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1 Univ. Bordeaux, CNRS, LOMA,

UMR 5798, F-33400 Talence, France

2 Department of Mechanical and Materials Engineering,

Portland State University, Portland, OR 97201, USA

3 Ens de Lyon, CNRS, Laboratoire de physique,

UMR 5672, F-69342 Lyon, France and

4 Univ. Grenoble Alpes, CNRS, Grenoble INP,

Institut Néel, 38000 Grenoble, France

1



Abstract

When a fluid in turbulent motion is tagged by a non-uniform concentration of ideal tracers, the

mean velocity of the tracers may not match with the mean velocity of the fluid flow. This implies

that conventional particle tracking velocimetry will not produce the mean flow of a turbulent

flow unless the particle seeding is homogeneous. In this work, we consider the problem of mean

flow estimation from a set of particle tracks obtained in a situation of non-homogeneous seeding.

To compensate the bias caused by the non-homogeneous particle seeding, we propose a modified

particle tracking velocimetry method. This method is called a time-delayed velocity and considers

the velocity trajectory of a given particle shifted in time with respect to its position. We first

introduce our method for an ideal advection–diffusion model and then we implement it for a

turbulent channel and a turbulent jet. For both situations, we find that the velocity bias caused

by the non-homogeneous tracer concentration is reduced with a time delay introduced between

position and velocity of the tracer trajectories. For the turbulent channel, the error on the mean

flow estimation monotonically decreases for increasing time delays. For the turbulent jet, the error

on the mean flow estimation also reduces with positive time delays but the time delay should not be

too large. We interpret this limitation as a consequence of the spatial dependence of the mean flow.

For the turbulent channel, this limitation does not appear because the velocity for the mean flow

streamlines is constant. For both flows, the optimal time delay for the velocity bias compensation

is consistent with the Lagrangian time scales of the flow. This method gives promising elements to

take into account inhomogeneous seedings in velocity fields measurements for all kinds of turbulent

flows and interesting perspectives to understand how Lagrangian trajectories from various sources

build an Eulerian mean field.
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I. INTRODUCTION

Among the strategies to measure the velocity of a flowing fluid, particle image velocimetry

(PIV) [1–3] and particle tracking velocimetry (PTV) [4–8] are two techniques that rely on

the dispersion of a large number of particles in the fluid. In order to behave as non-intrusive

tracers that correctly map the flow, the particles should be sufficiently small [9, 10] and

neutrally buoyant [11]. In addition to the physical properties of the tracing particles, the

homogeneity of the particle concentration [12–14] is also important to produce reliable flow

measurements. With a non-homogeneous seeding, the particle concentration may be too low

in some regions of the fluid, which renders the measurement spatially incomplete.

The homogeneity of the tracing particles has a direct impact on the estimation of the

mean velocity of a flow. With the example of turbulent jets with particles injected from

the nozzle, there is a significant mismatch between the measured radial velocities from the

particle tracking analysis and the expected radial velocities [14]. In recent a work[15], it

was shown that this radial velocity mismatch is consistent with the particle dispersion by

the turbulent jet which can be formulated as a compressible expansion flow for the tracers

resulting in an enhanced radial flow.

For laminar flows without velocity fluctuations, homogeneous and non-homogeneous seed-

ings provide the same mean flow velocity. This is because without velocity fluctuations, the

particles consistently follow the time-independent streamlines of the flow. The absence of

velocity fluctuations is however not ideal for flow visualization since there is no particle

dispersion perpendicularly to the stationary streamlines. This problem notably occurs with

microfluidics [16, 17] in which the dispersion of tracers, i.e. mixing, is notoriously inefficient.

To address how turbulence and inhomogeneous seeding can induce mean flow bias by

particle tracking, a first example is that of molecular diffusion which is a well-known situ-

ation in which particle inhomogeneity can affect mean flow perception. For a fluid at rest

with diffusing particles, there is a mismatch between the zero mean velocity of the fluid

and the particles velocity everywhere non-zero concentration gradients exist. The velocity

of Brownian particles is however difficult to measure and the diffusion current is rather in-

ferred from the concentration time evolution of the diffusing particles. In a turbulent flow,

fluctuations induce an effective diffusion process [18] that is much more efficient than molec-

ular diffusion. For comparison, the molecular diffusion coefficient in a fluid is Kmol ∝ vthℓ
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in which vth is the thermal velocity and ℓ the molecular mean free path. The typical order

of magnitude for Kmol for fluids such as water is 10−9 m2.s−1 for ambient pressure and room

temperature. In turbulent flows, an effective diffusion coefficient Kturb ∝ σvL arises from

the velocity fluctuation magnitude σv and the typical size L of the largest eddies of the

considered flow. For laboratory-scale experiments such as turbulent channels [19, 20], the

diffusion coefficients can be of the order of 10−4 m2.s−1. In atmospheric turbulence [21–24],

the turbulent diffusion coefficient can easily reach 1m2 s−1. In this work, we consider more

specifically the configurations of turbulent channels and turbulent jets and we will illustrate

how turbulent fluctuations combined with non homogeneous particle seeding can lead to

significant mean velocity biases in particle tracking velocimetry.

In principle, it is always possible to reduce the impact of turbulent fluctuations on mean

flow measurements by approaching a homogeneous concentration of tracers. However, it is

not always possible or convenient to perform a homogeneous seeding. This is the case for

experiments in open environment like oceanic or atmospheric studies [25–27] in which uni-

form seeding can be difficult to control, even for a finite volume of interest. For laboratory

experiments in fluid tanks, for example, partial seeding is sometimes preferred to avoid too

many particles in the field of view. This is notably the case for the realization of unconfined

turbulent jets for which the tank has to be much larger than the jet size. In some situations,

the particles can have a finite life-time, like soap bubbles [28, 29] or droplets [30, 31], and

seeding concentration is very difficult to control. With bubbly flows [32–34], the bubbles

can be used as non-ideal tracers but their concentration is difficult to maintain constant be-

cause the bubble formation, recombination, shape and disappearance is self-imposed by the

flow itself. Finally, non-homogeneous particle concentration can occur because of clustering

induced by the flow. This particularly happens with particles in sedimentation [35] as well

as inertial particles in turbulent flows [36–39].

The goal of this work is first to illustrate how tracer inhomogeneity affects the determi-

nation of mean velocity fields and second to present a simple analysis technique to obtain

unbiased velocity fields in the case of tracking experiments with non-homogeneous seeding.
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II. DISCRETE ADVECTION-DIFFUSION MODEL

A. Lagrangian and Eulerian perspectives

This work deals with the velocity estimation of flows (Eulerian perspective) based on the

observation of a set of tracers moving in a fluid (Lagrangian perspective) . In the Eulerian

framework, the instantaneous velocity vi(x, y, z, t) is a 3-component function with i = x, y

or z that represents all the velocity information of a flow at any position (x, y, z) and time t.

The mean velocity identified by uppercase Vi(x, y, z) is the time-average of the fluid velocity

vi(x, y, z, t) at a given location in space (Eulerian perspective). Because we will address the

problem of partial seeding, we should stress on the fact that the computation of the mean

velocity Vi(x, y, z) rigorously requires that all the fluid particles that pass at the vicinity of

the location (x, y, z) are taken into account in the time-averaging operation.

With tracing particles, only a small portion of the flow is tagged in terms of volume

fraction. We note φ(x, y, z) the time-averaged tracer concentration of injected particles. For

each location (x, y, z) in the flow domain, we define the tracer mean velocity Vi(x, y, z)

(Lagrangian perspective) which is the time-averaged velocity of all the tracers passing

at (x, y, z) during the acquisition time. For a homogeneous tracer concentration with

φ(x, y, z) = φ0 independent of space, the tracer mean velocity is also the mean flow ve-

locity Vi(x, y, z) = Vi(x, y, z) and there is no need to make a distinction between fluid mean

velocity and tracer mean velocity. For a non-homogeneous tracer concentration, Vi(x, y, z)

and Vi(x, y, z) are a priori different. The origin of the difference between Vi(x, y, z) and

Vi(x, y, z) is illustrated and discussed in more detail in the following section. We should

specify that Vi(x, y, z) and Vi(x, y, z) could also differ because of non-ideal tracers. With

finite size tracers or non-perfect density matching, the velocity of the tracers may not cor-

respond to the velocity of the surrounding fluid. However, we will consider in this work

that the bias caused by possibly non-ideal tracers is negligible and the bias caused by non-

homogeneous seeding dominates.

The main point of this work is to discuss a method to retrieve the mean velocity of the

flow Vi(x, y, z) from the analysis of tracer trajectories when Vi(x, y, z) 6= Vi(x, y, z) because

of non-homogeneous particle concentration. To do so, we will introduce in the next section

a so-called time-delayed velocity Vi(x, y, z|∆τ) in which ∆τ is an adjustable parameter
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corresponding to the time delay.

B. Toy model

Before considering realistic turbulent flows with injected tracers, a simple toy model

of advection-diffusion is presented. The point of this toy model is first to illustrate how

non-homogeneous seeding impacts the estimation of mean flows and second to present the

method we propose to compensate the seeding bias. In this two-dimensional model, the

mean flow is Vx(x, z) = 0 and Vz(x, z) = v0.

We consider the dynamics of point-like particles in a two-dimensional space with a uniform

mean advection in the axial direction and submitted to transverse diffusion. The particles

are initially at the origin of the frame x = 0 and z = 0 and move by steps. The motion

in the axial direction z accounts for a pure advection and the particles move by constant

unit step +1 for each time step. For the transverse direction x, no advection is imposed and

the average velocity of the background flow is zero. However, the individual particles do

diffuse according to the simple process where at each time step, each particle has an equal

probability to jump either left (–1/2) or right (+1/2). With a homogeneous seeding, this

process with equal probability of motion to the left and to the right does not impose any

mean transverse flow. Figure 1a represents all the possible trajectories for 8 particles after

3 time steps. While the actual advecting velocity is a uniform upward flow, we illustrate

the bias introduced by the non-homogeneous seeding by considering the flow tagged by the

particles seeded at the origin in the square box represented with a dashed line in figure 1a.

For the 3 particles in the binning box, 2 particles come from the left and 1 particle comes

from the right. After multiple iterations of the random process for a set of particles, one

should expect a net positive horizontal velocity for the particles reaching the considered box.

To test the large trajectory number limit, we numerically generate the trajectories for

a large number of particles. Figure 1b shows the Eulerian velocity field obtained from a

set of trajectories generated randomly according to the discrete process described above

and represented in figure 1a. A total number of 2 × 105 trajectories were simulated in

order to explore a significant portion of horizontal space. The black solid line represents a

random sample trajectory exploring the x < 0 region. The average velocity retrieved from
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FIG. 1. (a) Representation of a step-by-step process with 8 particles moving vertically with a

horizontal fluctuating motion left and right for each time step. (b) Eulerian contour obtained

after multiple iterations of the step-by-step process with random jumps and an averaging of the

trajectories in a binning grid (2 × 105 trajectories in total). The color scale indicates the mean

horizontal velocity Vx of the simulated trajectories. A subset of trajectories passing by both bins

{0, 0} and {x = 10, z = 40} are represented by solid lines. A thick green line represents the average

trajectory from this subset. Another trajectory exploring x < 0 is also represented. The inserted

contour is the model for the horizontal velocity presented in equation (8).

the seeded tracers strictly matches the average velocity of the fluid for the injection line

x = 0. Elsewhere, the horizontal velocity is however positively (for x > 0) or negatively (for

x < 0) biased. For the large |x|, there are very few trajectories and thus a lack of statistical

convergence. This velocity bias is a direct consequence of the local seeding. For uniform

seeding, i.e. a constant concentration of particles on the line z = 0, the horizontal velocity

vanishes within statistical convergence.

The origin of the velocity bias can be better visualized by considering a subset of trajec-

tories that pass by the bin {x = 10, z = 40} represented by a small box with a dashed line

in figure 1b. For a total of 2× 105 simulated trajectories, there is typically a number of 500

trajectories that reach the bin considered (figure 1b only represents 30 of those trajectories
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FIG. 2. Concentration profile φ(x, y) (expressed as a fraction) of the toy model in the limit of

statistical convergence. i and n are positive integers (i ≤ n), with x(i, n) = i−n/2 and z(i, n) = n.

The particles start from i = 0, n = 0 and for each iteration, the particles move up with an equal

probability 1/2 to jump left or right. The colorbar indicates the value for the horizontal incoming

velocity Vx|in (Eq. 2). The two arrows illustrate the origin of the biased velocity Vx|in at n = 4,

i = 3 with a ratio 3:1 for the incoming particles from cells i = 2, n = 3 (φ = 3/8, contributing to a

positive horizontal velocity represented with a red arrow) and i = 3, n = 3 (φ = 1/8, contributing

to a negative horizontal velocity represented with a blue arrow).

for clarity). In the figure, a green solid line is used to represent the mean path for all the

trajectories passing by the binning box {x = 10, z = 40}. If a reference time is taken when

the particles reach the box, there is an asymmetry between past and future. Before the

particles enter the bin, there is a positive velocity bias. This is because the most probable

path for the particles coming from x = 0, z = 0 to reach the binning box is with an excess

of positive jumps in x. After the particles have passed the bin {x = 10, z = 40}, there is no

bias on the trajectories subset and the particle motion is mostly vertical as shown by the

mean trajectory for z > 40.

The concentration φ and the horizontal component of the velocity Vx for the particles

in this toy model can be analytically solved using the properties of Pascal’s triangle. The

8



process described in figure 1a leads to a continuity equation for the particles concentration

φ(i, n) = (φ(i, n− 1) + φ(i− 1, n− 1))/2 in which n is the index for z and i is the index for

the x direction with 0 ≤ i ≤ n. This relation is equivalent to the definition of the binomial

coefficient C i
n with φ(i, n) = C i

n/2
n. The first steps of the iteration is presented in figure 2.

The iteration for n = 4, i = 3 is represented by a set of boxes with φ(i = 3, n = 4) = 4/16

as the sum from the contribution 1/2× (3/8 + 1/8) of the previous iteration.

For the transverse velocity, it is important to make a distinction between the incom-

ing velocity Vx(i, n)|in and the outgoing velocity Vx(i, n)|out relatively to a given position.

Vx(i, n)|in is the velocity at step n using the position n and n− 1. Vx(i, n)|out is the velocity
at step n using the position n and n+ 1. For a large number of realizations, the transverse

outgoing velocity statistically converges to Vx(i, n)|out = Vx(i, n) = 0 because the parti-

cles equally moves left and right relatively to a given position. For the incoming velocity

Vx(i, n)|in, the net transverse velocity is the weighted concentration contribution from the

previous steps

Vx(i, n)|in =
v0
2
× φ(i− 1, n− 1)− v0

2
× φ(i, n− 1)

φ(i− 1, n− 1) + φ(i, n− 1)
=

v0
2

φ(i− 1, n− 1)− φ(i, n− 1)

φ(i− 1, n− 1) + φ(i, n− 1)
, (1)

in which φ(i − 1, n − 1) counts the number of particles per unit time coming from the left

with velocity +v0/2 and φ(i, n−1) from the right with velocity −v0/2 (the values for φ with

n = 4 and i = 3 are 3/8 and 1/8 in the example of figure 2).

Equation (1) can be written as

Vx(i, n)|in =
v0
2

C i−1
n−1 − C i

n−1

C i
n

= v0
i− n

2

n
. (2)

For a symmetric representation of Pascal’s triangle in (xz), we use the variable x(i, n) =

i− n/2 and z(i, n) = n. The incoming transverse velocity becomes

Vx(x, z)|in =
x

z
v0. (3)

From equation (3), we can infer the expression for the mean trajectory X|x,z, Z|x,z for

the subset of all particles injected at {0, 0} at t = 0 and passing in the bin {x, z} at time

t = z/v0. An example of a mean trajectory X|x,z, Z|x,z is represented by a green solid line

in figure 1b for the bin {x = 10, z = 40}. For t < z/v0, the particles move in average at a

constant velocity from 0 to x as

X|x,z(t) =
x

z
v0t (t < z/v0). (4)
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At t = z/v0, the particles are in the bin {x, z}. For t ≥ z/v0, the average position for the

particle passing by {x, z} is

X|x,z(t) = x (t ≥ z/v0). (5)

We can mention that the mean trajectory for {x = 10, z = 40} represented by the thick

green line in figure 1 is consistent with the expression for X|x,z(t) in equations (4) and (5).

We show here that the local seeding at {0,0} leads to a biased mean trajectory for

t < z/v0 (Eq. (4)) and not for t > z/v0 (Eq. (5)). To compensate this bias, we introduce

the time-delayed velocity for the horizontal component of the velocity

Vx(x, z|∆τ) =
X|x,z(t+∆τ + δt)−X|x,z(t +∆τ − δt)

2δt
, (6)

in which t = z/v0 is the time for which the particle is at z, ∆τ the time delay and δt the

time increment from steps n to n + 1. Equation (6) with ∆τ = 0 is the usual two-point

velocity estimation corresponding to Vx(i, n|0) = (Vx(i, n)|in + Vx(i, n)|out) /2. From the

mean trajectory in equations (4) and (5), the time-delayed velocity in equation (6) gives

Vx(x, z|∆τ < 0) =
x

z
v0, (7)

Vx(x, z|∆τ = 0) =
1

2

x

z
v0, (8)

Vx(x, z|∆τ > 0) = 0. (9)

Equation (7) is for a negative time delay which means that the velocity is computed

with the track positions before the bin {x, z}. This velocity is the incoming velocity in

equation (3). Vx(x, z|∆τ < 0) is biased because the particles are injected at {0, 0} and to

reach the bin {x, z}, there is a sampling bias in favor of the particles with a mean horizontal

velocity v0x/z.

Equation (9) contains the key idea of this work which is to retrieve the fluid mean velocity

of a given flow from a set of trajectories with biased velocities because of tracer concentration

gradients. With positive delay ∆τ > 0, there is no velocity bias and the tracer mean velocity

Vx(x, z|∆τ > 0) is the mean flow velocity, which is Vx(x, z) = 0 in this simple toy model.

Without time delay, there is a factor 1/2 in the horizontal velocity because the velocity

estimation involves the position immediately before and immediately after the bin. Equa-

tion (8) is simply the average of equations (7) and (9). The solution (8) is used for the model
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FIG. 3. Representation of the time-delay method on a time signal at a sample rate δt−1. The

minus (-) is the 2-point velocity operator at location i: (xi+1 − xi−1)/2δt. In this example, the

velocity is time delayed with ∆τ = + 5 δt which means that the velocity v5 is associated to the

position x0. We use the short notation xi = x(t0 + i δt) and vi = v(t0 + i δt) in which t0 is the

reference time for x0.

in figure 1b and it shows a good agreement with the velocity computed from the simulated

trajectories without time-delay (∆τ = 0).

The method we propose consists in using equation (6) to compute Eulerian mapping

from a set of particles trajectories. It is referred as a time-delay method because the flow

reconstruction uses the information of the position at time t and the velocity at a delayed

time t + ∆τ . Figure 3 represents the implementation of this method for a positive time

delay with a trajectory component x(t). In practice for a sample signal with the position

and velocity over time, the implementation of the time delay method consist in removing a

the n first velocity points and removing the n last position points (n = 5 in the example of

figure 3). n defines the time delay via the acquisition sampling rate.

III. TIME-DELAYED VELOCITY WITH TURBULENT FLOWS

The point of this paper is to show how time-delayed velocity (6) can be used to suppress

the bias caused by non-homogeneous seeding in a particle tracking experiment. In the toy

model previously discussed, any strictly positive delay ∆τ > 0 gives the correct mean flow
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Vx(x, z) = 0. In the following, we will investigate how the time-delay method applies for

a turbulent channel (numerical simulation) and a turbulent jet (experimental results). We

will notably investigate the impact of the value ∆τ on the determination of the mean flow

characteristics.

A. Channel flow

The time-delay analysis is first tested for a simulated particle tracking experiment in a

channel flow. To do so, we use the Turbulent Channel Flow data set from the Johns Hopkins

Turbulence Databases [40–42].

The channel has a rectangular cross section with rigid walls at y = −1 and y = 1 and

periodic boundary conditions for x and z. The flow is forced in the z direction by an

imposed pressure gradient such that the mean velocity equals one. The kinematic viscosity

is 5 × 10−5 and the simulation time step is 0.0013. The flow is in the turbulent regime

with a Taylor-microscale Reynolds number Reλ ≈ 344. Figure 4a shows a snapshot of the

axial velocity in the range 0 < z < 10 with x = 0. The time-averaged velocity Vz(x, y, z)

is represented on top of the contour. For the mean transverse velocities, there is no mean

flow Vx(x, y, z) = 0 and Vy(x, y, z) = 0 because of the confining walls. The mean velocity

Vz(x, y, z) is almost independent of the position y in the center of the channel −0.6 < y < 0.6.

We use the Lagrangian tracking GetPosition function [43] that computes the motion of fluid

particles from the direct numerical simulation of the channel flow. The obtained trajectories

correspond to the motion of ideal tracers virtually injected in the simulated flow. The initial

position of 14 000 tracers is set in the middle of the channel. The initial positions for the

virtual tracks are set near the line y = 0, z = 0 for different values of x and the simulation

runs for a duration of 13 time units. We assume that the flow is statistically invariant in

x and the initial position X(0) of each track is removed to have an effective source-point

injection at x = 0, y = 0 and z = 0. We find Eulerian averages (spatial mean statistics) of

the Lagrangian based flow field by binning the trajectories in x, y and z and averaging over

the time of the simulation. For the Eulerian contour in figures 4b, c and d, we use a bin

size of δx = 0.02, δy = 0.02 and δz = 0.1. The parameter ∆τ is the time delay introduced

in the computation of the time-delayed velocity in equation (6).

Figure 4b shows the mean transverse velocity Vy(y, z|∆τ = 0) obtained from the analysis
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of the trajectories computed in the channel flow. The colorbar represents the magnitude

of the mean velocity in the transverse direction. The magnitude of the horizontal velocity

is of the order of 0.1 × Vz(y = 0) on the side of the cone identified by the dashed line

y/z = 0.1. The horizontal velocity is twice the velocity bias predicted by the discrete

modeling equation (8) or equivalently the horizontal velocity matches with the incoming

velocity in equation (7). This denotes a difference with the toy model presented in section II

that we attribute to the existence of a finite correlation time scale for the particle trajectories.

For the toy model, there is no correlation time in the trajectory and the velocity without

time delay is an average of the position before (with seeding bias) and the position after

(without seeding bias) a given point. This average leads to the factor 1/2 in the velocity

without time delay (Eq. 8). For the channel flow, the trajectories are smooth at small time

scales and the velocity can not be discontinuous. By continuity, the velocity without time

delay matches with the incoming velocity immediately before a given position.
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FIG. 4. (a) Instantaneous velocity vz(y, z, t) for the channel flow simulation (x = 0). The rigid

walls are at y = ±1. 15 fluid particle tracks injected at y = 0, z = 0 are represented by solid lines.

(b) Transverse velocity component Vy(y, z|∆τ = 0) based on tracer tracks with a point source

seeding in a turbulent channel flow. (c) and (d) are the transverse velocity maps for two positive

values of ∆τ . ∆τ is a time lag introduced between velocity and position in the trajectory analysis.
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FIG. 5. Magnitude EVi
of the transverse velocities Vi(x, y, z|∆τ) with i = x and y as a function of

the time delay ∆τ in the turbulent channel simulation. EVi
= 〈Vi(y, z|∆τ)〉y,z/〈Vi(y, z|0)〉y,z with

〈.〉y,z the RMS average over space. EVi
is a strictly positive quantity that represents the normalized

error between the transverse velocities computed from the tracers trajectories Vi(y, z|∆τ) and the

fluid mean velocity Vx(y, z) = 0 and Vy(y, z) = 0. An exponential fit with a time constant τc = 2.9

is represented. The vertical dashed lines indicates the values ∆τ = 1.3 and 2.6 used in figure 4c

and d.

Figures 4c and d shows the transverse velocity maps for implementation of time delays

∆τ = 1.3 and ∆τ = 2.6, respectively. The transverse velocity decreases with the increase

of the time delay. To quantitatively analyze the effect of ∆τ on the transverse velocities

estimation, the RMS differences of the transverse velocities Vx(y, z|∆τ) and Vy(y, z|∆τ)

based on the Eulerian flow are represented as a function of the time delay in figure 5a. A

value of zero means that the mean flow for the tracers matches with the fluid mean flow

(Vx(x, y, z) = 0 and Vy(x, y, z) = 0 for the channel). The velocity difference as a function of

the time delay approximately follows an exponential decay with a time constant τc = 2.9.

This means that the time delay between position and velocity in the trajectory analysis has

to be typically larger than 2.9 to remove the bias from the point source seeding.

The time scale τc can be interpreted as a memory time of the fluctuating component of

the frame of the fluid particles motion. To test this interpretation, we compute the cross

correlation signal χvv(∆t) =
∫

v(z = ct, t + ∆t)v(z = ct, t)dt from the transverse velocity

component in the frame of the moving fluid. In the center of the channel |y| < 0.6 where

14



the particles are injected, the longitudinal velocity is c = 1.089, which is slightly larger than

the mean velocity. We find a time scale τχ = 2.0. This time scale is of the same order of

magnitude than τc. This is consistent with the idea that the time delay between position and

velocity has to be larger than the memory time of the flow in the frame of the trajectories

in order to remove the bias of the non-homogeneous seeding.

B. Turbulent jet with nozzle injection

The second implementation of the time delay method is for experimental data with a

turbulent jet. A monophasic turbulent round jet is obtained by the injection of water through

a nozzle of diameter 4mm and at a flow rate of the order of 10−4 m3.s−1 into a water tank.

The tagging particles are nearly neutrally buoyant polystyrene spheres of typical diameter

0.25mm and density 1060 kgm−3. The particles are mostly injected from the nozzle so that

only the fluid particles coming from the nozzle are tagged. In practice, some polystyrene

particles from previous experiments are present in the water tank. The concentration of such

pre-existing particles is well below the concentration of the injected particles. An ensemble

of trajectories is recorded using a stereoscopic visualization technique at frame rate of 6

kHz with 3 high-speed cameras. More details about the experimental configuration and

the particle tracking method can be found in previous works using the same configuration

[15, 44].

Figure 6a shows a subset of particles trajectories recorded in the turbulent jet. The

full set of trajectories is used to construct a Eulerian representation of the mean flow.

Figure 6b shows the mean axial velocity Vz(r, z|0) of the jet computed from the trajectory

of the particles without time delay (standard Particle Tracking Velocimetry). Vz(r, z|0) is

represented for different z positions identified by dashed lines in figure 6a. The inserted plot

is the normalized axial velocity Vz = Vz(r, z|0)/Vz(0, z|0) represented as a function of r/z.

Here, we approximate the normalized axial velocity Vz = Vz(r, z)/Vz(0, z) by a Gaussian[45]

function
Vz(r, z)

Vz(0, z)
= exp

(

−A
r2

z2

)

, (10)

in which A = 67 is a free dimensionless parameter that relates to the opening angle of the jet.

The axial flow tagged by the tracers Vz is in good agreement with the Gaussian model (10).

Equation (10) is a usual approximation for the mean axial velocity Vz = Vz(r, z)/Vz(0, z)
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FIG. 6. (a) Particle tracks in a turbulent jet with nozzle injection. The dashed lines mark different

distances z to the nozzle chosen to represent the flow profiles. (b) Axial velocity Vz obtained from

the tracks analysis without time delay (standard PTV) as a function of the radial distance r for the

11 positions in z between 95mm and 145mm. The velocity at r = 0 decreases with increasing z.

The inserted plot is the velocity normalized by the velocity at r = 0 as a function of the variable r/z.

The 11 curves collapse on a master curve corresponding to the Gaussian solution (10) represented

by a thick gray line. (c), (d) and (e) are the normalized radial profiles Vr = Vr(r, z|∆τ)/Vz(0, z|∆τ)

for different values of the time delay ∆τ = -1.3, 0 and 8.3ms, respectively. The dashed line is the

solution Vr = Vr(r, z)/Vz(0, z) for the radial velocity without seeding bias (equation (11)). The

solid line is the solution VN ,r = VN ,r(r, z)/VN ,z(0, z) for the tracer mean flow for a nozzle seeding

(equation (12)). The dash-dotted line is a model VN+U ,r(r, z) combining nozzle seeding and the

contribution of tracers initially in the water tank (equation (14)).

for a turbulent jet. As already discussed in a previous work [15], there is no apparent bias

16



from non-homogeneous seeding for the axial velocity component in a turbulent jet and then

Vz = Vz.

Figure 6 also represents the normalized radial velocity obtained with 3 different time-

delays with (c) ∆τ = −1.2ms, (d) ∆τ = 0ms and (e) ∆τ = 8.3ms. The velocities are

normalized by the centerline velocities Vz(0, z|∆τ) and represented as a function of the

self-similar coordinate r/z.

Figure 6e is the main result of this paper: with a positive time delay ∆τ > 0, we recover

the mean radial flow of the jet Vr(r, z|∆τ)/Vz(0, z|∆τ) = Vr(r, z)/Vz(0, z) even if the seeding

is non homogeneous. For a turbulent jet, this solution is obtained from the axial solution (10)

and the volume continuity equation for an incompressible flow:

Vr(r, z)

Vz(0, z)
=

r

z
exp

(

−A
r2

z2

)

− z

r

1− exp
(

−A r2

z2

)

2A
. (11)

This radial solution is represented by dashed lines in figures 6c, d and e and it corresponds

to the mean radial velocity obtained with homogeneous seeding, meaning the unbiased mean

velocity of a turbulent jet.

The radial velocity profile in figure 6d is without time delay (conventional PTV, ∆τ = 0).

It is clear that the mean radial velocity obtained by the particles trajectories is not the

expected solution (11) for the fluid mean velocity or Vr(r, z|0)/Vz(0, z|0) 6= Vr(r, z)/Vz(0, z).

This is due to the fact that the trajectories recorded at position (r, z) are a subset of the

possible fluid trajectories with the condition that the trajectory must come from the nozzle

(0, 0).

In figures 6c, d and e, a black solid line is used to represent another solution for the tracer

mean radial velocity:
VN ,r(r, z)

VN ,z(0, z)
=

r

z
exp

(

−A
r2

z2

)

. (12)

This solution was obtained in a previous work [15] and aims at describing the mean radial

velocity of the tracers if the tracers are injected by the nozzle (the subscript N is for nozzle).

If the tracers are injected by the nozzle, the tracer concentration verifies the same self-similar

properties than the axial velocity itself [46], which allows us to compute the solution (12).

We can mention that the solution (12) for the radial velocity has a interesting geometrical

property:
VN ,r(r, z)

VN ,z(r, z)
=

r

z
. (13)
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The relation (13) means that the particles trajectories are, in average, a set of straight lines

with their origin at the nozzle: for any point (r, z), the velocity vector VN ,r. ~ur + VN ,z. ~uz is

aligned with the position vector r. ~ur + z. ~uz . As a consequence, the radial flow VN ,r for the

tracers coming from the nozzle is always positive for any r/z.

In the turbulent jet with nozzle injected tracers, we can mention a simple experimental

evidence that shows that the mean path of the tracers is not the mean velocity of the fluid.

As shown in figure 6, the solution (11) for the fluid radial velocity Vr(r, z)/Vz(0, z) is negative

for large r/z (r/z > 0.14). A negative Vr(r, z) for large r/z means that the outer fluid is

entrained by the core of the jet and the mean flow is radially convergent for r/z > 0.14. If the

tracers were following the mean radial flow Vr, there would be no possibility for the tracers

in region r/z < 0.14 to reach the region r/z > 0.14. This is not what is experimentally

observed. To allow the tracers to be spread by the jet and reach r/z > 0.14, the tracers

flow VN ,r(r, z) is consistently positive for any r/z and Vr(r, z) > Vr(r, z) is a signature of a

positive radial dispersion of the tracers from the nozzle because of the turbulent diffusion.

In figure 6d, the mean radial velocity Vr(r, z|0) is consistently larger than Vr(r, z). How-

ever, the radial flow Vr(r, z|0) does not strictly match with the expected solution (12) pre-

dicted for tracers injected by the nozzle. We propose that the difference between the model

VN ,r(r, z) and the data Vr(r, z|0) for small r/z comes from the finite size of the filtering

kernels used to obtain the velocity from the trajectories. To obtain the velocity at a given

time step t0, we use a two-point derivative estimation combined with a Gaussian filtering.

The Gaussian kernel has a window size of 12 time points which means that a few points

before and after t0 are involved in the computation of the velocity. At a frame rate of 6

kHz, 6 time points for the half window corresponds to 1 ms. Consistently, the agreement

between the solution (12) is further improved, at least for small to moderate r/z values, if

the velocity Vr(r, z|∆τ) has a negative delay of ∆τ = −1.3 ms as shown in figure 6c. This

can be interpreted as an optimal realization of the nozzle seeding condition.

In figure 6c, the experimental data deviates from the solid line VN ,r, typically for r/z >

0.25. We interpret that this deviation comes from the few unwanted particles that might

have remained in the tank from a previous experiment. We should insist on the fact that for

r/z typically larger than 0.25, the concentration of particles coming from the nozzle is very

low. As mentioned before, the particle concentration is proportional to the axial velocity.

It can be verified in figure 6 that the axial velocity, and thus the particle concentration
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that comes from the nozzle, is indeed very small (∝ exp(−Ar2/z2)) when r/z is sufficiently

large. Consequently, a very small quantity of pre-existing particles can significantly bias the

velocity profile with nozzle conditioning, at least far from the axis. A third model VN+U ,r

for the radial velocity is proposed in figure 6 that sums the weighted contribution of the

tracers coming from the nozzle (N ) and the unwanted tracers (U) initially in the water tank

VN+U ,r(r, z) =
φ(r, z)VN ,r(r, z) + φiVr(r, z)

φ(r, z) + φi

, (14)

in which φ(r, z) = φ0 exp(−Ar2/z2) accounts for the tracer concentration in the Gaussian

approximation with φ0 the concentration magnitude. φi is the initial concentration of trac-

ers. The model in figures 6(c), (d) and (e) is for φi/φ0 = 8 × 10−3. We assume that the

concentration of unwanted tracers initially in the tank is homogeneous, which means that

the contribution from φi is the unbiased jet velocity Vr(r, z).

One could ask about the different delays used to match the two solutions (11) and (12)

(−1.3ms and 8.3ms). To match the trajectory path solution, the trajectory analysis only

needs to remove the position immediately after a given time t. In our track analysis, we

use a Gaussian kernel for filtering with a characteristic length of 1 ms for both the position

and the velocity. Therefore, a delay of -1.3 ms means that only the past of the trajectory is

involved in the velocity estimation at a given time point. To match the normalized velocity

Vr of the fluid represented by the dashed line in figure 6, a time-delay of the order of 8 ms

is needed. This time should be interpreted as a characteristic correlation time for the fluid

velocity .

To investigate in more details the role of the fluid correlation time, ∆τ is systematically

varied in the case of the delayed velocity (∆τ > 0). In figure 7a, the RMS difference between

the normalized radial velocity Vr(r, z|∆τ)/Vz(0, z|∆τ) and the Gaussian model for the radial

velocity Vr(r, z)/Vz(0, z) is computed. In figure 7b, the difference is represented for the nor-

malized axial velocity Vz(r, z|∆τ)/Vz(0, z|∆τ). The obtained quantities EVr
and EVz

quantify

the error between the tracer mean velocity and the real fluid velocity and these errors are

represented for different positions in the jet and for values of ∆τ between 0 ms and 25 ms.

For the radial velocity, the agreement with the Gaussian model Vr(r, z)/Vz(0, z) is optimal

for ∆τ of the order of 5 ms to 10 ms. For each bin cell at a position z, the minimum for

〈Vr(r, z|∆τ)/Vz(0, z|∆τ)− Vr(r, z)/Vz(0, z)〉r is indicated by a cross. The optimal value for

∆τ in order to minimize EVr
tends to increase with increasing z which means that larger time
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delays need to be used for compensated velocity measurements performed far from the nozzle.

To validate this statement, we can mention the dependence of the Lagrangian time scale with

z for turbulent jets. The Lagrangian time scale is given by TLz
=

∫∞

0
Ruzuz

(t)dt/Ruzuz
(0)

in which Ruzuz
(t) = 〈Vz(t0 + t)Vz(t0)〉 with Vz is the Lagrangian velocity of the fluid along

the z direction and 〈.〉 denotes an average over the particle trajectories. For an exponen-

tial decay of the Lagrangian velocity correlations Ruzuz
(t) ∝ exp(−t/te), TLz

is simply the

time constant te. The Lagrangian time scale relates to the turbulent diffusivity[47] with

Kturb ∼ σu
2TL, in which σu is the magnitude of the velocity fluctuations. For turbulent jets,

the Lagrangian time TLz
increases with the distance z to the nozzle. The two square data

points TLz
added in figure 7a are two Lagrangian times measured for the same experimental

configuration in a previous work [44] using a statistical analysis of the tracer trajectories.

The fact that the time delay needed to retrieve the mean flow is of the same order than the

Lagrangian time is consistent with the results for the turbulent channel presented in figure 5.

The black dashed line is a guideline z ∝
√
∆τ . This relation is obtained by assuming that

the magnitude of the jet D sets a scaling relation between the space and the time scales. The

magnitude of the jet is found in expression for the axial velocity of the jet Vz(0, z) = D/z

and it has the dimension of a diffusion coefficient.

For the axial velocity in figure 7b, the agreement with the Gaussian model is not improved

with a strictly positive time delay. Standard PTV (∆τ = 0) is therefore valid to estimate

the axial velocity of the jet Vz(r, z).

Both Vr(r, z|∆τ)/Vz(0, z|∆τ) and Vz(r, z|∆τ)/Vz(0, z|∆τ) deviate from the Gaussian jet

profiles for ∆τ typically larger than 20 ms. For the turbulent channel, the mean flow is

independent of the mean flow direction z and there is not such deviation for large ∆τ as

shown in figure 5a. Because the mean flow of the jet is a function of space and notably of

z, too large time-delays mean that the velocity is taken too far from the position of a given

binning cell, in a region where the mean velocity is different. We can estimate this effect by

computing the mean trajectory Z(t) of a set of particles moving on the axis of the jet

Vz(0, Z) =
dZ

dt
=

D

Z
, (15)

in which D has the dimension of a diffusion coefficient and relates to the magnitude of the

jet. After integration over a time delay ∆τ , we have the mean trajectory of the tracers

Z =
√

Z0
2 + 2D∆τ (16)
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FIG. 7. (a) Error EVr
between the normalized radial velocity Vr from the tracers and the jet radial

flow in the Gaussian approximation Vr (11) as function of the distance to the nozzle z and the time

delay ∆τ . The crosses indicate local minima of EVr
for each value of z. The data points TLz

are for

Lagrangian time scales computed by statistical analysis of the particles trajectories [44]. (b) Error

EVz
between the normalized axial velocity Vz and the prediction in the Gaussian approximation

Vz (10). We define EVi
= 〈Vi − Vi〉r with Vi = Vi(r, z|∆τ)/Vz(0, z|∆τ), Vi = Vi(r, z)/Vz(0, z). 〈.〉i

is the RMS average over the space coordinate i = r or z.

and the mean velocity of the tracers is

Vz(0, Z0,∆τ) =
D

Z0

1
√

1 + 2D∆τ

Z0
2

. (17)

This relation means that, even in the absence of seeding bias, using a time delay too

large leads to a systematic error caused by the fact the mean velocity field is a function

of space. For the distance Z0 = 0.1m and a mean velocity at Z0 equals to 2m s−1, we

have D = 0.2m2 s−1 and we find a characteristic time scale Z0
2/2D = 25ms. In figure 7b,

the error EVz
between the normalized axial velocity and the model is visible with the time

delay approaching 20 ms, which is consistent with the order of magnitude of the time scale

Z0
2/2D = 25ms. We should however mention that figure 7 uses velocities normalized by the

centerline velocity D/z. A more accurate analysis should also take into account the radial

dependence of the mean flow to fully determine the mismatch caused by the mean flow
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spatial dependence. However, we assume that, given the geometric properties of turbulent

jets, the time scale Z0
2/2D is also relevant regarding the radial dependence of the velocity

profiles.

IV. CONCLUSION

In this work, we present a strategy to suppress the bias caused by non-homogeneous

seeding in particle tracking that affects the determination of mean flow velocities.

We first discussed a simplified picture of turbulent diffusion in the form of an advection–

diffusion process with a discrete walk of particles. This model was solved analytically for

particles injected from a point source and a purely diffuse transverse mean flow was found.

The value of the transverse flow in a given observation point has a simple geometrical

interpretation related to the relative location of the source-point. In this discrete model,

the velocity is computed by a position increment. Because of non-smooth trajectories,

we identified that the choice for the definition of the velocity has a crucial impact of the

velocity at a given position depending if the position immediately before or immediately

after is involved. In the context of this work, the case of interest is the so-called outcoming

velocity with the velocity at a given position computed with the position immediately after,

which eliminates the bias caused by the source-point seeding.

We then addressed the case of realistic flows with the simulation results of a turbulent

channel and the particle dispersion in an experiment with a turbulent round jet. We in-

troduced a time-delayed velocity that allows us to associate, for a given particle trajectory,

the position at time t with the velocity at time t + ∆τ . This time-delayed velocity is the

generalization of the outcoming velocity presented in the discrete model that provides un-

biased mean flows. Contrary to the discrete model, we found that the time delay ∆τ has

to be large enough to suppress any velocity bias due to inhomogeneous seeding. For the

channel flow, we found that the time delay has to be of the order of a characteristic time

that corresponds to a decorrelation time of the velocity in the moving frame of the channel

mean flow. For the turbulent jet, the expected radial mean flow is also found with positive

time delays but the time delay that has to be introduced increases with the distance to

the nozzle. Contrary to the channel flow, there is a limited range for the time delay in the

turbulent jet configuration because turbulent jets have a spatial dependence for their mean
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flow.

The time-delayed velocity method presented here allows the retrieval of the expected mean

flow with a non-homogeneous tracers concentration. The method was tested for two flows

of simple geometry and it effectively works with the time delay of the order of a Lagrangian

fluid correlation time. The channel flow is a case study for which the compensation method

is valid for time delays even larger than the Lagrangian correlation time because there is

almost no spatial dependence of the mean flow, notably in the middle part of the channel.

Our compensation method also works for turbulent jets, which are open shear flows that

notoriously produce strong velocity gradients. In spite of this spatial dependence of the

mean flow, a range of time delay is accessible to compensate the bias from inhomogeneous

seeding. This suggest that this compensation method with time delays is robust for any

type of flows with a well defined mean flow component Vi(x, y, z). We should mention that

for unsteady flows, i.e. flows with large scales slowly varying in time, new time scales may

be introduce which may limit the applicability of our compensation method.
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