Simu-
lation. Figures provided courtesy of Dr. H. S. Udaykumar.

The results in the Fig. 19 as well as the other test cases
in this study suggest that wall-modeled LES with IBMs
can provide reasonable results, but the authors noted the
need for particular attention to the numerical accuracy
and dissipation characteristics of the numerical treatment
near the wall.

FIG. 19. Results from IBM wall-modeled LES of hyper-
sonic flow over a 8o compression corner by van Noordt et
al. [100] Top left: schematic diagram for the compression
corner case. Top right: instantaneous flow field visualiza-
tion for the test case showing isosurfaces of temperature col-
ored by the streamwise velocity. Bottom: Comparison of sur-
face quantities Stanton number (left), skin friction coefficient
(right) against DNS. Reproduced with permission from au-
thor William van Noordt.

VIII. FREQUENTLY ASKED QUESTIONS

In this section we address some of questions that come
up frequently regarding the capabilities of IBMs. These
questions provide a practical and useful context for com-
paring IB and BCG methods in CFD.

A. Can IB methods compute boundary layer flows
accurately?

The implicit assumption underlying this query is that
all IBMs (Immersed Boundary Methods) are diffuse-
interface approaches incapable of enforcing boundary
conditions with the same level of precision as BCG
(Boundary-Conforming Grid) methods. Consequently,
they are believed to fall short in accurately capturing
boundary layers. Nevertheless, as succinctly summarized
earlier, the past two decades have witnessed a predomi-
nant shift in the realm of IBMs towards sharp-interface
methodologies with second-order (and even higher - see
Refs. [83, 140] for examples) levels of both local and
global accuracy. These advanced techniques deliver a
degree of precision and exactitude in boundary layer res-
olution that mirrors the capabilities of BCG methods (as
discussed in Section VII). Indeed, beyond the few ex-
amples showcased here, there exist several studies where
sharp-interface IBMs have been used to accurately pre-
dict the evolution of boundary layers on complex sur-
faces, thereby answering the above question in the affir-
mative.
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B. Can IB methods simulate flows at high
Reynolds numbers?

Given that away from the immersed boundary, the
discretization of IB methods is similar to that of BCG
methods, the question at hand implicitly concerns the
ability of IBMs to accurately resolve flow in the vicin-
ity of the immersed body at high Reynolds numbers. As
mentioned in the preceding paragraph, sharp-interface
methods possess capabilities akin to BCG methods in
resolving boundary layers. Therefore, simulating high
Reynolds number flows hinges on the capacity to increase
the resolution within the boundary layers.

BCGmethods generally allow for a finer resolution per-
pendicular to the wall with a level of precision that is
typically not attainable with the Cartesian grids com-
monly employed in IBMs. As highlighted by Mittal and
Iaccarino in their work [66], this discrepancy results in
a more rapid increase in grid size with Reynolds num-
bers for IBMs compared to BCG methods. Curvilin-
ear as well as unstructured and overset grid methods
however, have a much higher operation count per grid
point than IB methods. This is because they have sig-
nificantly larger number of terms in the equations, and
the condition-number of discretized operators can also
be larger, resulting in slow convergence. Thus, a larger
grid for IB methods does not necessarily imply an equiv-
alently larger CPU time for the simulations. Second, for
immersed boundaries with geometrical complexities such
as high curvatures, corners and junctions, BCGs can also
have difficulties in imparting high resolution that is lim-
ited to only the boundary layer regions while maintaining
grid quality.

Finally, the use of local-grid refinement [131, 134, 138,
141, 142] allows IB methods to provide high resolution
in regions around the immersed body in a more selective
manner and but it diminishes the structured nature of
the mesh and has implication for the convergence of the
sparse systems that result from the discretization. In the
previous section we have provided examples and refer-
ences for many studies for high Reynolds number flows
where IB methods have generated verifiable results, in-
cluding surface related quantities such as pressure and
drag.

The question in the end comes down to IBM’s compu-
tational efficiency compared to the BCG method. Such
comparisons are complex due to various factors like
solver selection, test-case choice, and computing hard-
ware. One such study along these lines was by Capuano
et al. [143] who compared three solvers for simulat-
ing flow over a Re = 3700 sphere: Nek5000 (a high-
order spectral-element code), OpenFOAM (a general-
purpose unstructured finite-volume solver), and their in-
house Cartesian IBM solver. The study indicated that
Nek5000 and IBM performed similarly in terms of cost-
effectiveness for global and local flow properties. Con-
versely, OpenFOAM required significantly more degrees-
of-freedom (and higher cost) to match key features like

the downstream recirculation bubble length. At finer res-
olutions, the three codes closely agreed on most flow met-
rics. The authors concluded that high-order methods and
second-order, energy-conserving IBM approaches are vi-
able for high-fidelity simulations of turbulent flows with
separation. Similar comparisons for other complex ge-
ometries and moving boundary problems would go a long
way in providing informing CFD practitioners about the
computational costs of IBM simulations.

C. Can IB methods resolve turbulent flows?

As with the previous question, this question also re-
lates to the ability of IBMs to resolve turbulent flows
that occur in the vicinity of immersed boundaries. As
outlined in the previous two paragraphs, the numerical
accuracy and fidelity of sharp-interface IB methods is
similar to standard BCG methods, thus the question re-
ally boils down to the ability of IB methods to provide
adequate resolution near the immersed boundary to re-
solve turbulence.
In order to examine this question, it is useful to con-

sider two relevant resolution requirements for DNS of
canonical attached turbulent boundary layers. The first
is that the grid resolution requirement at the wall be
(∆x+,∆y+,∆z+) ≈ (12, 0.1, 7) [144], which implies a
grid aspect-ratio near the wall of roughly 120:1:70. Sec-
ond, the wall-normal grid size can increase by a factor
of about 50 in the outer regions of the turbulent bound-
ary layer. BCG methods can potentially take advantage
of these requirements by employing grids that are highly
non-isotropic(∆x; ∆z >> ∆y) near the wall, and which
expand rapidly away from the wall. A state-of-the-art
example of this is the CharLES code developed at the
Center for Turbulence Research [145]. In IB methods on
the other hand, since the underlying Cartesian grid is not
necessarily aligned with the boundary, there is no easy
way to fully exploit these resolution requirements. While
local refinement techniques [131, 134, 138, 141, 142] can
be used to take advantage of the second condition, most
IB methods, even those that employ local-grid refine-
ment, use isotropic grids, i.e. grids with ∆x ≈ ∆y ≈ ∆z,
near the immersed boundary, and therefore do not ex-
ploit the first condition. Thus, for canonical turbulent
flows, the size of the grid for IB methods is significantly
larger than for a corresponding BCG method.
This difference between IB and BCG method however

diminishes for geometrically complex boundaries, such as
for rough walls [146] or for non-canonical turbulent flows
such as those with separation [147, 148], since such flows
require near-wall grids that are more isotropic. Indeed,
several examples exist for such flows being simulated
successfully with sharp-interface IB methods (see Ref.
[99, 116, 149]) including those shown here [109, 110, 112].
In fact, for this class of turbulent wall bounded flows, the
ability of IB methods to easily handle geometric complex-
ity gives them, in our view, an edge over BCG methods.
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Similarly, IB method generally have an advantage in sim-
ulating turbulent flow with moving boundaries for all the
reasons outlined in this article.

Incorporating Reynolds-averaged Navier-Stokes
(RANS), wall-resolved LES, and wall-modeled LES
into Cartesian grid IBMs may introduce certain added
intricacies. However, these challenges are certainly
surmountable, as evidenced by a range of successful
implementations [99, 150–152].

Finally, as pointed out earlier, the lack of grid skewness
related errors in IBM could be a significant advantage
for these method over BCG methods, since vortices and
turbulence structures away from the immersed boundary
can be resolved and convected over Cartesian grids with
higher fidelity than on non-orthogonal curvilinear grids.

D. Can IB method simulate high-speed flows?

In the context of IB methods, flow compressibility
brings in a few additional aspects for consideration.
These are the appearance of complex heat-flux bound-
ary conditions at the surface associated with the energy
equation, and the need to resolve shocks in the vicinity
of the body. As pointed out by Mittal and Bhardwaj
[153], the thermal boundary conditions for compressible
flows have been incorporated in several different sharp-
interface IB solvers. For example, using the ghost-cell
based sharp-interface IBM, Dirichlet as well as Neumann
type boundary conditions for arbitrary variables can be
imposed on the solid surface/interface [83], which enables
the incorporation of heat and mass flux boundary con-
ditions necessary for the high-speed compressible flows
[85]. There also exist several examples of simulations
at high Mach numbers (see Figs. 16-19) and references
in Mittal & Bhardwaj [153]) with IB methods that re-
solve shock-boundary layer interaction. Therefore, while
addressing local numerical accuracy near the immersed
body is paramount for high-speed compressible flows,
this challenge is surmountable. Nonetheless, it’s imper-

ative to recognize that these flows often occur at high
Reynolds numbers, warranting consideration of the three
additional issues delineated earlier in this section.

IX. CLOSING

This perspective piece on immersed boundary meth-
ods draws inspiration from the aphorism “Those who do
not understand history may be forced to repeat it.” IB
methods are increasingly becoming an essential tool for
fluid dynamicists who are keen to attack flows problem
in all their native complexity. Our hope is that by com-
prehending the historical trajectory of the advancements
in these methods—why, when, and how they were devel-
oped—researchers are better prepared to critically eval-
uate these methods and empowered to innovate in ways
that significantly advance the state-of-the-art in these
methods.
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