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Abstract

High-fidelity Large Eddy Simulation (LES) of the inclined Rayleigh-Taylor instability in the

Tilted Rocket Rig experimental configuration (Smeeton and Youngs 1987, AWE Report No. O

35/87) are performed using a tenth-order compact finite difference code. These simulations are

analyzed for spatial distributions of turbulent kinetic energy, turbulent mass flux velocity, species

mass fraction flux, species mass fraction variance, and Favre-averaged Reynolds stresses at two

time instances, t = 37 ms and t = 52 ms. Additionally, the vertical distribution of the components

of the unclosed budget equations over the center of the domain for these quantities are examined.

The dominant terms of these budget equations are further decomposed to examine the principal

contributions to these terms in each axis. Notably, the principal contribution to the horizontal

turbulent mass flux velocity budget is found to be from a term which is commonly neglected in

many Reynolds-averaged Navier-Stokes models.

I. INTRODUCTION

The Tilted Rocket Rig is a series of experiments conducted by Smeeton and Youngs [1]

and Youngs [2] in the late 1980’s. This experiment consisted of a tank which was filled

with two fluids of differing density, with the less dense of the two fluids located above the

more dense fluid. The tank was inclined at an angle relative to horizontal. The apparatus

was then accelerated by rockets attached to the top of the tank. The acceleration vector

from the rockets was inclined relative to the density gradient at the interface between the

two fluids. This gives rise to the Rayleigh-Taylor[3–6] instability (RTI) at the interface

between the two fluids. The RTI is a buoyancy-driven instability which leads to the growth

of small perturbations on the interface. These perturbations grow in to spikes of heavy fluid

penetrating in to the light fluid, and bubbles of light fluid penetrating in to the heavy fluid.

Eventually these bubbles and spikes begin to interact, and form a region of mixed fluid. At

the same time, in the Tilted Rocket Rig, a bulk overturning motion of the two fluids also

occurs. This results in a plume of heavy fluid rising in to the light fluid on one edge of the

tank, and a plume of light fluid falling in to the heavy fluid on the other.

While multiple fluid pairs and configurations were considered as part of the Tilted Rocket

Rig experiments, the present work will focus on case 110. This case utilized Potassium Iodide

(NaI) and Hexane (C6H14) as the heavy and light fluids, respectively. Figure 1 depicts a
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FIG. 1. Time sequence of experimental images from case 110 of Smeeton and Youngs [1]. Images

reproduced from Andrews et al. [7]. British Crown Owned Copyright/AWE. Times are (a): t =

45.3 ms, (b): t = 59.8 ms, and (c): t = 71.1 ms.

time sequence of experimental photographs from the case 110 experiment (reproduced from

Andrews et al. [7]). Examination of these photographs reveals that there are two main areas

in which fluid mixing may take place in this configuration. The first may be observed at

the far left and right of the experimental images. These are plumes of heavy fluid rising

in to the light fluid (left), and light fluid falling in to the heavy fluid (right). Additionally,

a region of mixing may be observed at the tilted interface in the center of the tank. This

region undergoes mixing due to Rayleigh-Taylor instability, but also experiences shear due

to the relative motion of the upper (moving rightwards and downwards) and lower (moving

leftwards and upwards) fluids as they undergo an overturning motion, as well as a stretching

due to the rising and falling plumes of fluid.

This tilted rocket rig configuration is particularly interesting in the context of Reynolds-

averaged Navier-Stokes (RANS) modeling endeavors. This configuration, in contrast to the

more typical planar configurations, provides two dimensional complexity with mixing and

available experimental data for comparison and validation. This two-dimensionality provides

a unique challenge for RANS models to accurately model turbulent transport in the presence

of combined instability. Denissen et al. [8] proposed that this problem configuration was a
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useful one for the validation of Reynolds-averaged Navier Stokes (RANS) models. Since

then, Kokkinakis et al. [9], Xiao et al. [10], Xie et al. [11], and Xiao et al. [12] have utilized

this configuration as a benchmark case for validating RANS models. The Tilted Rocket Rig

configuration has also been studied using using Implicit Large Eddy Simulation (ILES) and

Direct Numerical Simulation (DNS) by Andrews et al. [7]. Denissen et al. [8] also presents

ILES results as part of that work. These previous simulations have focused on integrated

metrics, as well as a few turbulence quantities of relevance to BHR models. The present work

expands upon this previous work by providing detailed statistics on a variety of turbulent

variables with the goal of examining the dominant sources which govern the transport of

mass and momentum in this configuration.

The present work seeks to examine the physics of the tilted rocket rig configuration in new

detail using high fidelity artificial fluid large eddy simulations (AFLES). This work will be

presented in the following sections. Firstly, the details of the numerical method used for this

simulation is outlined in section II. The configuration of the problem domain is presented

in section III. The first set of results, focused mainly on validation of the computational

approach through mesh convergence studies and comparison with experiment, is shown

in section IV. Then, detailed analysis of turbulent transport quantities and their budget

equations is presented in section V. Finally, a summary and conclusions of this work are

presented in section VI.

II. NUMERICAL METHODS

The code used for these simulation is Miranda[13–16]. Miranda solves the compressible

Navier-Stokes equations for a nonreacting, multicomponent mixture,

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (1)

∂(ρYα)

∂t
+
∂(ρYαui)

∂xi
= −∂Jα,i

∂xi
(2)

∂(ρuj)

∂t
+
∂(ρuiuj)

∂xi
= − ∂p

∂xj
+
∂σij
∂xi

+ ρgj (3)

∂E

∂t
+
∂[(E + p)ui]

∂xi
=
∂(σij)

∂xj
− ∂qi
∂xi

+ ρgiui (4)

where ρ is the density, t is the time, ui is the velocity along axis i, xi is the spatial coordinate

in axis i, Yα is the mass fraction of species α, Jα,i is the diffusive mass flux of species α, p is
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the pressure, σij is the viscous stress tensor, gj is the gravitational body force in axis j, E

is the total energy, and qi is the heat flux in axis i. The diffusive mass flux is given by

Jα,i = −ρ
(
Dα

∂Yα
∂xi

− Yα

N∑

k=1

Dk
∂Yk
∂xi

)
(5)

for k = 1, 2, . . . , N total species. The viscous stress tensor is

σij = 2µSij +

(
β − 2

3
µ

)
∂ui
∂xi

δij (6)

where µ is the shear viscosity, β is the bulk viscosity, and δij is the Kronecker delta. Sij is

the strain rate tensor, expressed as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(7)

The heat flux vector, qi, is given as

qi = −κ ∂T
∂xi

+
N∑

k=1

hkJk,i (8)

where κ is the thermal conductivity and hk is the enthalpy of species k where k is in the range

1, 2, . . . , N for N fluids. The pressure, temperature, and enthalpy of each fluid component

are obtained using an ideal gas equation of state,

pk = (γk − 1)ρkek (9)

Tk =
ek
cv,k

(10)

hk = γkek (11)

where cv,k is the specific heat at constant volume and γk is the ratio of specific heats for

component k. An assumption of pressure and temperature equilibrium between the species

allows an iterative process to be used to solve for component volume fractions, vk. This, in

turn, allows the determination of partial densities and energies according to

ρk =
Ykρ

vk
(12)

e =
E

ρ
− 1

2
uiui =

N∑

k=1

Ykek (13)
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Total pressure is then calculated according to the mixture relationship

p =
N∑

k=1

vkpk (14)

These governing equations are solved using a tenth order compact finite differencing

scheme in space, and a fourth-order explicit Runge-Kutta scheme in time. Miranda has

seen extensive use in compressible, multicomponent turbulent mixing problems[15, 17–26].

The subgrid transfer of energy is modeling using an artificial fluid LES (AFLES) approach

in which artificial transport terms are added to the fluid viscosity, bulk viscosity, thermal

conductivity, and molecular diffusivity[13, 14]. These are added according to

µ = µf + µa (15)

β = βf + βa (16)

κ = κf + κa (17)

Dα = Df,α +Da,α (18)

where the subscript f denotes the molecular contribution to the property from the fluid,

and subscript a denotes the artificial contribution. As the present study is focused on the

high-Reynolds number regime, the approach of Olson et al. [21] is adopted and the fluid

contributions to each of these parameters is neglected, µf = βf = κf = Df,α ≡ 0. The

artificial contribution to these terms are computed according to the method described by

Campos and Morgan [25] as well as Morgan et al. [17]. Each of these terms has a functional

form according to

ψa = CψFG(ϕ)∆2 (19)

where ψ is the artificial fluid property, Cψ is a tuning coefficient, ∆ = (∆x∆y∆z)1/3 is the

local grid spacing, G is an eighth-order derivative such that for a scalar

G(ϕ) = max

(∣∣∣∣
∂8ϕ

∂x8
∆x8

∣∣∣∣ ,
∣∣∣∣
∂8ϕ

∂y8
∆y8

∣∣∣∣ ,
∣∣∣∣
∂8ϕ

∂z8
∆z8

∣∣∣∣
)

(20)

and for a vector

G(ϕ⃗) = max (G(ϕx), G(ϕy), G(ϕz)) (21)

The overbar indicates the application of a truncated-Gaussian filter. The values of each of

the tuning parameters, as well as F and ϕ, for each artificial component are outlined in table
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ψa Cψ F ϕ

µa 1.0× 10−4 ρ
∆ ui

βa 7.0× 10−2 ρ ∂ui
∂xi

κa 1.0× 10−3 ρ
T∆tcv T

Da,α 1.0× 10−2 1
∆t Yk

TABLE I. The parameters used for the artificial transport terms in equation 19.

I. In this table, cv is the specific heat at constant volume of the fluid and ∆t is the time

step. This form of the artificial terms is chosen to ensure that the artificial terms are biased

towards the high wave number components of the flow and to have very low influence at

resolved scales[13, 19, 25].

III. PROBLEM SETUP

A. Domain Configuration

The configuration used in the present study aims to be similar to the Tilted Rocket

Rig simulation of Andrews et al. [7], and closely follows case 110 from the experiments of

Smeeton and Youngs [1]. The computational domain is depicted schematically in figure

2. In this figure, Lx, Ly and Lz are the length of the computational domain in the x, y,

and z axis, θ is the initial tilt angle of the interface relative to the horizontal, gx and gz

are the applied acceleration in the x and z axis, and ρH and ρL are the densities of the

heavy and light fluids. The triad indicates the location of (x, y, z) = (0, 0, 0). The imposed

boundary conditions are non-penetrating for the left and right (x = ±7.5 cm) and top and

bottom (z = ±12.5 cm) surfaces, with periodic boundary conditions on the front and back

(y = ±7.5 cm) surfaces. One deviation from the experimental configuration is the expansion

of the depth (Ly) of the domain from 2.5 cm in the experiment to 15 cm in the simulation.

This was done to provide better converged statistical measurements for the quantities which

are averaged through the depth of the tank. This results in a simulation domain of 15 cm

x 15 cm x 25 cm .

Simulations were run with several resolutions in order to assess mesh convergence. These

mesh configurations are summarized in table II. Each resolution is named RN , where N is
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FIG. 2. Schematic representation of the problem domain. Dashed plane is located at the vertical

midpoint of the domain, and the dashed lines are similarly located at the midpoints of the x and

y axis.

Resolution Name Nx Ny Nz Ntot dx [cm] dy [cm] dz [cm]

R1 66 66 110 479,160 0.227 0.227 0.227

R2 132 132 220 3,833,280 0.113 0.113 0.113

R4 264 264 440 30,666,240 0.057 0.057 0.057

R8 528 528 880 245,329,920 0.028 0.028 0.028

R12 792 792 1320 827,988,480 0.019 0.019 0.019

R16 1056 1056 1760 1,962,639,360 0.014 0.014 0.014

TABLE II. Simulation resolutions used for this study. All resolutions are integer multiples of the

number of zones used in the most coarse simulation. The name for each resolution is RN , where

N is the multiplication factor used to arrive at the zone count for that resolution. Nx, Ny, and Nz

are the number of zones in the x, y, and z axis, with Ntot representing the total zone count for the

mesh. dx, dy, and dz are the grid spacing in x, y, and z.
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an integer multiplication factor that is applied to the zone counts at the coarsest mesh in

order to arrive at the number of zones for higher resolution meshes. The zone counts in each

axis at the coarsest mesh are chosen to ensure uniform grid spacing in all axes. The use of

the multiplication factor to arrive at the zone counts for higher resolution meshes ensures

that uniform grid spacing is maintained for all meshes.

B. Initial Conditions

The fluids in this simulated problem are Sodium Iodide (NaI) and Hexane (C6H14), chosen

to match those used in Case 110 of Smeeton and Youngs [1]. These fluids have a densities

of ρH = 1.89 g/cm3 and ρL = 0.66 g/cm3, respectively. This results in an Atwood number

of

A =
ρH − ρL
ρH + ρL

= 0.4824

The initial interface is located such that its mean location is centered in the domain.

The interface has a tilt of θ = 5.766 degrees clockwise about the y axis, with this value

having been chosen to match the experiment[1]. The initial interface perturbations in the

experiment, particularly the high mode content, was not well-characterized. Previous work

has shown that RT simulations utilizing only very short wavelength perturbations will tend

to underestimate typical observed mixing rates by approximately a factor of two[7, 27–29].

The form of the broadband perturbation used in the present study was suggested by Andrews

et al. [7] and has been shown previously to result in mixing rates similar to those observed

in experiment[7]. Initial perturbations are prescribed as a superposition of modes using a

power spectrum of the same form as described by Andrews et al. [7],

P (k) ∼ k−2

where

k =
√
k2x + k2y

is the 2-D wavenumber, with kx and ky written as

ki =
2π

λi
=

2πNi

Li

where ki is the wavenumber corresponding to a wavelength λi of a perturbation in the i-th

dimension. This can be equivalently stated using the mode number Ni, corresponding to
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a wavenumber with N periods in the i-th dimension with length Li. Here, Nmin = 2 and

Nmax = 60, which corresponds to λmax = Lx/2 = 7.5 cm and λmin = 0.25 cm. The power

function is defined such that

σ2 =

∫ kmax

kmin

P (k)dk

where σ is the standard deviation with the value σ = 0.001λmax. The height, zint, of

the initial interface with center position (x, y, z) = (0, 0, 0) is calculated as a function of

horizontal position (x, y) according to

zint(x, y) = tan(θ)x+
∑

Nx

∑

Ny

T (x)
√
P (k) cos

[
2πNx

Lx
x+ ϕx

]
cos

[
2πNy

Ly
y + ϕy

]
(22)

where Nx, Ny are in the range Nmin ≤ N ≤ Nmax, T (x) is a Tukey window with a half-

width of 1.5 cm applied to the perturbations near the left and right boundaries, and ϕi

are uniformly distributed random phase offsets in the range (0, 2π]. The values of ϕ are

calculated for each unique pair of Nx and Ny. That is to say, a fixed value of Nx does not

have the same value of ϕx when varying Ny. This is similarly true for the case of Ny when

varying Nx. The random number generator used to generate these random phases is seeded

with a fixed value prior to generation of the interface profile to ensure that the perturbations

are identical between runs.

The high-order numerics used by Miranda necessitate that flow variables change value

smoothly across the interface so as to avoid introducing nonphysical Gibbs’ oscillations.

This smooth transition in flow variables across the interface is accomplished by specifying

an initial diffusion thickness of the interface. The initial diffusion profile is specified using

a weighting function with the form of a hyperbolic tangent function oriented normal to the

unperturbed interface location, which is calculated as follows: For a given position (x, y, z)

in the simulation domain, the nearest point located on the interface is determined by the

intersection of a line normal to the mean (unperturbed) interface profile that passes through

the point (x, y, z) with the perturbed interface profile. This intersection point is (xi, yi, zi).

The weighting function is then calculated according to

W(x, y, z) =
1

2

(
tanh

[
sgn (z − zint(x, y))

√
(x− xi)2 + (y − yi)2 + (z − zi)2

s

]
+ 1

)
(23)

where sgn is the sign function, and s is a stretching factor to control the width of the

diffusion profile. A value of s = 5dz/4 was chosen for this work, resulting in a diffusion
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FIG. 3. Acceleration history of the experiment, reproduced using data from Andrews et al. [7],

compared with constant acceleration used in the present work.

width of approximately 5 cells. W varies between 0 below the interface to 1 above it. A

function of this form ensures that the initial diffusion profile is oriented normal to the initial

interface profile. The function W is then used to generate an initial condition which varies

smoothly across the interface between the two fluids. For example, for a quantity Q with

constant values QH below the interface and QL above the interface, a field with a smooth

transition between the two values across the interface is calculated according to

Q(x, y, z) = QH + (QL −QH)W(x, y, z) (24)

where Q may be any quantity which is expected to vary smoothly across the interface, such

as density or species mass fraction.

The acceleration profile for the Tilted Rocket Rig problem may be specified in one of two

ways. One option is to use the acceleration time history from the experiment itself. The

acceleration profile from the experiment is reproduced in figure 3 with data from Andrews

et al. [7]. However, the acceleration profile from the experiment is time-varying with rapid

changes in the acceleration applied to the fluids, and as a result this approach can cause

problems for compressible codes, such as Miranda, with regards to non-physical density ex-

cursions or the formation of shock waves[7]. An alternative approach used here is to specify a

constant acceleration together with a matching hydrostatic pressure gradient. An equivalent

constant acceleration value was derived by Andrews et al. [7] using the bubble growth model
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of Layzer [30] together with the limiting bubble and spike velocities of Goncharov [31]. This

results in an equivalent constant acceleration parallel to the z axis of g = 3.5×10−8 cm/µs2.

The details of how this equivalent acceleration is derived, and the establishment of a non-

dimensional time scale that relates the time varying and constant gravity cases, is discussed

in greater detail in section IIID. An additional constant component of acceleration from

the tilt of the tank is applied along the x axis, gx = g0 sin(θ), where g0 is Earth’s gravity,

9.81× 10−10 cm/µs2.

The hydrostatic gradient which results from the application of the constant acceleration

is applied to the domain according to

P (x, y, z) = ρHgz

[
min(z, zint(x, y))−

(
−Lz

2

)]
+

+ ρLgz [max(z, zint(x, y))− zint(x, y)] + P0 (25)

where zint(x, y) is the height of the interface in the column of fluid at (x, y). The pressure

is specified with a value of P0 = 20 bar at the bottom of the tank, with this value having

been chosen to reduce the influence of compressibility[7]. It should be noted that this form

of the pressure assumes an infinitely sharp interface, while the true interface is diffuse. This

assumption is true in the limit of the highest resolutions of the problem, and no significant

disturbance to the pressure field as a result of this initial pressure field is observed at any

resolution.

C. Averaging

Several forms of averaging are utilized in the analysis presented in this work. The first

operation which will be used is the Reynolds decomposition, written as

f = f̄ + f ′ (26)

where f̄ is the unweighted average of f , and f ′ is the fluctuations of f about this average. A

second decomposition which will be used in this work is Favre, or mass weighted, averaging.

This is defined as

f̃ =
ρf

ρ̄
(27)

such that f may be alternatively decomposed as

f = f̃ + f
′′

(28)
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where f̃ is the Favre averaged value of f , and f
′′
is the fluctuations of f about this average.

In both cases, these averaging operations are assumed to be through the depth (y) of the

tank.

A final form of averaging concerns vertical lineouts that will be presented as part of this

work. When considering lineouts considered as part of this work, two averaging operations

are undertaken. The first is to average the data through the depth (y) of the tank. This

reduces the three dimensional (x, y, z) data to two dimensional data (x, z). Second, the

middle 40% of the x axis of the domain is selected in order to exclude the influence of the

sidewall bubble and spike plumes. A lineout is taken in each column (z) of this sub-selected

data. Each of these lineouts is then offset using the tilt angle of the interface and the x

position of the column of data to remove the influence of the interface tilt on the average

profile. The method used to calculate the interface tilt angle will be described in section

IVA3. Each of these shifted lineouts is then averaged together to calculate a single average

one-dimensional lineout of the quantity of interest. This type of averaging is denoted with

angle brackets, and referred to as a tilt-compensated average profile. In other words, ⟨f̄⟩
denotes the value of f which has been first averaged through the depth of the tank using

Reynolds averaging, and then averaged along the middle 40% of the x axis.

D. Nondimensionalization

It is useful to introduce quantities which will be used to nondimensionalize the quantities

presented in this work. In all cases in this work, a symbol with a superscript asterisk

(∗) denotes the nondimensionalized form of a variable. f ∗, for instance, represents the

nondimensionalized form of a quantity f .

Utilizing a constant acceleration in place of the time-varying acceleration from the exper-

iment requires a suitable non-dimensionalization to make results comparable between the

two cases. Andrews et al. [7] specifies a non-dimensional time, τ , as

τ =

∫ t

0

√
Ag(t)

Lx
dt+ δ (29)

where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number, g is the (not necessarily constant)

gravity, and Lx is the width of the simulation domain, and δ is a correction factor. This

correction factor was found by Andrews et al. [7] by considering the bubble growth model
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FIG. 4. Predicted bubble and spike growth for the constant and variable acceleration cases (from

Andrews et al. [7]) plotted versus nondimensional time, τ (eq. 29) for each case over the window

of time simulated in this work.

of Layzer [30] together with the terminal bubble and spike velocities of Goncharov [31].

These model equations can be solved while considering a case with time varying gravity

as well as a case with constant gravity. Andrews et al. [7] performed this analysis with

parameters representative of the bulk overturning motion of this flow. They find that for

a constant acceleration of g = 3.5 × 10−8 cm/µs2, the predicted bubble and spike heights

versus nondimensional time τ lie on top of each other when an offset of δ = −0.053 is

applied to the variable gravity case. For further detail on this analysis, the reader is referred

to Andrews et al. [7]. The predicted bubble and spike heights from the time-varying and

constant acceleration cases are plotted in terms of this nondimensional time in figure 4. This

analysis gives confidence that the present constant acceleration simulation is comparable to

the variable acceleration experiment, as well as to variable acceleration simulations, when

treated using this relationship. Given that the present work considers the constant gravity

case, the square root term in equation 29 may be removed from the integral. Noting that

this term has units of inverse time, a characteristic time scale, t0, is specified as

t0 =

√
Lx
Ag

(30)

such that the nondimensional time may be written as t∗ = t/t0. Note that t∗ = τ in the

constant gravity case. The simulation is run out to t = 60 ms, corresponding to t∗ = 2.01.
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This is approximately the time that the upwards-traveling spike of heavy fluid on the left

edge of the domain reaches the top of the simulation domain.

The definition of t∗ given by Andrews et al. [7] was arrived at utilizing the bubble growth

model of Layzer [30] combined with the limiting bubble and spike velocities of Goncharov

[31]. As a result, a characteristic velocity scale equivalent to the limiting bubble velocity of

Goncharov [31] is utilized, which is defined as

u0 =

√
2A

1 + A

g

3k̄
(31)

such that u∗ = u/u0, where A is the Atwood number, g is the gravity, and k̄ is the pertur-

bation wavenumber, here chosen as the centroid of the initial perturbation spectrum,

k̄ =
1

1
kmin

− 1
kmax

ln

(
kmax

kmin

)
(32)

These time and velocity scales are then used to define a characteristic length scale as

ℓ0 = u0t0 =

√
2Ag

3k̄(1 + A)

√
Lx
Ag

=

√
2Lx

3k̄(1 + A)
(33)

such that ℓ∗ = L/ℓ0.

IV. RESULTS: GRID CONVERGENCE AND DATA COMPARISONS

A. Temporal Convergence

The quantities of interest in this section are the temporal trends of the height of the

sidewall bubble and spike plumes, the integral mixed width, the interface tilt angle (θ),

the global mixing parameter (Θ), and the average value of turbulent kinetic energy. These

quantities are examined for their trends over time, as well as how these trends change with

increasing grid resolution. Figure 5 is an annotated version of the experimental image at

t = 59.8 ms from figure 1, and is useful to establish the physical representation of some of

these quantities. This figure depicts the line corresponding to y = 0 in this work, the mean

interface location and corresponding tilt angle, θ, as well as the dimensions corresponding

to the sidewall bubble (hb) and spike (hs) heights.
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FIG. 5. Annotated version of the experimental image at t = 59.8 ms from figure 1. Indicated is

the line corresponding to y = 0 in this simulation, the mean interface location, the interface tilt

angle, θ, and the dimensions corresponding to the sidewall bubble (hb) and spike (hs) heights.

1. Bubble and Spike Height

The height of the bubble and spikes are calculated by first taking the planar average

of the heavy fluid mass fraction to get a profile of average heavy mass fraction versus the

vertical (z) coordinate:

⟨YH⟩(z) =
1

Lx

1

Ly

∫

x

∫

y

YH(x, y, z)dxdy (34)

where YH is the mass fraction of the heavy fluid, and Lx and Ly are the width and depth

of the tank, respectively. The crossings of 0.1% and 99.9% average heavy mass fraction are

then identified as the location of the spike and bubble, respectively. A plot of the bubble

and spike heights versus time, together with experimental data and the 600x600x960 mesh

TURMOIL results of Andrews et al. [7], is presented in figure 6. Note that while the criteria

used to identify the bubble and spike heights used in this work matches with the criteria

of Andrews et al. [7], the experimental measurements of Smeeton and Youngs [1] were
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FIG. 6. Heights of the (a): rising spike of heavy fluid on the left side of the domain and (b):

falling bubble of light fluid on the right side of the domain. Experimental data from Smeeton

and Youngs [1] (reproduced from Andrews et al. [7]) presented for comparison. TURMOIL data

is taken from the 600x600x960 mesh results of Andrews et al. [7]. Note that this data is plotted

versus τ (equation 29) for comparison purposes. The leveling off of the bubble and spike heights at

the latest times is attributed to the interaction of the sidewall bubble and spikes with the bottom

and top of the domain, respectively.

based on photographic analysis of the experimental images which utilized light refraction

based on density fluctuations. While the data from these two methods is comparable, this

difference in analysis should be acknowledged. Good agreement with the TURMOIL results

is observed for the highest resolution simulations in the present work. It is noted that these

simulations generally over-predict the bubble and spike heights versus the experimental

data, particularly at later times. This trend was also observed in the TURMOIL data. The

difference between the experimental data and simulation results is attributed to the different

acceleration profiles (time varying versus constant) between the experiment and simulation.

Additional analysis has been conducted which also examines the influence of the choice of this

threshold value on the resulting values of hb and hs. This analysis is presented in appendix

1. The general conclusion is that the values of hb and hs do show a slight sensitivity to the

choice of threshold used, and thresholds which may be more representative of those used in

the experiment do demonstrate better early to mid time agreement with the experimental

data. However, the later time disagreement between the experiment and simulation is still
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observed.

Generally, increasing resolution appears to cause the height of the sidewall bubble and

spike plumes to increase for a fixed instant in time. This change may, in part, be influenced

by the decrease in the initial diffusion thickness rather than being solely an effect of increased

grid resolution. Notably, while decreases in initial diffusion thickness do appear to increase

the values of hb and hs at a fixed time, this effect is less pronounced for each subsequent

refinement of the computational grid, and good convergence of the sidewall bubble and spike

heights is observed at the highest resolutions.

Finally, a leveling off of the spike height at the latest times for the highest resolution

simulations from the present work is also observed, which is attributed to the rising plume

of heavy fluid beginning to interact with the upper boundary of the domain. This leveling

off behavior is also observed in bubble and spike heights of the experiment and TURMOIL

simulation at the latest times. The difference in the maximum bubble and spike heights

attained between the present simulations and the experiment as well as TURMOIL data

is attributed to the difference in vertical domain extents between the two cases (24 cm in

experiment and TURMOIL[7], 25 cm in the present work).

2. Integral Mix Width

The integral mix width is another way that the width of the mixing layer may be calcu-

lated. This is defined as[32]

W =
1

Lx

∫∫
ȲH ȲLdxdz (35)

where ȲL and ȲH are the depth-averaged light and heavy mass fractions, respectively. It

may also be noted that for this two fluid problem, YL = 1− YH . The value of integral mix

width versus time and simulation resolution are presented in figure 7. There are two trends

in the behavior of W with changing mesh resolution that are observed. First, there is a

general decrease in W at early times with increasing mesh resolution. This is due to the

decrease in the initial diffusion thickness with increasing mesh resolution. Secondly, the later

time values of W are observed to increase from the R1 to R2 mesh, but then decrease with

increasing mesh resolution beyond this point. This is attributed to the improved resolution

of the initial perturbation spectrum with additional mesh refinement, and an associated

change in the physics of the problem. On the R1 mesh, the initial perturbation spectrum
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FIG. 7. Integral mixed width (Eq. 35) versus time and simulation resolution. TURMOIL data

is from the [1]: 300x300x480 and [2]: 600x600x900 meshes of Andrews et al. [7]. Note that the

nondimensional time is τ (equation 29) to facilitate comparison between constant and time-varying

gravity simulations.

is not fully resolved, and the modes that are resolved are generally similar to, or smaller

than, the initial diffusion thickness, reducing their growth and the degree of self-interaction

that takes place. On the R2 mesh, a greater number of modes are resolved, and the largest,

long wavelength modes become comparable in amplitude to the diffusion thickness, while

the short wavelength modes remain small compared to the diffusion thickness, mitigating

their influence.

This results in the mixing layer effectively consisting primarily of low mode components

which grow fairly large before self-interacting, resulting in a greater value of W as compared

to the R1 mesh. Then, beginning with the R4 mesh, an increasing fraction of the shorter

wavelength, small amplitude perturbations become large compared to the grid spacing and

diffusion thickness, increasing their influence on the flow. This results in an increased degree

of self-interaction at earlier times in the simulation, in turn resulting in a decreased integral

mixing layer width. Further refinement to the mesh results in a greater fraction of the

high wavenumber, low amplitude modes being resolved, further increasing self-interaction

at earlier times and decreasing the value of W . Refining to the R8 mesh and beyond shows

relatively little change to the value or trend of W over time, with the results from the R8

through R16 meshes lying nearly on top of each other in figure 7, indicating the solution
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is well converged at the highest resolutions. Good agreement with the 600x600x900 mesh

TURMOIL results of Andrews et al. [7] is also observed at the highest resolutions in the

present study.

3. Interface Tilt Angle

The interface undergoes a bulk overturning motion as the mixing layer evolves in time,

resulting in a increasing tilt angle of the interface with time. This is indicated by θ in figure

5. The tilt angle of the interface may be calculated as a function time by a least-squares

fit to the mean interface location over the middle 40% of the domain. The mean interface

location is found as a function of the horizontal (x) coordinate according to

h(x) =

∫ Lz/2

−Lz/2

ȲH(x, z)dz (36)

The interface tilt angle versus time and resolution is presented in figure 8. Also included are

two tilt angles from the experiment corresponding to the images in figure 1(a) and figure

1(b). These angles were estimated by using imaging processing software to analyze the

middle 40% of the image. The location of the top and bottom of the mixing layer are found

by searching for the location of the 90% image intensity crossings. The location of the middle

of the mixing layer is picked to be the location of the minimum image intensity. Linear fits

to these three estimations are used to estimate the slope, and therefore the tilt angle, of

the mixing layer. The average of these three tilt angle estimates is used to estimate the

overall tilt angle of the mixing layer. The uncertainty in these estimations arises from the

uncertainty of the fits. It should be emphasized that these angles are only estimates based

on analysis of these published images and are not obtained from the original experimental

data. Good agreement between all resolutions is observed up until t∗ ≈ 1.2, at which point

the trend of interface tilt angle versus time deviates slightly with changing resolution. An

initial increase in the interface tilt angle at the latest times is observed from R1 to R2, and

again from R2 to R4. R8 and R12 demonstrate a decrease in the interface tilt angle with

increasing resolution at the latest times. R12 and R16 have similar trends through time,

indicating this metric is well converged for the highest resolution runs. These results also

demonstrate good agreement with the RTI3D results of Andrews et al. [7] at the highest

grid resolutions. Additionally, good agreement with the estimated experimental data is also
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FIG. 8. Interface tilt angle versus time and resolution. RTI3D and CFDNS data is from Andrews

et al. [7]. The RTI3D data is from the 512x512x768 simulation, and CFDNS data is from the

Re = 14000 simulation. Experimental data is found by estimating the tilt angle using the images

in figure 1. Note that τ (equation 29) is used for nondimensional time to facilitate comparison

between constant gravity and time-varying gravity simulations.

observed.

4. Global Mixing Parameter

The global mixing parameter is a measure of the amount of mixed fluid versus the amount

of entrained fluid, and is defined according to

Θ =

∫
YLYHdxdz∫
ȲLȲHdxdz

(37)

The value of Θ ranges from 0, representing a state where all fluid is entrained and none is

mixed, to 1, representing a state where all fluid is mixed. A plot of Θ versus time and simu-

lation resolution is shown in figure 9. A general trend where there is an increased amount of

entrained fluid at early times in the simulation is observed with increasing resolution. The

lowest resolution runs, RN≤4, do not appear to achieve a turbulent transition, indicated by

the lack of a decrease and subsequent increase in Θ. Higher resolution runs do appear to

achieve a turbulent transition, with an approximately asymptotic value of Θ ≈ 0.78 attained

at late times. The late time convergence of Θ for RN≥8 indicates that these simulations have

achieved a fully turbulent mixing layer with mixing which resembles planar RTI configura-
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tions. In particular, these simulations are in good agreement for t∗ ≥ 1, which will be the

focus for subsequent investigation in this work.

5. Turbulent Kinetic Energy

The Favre-averaged Reynolds stress tensor is given by

R̃ij =
ρu

′′
i u

′′
j

ρ̄
(38)

Therefore the turbulent kinetic energy (TKE) is

T̃KE =
1

2
Tr(R̃ij) =

1

2
R̃ii =

1

2

ρu
′′
i u

′′
i

ρ̄
(39)

and the total amount of TKE in the domain is then

κtot = Ly

∫∫
ρ̄κdxdz (40)

Figure 10 depicts the total amount of turbulent kinetic energy in the tank versus time

and simulation resolution. The TKE results from the 512x512x768 inviscid (RTI3D-I) and

viscous (RTI3D-V) ILES simulations of Denissen et al. [8] are included for comparison. A

marked increase in turbulent kinetic energy is observed in the transition from R1 to R2. This

may be attributed to the spectrum of the initial perturbations not being fully resolved at

the most coarse simulation resolution together with a diffuse interface, both of which act to
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FIG. 10. Average amount of Turbulent Kinetic Energy vs time and resolution. RTI3D data taken

from the 512x512x768 simulations of Denissen et al. [8]. RTI3D-I and RTI3D-V refer to inviscid

and viscous ILES simulations, respectively. Note that data is plotted versus τ (equation 29) to

facilitate comparison between constant and time-varying gravity simulations.

diminish the amount of small-scale flow motions that are created. The increase in resolution

from R1 to R2 allows a greater fraction of the initial interface perturbations to be resolved

in the sense of being > 1 grid cell in height, and the interface becomes less diffuse, resulting

in an increase in overall TKE. Further increases in resolution then demonstrate a decrease

in the total amount of TKE at a fixed time versus the lower resolution runs. This is initially

counter-intuitive, but is attributed to a change in the underlying physics of the problem.

Recall that the width of the initial diffusion profile is a function of grid size. Therefore,

most of the high wavenumber modes present on the interface will be smaller than 1 grid cell,

and much smaller than the diffusion thickness, particularly at low grid resolutions. This

has the effect of “washing out” the higher wavenumber contributions (with correspondingly

low amplitudes) of the initial spectrum at low resolutions. This causes the bubble and

spike growth to more closely follow that of a single mode interface, manifesting as increased

TKE due to the larger velocity values attained before interaction between modes takes

place. Increasing resolution reduces the width of this initial diffusion zone, allowing the

higher wavenumber components to be better resolved. This causes a greater degree of self-

interaction between modes, with this interaction occurring at earlier times. This in turn

reduces the amplitude of the velocity fluctuations, resulting in an apparent decrease in TKE

23



despite an increase in the number of modes present. Little change in the amount of TKE

is expected once these perturbations are fully resolved, and indeed this is what is observed.

This behavior is also consistent with the results shown in figure 7, where changes in integral

mixed width with increasing grid resolution are attributed to changes in the interaction of

the spikes and bubbles in the central mixing layer. Likewise, the plot of global mixedness

in figure 9 suggests that R1 through R4 do not attain a turbulent transition, which also

indicates the lack of self-interaction between modes. Overall, the highest resolution runs are

all well converged in integrated TKE, with a small change observed between R4 and R8, and

almost no change observed from R8 to R16. The present simulations demonstrate a slightly

greater amount of TKE than is observed in the ILES simulations of Denissen et al. [8], but

otherwise agree well. The difference between these two cases is attributed to differences in

the numerical method utilized as well as the influence of different grid spacing between the

two simulations.

B. Spatial Convergence

The previous sections have demonstrated that the simulations presented here have

achieved good convergence with respect to temporal trends of the solution. It is also

useful to examine the trends of spatial profiles at a fixed time to ensure that convergence

with respect to spatial variations has also been achieved.

1. Heavy Mass Fraction

Pseudocolor plots of ȲH from the highest resolution simulation at t∗ = 1.241 and t∗ =

1.745 are presented in the top half of figure 11. The bottom half of this figure depicts the

average profile of ȲH for each simulation resolution run as part of this study. A slight shift

in the tilt-compensated average profile is observed from R1 to R2. This can be attributed

to the additional grid points more completely resolving the initial perturbation spectrum.

Increasing resolution beyond this point does not show a significant change with regards to

this averaged profile, demonstrating good convergence at the highest resolution runs.
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FIG. 11. Pseudocolor of depth-averaged heavy mass fraction from the R16 mesh run and tilt-

compensated average profiles for each simulation resolution at two time instances: (a,c) t∗ = 1.241

and (b,d) t∗ = 1.745.

2. Turbulent Kinetic Energy

The depth-averaged distribution of turbulent kinetic energy for the highest simulation

resolution, as well as the spatially-averaged profile of turbulent kinetic energy for all reso-

lutions, are presented in figure 12 for two time instances, t∗ = 1.241 and t∗ = 1.745. TKE

is fairly uniformly distributed across the domain, though more intense regions of TKE are

observed in tip of the falling bubble on the right hand side of the domain. A second, less
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FIG. 12. Pseudocolor of depth-averaged normalized turbulent kinetic energy, TKE∗ = T̃KE/u20,

from the R16 mesh run and corresponding tilt-compensated profiles for each simulation resolution

at two time instances: (a,c) t∗ = 1.241 and (b,d) t∗ = 1.745.

intense peak in the spatial distribution of TKE is observed at the tip of the rising spike

on the left hand side of the domain. The tilt-compensated average profile of TKE has an

approximately Gaussian shape, with the peak intensity of TKE located at the center of the

mixing layer. The change of the spatial profile of TKE with changing resolution is similar

to the change in temporal trends of TKE with increasing resolution observed in figure 10.

At early times, a large increase in TKE is observed from when going from R1 to R2. This
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may be attributed to the initial perturbation spectrum being more fully resolved by the

increased resolution. Additional resolution increases result in a decrease in the magnitude

of TKE across the mixing layer, although the spatial distribution remains relatively simi-

lar. This trend is similar at later times with the exception that the jump in TKE between

the two lowest resolutions is not observed. This trend of decreasing TKE with increasing

simulation resolution was also observed in the temporal trends of TKE in figure 10. As

with the temporal trends, this behavior is attributed to better resolving the highest mode

contributions with increasing grid resolution.

V. RESULTS: TURBULENT TRANSPORT BUDGETS

Having built confidence in our results by demonstrating solution convergence as well as

favorable comparison with prior works in the previous section, we now seek to more fully

characterize mass and momentum transport by considering the spatial distributions and

turbulent budgets of turbulent mass flux velocity, species transport, species variance, and

Reynolds stresses. This section examines the results in two ways. Firstly, two-dimensional

depth-averaged plots of the flow variables of interest will be presented at two time instances

corresponding to t∗ = 1.241 (t = 37 ms) and t∗ = 1.745 (t = 52 ms). Secondly, vertical

lineouts of the terms in the unclosed budget equations for each flow variable of interest

are presented. These lineouts are calculated similarly to the procedure described for the

spatially averaged profiles in section III C, with the note that the budget equations used

here are all already depth-averaged, and so do not require any additional averaging in that

axis.

Several budget equations examined as part of this work include the species mass fraction

of species α, Yα. Analysis in these cases will be restricted only to the heavy fluid, α = H,

without loss of information due to the fact that this is a two-fluid problem. The results for the

light fluid, α = L, may be found from the heavy fluid results by noting that YL = 1 − YH .

Additionally, terms in the budget equations which include neglected molecular transport

quantities (i.e. Df , µf , etc) are themselves neglected in this analysis.
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A. Turbulent Mass Flux Velocity

1. Distribution

The first quantity of interest is the value of the turbulent mass flux velocity, which is

defined as[33]

ai = −u′′
i =

ρ′u′i
ρ̄

(41)

where ui is the velocity in axis i, ρ is the density, and ai is the turbulent mass flux velocity

corresponding to velocity component i. This term represents the transport of mass due to

turbulent velocity in the mixing layer, and is an important source of production of TKE in

buoyancy driven flows. Two-dimensional pseudocolor plots depicting the spatial distribution

of a∗i = ai/u0 at t∗ = 1.241 and t∗ = 1.745 are shown in figure 13. Several trends may be

observed in these distributions. For the horizontal component (a and c), there is a transport

of mass that is opposite of the density gradient between the two fluids. This is localized

to the central mixing layer, and increases in intensity over time. This counter-gradient flux

behavior has also been observed in other work on this problem[8]. In the vertical axis, a

general upwards transport of mass is observed, with the greatest turbulent mass flux velocity

located in the spike and bubble plumes. Additionally, the magnitude of a∗z is approximately

five times greater than that of a∗x along the centerline.

Another way to visualize the transport of mass shown in figure 13 is to use a quiver

plot, with the components of ai as the components of the vector. A separate run on the R4

mesh with an initial tilt angle of θ = 20 degrees was conducted. This greater tilt angle was

chosen in order to reduce the disparity between the horizontal and vertical components of

ai to make the direction of mass transport easier to visualize. This is presented in figure

14, where ai = {ax, az}. The main plot depicts ai over the region where 0.1 ≤ ȲH ≤ 0.9 at

t∗ = 1.0. The inset depicts a zoomed in region depicting the mixing layer in more detail.

The contour lines depict ȲH from 0.1 to 0.9 in steps of 0.1. Examination of the inset plot

reveals that the transport of mass is upwards and to the right from below the mixing layer.

This transport of mass then turns upwards and to the left as it transits the interface and

reaches the light side of the mixing layer.
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FIG. 13. Distribution of (left) a∗x and (right) a∗z at (top): t
∗ = 1.241 and (bottom): t∗ = 1.745.
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FIG. 14. Quiver plot of ai = {ax, az}. Transport of mass normal to the interface and then leftward

is visible in the inset.

2. Budget Equation

The transport equation for turbulent mass flux velocity, given by Besnard et al. [33] and

reproduced from Wong et al. [34], is

∂(ρ̄ai)

∂t︸ ︷︷ ︸
Term 1

+
∂(ρ̄ũkai)

∂xk︸ ︷︷ ︸
Term 2

= b

(
∂p̄

∂xi
− ∂τ̄ki
∂xk

)

︸ ︷︷ ︸
Term 3a

− R̃ik
∂ρ̄

∂xk︸ ︷︷ ︸
Term 3b

+ ρ̄
∂(akai)

∂xk︸ ︷︷ ︸
Term 4a

− ρ̄ak
∂ūi
∂xk︸ ︷︷ ︸

Term 4b

− ρ̄
∂(ρ′u′iu

′
k/ρ̄)

∂xk︸ ︷︷ ︸
Term 5

+

+ ρ̄

(
1

ρ

)′(
∂p′

∂xi
− ∂τ ′ik
∂xk

)
− ρ̄u′i

∂u′k
∂xk︸ ︷︷ ︸

Term 6

(42)

where b is the density-specific volume covariance, b = −ρ′(1/ρ)′. Term 1 represents the time

rate of change, term 2 represents convection, term 3 represents production, term 4 represents

redistribution, term 5 represents turbulent transport, and term 6 represents destruction.
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FIG. 15. Terms of the turbulent mass flux budget (equation 42) in (left) the horizontal (x) axis

and (right) the vertical (z) axis at (top) t∗ = 1.241 and (bottom) t∗ = 1.745.

Note that term 3 has been split in to term 3a and 3b, with these representing production

due to buoyancy and Reynolds stress, respectively. Similarly, term 4 has been split in to

terms 4a and 4b, representing redistribution due to correlation between axes and due to

flow gradients. Figure 15 depicts each budget term averaged over the center of the domain

at t∗ = 1.241 and t∗ = 1.745. The dominant contributions to the budget equation in the

horizontal axis (x) come from terms 4 and 6. Similarly, the dominant contributions to the

budget equation in the vertical axis (z) are from terms 3 and 6. This indicates, perhaps

unsurprisingly, that the transport most aligned with gravity is dominated by production and

destruction, while the transverse component is primarily influenced by redistribution and

destruction. Figure 16 presents terms 3 and 4 broken in to terms a and b for each axis. The

most significant contribution in the vertical (z) axis is from the production terms, which

are approximately equally split between the buoyancy (term 3a) and Reynolds stress (term

3b) production. The most significant contribution in the horizontal (x) axis is from the
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FIG. 16. Split contributions to the combined (top) production (term 3) and (bottom) redistri-

bution (term 4) terms of the turbulent mass flux budget (equation 42) in (left) the x axis and

(right) the z axis. All plots are from t∗ = 1.241.

redistribution term, which is dominated by term 4b. This term is frequently neglected in

RANS models such as K-L-a[35]. The present results suggest that it is necessary to include

this term to accurately predict two-dimensional mixing.

Further analysis of the budget terms in figure 16 demonstrate a few other trends worthy

of note. In the horizontal axis, the combined production term (term 3) has a semi-sinusoidal

shape. The split of this term reveals that this occurs due to the contribution of term

3b, representing production via Reynolds stress, as term 3a demonstrates a single-sided

parabolic profile. A similar behavior is observed in the vertical component of the combined

redistribution term (term 4). The pseudo-sinusoidal shape of this term is due to the influence

of term 4a, representing correlation between axes, as term 4b, representing the influence of

flow gradients, is single-sided. In both cases, these terms are not the dominant contribution

to the budget equations in their respective axes.
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B. Species Mass Fraction Flux

The species mass fraction flux is defined as[36]

Ωα
i = Y

′′

α u
′′

i ∴ Ω̃α
i = −ρY

′′
α u

′′
i

ρ̄
(43)

Note the negative sign in the definition of Ω̃α
i . This was added in keeping with the definition

of Braun and Gore [36]. Figure 17 depicts the distribution of Ω̃α∗
i = Ω̃α

i /u0 at t
∗ = 1.241 and

t∗ = 1.745. A strong similarity between the species mass fraction flux and the distribution

of turbulent mass flux velocity (figure 13) is observed, both in the qualitative distribution of

each quantity, as well as in the range of values attained by each metric. As a consequence,

similar observations may be made. A counter-gradient flux of horizontal species mass frac-

tion is observed on the light fluid side of the central mixing layer. The intensity of this

counter-gradient flux increases over time. The vertical transport of the heavy species mass

fraction is likewise similar to the vertical component of the turbulent mass flux velocity

distribution. A general upwards transport of the heavy fluid is observed across the mix-

ing layer, with the most intense regions of upwards transport concentrated in the side-wall

bubble and spike plumes.

1. Budget Equation

The budget equation for species mass fraction flux is taken from Braun and Gore [36],

and with some rearrangement is stated as

∂ρ̄Ω̃α
i

∂t︸ ︷︷ ︸
Term 1

+
∂(ρ̄Ω̃α

i )

∂xj︸ ︷︷ ︸
Term 2

= Y ′′
α

∂P̄

∂xi︸ ︷︷ ︸
Term 3a

+ ρ̄R̃ij
∂Ỹα
∂xj︸ ︷︷ ︸

Term 3b

+ ai
∂(ρ̄Ω̃α

j )

∂xj︸ ︷︷ ︸
Term 4a

−

− ρ̄Ω̃α
i

∂ūi
∂xj︸ ︷︷ ︸

Term 4b

+
∂(ρu

′
iu

′′
jY

′′
α )

∂xj︸ ︷︷ ︸
Term 5

−Y ′′
α

∂σ
′
in

∂xn
− u

′′
i∆

α′

︸ ︷︷ ︸
Term 6

(44)

where ai is the turbulent mass flux velocity (equation 41), σij = τij − δijP̄ and δij is the

Kronecker delta, and ∆α′
= Dα

j,j − ρDα
j,j/ρ̄. This has been arranged to approximately corre-

spond to the labeled terms in the budget for turbulent mass flux velocity. Term 1 is the time

rate of change, Term 2 is transport, Term 3a and Term 3b correspond to production, Term
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FIG. 17. Distribution of (left) Ω̃H∗
x and (right) Ω̃H∗

z at (top): t∗ = 1.241 and (bottom):

t∗ = 1.745

4a and 4b represent redistribution, term 5 represents turbulent transport, and term 6 repre-

sents destruction. Note that in this work Df ≡ 0 and so terms containing ∆k′ are neglected.

Recalling that µf ≡ 0 for this work, we find that terms containing σ
′
ij may also be neglected.

This, in effect, results in neglecting the entirety of Term 6. Figure 18 shows the terms of this

budget equation for components of equation 44 corresponding to the horizontal and vertical

components of velocity at times t∗ = 1.241 and t∗ = 1.745. Perhaps unsurprisingly given

the similar spatial distributions of mass flux velocity and species mass fraction flux, similar
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FIG. 18. The terms in the budget of species mass fraction flux (equation 44) for (left) the horizontal

axis and (right) the vertical axis at times (top) t∗ = 1.241 and (bottom) t∗ = 1.745.

trends to those observed for the budget of turbulent mass flux (figure 15) is observed here.

The contributions to the budget equation in the horizontal axis are primarily dominated by

the combined redistribution term (term 4). The vertical component of the budget equation

is dominated by contributions from the combined production term (term 3). Also notable in

the vertical axis is that term 5, representing turbulent transport, also has a non-negligible

contribution. This contribution is negative on the edges of the mixing layer, and positive

towards the center, representing a diffusive-like transport of species mass fraction flux.

The combined production (term 3) and redistribution (term 4) terms can once again be

split in to their “a” and “b” components. Figure 19 depicts these contributions to each

term in each axis at t∗ = 1.241. Similar observations as those made for the turbulent mass

flux velocity budget terms can be made here. The combined production term (term 3) is

the dominant term in the budget of Ω̃H
z , and the two split production terms comprise ap-

proximately equal portions of the total. The combined redistribution term (term 4), which
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FIG. 19. Split contributions to the combined (top) production (term 3) and (bottom) redistri-

bution (term 4) terms from the budget equation for species mass fraction flux (equation 44) in the

(left) horizontal and (right) vertical axis.

is the dominant term in the budget for Ω̃H
x , is dominated by contributions from the “b”

term. These trends are similar to the those observed for the budgets of the turbulent mass

flux velocity, ai.Additionally, Term 3 in the horizontal axis has a pseudo-sinusoidal distribu-

tion, with a zero-crossing near the central part of the mixing layer. Term 3a, representing

buoyancy production, is single-sided and so this behavior cannot be explained by that term

alone. This behavior is caused by the contribution from term 3b, representing production

from the Reynolds stress, which also changes sign around the middle of the mixing layer.

This trend is also observed in the vertical component of term 4, though in this case both

terms “a” and “b” change signs across the mixing layer, contributing to the sign change of

the overall term. This is in contrast to the vertical component of term 4 from the turbulent

mass flux velocity, where part “a” was single sided and only part “b” was responsible for

the change in sign of this term across the mixing layer.
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FIG. 20. Distribution of Ỹ ′′2
α at (a): t∗ = 1.241 and (b): t∗ = 1.745

C. Scalar Mass Fraction Variance

1. Spatial Distribution

The scalar mass fraction variance is defined as

Ỹ ′′2
α =

ρY ′′
α Y

′′
α

ρ̄
(45)

and will be referred to simply as “scalar variance” going forward. Recall that, as this is a two

fluid problem, only the heavy fluid (α = H) will be considered here. Figure 20 depicts the

distribution of Ỹ
′′2
H over the simulation domain at t∗ = 1.241 and t∗ = 1.745. The variance

of heavy mass fraction is relatively evenly distributed horizontally over the mixing layer,

with the greatest variance at the center of the layer, and decreasing variance towards the

edges. A region of increased variance is observed near the edge of the domain, at the base

of the spike of heavy fluid traveling up the side wall, as well as at the top of the mushroom

structure at the tip of the plume. This behavior is particularly noticeable at later times.

This increased variance is not observed near the root of the plume of light fluid on the right

edge of the domain, however.
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FIG. 21. Budget terms for scalar variance (equation 46) at (a): t∗ = 1.241 and (b): t∗ = 1.745.

2. Budget Equation

The budget equation for scalar mass fraction variance is[37]

ρ̄
∂Ỹ ′′2

α

∂t︸ ︷︷ ︸
Term 1

+ ρ̄ui
∂Ỹ ′′2

α

∂xi︸ ︷︷ ︸
Term 2

= −2ρu
′′
i Y

′′
α

∂Ỹα
∂xi︸ ︷︷ ︸

Term 3

− 2ρD
∂Y ′′

α

∂xi

∂Y ′′
α

∂xi︸ ︷︷ ︸
Term 4

+
∂

∂xi

(
ρD

∂Y ′′2
α

∂xi
− ρu

′′
i Y

′′2
α

)

︸ ︷︷ ︸
Term 5

(46)

where Term 1 is the time rate of change, Term 2 is the transport, Term 3 is production,

Term 4 is dissipation, and Term 5 is turbulent transport and diffusion. Note that Term 4,

as well as the first part of Term 5, have been neglected as they contain Df , which was taken

to be zero for this study. Figure 21 depicts the budget terms at t∗ = 1.241 and t∗ = 1.745.

These budget terms indicate that production of scalar variance is greatest in the center of

the mixing layer. The turbulent transport of scalar variance is negative in the center of

the mixing layer, and positive on the edges. This indicates a diffusive-like redistribution of

variance from the center to the edges of the mixing layer.

D. Favre-averaged Reynolds Stress Tensor

1. Spatial Distribution

The Favre-averaged Reynolds stress is defined as,

R̃ij =
ρu

′′
i u

′′
j

ρ̄
(47)
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FIG. 22. The spatial distributions of (left) R̃∗
xx, (center) R̃

∗
xz and (right) R̃∗

zz at (top) t
∗ = 1.241

and (bottom) t∗ = 1.745.

Only R̃xx, R̃xz and R̃zz are resolved in this work by noting that the simulation is periodic

in y. The spatial distribution of the resolved components of R̃∗
ij = R̃ij/u

2
0 at t∗ = 1.241

and t∗ = 1.745 is presented in figure 22. Qualitative similarities to the distributions of

turbulent mass flux velocity (figure 13) and species mass fraction flux (figure 17) may be

observed. Notably, the principle axis components, R̃∗
xx and R̃∗

zz, have trends similar to the

vertical component of turbulent mass flux velocity and species mass fraction flux. These

components are positive over most of the domain, with the most intense regions located
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at the edges of the domain. The shear component, R̃∗
xz, has a distribution similar to the

horizontal component of turbulent mass flux velocity and species mass fraction flux, with a

counter-gradient flux observed in the middle of the primary mixing layer. The most intense

regions of R̃∗
xz are located within the plumes at the edges of the domain, similar to what

was observed for R̃∗
xx and R̃∗

zz.

2. Budget Equation

The Favre-averaged Reynolds stress tensor transport equation is given by Besnard et al.

[33], and here is reproduced from Wong et al. [34],

∂ρ̄R̃ij

∂t︸ ︷︷ ︸
Term 1

+
∂
(
ρ̄ũkR̃ij

)

∂xk︸ ︷︷ ︸
Term 2

= ai

(
∂p̄

∂xj
− ∂τ̄jk
∂xk

)
+ aj

(
∂p̄

∂xi
− ∂τ̄ik
∂xk

)

︸ ︷︷ ︸
Term 3a

− ρ̄R̃ik
∂ũj
∂xk

− ρ̄R̃jk
∂ũi
∂xk︸ ︷︷ ︸

Term 3b

−

− ∂(u′ip
′)

∂xj
−
∂(u′jp

′)

∂xi︸ ︷︷ ︸
Term 4a

+ p′
∂u′i
∂xj

+ p′
∂u′j
∂xi︸ ︷︷ ︸

Term 4b

−
∂(ρu

′′
i u

′′
ju

′′
k)

∂xk︸ ︷︷ ︸
Term 5a

+
∂(u′iτ

′
jk)

∂xk
+
∂(u′jτ

′
jk)

∂xk︸ ︷︷ ︸
Term 5b

−

− τ ′jk
∂u′i
∂xk

− τ ′ik
∂u′j
∂xk︸ ︷︷ ︸

Term 6

(48)

These terms have once again been grouped to be approximately comparable to the similarly

labeled terms used previously in this work. Term 1 represents the time rate of change,

term 2 represents transport, term 3 represents production, term 4 represents redistribution,

term 5 represents turbulent transport, and term 6 represents destruction. Note that, as

with elsewhere in this document, the terms containing neglected quantities are themselves

neglected. This results in term 5b and term 6 being neglected here, in addition to the

components of term 3a which contain τij. Terms 3 and 4 have also been split in a similar

way to previous equations presented in this work. Term 3a and 3b represent production

by buoyancy and Reynolds stress. Terms 4a and 4b represent redistribution due to the

pressure-strain correlation[38].

The tilt-compensated average profiles of each term in equation 48 are presented in figure

23 for each of the three resolved components of the stress tensor at t∗ = 1.241 and t∗ = 1.744.

The horizontal normal stress component (R̃∗
xx) is dominated by contributions from term 4,

representing the combined redistribution term, with the production and turbulent transport

40



R̃∗
xx R̃∗

xz R̃∗
zz

t∗
=

1
.2
4
1

−2 −1 0 1 2
−10

0

10

20
(a)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/
t 0
)

−2 −1 0 1 2
−20

−10

0

10

20
(b)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/
t 0
)

−2 −1 0 1 2
−40

−20
0

20

40

60

80
(c)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/
t 0
)

t∗
=

1
.7
4
5

−2 −1 0 1 2
−10

0

10

20
(d)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/t

0
)

−2 −1 0 1 2
−20

−10

0

10

20
(e)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/t

0
)

−2 −1 0 1 2
−40

−20
0

20

40

60

80
(f)

z/4W

⟨T
er
m
⟩/
(⟨
ρ̄
⟩u

2 0
/t

0
)

FIG. 23. Terms of the budget equation for the components of the Reynolds stress tensor (equation

48) corresponding to the (left): horizontal normal stress (R̃∗
xx), (center): x-z shear stress (R̃∗

xz),

and (right): vertical normal stress (R̃∗
zz) components at times (top): t∗ = 1.241 and (bottom):

t∗ = 1.745. The black, red, and blue lines correspond to terms 3, 4, and 5 in the budget equation,

respectively.

terms representing a smaller contribution. This is similar to the trends observed in the hor-

izontal component of the budget equations of turbulent mass flux velocity and species mass

fraction flux. The vertical normal stress component (R̃∗
zz) is dominated by production (term

3), though a non-negligible diffusive-like contribution from term 5 is also observed. This is

again similar to the trends observed in the vertical components of the turbulent mass flux

velocity and species mass fraction flux budget equations. The horizontal shear component

(R̃∗
xz) has approximately equal contributions from terms 3 and 4, with term 5 being the

least significant contribution. Interestingly, the spatial distribution of R̃∗
xz demonstrates a

counter-gradient momentum flux similar to what was observed for the transverse compo-

nents of turbulent mass flux velocity and species mass fraction flux examined in this work.

However, the dominant terms of the budget equations associated with these other quantities

differ from the dominant terms in the budget for R̃∗
xz. It is also interesting to note that the
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FIG. 24. Decomposition of (top) term 3 and (bottom): term 4 for the (left): horizontal normal

stress (R̃∗
xx), (center:): x − z shear stress (R̃∗

xz), and (right): vertical normal stress (R̃∗
zz) com-

ponents of the Favre-averaged Reynolds stress tensor. All plots are from t∗ = 1.241. The blue and

red lines indicate the “A” and “B” terms respectively, and the black line indicates the sum of “A”

and “B”.

horizontal component is primarily dominated by redistribution (term 3), the shear stress

component sees approximately equal contributions from production and redistribution, and

the vertical normal stress component is dominated by the production term. A redistribution

dominated transverse flow and a production dominated vertical flow has been observed in

other budget equations studied in the present work. The presence of a shear component is

unique to the Reynolds stress tensor, however, and it is interesting to note that redistribution

and production are of approximately equal importance for this component.

The production (term 3) and redistribution (term 4) terms may again be split in to their

“a” and “b” components to further examine the relative importance of these two terms

for each component of the Reynolds stress tensor. These are presented in figure 24. It

can be observed that production is dominated by production due to Reynolds stress for all

resolved components, with the exception of the vertical principle stress component, R̃∗
zz,
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where production due to buoyancy is dominant. Redistribution (Term 4) is dominated by

the contribution from the pressure-strain correlation term (term 4b) in almost all cases. The

turbulent pressure strain correlation term (term 4a) is generally a much smaller contribution

than term 4b, with the exception of the vertical normal stress component term where it plays

a non-negligible role.

3. Reynolds Anisotropy Tensor

A final metric of interest concerns the isotropy of this flow. One way this can be examined

is through the use of the normalized Reynolds anisotropy tensor. This is defined as[34, 39]

bij =
R̃ij

2k̃
− 1

3
δij =

R̃ij

R̃kk

− 1

3
δij (49)

where R̃ij is the Favre-averaged Reynolds stress tensor, and δij is the Kronecker delta. The

components of the normalized Reynolds anisotropy tensor give a measure of the degree of

anisotropy, or preferred directionality, of the flow. The principle axis components of the

anisotropy tensor here do not appear to have significant spatial variation over the mixing

layer. The distributions of the normalized Reynolds anisotropy tensor components for the

two available diagonal components of the Reynolds stress tensor (bxx and bzz), as well as the

shear stress component (bxz), at two time instants corresponding to t∗ = 1.241 and t∗ = 1.745

is shown in figure 25. These figures are masked to only show regions where 0.01 ≤ ỸH ≤ 0.99,

with bij set to 0 outside of these regions. This was done to restrict analysis to the region

where mixing is occurring. A relatively constant value of bij is observed throughout the

mixing layer for both the horizontal and vertical components. At later times, a slight

difference in bij may be observed at the edges of the mixing layer versus the central region.

It can also be observed that the vertical axis contains a substantially greater fraction of the

total energy than the horizontal axis. Figure 26 depicts the tilt-compensated average profile

of bij for t
∗ = 1.241 and t∗ = 1.745 in order to more closely examine the distribution and

values of bij across the central mixing layer. As with the pseudocolor plots, the lineout is

masked to only include regions where 0.01 ≤ ⟨ỸH⟩ ≤ 0.99. bww, representing the vertical

axis, has an average value across the mixing layer of bzz ≈ 0.28, which a relatively constant

value observed across the mixing layer width at t∗ = 1.241. A similar value is observed

at t∗ = 1.745, though a greater variation in bzz is observed across the mixing layer. bxx,
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FIG. 25. The spatial distributions of the Reynolds anisotropy tensor (equation 49) corresponding

to (left) bxx, (center) bxz, and (right) bzz at (top) t∗ = 1.241 and (bottom) t∗ = 1.745.

representing the horizontal axis, has a similarly constantly value across the mixing layer,

though with a lower value of bxx ≈ −0.14, with this value being approximately the same for

both time instances.
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FIG. 26. Tilt-compensated averaged profiles of bij (equation 49) for (a): t∗ = 1.241 and (b):

t∗ = 1.745. This profile is equal to bij where 0.01 ≤ ỸH ≤ 0.99, and set to zero outside of this

region.

VI. CONCLUSIONS

Results from high resolution simulations on the Tilted Rocket Rig experiment conducted

using Miranda, a tenth-order compact finite difference hydrodynamics code have been pre-

sented. These simulations seek to closely follow Case 110 from the experiments of Smeeton

and Youngs [1]. These simulations were conducted at several mesh resolutions in order to

demonstrate convergence of the solution. Five parameters were used to establish temporal

convergence of the solution. The first is the height of the rising spike of heavy fluid at the

left edge of the domain and the falling bubble of light fluid at the right of the domain.

Good agreement between these simulations and experimental data is observed. Other

metrics to demonstrate temporal convergence of the solution include integral mix width, the

global mixing parameter, the amount of turbulent kinetic energy present in the flow, and

the interface tilt angle. All of these metrics demonstrated good convergence with increasing

grid resolution, as well as good agreement with previous simulations of this configuration[7].

Additional metrics to demonstrate spatial convergence of the solution include the spatial

distributions of heavy fluid mass fraction and turbulent kinetic energy (TKE) at two fixed

time instances. Both of these metrics also demonstrated good convergence at the highest

resolution runs.

Analysis of these simulations has focused on both the spatial distribution of a number of

flow variables relevant to the transport of mass and momentum in the mixing layer, including
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the turbulent mass flux velocity, turbulent species mass fraction flux, scalar variance, and

Favre-averaged Reynolds stress tensor components, as well as the averaged behavior of the

individual terms which comprise the unclosed budget equations for these quantities in the

central mixing layer. The spatial distribution of the Favre-averaged Reynolds anisotropy

tensor was also examined. This analysis was conducted at two times, corresponding to mid

time and late time in the development of the turbulent mixing layer.

The unclosed budget equations for the Favre-averaged Reynolds stress tensor terms were

examined. The horizontal normal stress component is dominated by redistribution, the

u-w shear stress component sees approximately equal contributions from production and

redistribution, and the vertical normal stress component is dominated by the production

terms. The redistribution term in each of these cases is primarily dominated by the pressure-

strain correlation term, although the vertical normal stress component does see a non-

negligible contribution from a turbulent pressure strain correlation term as well.

Additionally, examination of the directionality of the flow using the Favre-averaged

Reynolds anisotropy tensor was conducted. The distribution of anisotropy is found to be

relatively constant across the mixing layer. The vertical component of the flow is found to

have a majority of the energy, with a value of bzz ≈ 0.28 across the central mixing layer. The

horizontal component has a value of bxx ≈ −0.14, with this value being relatively constant

across the mixing layer.

The spatial distributions of turbulent mass flux velocity, as well as the turbulent species

mass fraction flux, are observed to be similar. The horizontal components demonstrate a

counter-gradient flux in the upper half of the central mixing layer for both metrics. This

behavior for the turbulent mass flux velocity has been previously reported by Denissen

et al. [8]. The vertical components of both of these quantities are similar, with a general

trend showing an upwards flux of each. The spatial distribution of the Favre-averaged

Reynolds stress tensor shows similar trends to these quantities as well, with the principle

stress components being similar to the vertical components of turbulent mass flux velocity

and species mass fraction flux, and the shear stress component being similar to the horizontal

component of these fields.

The unclosed budget equations for turbulent mass flux velocity and turbulent species

mass fraction flux are also analyzed. The vertical components of these budget equations are

dominated by production, while the transverse components are dominated by redistribution.
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The production and redistribution terms have also been analyzed term-by-term in order

to examine the relative influence of each term. In the vertical axis, where production is

dominant, it is found that production due to buoyancy and Reynolds stresses comprise

approximately equal parts of the total production term. A different trend is observed in the

transverse axis, where the redistribution term is primarily influenced by a single term. This

term is frequently neglected as part of Reynolds-Averaged Navier Stokes modeling. This

result indicates that inclusion of this term in the models is important in order to accurately

predict two dimensional mixing.
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VIII. APPENDIX

1. Sensitivity of sidewall bubble and spike heights to threshold choice

A potential source of the disagreement between the simulation results and the experi-

mental data may arise from differences in how hb and hs are calculated, particularly the

thresholds chosen to identify the edge of the spike and bubble plumes. It is therefore useful

to examine the sensitivity of results to changing the threshold used. Two approaches are

used to examine this influence. First, the bubble and spike amplitudes are found by utiliz-

ing the prescription of Andrews et al. [7] with thresholds of 99.9/0.01% and 99/1%. One

aspect of note is that this method results in the bubble and spike plumes manifesting as

small “tails” in the averaged mass fraction data as they only occupy a small part of the

domain width. Consequently, this method does not work as well for thresholds less sensitive
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FIG. 27. Profile of ⟨YH⟩ with the average taken over the whole domain. The “tails” representing

the sidewall spike and bubble are visible. Note that these features fall below the 5% threshold and

so would not be correctly detected.

than 99/1%, which may not be representative of the experimental analysis. A representative

plot of ⟨YH⟩ is shown in figure 27 which depicts these tails and illustrates how less sensitive

thresholds will not correctly detect the location of the sidewall bubble and spikes. A second

method which is more resilient to less sensitive thresholds involves selecting the first 10%

(spike) or last 10% (bubble) of the data along the x axis. This has the effect of reducing

the data to only the region containing the spike or bubble plumes. This sub-selected data

is then averaged using equation 34 to produce a profile of average heavy mass fraction as

a function of the vertical (z) coordinate in this sub-selected region. This approach results

in the spike or bubble plumes comprising a greater percentage of the data that is averaged,

and therefore increases their influence in the averaged profiles. This, in turn, allows for less

sensitive thresholds to be utilized which may be more comparable to those used in the ex-

periment. The thresholds used are the crossings of 99.1/0.01%, 99/1%, 95/5%, and 90/10%

averaged heavy mass fraction. The comparison between bubble and spike heights for the

two methods and different thresholds from the R16 mesh, together with the experimental

data, is presented in figure 28.

Generally, increasing the threshold values appears to result in slight decreases to the

bubble and spike heights, as expected, although large differences in bubble and spike heights
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FIG. 28. Heights of the (a): rising spike of heavy fluid on the left side of the domain and (b):

falling bubble of light fluid on the right side of the domain as a function of analysis method and

threshold. F corresponds to profiles using the full domain, S corresponds to profiles obtained by

sub-selecting the data, and the subscript denotes the threshold value of ⟨YH⟩ used to determine

the location of the bubble or spike. Experimental data from Smeeton and Youngs [1] (reproduced

from Andrews et al. [7]) presented for comparison.

are not observed across different threshold values. The results of the 99.9/0.01% threshold

using the entire domain and the 99/1% using the sub-selected domain appear to agree well.

This is similarly true for the 99% whole domain and 95% sub-selected domain results. The

99% (whole domain)/95% (sub selected) results also appear to have a better agreement

with experimental data at early through middle times, though late time disagreement is still

observed. In general, the observed improved agreement for early to middle times is likely

due to this threshold being closer to the threshold used in the experiment.
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