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This paper takes the perspective of a user of DNS data and quantifies the uncertainties in DNS8

statistics for plane channel flows. We focus on high-order statistics, such as skewness, kurtosis,9

and viscous dissipation, and quantify the uncertainties due to wall-normal numerics and grids while10

minimizing the sampling error and the discretization error in the wall-parallel directions. Two11

grid distributions and four discretization methods are considered, which are representative of the12

existing DNSs. Our results show that the available DNS data contain at least a 7% uncertainty13

in the computed mean viscous dissipation in the buffer layer. Moreover, since turbulence becomes14

more intermittent at higher Reynolds numbers, the flow will be less well-resolved at the higher15

Reynolds number if the same grid resolution in terms of the viscous units is employed. Specifically,16

our estimate shows that a grid that resolves 90% of the dissipation events at Reτ = 544 resolves17

about 87% of the dissipation events at Reτ = 10000.18

I. INTRODUCTION19

Plane channel flow is a simple type of wall-bounded flow that occurs between two infinitely large parallel20

planes. Over the last few decades, channel flows have been widely studied, and direct numerical simulation21

(DNS) of channel flows has become increasingly common among researchers. The first DNS of channel22

flow was performed in the 1980s by Kim et al. [1], at a friction Reynolds number of Reτ = 180. Since23

then, researchers have conducted numerous DNS studies, with the most recent one performed by Hoyas and24

Oberlack [2] at a friction Reynolds number of Reτ = 10000. These high-fidelity DNS data are often regarded25

as truth and have served as references for numerous theoretical studies [3];26

Consider, for example, the recent discussion on the Reynolds number scaling of the dissipation rate. Yang27

and Lozano-Duran [4] argued that the dissipation rate at the wall should scale as ϵ+w,x ∼ C1 ln(Reτ ) + C2,28

where ϵx is the dissipation due to the shear in the streamwise direction, Reτ is the friction Reynolds number,29

the subscript w denotes wall quantities, C1 and C2 are two constants. Chen and co-authors [5, 6], on the30

other hand, argued that the dissipation at the wall should scale as ϵ+w,x ∼ C ′
1 −C ′

2Re
−1/4
τ , where C ′

1 and C ′
231

are two constants. The two scalings give distinctly different scaling estimates at infinite Reynolds numbers.32

The scaling in Ref. [4] predicts that the dissipation rate increases indefinitely with the Reynolds number,33

while the scaling in Ref. [6] predicts that it is finite. Nonetheless, the two scalings give similar estimates at34

Reτ ≲ O(105). Specifically, the scaling in Ref. [4] gives 0.213 at Reτ = 30000, and the scaling in Ref. [7]35

gives 0.218, and the difference is only 2%. DNS data for channel flows have been instrumental in determining36

the scaling of the dissipation rate. However, to confirm one scaling and refute the other, the uncertainty in37

the data must be less than 2%. The above discussion applies equally to the scalings in Refs. [8, 9]. To that38

end, understanding the underlying uncertainties of DNS data is crucial.39

Many studies have estimated the uncertainties in channel flow DNSs [10–12]. The expected error is less40

than 1% and 3% in the mean flow and the velocity root-mean-square (RMS), respectively, if one employs the41

“typical” grid resolution and sampling time at Reτ = 180. The typical grid resolution is determined based42

on heuristics established in Refs. [7, 10, 13]. According to these heuristics, the grid spacing in the streamwise43

and the spanwise directions should be ∆x+ ≈ 10 and ∆z+ ≈ 5. For pseudo-spectral codes, slightly coarser44

grids may be adequate, while finite difference codes may require slightly finer grids [14]. The grid spacing in45
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the wall-normal direction is less straightforward. Historically, ∆y was scaled with the wall unit [15]. Yang et46

al. [16] and Pirozzoli and Orlandi [17] recently pointed out that ∆y+ ≈ 6 leads to excessive grid resolution47

at the channel center, especially at high Reynolds numbers. Following the arguments in Refs. [16, 17], the48

wall-normal grid spacing should resolve the wall unit in the viscous layer and the local Kolmogorov length49

scale in the logarithmic and the wake layers, respectively. The heuristics for the sampling time, on the other50

hand, suggest that 10δ/uτ is needed to obtain converged first- and second-order statistics, although shorter51

(and sometimes much shorter) sampling time is often used [18].52

The above heuristics have been challenged in the recent literature, particularly at high Reynolds numbers.53

Donzis et al. [19] argued that since turbulence becomes more intermittent as the Reynolds number increases,54

one must employ finer grids at higher Reynolds numbers to resolve the flow as well as at a low Reynolds55

number. Following the arguments in Ref. [19], Yakhot et al. [20] estimated the grid resolution needed in56

order to resolve a given order moment of velocity derivatives in isotropic turbulence, and Yang et al. [21]57

estimated the horizontal grid resolution needed to resolve 99% of the wall-shear stress events in a plane58

channel. In this context, the following question remains open: What are the uncertainties in high-order59

statistics like dissipation, velocity skewness, and kurtosis? Notice that the wording here is “uncertainty”60

rather than “error”. Here, we take a user’s perspective: For someone who uses DNS data for theoretical61

analysis, differences between DNS datasets are more often than not viewed as uncertainties rather than62

errors.63

This work aims to answer the above question. We will quantify the uncertainties due to the discretization64

in the wall-normal direction by considering grid distributions and discretizations that are representative of65

the existing DNSs, namely, cosine and naturally stretched girds [17], Chebyshev [1, 12, 22–24], 2nd-order66

finite difference [14, 25, 26], 3rd- and 7th-order B-spline [27, 28] discretizations. Again, the objective here is to67

quantify the uncertainty rather than provide guidelines for DNS practitioners. We will not make judgments68

about discretization methods or grid distributions.69

The remainder of the paper is organized as follows. We present the DNS setup in Sect. II. The results are70

shown in Sect. III, followed by conclusions in Sect. IV.71

II. DNS DETAILS72

We solve the incompressible Navier-Stokes equation in a periodic plane channel. The flow is driven by a73

constant pressure gradient. The grids are uniform in the streamwise and spanwise directions, respectively.74

The wall-normal grids are stretched according to either a cosine function [1]75

yj
δ

= cos

(
j

Ny − 1
π

)
, (1)

or the following natural stretching function [17]76

y+j =
1

1 + (j/jb)
2

[
∆y+wj +

(
3

4
αcηj

)4/3

(j/jb)
2

]
. (2)

Differentiating Eqs. (1) and (2) gives the grid spacing:77

∆yj
δ

= −1

δ

dyj
dj

=
π

Ny − 1
sin

(
j

Ny − 1
π

)
, (3)

and78

∆y+j =
dy+j
dj

=
1(

1 + (j/jb)
2
)2
[(

1−
(

j

jb

)2
)
∆y+w +

2

3

(
3

4
αcη

) 4
3 j

7
3

j2b

(
5 + 2

(
j

jb

)2
)]

. (4)

Here, j = 0, 2, ... , Ny − 1 in Eqs. (1) and (3), and j = 0, 2, ... , Ny/2 − 1 in Eqs. (2) and (4), Ny is the79
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(a) (b)

FIG. 1. (a) Grid distribution. (b) Distribution of the grid spacing. Here, C stands for cosine, i.e., Eq. (1), and N

stands for natural stretching, i.e., Eq. (2).

number of grid points in the wall-normal direction; α in Eq. (2) controls the grid resolution at the center80

of the channel, i.e., ∆y+ = αη+, η =
(
ν3/ϵ

)1/4
is the local Kolmogorov scale, and α = 1.5 [17]; cη = 0.881

is a constant; jb = 16 controls the number of grid points in the wall layer (viscous sublayer and the buffer82

layer); ∆y+w = 0.05 is the grid resolution at the wall. Equation (1) leads to excessive grids in the wall-normal83

direction at high Reynolds numbers. To resolve this issue, Lee and Moser, among others [27, 28], proposed84

the following wall-normal grid85

y

δ
=

sin(βξπ/2)

sin(βπ/2)
, ξ =

2j

Ny − 1
− 1, (5)

where β ≤ 1 controls the grid clustering in the wall layer. Lee and Moser took β = 0.97 for the Reτ = 520086

DNS and β ≈ 1 for the DNSs at Reτ = 180 and 544 [27]. The DNSs in this work are at the Reynolds87

numbers Reτ = 180, 544. We follow Ref. [27] and take β = 1.88

Figure 1 shows the distribution of the grid, i.e., yj as a function of j, and the distribution of the wall-89

normal grid spacing, i.e., ∆yj = yj+1−yj as a function of yj , for Ny = 129 and 244. Here, the Ny = 129 grid90

is intended for a Reτ = 180 channel, and the Ny = 244 grid is intended for a Reτ = 544 channel. We use the91

same number of grid points to compare their grid spacing on a similar cost basis. Equation (2) gives rise to92

a quick increase in ∆y+ from the 2nd off-wall grid to the 3rd off-wall grid, as shown in figure 1 (b) (see also93

figure 5b in Ref. [17]). At these Reynolds numbers, the cosine stretching does not lead to undesirable grid94

clustering at the wall. We see from figure 1 that the natural stretching gives slightly higher resolutions at95

the first few off-wall grid points and the channel centerline but slightly lower resolutions in the buffer layer96

and the logarithmic layer than the cosine stretching.97

Three codes are employed, namely, the code in Ref. [1], the code in Ref. [27], and the code in Ref.98

[29–31]. The three codes use the same spectral method in the wall-parallel directions. Discretization in the99

wall-normal direction is via the Chebyshev spectral method (SP), the B-spline method (BS), and the finite100

difference method (FD), respectively. The B-spline method is either third order or seventh order, which is101

referred to as BS3 or BS7. The finite difference method is second order, referred to as FD2. Note that the102

Chebyshev spectral method is compatible with the cosine grid only. Further details of the three codes are103

shown in Table I.104

Table II shows the details of the DNSs, including the Reynolds number, the averaging time, the grid size,105

and the resolution in plus units. Two Reynolds numbers are considered, i.e., Reτ = 180 and 544 (nominal106

Reynolds number, computed according to Reτ = δ
√
−1/ρ dP/dx δ/ν). The size of the computational107

domain is Lx ×Ly ×Lz = 4πδ × 2δ × 2πδ. The grid spacings in the streamwise and the spanwise directions108

are such that they resolve more than 99% of the dissipation (wall-shear stress) events at the wall [21], which,109

as we will see, is sufficient for the purpose of the current study. The number of grid points is such that110

∆y+w ≈ 0.05 for the cosine stretched grid and y+Ny
computed according to Eq. (2) just exceeds Reτ . This111

leads to a slightly different number of grid points when a grid is stretched according to the cosine function112
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TABLE I. Details of the codes. Here, “disc.” is short for discretization, “conv.” is short for convective, “visc.”

is short for viscous, “AB” is short for Adam-Bashforth, “RK” is short for Runge-Kutta, and “C-N” is short for

Crank-Nicolson.

Code x, z disc. y disc. Time disc.

conv. terms visc. terms

SP Fourier spectral Chebyshev 2nd AB C-N

BS7 Fourier spectral 7th B-spline 3rd RK C-N

BS3 Fourier spectral 3rd B-spline 3rd RK C-N

FD2 Fourier spectral 2nd finite difference 2nd AB C-N

TABLE II. DNS details. Reτ = uτδ/ν is the computed friction Reynolds number, which only equals the nominal

friction Reynolds number if the averaging time approaches infinity. Tr is the averaging time. D+
x and D+

z are the

grid spacings in the streamwise and the spanwise directions. D+
y,w and D+

y,c are the wall-normal grid spacing at the

wall and the center of the channel. The nomenclature of the cases is as follows: [Code][Grid]R[Reτ ], where [Code] is

SP, BS3, BS7, or FD2, [Grid] is C (cosine), CF (fine grid, cosine), or NS (natural stretching), [Reτ ] is 180 or 544.

Case Reτ Truτ/δ Nx ×Ny ×Nz D+
x × (D+

y,w, D
+
y,c)×D+

z

SPCR180 181.41 32 192× 130× 180 11.7× (0.054, 4.42)× 6.26

SPCFR180 180.27 32 192× 259× 180 11, 7× (0.013, 2.19)× 6.22

BS7CR180 182.29 32 192× 129× 180 12.0× (0.055, 4.48)× 6.37

BS3CR180 182.02 32 192× 133× 180 12.0× (0.052, 4.33)× 6.37

BS3CFR180 182.23 32 192× 259× 180 12.0× (0.014, 2.22)× 6.37

FD2CR180 180.70 32 192× 129× 180 11.8× (0.053, 4.38)× 6.28

FD2NR180 179.30 32 192× 116× 180 11.8× (0.050, 4.59)× 6.28

SPCR544 544.95 12 576× 244× 540 11.8× (0.045, 7.01)× 6.31

SPCFR544 545.36 12 576× 487× 540 11.9× (0.011, 3.53)× 6.35

BS7CR544 543.16 12 576× 237× 540 11.8× (0.048, 7.23)× 6.32

BS3CR544 544.72 12 576× 241× 540 11.9× (0.047, 7.13)× 6.34

BS3CFR544 544.80 12 576× 484× 540 11.9× (0.012, 3.54)× 6.34

FD2CR544 546.04 12 576× 243× 540 11.8× (0.046, 7.06)× 6.31

FD2NR544 542.50 12 576× 260× 540 11.8× (0.048, 5.70)× 6.31

and the natural stretching function. Table III lists the setups of previous DNSs for comparison purposes.113

Clearly, our DNSs are representative of the ones in the present literature.114

The nomenclature of the DNS cases is as follows: [Code][Grid]R[Reτ ], where [Code] is SP, BS3, BS7, or115

FD2, [Grid] is C (cosine), CF (fine grid, cosine), or N (natural stretching), [Reτ ] is 180 or 544. We take116

cases SPCR180 and SPCR544 as our baselines. The SPCFR and the BS3CFR cases use twice as many grid117

points in the wall-normal direction as the two baseline cases. The same cosine stretched wall-normal grid is118

used in SPC, BS7C, BS3C, and FD2C.119

For this study, the same code is used for the FD2N and FD2C cases. For the Reτ = 180 and 544 channel120

flows, the naturally stretched grid is not more cost-effective than the cosine stretched grid, with the cost121

of FD2NR180 and FD2NR544 1.2 and 1.1 times the cost of FD2CR180 and FD2CR544 (in terms of the122

wall time). However, since the cosine grid leads to excessive grid clustering at high Reynolds numbers, the123

natural stretching method will be more cost-effective at high Reynolds numbers.124

Before we proceed, we follow the previous authors and check the statistical convergence of our DNSs. We125

average for Tr = 32δ/uτ and 12δ/uτ for the Reτ = 180 and 544 cases, respectively. The sampling time is126

comparable to and, in many cases, longer than those in the literature, as we can see in Table III. (Lozano-127

Duran and Jimenez [24] used a slightly longer averaging time for their Reτ = 950 and 4200 channel, but128

their domain size is twice as small.) The present sampling time Tr gives rise to a 1% convergence error in129

Reτ . Figure 2 (a, b) show the time history of the normalized instantaneous friction Reynolds number for130
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TABLE III. A (not comprehensive) survey of channel flow DNSs in the literature. The reference, the friction Reynolds

number, the discretization in the three Cartesian directions, the wall-normal grid, and the sampling time are tabulated.

∆y+
w and ∆y+

c are the wall-normal grid spacing at the wall and the centerline, respectively. “∼ η” indicates that the

wall-normal grid spacing is proportional to the local Kolmogorov scale η =
(
ν3/ϵ

)1/4
. We put N/A if the information

is not available. “disc.” is short for discretization, and “FD” is short for the finite difference. Cosine grid corresponds

to Eq. (1). Sine grid corresponds to Eq. (5).

Ref. Reτ,max x, z disc. y disc. y grid ∆y+
w ∆y+

c Tuτ/δ

[1] 180 Fourier Chebyshev Cosine 0.05 4.4 10

[12] 392 Fourier Chebyshev Cosine 0.05 6.41 10

[22] 590 Fourier Chebyshev Cosine 0.04 7.2 N/A

[23] 934 Fourier Chebyshev Cosine 0.03 7.6 N/A

[26] 1020 4th FD 2nd FD N/A 0.15 7.32 6.3

[34] 2003 Fourier 7th CFD ∼ η N/A 8.9 11

[24] 932 Fourier Chebyshev Cosine 0.03 7.7 20

[24] 4179 Fourier 7th CFD N/A N/A 10.7 15

[14] 4079 2nd FD 2nd FD Cosine 0.02 6.38 8.5

[27] 5186 Fourier 7th B-spline Sine 0.50 10.3 7.8

[25] 8016 10th FD 2nd FD ∼ η 0.6 8.0 6.3

cases SPCR180 and SPCR544. It should be clear that the flow is statistically stationary. Figure 3 (a, b)131

show the terms in the following Reynolds averaged momentum equation:132

−⟨u′v′⟩+ +

(
dU

dy

)+

= 1− y

δ
(6)

where −⟨u′v′⟩ is the Reynolds shear stress, U is the mean velocity. If the flow is statistically converged, the133

sum of the turbulent and viscous flux is a linear function of y, which is often invoked to check the statistical134

convergence of a channel flow simulation [7, 10, 13, 25, 27, 32, 33]. Figure 3 shows the terms in the mean135

momentum equation in cases SPCR180 and SPCR544. We see that the sum of the two fluxes does follow136

the expected linear scaling. The results in the other DNSs are similar and are not shown here for brevity.137

We will revisit the issue of statistical convergence in Sec. III.138

III. RESULTS139

We now quantify the uncertainties in DNS statistics. The discussion focuses on high-order statistics140

such as skewness, kurtosis, and dissipation rate. These high-order statistics are known to be dominated141

by the small scales and, therefore, could also be referred to as small-scale statistics. As the DNSs differ in142

their discretizations in the wall-normal direction, the uncertainties are primarily a result of the wall-normal143

numerics and grids. Additionally, our employment of finer grids in the wall-parallel directions than the144

established heuristics means that the uncertainties presented in this study represent conservative estimates145

of the uncertainties in existing DNSs.146

A. Velocity statistics147

First, we quantify the uncertainties in the mean flow and the velocity root-mean-square (rms) and compare148

our results with these in the literature. This exercise will serve as a sanity check. Figure 4 shows the mean149

velocity and the rms of the streamwise velocity. The mean velocity profiles collapse. We see some differences150

in the streamwise velocity rms at y+ ≈ 14, where the profiles attain the maximum. Specifically, the SPC151

and SPCF results collapse well (not to say that these results can be regarded as the truth); the BS3, BS7,152
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(a)

(b)

FIG. 2. A sample time history of the instantaneous friction Reynolds number for (a) SPCR180 and (b) SPCR544.

(a) (b)

FIG. 3. The terms in the mean momentum equation. (a) SPCR180, (b) SPCR544. Here, “total” is the sum of the

viscous flux and the turbulent flux. “Mom. Bud.” is short for momentum budget.

and FD2 results are above the SPC and SPCF results. The peak values of the streamwise velocity rms are153

tabulated in Table IV. There is a 1 to 2% uncertainty, which is consistent with the result in Ref. [11, 14].154

Next, we examine the high-order statistics. Figure 5 shows the skewness S155

S =

〈
u′3〉

⟨u′2⟩3/2
, (7)

and the flatness F156

F =

〈
u′4〉

⟨u′2⟩2
(8)

of the streamwise velocity fluctuation. Here, ⟨·⟩ indicates the average in time and the homogeneous directions.157

Obtaining accurate high-order statistics is more challenging than low-order statistics [1, 21, 35], as reflected158

by the scattered data in figure 5. These uncertainties are significant considering that they are from “DNSs”159

and can all be considered as the “truth”. Upon closely examining the results in figure 5, we observe that160



7

(a) (b)

(c) (d)

FIG. 4. Mean velocity profiles at (a) Reτ = 180 and (c) Reτ = 544. Streamwise velocity rms at (b) Reτ = 180 and

(d) Reτ = 544.

TABLE IV. The peak values of the streamwise velocity rms (at y+ ≈ 14), the peak values of the skewness and flatness

of the streamwise velocity fluctuation (at the wall), and the mean dissipation at y+ = 10. We use the SPCF result

as our reference. The other results are compared against the SPCF result, with + indicating a value larger and -

indicating a value smaller than the SPCF result.

Reτ Variables SPCF SPC BS7C BS3C BS3CF FDC FDN

180 u+
rms,p 2.615 +0.000 +0.048 +0.055 +0.057 +0.050 +0.044

Sw 0.954 -0.003 -0.014 +0.000 -0.016 -0.038 -0.062

Fw 4.423 -0.001 -0.135 -0.134 -0.173 -0.184 -0.261〈
ϵ+

〉∣∣
y+=10

0.120 -0.001 -0.004 -0.005 -0.004 -0.006 -0.010

544 u+
rms,p 2.734 -0.006 +0.025 +0.033 +0.029 +0.034 +0.023

Sw 1.028 +0.002 -0.016 -0.005 -0.010 -0.061 -0.096

Fw 4.996 -0.001 -0.188 -0.197 -0.180 -0.234 -0.245〈
ϵ+

〉∣∣
y+=10

0.137 +0.000 -0.002 -0.005 -0.004 -0.006 -0.009

both the skewness and the flatness arrive at the wall with a zero slope in a semi-log scale. Provided that the161

wall layer is well-resolved, any function that is non-singular at the wall should arrive at the wall with a zero162

slope because:163

lim
y→0

dg(y)

d log(y)
= lim

y→0

(
y

ln 10

dg(y)

dy

)
= 0, (9)

where g is a generic function. Equation (9) serves as a sanity check, and the results in Fig. 5 pass this sanity164

check. Furthermore, SPC and SPCF predict skewness and flatness that are larger than the other DNSs at165

the wall. Table IV tabulates the skewness and flatness at the wall. Comparing the SPCR, BS7CR, BS3CR,166

and FD2CR results, we see that the numerics is responsible for a 5% uncertainty in the skewness statistics167

and a 7% uncertainty in the flatness statistics. Comparing FD2CR and FD2NR, we see that stretching the168
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(a) (b)

(c) (d)

FIG. 5. Skewness of the streamwise velocity fluctuation at (a) Reτ = 180 and (c) Reτ = 544. Flatness of the

streamwise velocity fluctuation at (b) Reτ = 180 and (d) Reτ = 544.

grid according to a cosine function or the natural stretching function leads to 3% and 4% uncertainty in169

the skewness and 2% and 0.2% uncertainty in the flatness for R180 and R544 cases, respectively. Finally,170

comparing the BSCR180 and BSCFR180 results or the BSCR544 and BSCFR544 results, there is a 1%171

uncertainty. These results suggest that the DNSs are not grid-converged. This is not very surprising.172

A commonly quoted criterion for solutions free from artificial numerical oscillations is Pe∆ ≤ 2, where173

Pe∆ = ∆U/ν is the cell Peclet number. In these DNSs, Pe∆ is between 0 to about 200. Consequently, the174

solutions are not free from numerical oscillations and therefore are far from grid converged. Again, we only175

quantify the uncertainty in the statistics and make no judgment about the numerics or the grid stretching176

strategies.177

B. Dissipation178

We quantify the uncertainties in dissipation. The viscous dissipation ϵ is defined as follows179

ϵ = ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
, (10)

where the summation of repeated indices is implied. The present discussion focuses on the viscous sublayer180

and the buffer layer. Aside from the fact that the flow is highly intermittent and therefore difficult to resolve181

in the wall layer, the buffer layer is dynamically important as the topology of eddies changes from sheet-like182

near the wall to rod-like away from the wall there [36].183
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(a) (b)

(c) (d)

FIG. 6. Mean dissipation in (a) SPCR180, and (c) SPCR544. Here, ⟨ϵ⟩1 is the average over a time period of Tr, and

⟨ϵ⟩2 is the average over a time period of 2Tr. (b, d) The difference between ⟨ϵ⟩1 and ⟨ϵ⟩2.

1. Low Reynolds numbers184

We revisit the issue of statistical convergence. To assess the statistical convergence of our dissipation185

statistics, we compare statistics averaged over Tr and 2Tr for SPCR180 and SPCR544, respectively. The186

two statistics are referred to as ·1 and ·2. Here, Tr is the averaging time listed in Table II. We can claim187

statistical convergence if the two statistics averaged over a period of Tr and 2Tr are similar. Figure 6 (a,188

c) shows the computed mean dissipation ⟨ϵ⟩1 and ⟨ϵ⟩2 and figure 6 (b, d) show the difference between ⟨ϵ⟩1189

and ⟨ϵ⟩2. The convergence error is less than 0.5% of the maximum dissipation. Figure 7 show the computed190

probability density function P (ϵ) at three y+ locations, i.e., y+ = 0, 10 and 30. Integrating the PDF from191

ϵ+ = 0 to the three gray vertical lines in the figure gives 90%, 99%, and 99.9%. Figure 7 shows that there192

is barely any difference between P1 and P2.193194

Next, we quantify the uncertainties in the dissipation data. Figures 8 (a, c) show the viscous dissipation195

in all DNSs. We take the SPCF result as our reference. Here, the SPCF result is taken as the reference, not196

the truth. Again, we take a user’s perspective and make no judgment about the numerics or grid distribution197

Figures 8 (b, d) show the difference between the other DNSs and SPCF. We observe the following. The SPC198

and SPCF results collapse; the BS3C and BS3CF results also collapse reasonably well. The values of the199

dissipation at y+ = 10 are tabulated in Table IV, and there is a 7% uncertainty. Upon closely examining200

the results, we see that the FD results are further away from the SP results than the BS results; among BS3201

and BS7, the BS7 results are closer to the SP results than the BS3 results; among FD2N and FD2C, the202

FD2C results are closer to the SP results than the FD2N results.203

Figure 9 shows the PDF of the viscous dissipation at y+ = 0, 10, and 30 in all DNSs. The BS, FD, and204

SP results differ. The difference is most noticeable at large ϵ values, which is physical since a significant205

instantaneous dissipation gives rise to a small instantaneous Kolmogorov length scale and is hard to resolve206

[19, 20, 37]. Integrating the PDFs in the plots to the three vertical lines approximately gives 0.9, 0.99, and207
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(a) (c) (e)

(b) (d) (f)

FIG. 7. Probability density function (PDF) of the instantaneous viscous dissipation at (a, b) y+ = 0, (c, d) y+ = 10,

(e, f) y+ = 30. (a, c, e) Reτ = 180, (b, d, f) Reτ = 544. Integrating the PDF from ϵ+ = 0 to the three vertical lines

gives 90%, 99%, and 99.9%.

(a) (b)

(c) (d)

FIG. 8. Mean dissipation in (a) the Reτ = 180 cases and (c) the Reτ = 544 cases. The difference between the other

cases and the SPCF cases at (b) the Reτ = 180 cases and (d) the Reτ = 544. The solid black lines in (b, d) are at 0.
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(a) (c) (e)

(b) (d) (f)

1

FIG. 9. PDF of the viscous dissipation in our DNSs. Integrating the PDF from 0 to the three gray vertical lines

gives 90%, 99%, and 99.9%.

0.999. If we keep one significant digit, there are about 0.1%, 10%, and 1% events that show uncertainty at208

y+ = 10, y+ = 0, and 30, respectively, since the PDFs begin to show uncertainty at the third, the first, and209

the second vertical lines in (b, d, f).210

To summarize, different wall-normal grids and numerics, while all are conforming to the established heuris-211

tics, lead to a 7% uncertainty in the computed mean dissipation rate at Reτ = 180 and 550. About 99.9%,212

90%, and 99% of the instantaneous dissipation events are resolved at y+ = 0, 10, and 30 at Reτ = 180 and213

544.214

2. High Reynolds numbers215

Assessing the uncertainties in DNS statistics at high Reynolds numbers is not straightforward because216

of DNSs’ high cost at high Reynolds numbers. Nonetheless, relying on Reynolds number scalings and data217

at a low Reynolds number, it is possible to estimate the uncertainties at high Reynolds numbers without218

additional calculations.219

The estimate relies on the following two hypotheses. First, given a code and the grid resolution in wall220

units, an instantaneous dissipation event that is well-resolved at one Reynolds number remains well-resolved221

at another Reynolds number. Second, the probability density function of ϵ+/ ⟨ϵ+⟩ at a given y+ in the222

constant stress layer is independent of the Reynolds number and is universal. The first hypothesis should223
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(a) (c) (e)

(b) (d) (f)

FIG. 10. PDFs of ϵ+ at (a) y+ = 0, (c) y+ = 10, and (e) y+ = 30. PDFs of ϵ+/
〈
ϵ+

〉
at (b) y+ = 0, (d) y+ = 10,

and (f) y+ = 30.

need no further explanation. The second hypothesis has received some empirical support [38]. Figure 10224

show P (ϵ+/ ⟨ϵ+⟩) and P (ϵ+) at y+ = 0, 10, and 30, and we see that P (ϵ+/ ⟨ϵ+⟩) does collapse for small225

epsilon values. Large ϵ values correspond to rare events, which are not our concern in this paper.226

The mean dissipation ⟨ϵ⟩ in P (ϵ/ ⟨ϵ⟩) is unknown. Here, we follow [39] and assume that ⟨ϵ+⟩ / ⟨ϵ+w⟩ is a227

universal function of y+ ⟨ϵ+w⟩, i.e.,228 〈
ϵ+
〉
/
〈
ϵ+w
〉
= g(y+

〈
ϵ+w
〉
), (11)

where g is a generic universal function and can be obtained at a low Reynolds number. With Eq. (11), if229

we know the Reynolds number scaling of ⟨ϵ+w⟩, we would know ⟨ϵ⟩ at all y+ and Reynolds numbers. The230

Reynolds number scaling of ⟨ϵ+w⟩ is still a research topic. Chen et al. [6] argued that231 〈
ϵ+w
〉
=
〈
ϵ+x,w

〉
+
〈
ϵ+z,w

〉
= a1 − b1Re−1/4

τ , (12)

where a1 = 0.38, b1 = 0.73. Yang and Lozano-Duran [4] argued that232 〈
ϵ+w
〉
= a2 + b2 ln(Reτ ). (13)

where a2 = 0.0166, b2 = 0.0329. Schlatter and Orlu [8] and Diaz et al. [9] argued that233 〈
ϵ+w
〉
= [a3 + b3 ln(Reτ )]

2
, (14)

where a3 = 0.2562, b3 = 0.0342. The coefficients are the best fits of the available data [27].234

The information above allows us to infer the uncertainty in a high Reynolds number DNS using data at235

a low Reynolds number. The steps are as follows. Consider a DNS where events ϵ+ < ϵ+lim are resolved but236

events ϵ+ > ϵ+lim are not. This DNS resolves P × 100% dissipation events, where P is237



13

(a) (b) (c)

FIG. 11. The proportion of dissipation events well-resolved in DNSs. (a) y+ = 0, (b) y+ = 10, (c) y+ = 30. Blue

solid line: assuming the wall dissipation scales as Eq. (12); red dash line: assuming the wall dissipation scales as Eq.

(13); yellow dash-dot line: assuming the wall dissipation scales as Eq. (14).

P(y+, Reτ ) =

∫ ϵ+lim

0

P (ϵ+; y+, Reτ )dϵ
+. (15)

Here, P (ϵ+; y+, Reτ ) is the probability density function of ϵ+, and the cumulative density function P is a238

function of both y+ and Reτ . According to the second hypothesis, the PDF of ϵ+/ ⟨ϵ+⟩ is a function of y+239

only, and therefore240

P (ϵ+; y+, Reτ )dϵ
+ = P (ϵ+/

〈
ϵ+
〉
; y+)d

(
ϵ+/

〈
ϵ+
〉)

, (16)

where P (ϵ+/ ⟨ϵ+⟩ ; y+) is the probability density function of ϵ+/ ⟨ϵ+⟩ and can be measured in a low Reynolds241

number DNS, e.g., from figure 10. Furthermore, because of Eq. (11), we can re-write Eq. (16) as242

P (ϵ+; y+, Reτ )dϵ
+ = P

(
ϵ+

g(
〈
ϵ+w
〉
y+)ϵ+w

; y+

)
dϵ+

/(
g(
〈
ϵ+w
〉
y+)ϵ+w

)
. (17)

It then follows from Eqs. (15) and (17) that243

P(y+, Reτ ) =

∫ ϵ+lim

0

P

(
ϵ+

g(
〈
ϵ+w
〉
y+)ϵ+w

; y+

)
dϵ+

g(
〈
ϵ+w
〉
y+)ϵ+w

, (18)

which, when given ϵ+lim, can be readily evaluated for an arbitrary Reτ and y+.244

The results in figure 9 suggests that ϵ+lim = 5.04, 0.31, and 0.51 for y+ = 0, 10, and 30. We substitute245

these numbers in Eq. (18) and compute P as a function of Reτ for y+ = 0, 10, and 30. Figure 11 shows the246

results. Different Reynolds number scalings of the wall dissipation give slightly different estimates. However,247

the trend is the same: if similar wall-normal grid resolutions are used at low and high Reynolds numbers,248

the DNS will resolve fewer dissipation events at high Reynolds numbers. More specifically, if we were to use249

a similar wall-normal grid, i.e., ∆y+w = 0.05, ∆yc = 1.5η, naturally or cosine stretched, for a channel flow250

DNS at Reτ = 105, we would be resolving about 99.8%, 86.4%∼87.6%, and 98.9% events at y+ = 0, 10, and251

30, respectively.252

IV. CONCLUSIONS253

We take the perspective of someone who uses DNS data and quantify the uncertainty in the DNS-computed254

statistics. By limiting the uncertainty due to a finite sampling time and by employing the same numerics and255

grids in the wall-parallel directions, we show that the wall-normal numerics and grids contribute to (at least)256

6%, 6%, and 7% uncertainty in the skewness, kurtosis, and mean viscous dissipation at low Reynolds numbers257
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(Reτ = 544). The impact of numerics is found to be more significant than that of the grid distribution. Since258

we used longer averaging times and finer grids in the wall-parallel directions than those in previous literature,259

the results here suggest that existing data may have larger uncertainties in these statistics. Furthermore,260

because turbulence is more intermittent at higher Reynolds numbers, a given grid resolution (in terms of wall261

units) resolves fewer instantaneous dissipation events at higher Reynolds numbers. Our analysis indicates262

that the established heuristics for grid resolution resolves about 90% and 87% of the instantaneous dissipation263

events at Reτ = 544 and 105, respectively.264

In contrast to previous studies that focused on the mean velocity and velocity rms, we demonstrate that265

while DNS-computed low-order statistics are highly accurate, higher-order statistics have a higher level of266

uncertainty. Last, we note that we made no judgment about the discretization methods or the grids. A more267

in-depth investigation would be needed to determine the “best” numerical strategy for channel flow DNS—if268

there is a “best” strategy.269
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