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We seek to develop a low dimensional model for the interactions between horizontally adjacent
turbulent convection rolls. This was tested in Rayleigh-Bénard convection experiments with two
adjacent cubic cells with a partial wall in between. Observed stable states include both counter-
rotating and co-rotating states for Rayleigh number 7.6×107 < Ra < 3.5×109 and Prandtl number
6.41. The stability of each of these states and their dynamics can be modeled low-dimensionally
by stochastic ordinary differential equations of motion in terms of the orientation, amplitude, and
mean temperature of each convection roll. The form of the interaction terms is predicted based
on an effective turbulent diffusion of temperature between the adjacent rolls, which is projected
onto the neighboring rolls with sinusoidal temperature profiles. With measurements of a constant
coefficient for effective thermal turbulent diffusion, quantitative predictions are made for the nine
forcing terms which affect stable fixed points of the co- and counter-rotating states for 5.5×108 < Ra
< 3.5× 109 . Predictions are found to be accurate within a factor of 3 of experiments. This suggests
that the same turbulent thermal diffusivity that describes macroscopically averaged heat transport
also controls the interactions between neighboring convection rolls. The surprising stability of co-
rotating states is due to the temperature difference between the neighboring rolls becoming large
enough that the heat flux between the rolls stabilizes the temperature profile of aligned co-rotating
states. This temperature difference can be driven with an asymmetry, for example, by heating the
plates of the two cells to different mean temperatures. When such an asymmetry is introduced, it
also shifts the orientations of the rolls of counter-rotating states in opposite directions away from
their preferred orientation, which is otherwise due to the geometry of the cell. As the temperature
difference between the plates of the different cells is increased, the shift in orientation increases until
the counter-rotating states become unstable, and only co-rotating states are stable. At very large
temperature differences between cells, both the counter-rotating and predicted co-rotating state
become unstable – instead we observe a co-rotating state with much larger temperature difference
between the rolls that cannot be explained by turbulent thermal diffusion. Spontaneous switching
between co-rotating and counter-rotating states is also observed, including in nominally symmetric
systems. Switching to counter-rotating states occurs mainly due to cessation (a significant weakening
of a convection roll), which reduces damping on changes in orientation, allowing the orientation to
change rapidly due to diffusive fluctuations. Switching to co-rotating states is mainly driven by
smaller diffusive fluctuations in the orientation, amplitude, and mean temperature of rolls, which
have a positive feedback that destabilizes the counter-rotating state.

I. INTRODUCTION

While turbulent flows are often thought of as irregular
and erratic, large-scale coherent flow structures are com-
monplace in turbulence. An example is convection rolls
driven by buoyancy in natural convection. Such struc-
tures and their dynamics can play a significant role in
heat and mass transport. A particular challenge that is
the focus of this manuscript is to develop a model for how
these large-scale flow structures interact with each other,
for example to result in neighboring convection rolls that
are counter-rotating or co-rotating.
We investigate this in the model system of turbulent

Rayleigh-Bénard convection. In Rayleigh-Bénard con-
vection, a fluid is heated from below and cooled from
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above to generate buoyancy-driven flow [1, 2]. This sys-
tem exhibits convection rolls which are robust large-scale
coherent structures that retain a similar organized flow
structure over a long time. For example, in containers
of aspect ratio near 1, a large-scale circulation (LSC)
forms. This LSC consists of localized blobs of coherent
fluid known as plumes. The plumes collectively form a
single convection roll in a vertical plane that can be iden-
tified by averaging over the flow field or timescales longer
than the circulation period [3]. This LSC spontaneously
breaks the symmetry of symmetric containers, but turbu-
lent fluctuations cause the LSC orientation θ0 in the hor-
izontal plane to meander spontaneously and erratically,
and allow it to sample different orientations to recover
the symmetry over long times [4]. While the LSC exists
nearly all of the time, on rare occasions these fluctuations
lead to spontaneous cessations followed by reformation of
the LSC [4, 5]. The LSC exhibits oscillation modes [6–
18], which in circular cylindrical containers consists of
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twisting and sloshing [19–22], and at some aspect ratios
a jump-rope-like mode [23, 24].

The qualitative behavior of the LSC depend on the ge-
ometry of the cell, which is necessary to account for if
we are to understand the dynamics between neighboring
rolls in some geometry. In containers with rectangular
horizontal cross-sections, the preferred alignment of the
LSC orientation θ0 is along the longest diagonals, and the
LSC orientation can spontaneously switch between adja-
cent corners [25–31]. A regular oscillation of θ0 can occur
between nearest-neighbor diagonals in a non-square rect-
angular cross-section [26]. In a cubic container, the oscil-
lation structure of the LSC corresponds to an advected
oscillation mode with one oscillation per LSC turnover
period [32], and an oscillation in the shape of the tem-
perature profile that does not occur in a circular cross-
section cell [33].

In principle, the Navier-Stokes equations describe fluid
flow, but they are impractical to solve for such complex
turbulent flows, so low-dimensional models are desired.
It has long been recognized that the states and dynam-
ics of a single large-scale coherent structure are similar
to those of low-dimensional dynamical systems models
[34] and stochastic ordinary differential equations [35–
38]. Low-dimensional models can potentially describe
parameters of stable states, dynamics such as oscillation
modes, and behavior of transitions between states. While
low-dimensional models lack detail of smaller structures,
they have the advantage of being much simpler to solve
and understand the behavior because they involve sim-
pler equations – such as ordinary differential equations
instead of partial differential equations.

There are several low-dimensional models for single
roll LSCs. Early models tried to characterize flow re-
versals in simplified flow in a two-dimensional plane [39–
41] However, these two-dimensional models could not
characterize more complex three-dimensional dynamics
with motion in θ0 such as reorientations and oscilla-
tion modes. Some models are obtained by transforming
high-dimensional fluid velocity field data (usually from
direct numerical simulation) and reducing it to lower-
dimensional models consisting of a few highest-energy
Fourier modes or eigenmodes. These models have been
able to characterize the detailed shape of the LSC and
its dynamics, including flow reversals in two dimensions
[42, 43] spontaneous corner-switching and oscillations
in cubic cells [29, 31], and the twisting, sloshing, and
jump-rope oscillation modes of the LSC [24]. Because
these models are obtained from high-dimensional data,
they are descriptive in higher detail, but the models are
not formulated in such a way to predict flows when de-
tailed data is not already available. We desire a low-
dimensional modeling technique that can be predictive
and generalizable to other systems with more limited or
no experimental input required.

We build off the low-dimensional model of Brown &
Ahlers, where model terms are derived from approxima-
tions of the Navier-Stokes equations [44]. The model

consists of a pair of stochastic differential equations for
the LSC, in terms of the orientation θ0 and amplitude
δ. The model of Brown & Ahlers and its extensions
have successfully described most of the known dynam-
ical modes of the LSC in including the meandering, ces-
sations, and twisting and sloshing oscillation modes de-
scribed above [22, 44–47], with the exception of the jump
rope mode. The combination of twisting and sloshing os-
cillation modes [19–22] can alternatively be described in
this model as a single advected oscillation mode, with
two oscillation periods per LSC turnover period in a cir-
cular cross-section [22], or with one oscillation period per
LSC turnover period in a cubic cross-section which is ex-
cited by a potential Vg due to the shape of the container
[32]. This potential Vg can be predicted as a function
of container cross-section geometry without experimen-
tal input [26, 45, 48]. This same potential Vg also ex-
plains the preferred orientation along diagonals of a rect-
angular cross-section container, the oscillations between
diagonals [26], and the stochastic switching between di-
agonals [25, 27–31]. This model requires experimental
measurements of two diffusivity parameters that charac-
terize the strength of turbulent fluctuations in θ0 and the
LSC strength, but these are relatively simple parameters
that can be obtained from short term measurements of a
single state. Predictions of oscillation frequencies, aver-
age rates of stochastic switching between states, widths
of probability distributions, and state boundaries are typ-
ically accurate within a factor of 3 [27, 35, 44, 48], but
can be more accurate when more fit parameters are used
[49].

While systems of aspect ratio close to one tend to have
a single convection roll, horizontally extended convection
systems tend to consist of multiple convection rolls, each
of aspect ratio on the order of one, arranged side-by-
side, typically counter-rotating relative to their neigh-
bors [50, 51]. Counter-rotating behavior is claimed to
be prevalent in nature, for example, in textbook pictures
of convection rolls in the atmosphere, in the convection
layer of stars, or planetary cores. However, a few sim-
ulations have been able to produce co-rotating states in
horizontally adjacent rolls in non-turbulent convection,
with lateral heating [52], or with an inclination relative
to gravity of 0.01 rad [53]. Vertically extended systems
often have counter-rotating rolls stacked on top of each
other [54]. A turbulent convection experiment with two
fluids, one on top of the other, found a convection roll
in each fluid with two stable states, one where the rolls
are counter-rotating, and one where the rolls are co-
rotating [55], with rare stochastic switching between the
two states. A variation on stacked co-rotating rolls was
observed in simulations of a non-turbulent vertical chan-
nel where vertical flow in opposite directions occurred
along opposite side walls. In this case, the co-rotating
rolls are forced by the opposite vertical flows on either
side [56].

Two-dimensional theories using linear stability analy-
sis in the non-turbulent regime have been able to predict
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the existence of stable counter- and co-rotating states. In
one case, a lateral heating was shown to provide a forcing
to produce stable co-rotating states in horizontally neigh-
boring rolls [52]. Another model considered vertically
stacked rolls, and showed stable counter-rotating states
where the coupling was dominated by viscous forces, as
well as stable co-rotating states where the coupling was
mainly through vertical buoyancy forces [57]. Since these
earlier models were focused on two-dimensions [52, 57],
they can identify co-rotating and counter-rotating states,
but they are missing the orientation of rolls, which is
important because stability in three dimensions requires
stability in the orientation as well as the flow strength,
and many dynamics of rolls involve changes in orientation
[4, 19, 23, 58, 59]. These previous models also focused on
linear stability analysis of laminar flow, but many nat-
ural flows are turbulent, well beyond the range where
linear stability analysis rigorously applies. It has yet to
be determined whether three-dimensional systems of in-
teracting turbulent convection rolls can be captured by
low-dimensional models, which is the primary goal of this
work.

We hypothesize that the low-dimensional model of
Brown & Ahlers [27, 32, 44, 45, 48] can be extended to
systems of multiple convection rolls using an existing set
of ordinary differential equations of motion for each roll,
and adding interaction terms to the equations of motion
for each neighboring roll. We seek to test whether a low-
dimensional model can predict or describe the preferred
states (e.g. counter-rotating and/or co-rotating), their
parameter values (e.g. orientation, flow strength), and
their dynamics (e.g. how does switching between states
occur). We also seek to understand the physical origin
of the interaction terms, in particular due to turbulent
thermal diffusion across the interface between the rolls
so that a general predictive model can be made. This is
in the spirit of low-dimensional models with heat trans-
port in one dimension that have already proven effective,
for example, to explain an oscillation in the shape of the
temperature profile with an orientation-dependent ver-
tical heat transport [33], and to explain thermal waves
with a height-dependent vertical heat transport [60]. In
principle, if we can write equations for convection rolls
with interaction terms for a neighbor, results from two
convection rolls can be extended to systems of more rolls
assuming there are no significant interaction terms that
involve three or more rolls.

The remainder of this manuscript is organized as fol-
lows. Section II explains the experimental apparatus,
and methods used to characterize the LSC. Section III
summarizes the existing low-dimensional model of Brown
& Ahlers for a single LSC to use as a starting point. Sec-
tion IV describes initial observations of counter-rotating
and co-rotating states of two neighboring rolls. Section V
presents a physical derivation of a model for neighboring
roll interactions based on effective turbulent thermal dif-
fusion. This model is tested in Sec. VI for the symmetric
case where the control of both cells is nominally iden-

θ1=0θ2=0
θ1=πθ2=π

Cell 1Cell 2

θ1θ2

FIG. 1. A schematic of the experimental setup to measure in-
teractions between two neighboring convection rolls, viewed
from above. The LSC orientation in each cell is measured as
the angle between the flow direction of the LSC near the bot-
tom plate (dashed line) relative to the axis going through the
center of both cells (dotted line), such that aligned counter-
rotating states correspond to θ1 = θ2, and aligned co-rotating
states correspond to θ1 = θ2 + π rad. Thermistor locations
on the sidewall are indicated by solid circles.

tical. Section VII extends this model to the cases with
asymmetric forcing on the two cells due to a difference
in mean temperature of the plates, to better understand
co-rotating states, and to test some of the model terms.
Section VIII presents observations of spontaneous switch-
ing between co-rotating and counter-rotating states, and
explains how these can be understood with the model.

II. METHODS

A. Experiment setup

The experimental apparatus is the same one used in
[48], with the relevant details and modifications pre-
sented here. The apparatus consists of two adjacent cells
as illustrated in Fig. 1. Each cell is nearly cubic with
H = 20.32 cm and horizontal lengths L = 20.02 ± 0.03
cm. Since two rolls may be preferred at an aspect ratio 2
without a wall in between [51], the apparatus is modified
from [48] with a partial opening in the middle wall to
enforce a flow with two convection rolls that can interact
with each other.
To control the temperature difference ∆T between the

top and bottom of each cell, water is circulated through
top and bottom plates. Each top and bottom plate
is controlled by its own temperature-controlled water
bath so that ∆T could be controlled in each cell more
precisely, and a difference ∆Tm could be imposed be-
tween the mean plate temperatures of the two cells when
desired. The plates are aluminum, with double-spiral
water-cooling channels as in [61], except that each plate
has its own double-spiral, and the inlet and outlet of each
plate were adjacent to minimize the spatial temperature
variation within the plates. The baths pump water in a
pattern symmetric around the middle wall to minimize
temperature asymmetries between the two cells. Each
plate has 5 thermistors to record ∆T and ∆Tm, with
one thermistor at the center and four on the diagonals,
halfway between the center and each corner of the plate.
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FIG. 2. A schematic of the middle wall (in between the two
cells). Cross-hatched sections indicate cutouts. Half of the
area of the middle wall is cut out to enforce a flow with two
convection rolls while allowing interaction between the neigh-
boring convection rolls. Thermistor locations are indicated
by solid circles.

The standard deviation of temperatures within each plate
is 0.005∆T [48]. The top and bottom plates are parallel
within 0.06◦.

The sidewalls of the cubic cells are plexiglas to ther-
mally insulate the cell from the surroundings. The outer
sidewalls have a thickness of 0.55 cm, and are further in-
sulated from the room by foam insulation. The middle
wall is shared in between the two flow cells. The middle
wall has a thickness of 0.91 cm to thermally insulate the
cells from each other, and extends 2.2 cm into the gap
between the top and bottom plates to thermally insulate
the plates of different cells from each other. The middle
wall has gaps in it to allow flow in the two cells to interact
with each other. Three sections of height H1 = 13.6±0.1
cm by L1 = 4.9±0.1 cm are cut out of the middle wall, as
shown in Fig. 2. A quarter circle with radius 0.35± 0.05
cm was cut out of each corner of the cell to allow gas
bubbles to escape the cell during a degassing process to
prepare the working fluid for experiments. This results
in a fraction A = 0.50 of the middle wall open to allow
interaction between the two cells. All of the cutouts are
symmetric around the mid-height of the cell and sym-
metric from left to right.

Two vertical grooves were cut in the middle wall as
shown in Fig. 2 to place thermistors and run their wiring
out the top of the cell. The remaining area of the grooves
was filled with epoxy to keep the walls as flat as possible,
as explained in [48]. Detailed internal dimensions are
given in [48], where it is shown that their effect on the
symmetry of the flow is negligible compared to the effects
of the cubic shape, as well as compared to effects of non-
uniformity of the heating and cooling plate temperatures.

The apparatus was further insulated from the room
as in [61] by surrounding it with 5 cm thick closed-cell
foam, which itself was surrounded on the sides by a cop-
per shield with water circulating through a pipe welded
to the shield. The circulating water temperature was set

to match the mean temperature 〈T0〉 averaged over the
two cells, with a standard deviation of 0.006◦ K. The
shield was surrounded by another layer of 2.5 cm thick
open-cell foam.
To measure the LSC, thermistors were mounted in the

sidewalls as in [58]. There are three rows of thermistors:
at heights +H/4, 0, and −H/4 relative to the mid-height
of the cell, as shown in Fig. 2. In each row, eight ther-
mistors are equally spaced in the angle θ around the mid-
plane, as illustrated in Fig. 1. The coordinate θ in the
horizontal plane is measured relative to the axis going
through the center of both cells, as illustrated in Fig. 1.
The LSC orientation θ1 when corresponding to the flow
direction near the bottom plate when viewed from above
is measured counter-clockwise in cell 1 and θ2 is measured
clockwise in cell 2, so that counter-rotating states corre-
spond to θ1 = θ2 when the orientation vectors align head-
to-head, and co-rotating states correspond to θ1 = θ2+π
rad when they align head-to-tail.
The cell was leveled in the direction perpendicular to

the axis going through the center of both cells, with an
uncertainty of 0.03◦. For some experiments, the cell was
intentionally tilted by an angle β relative to the level
cell along the axis going through the center of both cells
to introduce a forcing from buoyancy that breaks the
symmetry of the two cells.
The working fluid was degassed and deionized water

with mean temperature of 23.0◦C, for a Prandtl num-
ber Pr = ν/κ = 6.41 where ν = 9.36 × 10−7 m2/s is
the kinematic viscosity and κ = 1.46× 10−7 m2/s is the
thermal diffusivity. The Rayleigh number is given by
Ra = gα∆TH3/κν where g is the acceleration of gravity,
and α = 0.000238 K−1 is the thermal expansion coeffi-
cient.
We calibrated thermistors at five mean temperatures

from 21◦ C to 25◦ C. The calibrations were run with a
small ∆T = 0.04 K to enhance mixing. The uncertainty
on temperature measurements is 1.9 mK for the sidewall
thermistors and 1.2 mK for the plate thermistors, adding
in quadrature the contributions from the standard devia-
tion in thermistor temperatures during calibration runs,
and the root-mean-square differences between the mean
temperatures and the calibration fit.

B. Obtaining the LSC parameters

The LSC orientation θi, amplitude δi, and mean tem-
perature T0,i are the main parameters used to character-
ize the LSC. They were obtained using the same methods
as [4], but are now labeled with indices i = 1, 2 to differ-
entiate the two cells. As the LSC moves hot fluid from
near the bottom plate up one side and cold fluid from
near the top plate down the other side, a temperature
difference is detected along a horizontal direction at the
mid-height of the container. We fit the thermistor tem-
peratures at the middle row in each cell to the function

Ti = T0,i + δicos(θ − θi) (1)
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to get the orientation θi, temperature amplitude δi, and
spatial mean temperature T0,i of the LSC roll. To obtain
a time series, these fits are done at every measured time
step, which is typically 7 s.
Due to the frequent failure of thermistors in the in-

terior of the cell, we only report data from the sidewall
thermistors, leaving only six thermistors in each cell at
the middle row. For example, at ∆T = 19 K, where
the time-averaged amplitude δ̄i is 0.42 K in a counter-
rotating state, this fit results in average uncertainties on
instantaneous measurements of 0.18 rad on θi and 0.06
K on δi from fitting Eq. 1. Since the uncertainties on in-
dividual thermistor measurements are only 1.9 mK, and
deviations from the sinusoidal profile due to oscillation
of the structure are only about 6% of the amplitude [33],
the largest contribution to these random uncertainties is
large turbulent fluctuations around the mean tempera-
ture profile. The small amplitude of ∆T = 0.04 K during
calibrations is expected to produce an LSC with mean
amplitude δ̄i = 2.9 mK based on an extrapolation of
measured values of δ̄i [48], which introduces a systematic
error of 2.9 mK on measurements of δi. Using Eq. 1, this
error propagates to a systematic error on θi of 0.007 rad
at ∆T = 19 K where δ̄i = 0.42 K, or an error on θi of
0.024 rad when δ̄i = 0.12 K at ∆T = 4K.

III. REVIEW OF MODEL FOR A SINGLE LSC,
I.E. WITHOUT NEIGHBORING ROLL

INTERACTIONS

In this section we summarize the model of Brown &
Ahlers [44], which we use as a baseline of comparison to
the behavior of a single-roll LSC. The model consists of
a pair of stochastic ordinary differential equations, us-
ing the empirically known, robust LSC structure as an
approximate solution to the Navier-Stokes equations to
obtain equations of motion for parameters that describe
the LSC dynamics. The effects of fast, small-scale tur-
bulent fluctuations are separated from the slower, large-
scale coherent motion when obtaining this approximate
solution, then added back in as a stochastic term in the
low-dimensional model. The flow strength in the direc-
tion of the LSC is represented by the temperature am-
plitude δi, which is proportional to the mean flow speed
in the LSC. The equation of motion for δi is

δ̇i =
δi
τδ

− δ
3/2
i

τδ
√
δ0

+ fδ(t) + δ̇κ . (2)

The first forcing term on the right side of the equation
corresponds to buoyancy, which strengthens the LSC.
The second term is a non-linear damping approximated
for a boundary-layer dominated flow, which weakens the
LSC. δ0 is the stable fixed point value of δi where buoy-
ancy and damping balance each other, and τδ is a damp-
ing timescale for changes in the strength of the LSC.
fδ(t) is a stochastic forcing term representing the effect
of small-scale turbulent fluctuations and is modeled as

Gaussian white noise with diffusivity Dδ. Thus, δi tends
to exhibit strong fluctuations around the stable fixed
point value of δ0. δ̇κ is a placeholder for forcing terms
due to the interaction between neighboring rolls, to be
derived in Sec. V.
The equation of motion for the LSC orientation θ0 is

θ̈i = − θ̇iδi
τθ̇δ0

−∇Vg(θi) + fθ̇(t) + θ̈κ . (3)

The first term on the right side of the equation is a
damping term which comes from the advective term of
the Navier-Stokes equations, where τθ̇ is a damping time
scale for changes of orientation of the LSC. fθ̇ is another
stochastic forcing term with diffusivity Dθ̇. Vg is a poten-
tial which represents the pressure of the sidewalls acting
on the LSC, and is a function of the geometry of the cell,
so −∇Vg(θi) ≡ −∂Vg/∂θi is the forcing due to this ge-

ometric potential. θ̈κ is another placeholder for forcing
terms due to the interaction between neighboring rolls,
to be derived in Sec. V.
Since the terms of Eqs. 2 and 3 were derived from the

Navier-Stokes equations, functional predictions for δ0, τδ
and τθ̇ exist [44, 48]. The diffusivities Dδ and Dθ̇ have
so far been measured from data [44, 48].
The geometric potential Vg(θi) can be expressed as a

function of the θ-dependent diameter of the cell, and thus
can be calculated for convex cell geometries. Vg(θi) is
predicted to be inversely proportional to the diameter
across the cell as a function of LSC orientation θ0, and
thus the lowest potentials are aligned with the longest
diagonals [45]. In the case of a cubic cell, this corresponds
to four potential minima, one for each corner of the cell,
which correspond to preferred orientations of the LSC.
This was tested in the same apparatus for a single LSC in
which there was an insulating middle wall which totally
isolated the roll from the neighboring cell [48].
To characterize interaction terms, we will look for dif-

ferences from these baseline results from Eqs. 2 and 3.

IV. OBSERVATIONS OF PREFERRED STATES

Before developing complicated models, we categorize
the observed states of behavior to identify what solutions
a good model should have. An example time series of the
LSC orientation θi, amplitude δi, and mean temperature
T0,i lasting 7 days is shown in Fig. 3 at Ra = 2.7 × 109

(∆T = 19 K). To show the long time series, only 1 in ev-
ery 10 data points is shown in this figure. The system is
seen to spontaneously switch between two distinct types
of states. Before 160,000 s and after 370,000 s, there are
fluctuations around a mean state with θ1 ≈ θ2. This cor-
responds to a counter-rotating state with the orientation
vectors at θi aligned head-to-head, with flow in the same
direction adjacent to the interface between the rolls, as
illustrated at the top of Fig. 3a. Counter-rotating states
are usually aligned along a diagonal, which is the pre-
ferred state for a single roll in a cubic cell, and in these
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FIG. 3. (color online) An example time series for two neigh-
boring rolls. (a) LSC orientation θi. Horizontal solid lines cor-
respond to alignments parallel to walls, and dotted lines cor-
respond to diagonals. (b) LSC amplitude δi. Dashed line: the
mean amplitude for a single LSC in a cubic cell with no neigh-
boring roll [48]. (c) LSC mean temperature T0,i. Side views
of the corresponding co-rotating and counter-rotating states
are illustrated above. Both co-rotating and counter-rotating
states are found to be stable, with spontaneous switching be-
tween the two states. Co-rotating states are found to have a
reduced δ̄i, and introduce a large temperature difference be-
tween the mean temperatures T0,i of the neighboring rolls.

examples is at π/4 rad before 160,000 s, and 7π/4 rad
after 370,000s. From 160,000-370,000 s, there are fluctu-
ations around a mean state in which θ1 and θ2 instead
differ by π rad, with stable values of θ1 ≈ 0 and θ2 ≈ π
rad. This corresponds to a co-rotating state where both
rolls are rotating in the same direction, with counter-flow
adjacent to each other at the interface between the cells,
as illustrated above Fig. 3a.

The LSC amplitude δi also varies with the flow state,
as shown in Fig. 3b. For comparison, the mean ampli-
tude δ0 for a single, non-interacting roll is drawn as a
dashed line [48]. In the counter-rotating state, the mean
amplitude is 9% smaller than δ0, while in the co-rotating
state, the mean amplitude is 38% smaller than δ0. This

indicates the interaction between neighboring rolls re-
duces the temperature amplitude δ, especially in the co-
rotating state. While strong turbulent fluctuations in
both states hide any detailed patterns that might appear
within a state, the widths of the distributions of θi and
δi around their mean values in a state are both narrower
in the counter-rotating state, suggesting the stabilizing
forces are stronger in the counter-rotating state. In the
case of δi, the non-linear damping term in Eq. 2 pro-
duces less of a stabilizing force when δ̄i is smaller, which
may account for the smaller width of δi in the co-rotating
state.

The LSC mean temperature T0,i also varies with the
flow state, as shown in Fig. 3c. T0,i acquires a large sys-
tematic offset between the two cells in the co-rotating
state, such that the cell whose colder side is at the in-
terface (θi = π rad) acquires a higher mean temperature
T0,i. The fact that T0,i has any systematic change is no-
table, since for a single LSC, no patterns in T0 were found
or reported due to cessations [44] or changes in preferred
orientation [48], except a small periodic modulation due
to the jump-rope oscillation mode of the LSC [24].

To identify the possible states over a wide parameter
space, we carried out experiments at different values of
control parameters, including a temperature difference
∆T between the top and bottom plates in the range 0.53
K ≤ ∆T ≤ 24.4 K (7.6 × 107 ≤ Ra ≤ 3.5 × 109), a
difference ∆Tm between the mean plate temperatures of
each cell as large as ∆T , and tilt angles β ranging from
0 ≤ |β| ≤ 10◦. Experiments typically lasted about 1 day,
and switching between counter-rotating and co-rotating
states occurred on average about once every other day.
The dynamics of this switching will be discussed more
thoroughly in Sec. VIII.

To characterize the preferred orientations of the states,
a state diagram is made by plotting the values of the
preferred orientation θp,1 of cell 1 against the preferred
orientation θp,2 of cell 2 in Fig. 4. Preferred orienta-
tion were obtained from fits of the peaks of probability
distributions of θi. Experiments with switching between
clear preferred orientations were divided up into separate
datasets based on the preferred orientation to identify the
preferred stable states. Counter-rotating states are de-
fined by θ1,p ≈ θ2,p (dashed line in Fig. 4) such that they
both flow in the same direction at the interface between
the rolls. In the most symmetrically-driven cases, where
|∆Tm|/δ0 < 0.1 and |β| < 0.03◦ (solid circles in Fig. 4),
usually both cells are aligned near a diagonal (illustrated
as the red Xs in Fig. 4) which we refer to more specifi-
cally as counter-diagonal states. This matches the pre-
ferred diagonal state of a single cell [25, 27–31, 48]. The
alignment of the two rolls in a counter-rotating state with
θ1,p ≈ θ2,p suggests there is a stable forcing in θ1 − θ2.

However, in a few nominally symmetric cases we
found counter-rotating states with preferred orientations
roughly halfway between a diagonal and on-axis align-
ment. In some of these cases, there were switching events
between the two corresponding symmetric preferred ori-
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FIG. 4. Scatter plot of the preferred orientation θ1,p of cell
1 vs. the preferred orientation θ2,p of cell 2 from a wide
range of experiments. Counter-rotating states are defined
by θ1,p ≈ θ2,p, near the dashed line. Solid circles: counter-
diagonal states which align near a diagonal of the cell (red Xs).
Open triangles: counter-axis states which align in between the
corner and the axis between the two cells, due to some unin-
tended asymmetry of the setup. Open circles: counter-offset
states defined by a small offset between θ1 and θ2, which
occur when a slight asymmetric heating is introduced with
∆Tm/δ̄ > 0.1 or tilt |β| > 0.03◦. Open squares: co-rotating
states, which align with the line passing through the center
of both cells. Lower panels: Example illustrations of different
states are shown, viewed from above, with the arrow indicat-
ing the direction of flow in the LSC near the bottom plate at
orientation θi in each cell.

entations on either side of θ = 0 or π rad. This align-
ment suggests there is a component of force that aligns
the flow of the two cells in opposite directions toward the
axis going through θ = 0 and θ = π rad, which combines
with the geometric forcing −∇Vg(θi) to produce inter-
mediate preferred orientations. Since this forcing likely
comes from an unintended asymmetry of our setup, these
counter-axis states will not be the focus of the work, al-
though they are discussed in Sec. VII G.
With a slight asymmetric forcing added to the basic

counter-diagonal state with either 0.1 < |∆Tm|/δ0 < 1.7
or 0.03◦ < |β| < 2◦, we find asymmetric offsets from the
basic counter-rotating case where θ1,p and θ2,p shift in
opposite directions away from the corner (open circles in
Fig. 4), so we refer to these as counter-offset states.
Stable co-rotating states are always found to be aligned

definition type
L cell height controlled
A fraction of interface open controlled
κ thermal diffusivity controlled
Tm,i mean temp. of plates controlled
∆Tm temp. diff. of adjacent plates dependent (∆Tm,i)
θi LSC orientation measured
δi LSC amplitude measured
T0,i LSC mean temperature measured
∆T0 temp. diff. between LSCs dependent (∆T0,i)
δ0 stable LSC amplitude known [48]
τδ damping timescale of δi known [48]
τθ damping timescale of θi known [48]
Dδ turbulent diffusivity for δi known [48]
Dθ̇ turbulent diffusivity for θi known [48]
DT turbulent diffusivity for T0,i not tested
Nu Nusselt number known [62]
κt turbulent thermal diffusivity fit

TABLE I. Parameters that are relevant to the model of turbu-
lent thermal diffusion for the interaction between neighboring
rolls. Parameters referred to as ‘known’ have known values
from previous experiments with a single LSC. The ‘measured’
parameters are those that describe the LSCs. The ‘dependent’
parameters are useful in results expressed in terms of differ-
ences between neighboring rolls and cells. The parameter κt

is unknown, and is the single new fit parameter.

with one of θ1 and θ2 aligned nearly with 0, and the other
nearly with π rad (open squares in Fig. 4). Co-rotating
states are clustered around these orientations regardless
of the value of ∆Tm and β. While we are able to find co-
rotating states some fraction of the time for any parame-
ter values in our experiment, when a large enough asym-
metry is introduced, either |∆Tm|/δ0 >

∼ 1.7 or |β| >
∼ 2◦,

we find only co-rotating states and no more counter-offset
or other counter-rotating states. Since these preferred
orientations θp,i = 0 or π rad are along the axis between
the center of both cells, this indicates the interaction be-
tween neighboring rolls adds a significant forcing stable
in θi − θp,i, with θp,i = 0 or π rad that can be dominant
over the geometric potential Vg(θi) to align both rolls
along this axis in co-rotating states.

V. MODEL FOR NEIGHBORING ROLL
INTERACTION: EFFECTIVE TURBULENT

THERMAL DIFFUSION

A. Forcing terms δ̇κ,i and θ̈κ,i due to neighboring
roll interactions

The model for the neighboring roll interaction terms is
derived in detail in the appendix, and we summarize the
physical mechanisms and resulting equations here. We
start with the assumption that Eqs. 2 and 3 describe a
baseline model for each LSC, and that we only need to
derive terms for additional forcing due to neighboring-
roll interactions. The forcing on the temperature profile
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along the interface between neighboring convection rolls
is assumed to come from the turbulent diffusion of heat
across the interface with effective turbulent thermal dif-
fusivity κt, which is assumed to be uniform and constant.
The turbulent thermal diffusion represents the enhance-
ment of heat transport by eddies relative to the thermal
diffusivity κ due to induction, analogous to a turbulent
viscosity or eddy viscosity. This formulation is math-
ematically analogous to boundary layer approximations
with thermal diffusion in an interfacial mixing layer. We
include the unknown mixing layer thickness in the value
of κt, which will be a fit parameter, so we can use the
known cell size L as the lengthscale in the thermal dif-
fusion equation. Because of the middle insulating wall
blocking half of the interface, the heat transport acts
over the exposed fractional area A = 0.50 of the inter-
face between the two cells. The model terms are calcu-
lated by applying this turbulent thermal diffusion in a
θ-dependent heat equation for heat flux in the direction
perpendicular to the interface between neighboring cells.
The resulting forcing terms (as calculated in appendix
A) are:

δ̇κ,1 =
Aκt

πL2

[√
2(T0,2 − T0,1) cos θ1

+ δ2 sin(θ1 − θ2) sin(2θ1)/2

+ [δ2 cos(θ1 − θ2)− δ1][π/4 + cos(2θ1)/2]

]

−
√
2Ṫ0,1

π
cos θ1 . (4)

and

θ̈κ,1 = − Aκt

πL2τθ̇δ0

[

δ2 sin(θ1 − θ2)[π/4− cos(2θ1)/2]

+[δ2 cos(θ1−θ2)−δ1] sin(2θ1)/2+
√
2(T0,2−T0,1) sin θ1

]

+

√
2Ṫ0,1

πδ1
sin θ1 (5)

For brevity, we write all equations in this section for the
forcing on cell 1 only, as the equations for cell 2 are iden-
tical other than an exchange of the subscripts 1 and 2
in each equation. These forcings δ̇κ,1 and θ̈κ,i can be
inserted directly to the existing stochastic equations of
motion for a single LSC (Eqs. 2 and 3, respectively).

B. Equation of motion for T0,i

The model for a single LSC did not include an equa-
tion of motion for the mean temperature T0,i because it
was observed to have trivial behavior. With neighbor-
ing convection cells, we observe a systematic difference
between T0,2 and T0,1 (Fig. 3c), and this difference may
drive dynamics in θi and δi according to Eqs. 5 and 4.
Thus, we need an equation of motion for T0,i.

In an equation of motion for T0,i, we should also expect
to have some diffusive fluctuations driven by turbulence,
analogous to Eqs. 2 and 3, so we include a fluctuation
term fT (t) with diffusivity DT . The deterministic part
of the equation for T0,1 is assumed to be due to the same
net heat flux between the cells that contributes to the
forcings δ̇κ,i and θ̈κ,i. An additional vertical heat trans-
port from each of the top and bottom plates to each LSC
is calculated using the standard boundary layer approxi-
mation in terms of the Nusselt number Nu. This results
in (as calculated in Appendix B):

Ṫ0,1 = fT (t) +
4Nuκ

L2
(Tm,1 − T0,1)+

Aκt

L2
[T0,2 − T0,1 + 0.88(δ2 cos θ2 − δ1 cos θ1)] . (6)

While this equation could be plugged into Eqs. 4 and 5,
we find it more insightful to leave Eqs. 4 and 5 as is for
a more direct physical interpretation of their dependence
on T0,2 − T0,1 at the stable fixed points where Ṫ0,i = 0.

VI. TESTING THE MODEL FOR SYMMETRIC
CASES (∆Tm = 0)

A. Forcing terms on θ̈i in θ1 − θ2 and θi − θp

In Sec. IV, the observed counter- and co-rotating states
suggest forcing terms on θ̈i that are stable in θ1 − θ2
and θi − θi,p, respectively. In this section, we test the
predictions for these forcing terms from Eq. 5 for counter-
and co-rotating states, starting with the simpler special
case of ∆Tm = 0.

1. Stable fixed points and linearized forcing

Qualitatively, Eq. 5 has stable fixed points that are lin-
early stable for both the observed counter-rotating states
(θ1 = θ2), and co-rotating states (θ1 = 0 and θ2 = π rad
or θ1 = π rad and θ2 = 0), as shown in Appendix C and
D, respectively, confirming that these states are predicted
by the model.

In the counter-rotating state, a linear expansion of
Eq. 5 around the stable fixed point at a preferred orien-
tation of the cubic cell (e.g. θ1 = π/4 rad) and assuming
δ̄i = δ0 is

θ̈1,counter ≈ −0.79
Aκt

πL2τθ̇
(θ1 − θ2) . (7)

In the co-rotating states, assuming constant ∆T̄0,co ≡
T̄0,2 − T̄0,1 and δ̄co ≡ δ̄1 = δ̄2, a linear approximation
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FIG. 5. (color online) Probability distribution of the LSC
orientation p(θi) in the counter- and co-rotating state. Solid
lines are Gaussian fits corresponding to a quadratic potential
and linear forcing in θi − θp,i, as predicted due to effective
turbulent thermal diffusion combined with the geometric po-
tential Vg(θi).

around θp,1 = 0 or π rad for co-rotating states of Eq. 5 is

θ̈1,co ≈
Aκtδ̄co
πL2δ0τθ̇

[

+ 0.28(θ1 − θ2 − π)

−
(

1.41∆T̄0,co

δ̄co
− 2

)

(θ1 − θp,1) .

]

(8)

These neighboring-roll interactions add forcings to the
existing stochastic model for a single LSC 3, in which
the only forcing leading to a preferred orientation is the
geometric forcing −∇Vg(θi), which has preferred orien-
tations along diagonals of a cubic cell [45, 48]

2. Multiple linear regression

To test the functional form of the net forcing around
stable fixed points in the Eqs. 7, and 8 added to the
stochastic equation of motion (Eq. 3), we carried out a
multiple linear regression of the equation

θ̈i = a sin(θi − θp,i) + b sin(θ1 − θ2) (9)

with stiffnesses a and b. We insert the sine functions as
the simplest way to account for periodicity of the coordi-
nate θ while remaining linear in the lowest order expan-
sion around the stable fixed points.
To be able to carry out an accurate linear regression,

we first precisely determine the peak locations θp,i by
fitting the probability distribution p(θi) for each state to
a Gaussian function, shown in Fig. 5 for the same data as
Fig. 3. To calculate the forcing θ̈i, we calculate the 2nd
derivative from discrete data as θ̈i = [θi(t+∆t)−2θi(t)+
θi(t− 1)]/(∆t)2. We apply a multiple linear regression of

Eq. 9 to measured values of θ̈i to obtain the coefficients a
and b, using only data with δ > 0.5δ̄ to avoid bias during
cessations where the acceleration can be much larger than
typical due to weaker damping in Eq. 3 [44].

From the linear regression of Eq. 9, we generally find
a to be negative in the counter-rotating and co-rotating
states, confirming that the system is stable against dis-
placements in θi− θp,i, as predicted due to the geometric
potential Vg [48] and Eq. 8, respectively. We find b neg-
ative for cell 1 and positive for cell 2 in counter-rotating
states, confirming they are stable in sin(θ1 − θ2) as pre-
dicted in Eq. 7. We also find b positive for co-rotating
states in cell 1 and negative in cell 2, which – due to the
flip in the sign of the sine function with a phase shift of
π rad – means that co-rotating states are also stable in
sin(θ1 − θ2), corresponding to a forcing to align the ori-
entation vectors head-to-tail in the co-rotating state, but
opposite the sign predicted in Eq. 8.
If we calculate the forcing in terms of θ̇i(θ1 − θ2) in-

stead of θ̈i(θ1 − θ2), similar qualitative results are found,

but the strongest forcing is found when θ̇i is calculated
with about a 20 s delay after the time that θ1 − θ2 is
recorded. This is comparable to the damping timescale
τθ̇ that corresponds to the ratio of these two terms in

Eq. 3. This confirms that a forcing in terms of θ̈i bet-
ter describes the effects of a neighboring roll interaction,
justifying the conversion of θ̇κ,i into θ̈κ,i in Eq. 25.

3. Functional form of forcing θ̈i(θi − θp,i)

In co-rotating states and counter-diagonal states, we
typically find the stiffness a much larger than b from the
regression, which indicates that the forcing in a sin(θi −
θp,i) usually determines the overall stability of the state.
For example, for the data in Fig. 3, a = 10b in the
counter-rotating state, and a = 2.6b in the co-rotating
state [63]. The dominance of the forcing a sin(θi − θp,i)
provides an opportunity to analyze the functional form of
the forcing terms separately. Since a sin(θi−θp,i) is much
larger, then the probability distribution p(θi) shown in
Fig. 5 is determined mostly by this term, so we can first
obtain an approximate forcing in θi − θp,i while disre-
garding the forcing in θ1−θ2. The forcing in θi−θp,i can
be related to a probability distribution of θi − θp,i in the

overdamped limit of the stochastic Eq. 3 (i.e. θ̈i is small
compared to the damping and forcing terms) and if δ is
nearly a constant by a Fokker-Planck equation [48]

p(θi) = exp

(

−V (θi)δ̄
2

Dθ̇τθ̇δ
2
0

)

(10)

where V (θi) = Vg(θi)−
∫

θ̈κ,idθi is the net potential from
geometric and neighboring roll interaction forces. A lin-
ear forcing in θi − θp,i corresponds to a quadratic po-
tential V (θi), and a Gaussian probability distribution.
Each probability distribution p(θi) is fit to a Gaussian
function, as shown in Fig. 5. Errors are shown in Fig. 5
calculated assuming Poisson statistics. Errors on θi of
0.18 rad from the fit of the temperature profile (Eq. 1)
divided by the square root of the number of counts are too
small to see in Fig. 5, but remain significant in the fitting
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of the data. Fitting data up to 2.7 standard deviations
away from the peak yields reduced χ2 of 1.4,1.3, 1.2, and
0.9 for the four fits shown in Fig. 5, confirming the data
are consistent with Gaussian probability distributions in
this range. The Gaussian shape of p(θi) confirms the
forcing in θi− θp,i is linear around the stable fixed point,
confirming the assumption made in Eq. 9, and matching
the prediction of Eq. 8 for co-rotating states, as well as
the predicted linear forcing for counter-diagonal states
due to the geometric potential Vg(θi), which has been
previously observed to be linear for a single LSC [48].

4. Functional form of forcing θ̈i(θ1 − θ2)

Since the multiple linear regression in Sec. VIA2
showed that the forcing in θ1−θ2 is smaller than the forc-
ing in θi − θp,i, then a probability distribution of θ1 − θ2
will not reveal the forcing in θ1−θ2 because it will be over-
whelmed by the stronger forcing in θi − θp,i. Instead we

calculate a corrected forcing θ̈i,c = θ̈i(θ1−θ2)−a sin(θi−
θp,i) as a function of θ1 − θ2. This method allows us
to correct for the linear dependence on θi − θp,i that was
confirmed by Fig. 5, so that only b sin(θ1−θ2) is expected
to remain, based on Eq. 9. To do this, we calculate the
azimuthal acceleration rate from discrete data as the 2nd
order difference θ̈i(t) = [θi(t+1)−2θi(t)+θi(t−1)]/(∆t)2.
The forcing we report with a measurement timestep of
∆t = 7 s is consistently about 20% smaller than runs
with a shorter timestep of 2 s, due to the approximation
of a second derivative with a non-zero timestep. For each
data point, we subtract a sin(θi−θp,i) using the value of a
from the regression (Sec. VIA2). We exclude data with
δ < 0.5δ̄ to avoid biasing data by cessations where the
acceleration can be much larger than typical values [44].
We then bin values of θi,c over small ranges of θ1 − θ2
to calculate forcing as a function of θ1 − θ2 and average
〈θ̈i,c(θ1−θ2)〉 in each bin to reduce the contribution of the
large stochastic fluctuations in Eq. 3. The error on the
average in each bin is reported as the standard deviation
of the mean, assuming the data points are independent.
This corrected forcing 〈θ̈i,c(θ1− θ2)〉 is shown in Fig. 6

for the same dataset as in Fig. 3. Data from the counter-
rotating state are shown in panel a, and data from the
co-rotating state are shown in panel b. In both states,
cell 1 has a negative slope in θ1 − θ2, and cell 2 has a
positive slope in θ1 − θ2, confirming they are stable at
their intercepts. The intercepts are near θ1 − θ2 = 0 for
the counter-rotating state, and θ1 − θ2 = π rad for the
co-rotating state, corresponding to their stable relative
orientations (Fig. 4).

The corrected forcing is fit to 〈θ̈i,c(θ1−θ2)〉 = b sin(θ1−
θ2) where the stiffness b is a fit parameter. Only bins with
at least 10 data points are included in the fit. The re-
duced χ2 values are 1.2 and 1.2 for the counter-rotating
data sets, 1.3 and 2.4 for the co-rotating data, indicat-
ing the sine function is consistent with the data for the
counter-rotating states, but not necessarily for the co-
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FIG. 6. (color online) The average forcing 〈θ̈i,c(θ1 − θ2)〉 as
a function of θ1 − θ2, corrected for the forcing in θi − θp,i.
(a) counter-rotating state (b) co-rotating state. Red circles:
cell 1. Black squares: cell 2. Data are fit to a sine function
b sin(θ1−θ2). For counter-rotating states, the fit is consistent
with the data, in qualitative agreement with the prediction for
the neighboring roll interaction, while for co-rotating states,
this has the opposite sign predicted.

rotating states. The magnitudes of the values of b are
consistent with the values obtained when using the lin-
ear regression analysis within a couple of standard devia-
tions of the mean, which is on average 16% of the mean.
This self-consistency in the magnitudes obtained from
both methods confirms the earlier assumptions that the
net forcing on the LSC orientation can be represented by
Eq. 9, consistent with the functional forms predicted by
Vg and Eqs. 7 for counter-rotating states, and the terms
are independent enough to use the conditional average
in Fig. 6. The magnitude of b for counter-rotating states
will be used to obtain κt and compared to other model
terms in Sec. VIC. However, the negative sign of the
stiffness b for co-rotating states is inconsistent with the
prediction of Eq. 8, which predicted b > 0 (destabilizing)
for co-rotating states. Since a > b, then b is not responsi-
ble for the stability of co-rotating states, but this remains
a minor disagreement with the model Eq. 5.
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ear behavior indicates T0,i fluctuates diffusively. Inset: same
data shown over a larger time delay ∆t. The crossover to a
plateau defines the damping timescale τT as the intersection
of the two limiting fits.

5. Comparison of forcing term θ̈i(θi − θp,i) to the geometric

forcing for the counter-diagonal state

The forcing −∇Vg due to the cell geometry in Eq. 3
has been observed and predicted to be linear and stable
in an expansion of θi − θp,i around the potential minima
along the diagonals [48], which is found to be the pre-
ferred orientation for most counter-rotating states. Thus,
it is predicted to be responsible for the measured value
of the stiffness a for counter-rotating states. To deter-
mine how much of the measured value of a comes from
the geometric potential, we calculated the forcing 〈θ̈i(θi)〉
by averaging values of θ̈i in bins of θi as in Fig. 6 in
Sec. VIA4 from an experiment with a single LSC in
the same apparatus, but with a insulating middle wall
that completely blocks the two cells off from each other
(i.e. A = 0) at Ra = 2.7× 109 [48]. For a single LSC, we
find the stiffness a = −1.02±0.11mrad/s2, and for neigh-
boring counter-rotating rolls, we find a = −1.11 ± 0.17
mrad/s2. The consistency of these values suggest that
the stiffness a comes entirely from the geometric forcing
−∇Vg for counter-rotating states, and there is no signif-
icant neighboring roll interaction contribution to a for
counter-rotating states, in agreement with the prediction
of Eq. 7.

For co-rotating states, the stiffness a is expected to
come from a competition between the second and third
terms of Eq. 5, and be reduced by the geometric forcing
−∇Vg around its unstable fixed point. Since the source of
the stability of co-rotating states is a more fundamental
question and involves more parameters, we put this off
until Sec. VII E after κt is fit and more terms of the model
are tested.

B. Diffusive fluctuations of T0

While the stochastic equations of motion for the LSC
orientation θ0 (Eq. 3) and temperature amplitude δ
(Eq. 2) have been tested previously for single convec-
tion rolls [44, 48], the equation of motion for the mean
temperature (Eq. 6) is a entirely new. To test whether
the stochastic term representing turbulent fluctuations
is diffusive, we measure the mean-square displacement
(dT0,i)

2 of T0,i over different time intervals dt. The mean-
square displacement (dT0,i)

2 is averaged over the two
cells and different starting times, and plotted as a func-
tion of time interval dt in Fig. 7 for a counter-rotating
state at Ra = 2.7 × 109. The apparent linearity in the
limit of short time intervals is an indicator of diffusive
fluctuations, as we assumed in the model Eq. 6. A linear
function 〈(dT0,i)

2〉 = DTdt is fit to the data for dt < 35
s to obtain a diffusivity DT . The time scale of 35 s is
approximately the damping timescale τδ, which is likely
relevant because δi appears in Eq. 6, so fluctuations in δi
may affect changes in T0,i at larger dt.
The inset of Fig. 7 shows the mean-square displace-

ment (dT0,i)
2 over a larger range of dt. At large dt, the

mean-square displacement reaches a plateau (dT0,i)
2 ≡

τTDT which defines a damping timescale τT as the time
of intersection of the two limiting scaling laws.

C. The effective turbulent thermal diffusivity κt

Since we introduced the effective turbulent thermal dif-
fusivity κt as an unknown fit parameter, we do not have
first-principles predictions of model terms. On the other
hand, since all of the new deterministic forcing terms in
Eqs. 4, 5, and 6 are proportional to κt, we can check the
consistency of values of κt required for different forcing
terms to fit with data.

1. κt from b

As one measure of κt, we compare the measured sta-
bilizing force in b sin(θ1− θ2) from Eq. 9 to the predicted
linearized forcing in Eq. 7 to obtain κt/κ = 4bL2τθ̇/Aκ.
We use measurements of b from Sec. VIA4 for counter-
diagonal states with small ∆Tm/δ̄ < 0.1, and measure-
ments of τθ̇ from the crossover time of limiting scalings

of of the mean-square displacement of θ̇i (analogous to
τT ) obtained in previous measurements of a single LSC
[48]. Counter-axis states, which are found at ∆T ≤ 2
K are not included in the analysis because they usually
have multiple peaks in the probability distribution of θi,
making the Gaussian fitting and linear regression algo-
rithm to obtain b unrepresentative of the forcing. Errors
are propagated from errors on b obtained from the linear
regression. These values of κt/κ and shown as a func-
tion of Ra in Fig. 8. Unfortunately, the uncertainty on b
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FIG. 8. Turbulent thermal diffusivity κt as a function of
Rayleigh number Ra. Open circles: from measurements of
the forcing of θ̈i,c = b sin(θ1 − θ2) in counter-diagonal states
using multiple linear regression. Solid circles: obtained from
the damping timescale τT on the mean temperature T0,i from
counter-rotating states. These values are consistent, suggest-
ing a single measurement can parameterize the value of κt to
use for predictions of all model terms that depend on it.

makes the uncertainties too large to draw strong conclu-
sions about the trend over a small range of Ra from this
data alone.

2. κt from the damping timescale τT

For another measure of κt, we use the damping
timescale τT for fluctuations in T0 seen in Fig. 7. The
coefficient Aκt/L

2 of the second term of Eq. 6 corre-
sponds to an inverse damping timescale 1/τT in the limit
where 4Nuκ/Aκt ≪ 1 (confirmed in Sec. VII), and as-
suming the δi terms do not contribute significantly in
the counter-rotating state (the δi terms cancel each other
out at the stable fixed point). This relation leads to
κt/κ = L2/AκτT , using the measured values of τT from
the intersection of the two limiting scaling laws in Fig. 7.
The corresponding values of κt/κ vs. Ra are plotted
in Fig. 8 for counter-rotating states. Errors are prop-
agated from fits of (∆T0,i)

2, which were calculated as
half the difference between two cells, plus the error from
fits of DT , plus half the difference over a fit range from
0 to 0.6τδ or 0.8τδ. This resulted in an average error
of 12%. A power law fit to the data obtained from
τT yields κt/κ = (0.8 ± 0.3)Ra0.41±0.02 with a reduced
χ2 = 1.5. These measurements of κt/κ based on the
damping timescale τT are consistent with the data for
κt/κ based on measurements of the stiffness b, confirm-
ing that the same value of κt drives both the T0,i-term
in Eq. 6 and the θ1 − θ2-term in Eq. 5.
In principle we could plot the forcing for other terms

of Eqs. 4, 5, and 6. However, other measured factors

depend on a small difference between two terms. For ex-
ample, Eq. 4 has a difference in terms depending on δ2
and T0,2 − T0,1, so that uncertainties on the data and
model can heavily bias scaling laws from these small dif-
ferences. The values of κt from measurements of τT re-
main our most precise method of measuring κt. Thus,
we will use this value of κt obtained from measurements
of τT for predictions of κt in all other model terms.

D. Stable fixed points of temperature amplitude δ̄
and mean temperature difference ∆T̄0

1. Predictions for δ̄co and ∆T̄0,co in co-rotating states

For co-rotating states where θ1 = 0 and θ2 = π ra
for θ1 = π rad and θ2 = 0, the symmetry of Eqs. 4
and 6 still requires δ1 = δ2 at stable fixed points for
co-rotating states, but they do not require T0,1 = T0,2.
For the symmetric driving case of Tm,2 = Tm,1, in the
Boussinesq limit where the mean temperature of the
bulk equals the mean temperature of the plates, requires
(T0,2+T0,1)/2 = Tm,i. Defining the fixed point value of δi
in the co-rotating state as δ̄co, Eq. 6 and its correspond-
ing equation for Ṫ2 have stable fixed points (Ṫ0,i = 0)
when

∆T̄0,co = ± 1.76

1 + 2Nuκ/Aκt
δ̄co (11)

where the + sign corresponds to the co-rotating state
orientation with θ1 = 0 and θ2 = π rad, and the − sign
corresponds to swapped orientations. To obtain the the
stable fixed point δ̄co in co-rotating states, we evaluate
Eq. 4 at θ1 = 0 and θ2 = π rad when ∆T̄0,co > 0 or θ1 = π
rad and θ2 = 0 when ∆T̄0,co < 0. This simplifies Eq. 4 to

(
¯̇
δκ,i)co = (Aκt/πL

2)
(

1.41|∆T̄0,co| − 2.57δi
)

. The stable

fixed point value of δ̄co is obtained by using this for δ̇κ,i
in Eq. 2, setting δ̇i = 0, and linearly expanding around
δi = δ0 to obtain

δ̄co ≈ δ0 +
(2Aκtτδ/πL

2)(1.41|∆T̄0,co| − 2.57δ0)

1 + 2.57Aκtτδ/πL2
. (12)

Note that a simultaneous evaluation of Eq. 11 and
Eq. 12 would lead to a subtraction of two comparable
numbers when 2Nuκ/Aκt is small, which can result in
predictions of differing signs and arbitrarily small magni-
tudes when including uncertainties from assumptions in
the model, so we cannot make accurate predictions of δ̄co.
Instead, we will use the measured relationships between
∆T̄0,co and δ̄co to text for self-consistency of Eqs. 11 and
12.

2. Measurements of δ̄ and ∆T̄0

To characterize the change in the mean LSC amplitude
δ̄ due to the interaction between neighboring rolls, we
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FIG. 9. The mean LSC amplitude δ̄ relative to the value δ0
for a single LSC, at different Rayleigh numbers Ra. Solid
circles: counter-diagonal states. Solid triangles: counter-axis
states. Open circles: co-rotating states. The amplitude in the
co-rotating state has a consistent average (0.57±0.04)δ0 . The
amplitude of counter rotating states is slightly smaller than
the predicted value of 1.

plot values normalized by δ0 in Fig. 9 as a function of
Ra. The average δ̄ is calculated as the average of δi over
both cells and over time while the system remained in one
state. The normalization values of δ0 are obtained from
a fit of a power law to δ0(Ra) from previous experiments
with a single LSC in a cubic cell [48].
Counter-rotating states consistently have a mean

amplitude δ̄ close to that of the single-cell, with
δ̄counter/δ0 = 0.94 with a standard deviation of 0.03, only
slightly lower than the predicted value of 1 from Eq. 4
when θ1 = θ2. This applies to both counter-diagonal and
counter-axis states, so it is independent of the preferred
orientation of the counter-rotating state. The slight de-
crease in δ̄ from δ0 may be partly due to fluctuations in
θ1 − θ2 away from the mean of zero, which can make
the third term of Eq. 4 negative. Co-rotating states
have a smaller mean amplitude with a consistent ratio
δ̄co/δ0 = 0.57 with a standard deviation of 0.04.
We measured ∆T̄0 ≡ T̄0,2 − T̄0,1 as an average over

time while the system remained in one state. Data are
normalized by δ̄ for a sense of scale. Counter-rotating
states are scattered around zero, but the values are much
larger than uncertainties on temperature measurements,
which will be explained due to small differences in ∆Tm

in Sec. VII. Co-rotating states have a consistent aver-
age |∆T̄0,co|/δ̄co = 2.22± 0.13 (the ± refers to one stan-
dard deviation), 30% larger than predicted due to effec-
tive turbulent thermal diffusion from Eq. 11 assuming
2B/A ≪ 1. This is well within the typical errors of this
modeling approach of a factor of 3 [44].
Although the measured ratio of |∆T̄0,co|/δ̄co is close to

the prediction, the value |∆T̄0,co|/δ̄co > 2 has some sig-
nificance. It indicates that the cold cell is colder than
the hot cell along the entire interface, as well as being
colder than the mean of the plates, so turbulent ther-
mal diffusion is expected to provide a net heat flux into

108 109

−2.0

−1.0

0.0

1.0

2.0
counter−diagonal

counter−axis

co−rotating

Ra

∆
T

0
/δ

FIG. 10. The mean temperature difference between neigh-
boring rolls ∆T̄0 normalized by δ̄ for different Rayleigh num-
bers. Solid circles: counter-diagonal states. Solid trian-
gles: counter-axis states. Open circles: co-rotating states.
Counter-rotating states are scattered around zero. Co-
rotating states have a consistent average |∆T̄0,co|/δ̄co = 2.22±
0.13, 30% larger than predicted due to turbulent thermal dif-
fusion. Co-rotating states are stable because this temperature
difference is large enough to orient their temperature gradi-
ents in the same direction as heat flows from one cell to the
other.

the cold cell at this value of |∆T̄0,co|/δ̄co, regardless of
assumptions about how the shape of the temperature
profile affects the model terms. Thus, this magnitude
|∆T̄0,co|/δ̄co > 2 is a violation of the assumption in Eq. 20
that T0,i is driven by turbulent thermal diffusion only. An
additional heat transport mechanism is required, which
is likely advection of fluid in a coherent flow from one cell
to the other. For example, a coherent advective flow par-
allel to the plates has been observed in other co-rotating
states [52, 53, 55–57]. This coherent advection can trans-
port heat from the hot plate of the cold cell directly to the
hot cell and from the cold plate of the hot cell directly
to the cold cell to balance the diffusive heat transport
between cells.

While we could not accurately predict the value of δ̄co
from Eq. 12, we can provide a self-consistency test of the
model by using the measured ratio |∆T̄0,co|/δ̄co as empir-
ical input into Eq. 12. Since the product of κt and τδ has
a mild dependence with Ra−0.17, we estimate a value of
δ̄co at the middle of the range of Ra. Using empirical in-
put into Eq. 12 of |∆T̄0,co|/δ̄co = 2.22±0.13 from Fig. 10,
δ̄co = 0.57δ0 from Fig. 9, κt/κ = 3200± 400 from the av-
erage and standard deviation of five measurements at Ra
= 5.5× 108 in Fig. VIC, and τδ = 81 s from a fit of mea-
surements of a single LSC in a cubic cell [48], results in
δ̄co = (0.83± 0.07)δ0. This underestimates the reduction
in δ̄ in the co-rotating state by 60% with input of ∆T̄0,co.
The variation of this prediction at the extremes of the
measured range of Ra results in a difference of 0.05δ0.



14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

π/2

π
θ p

,i
 (

ra
d

)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

∆
T

0
(K

)

(a)

(b)

(c)

∆Tm (K)

counter−rotating

co−rotating

cell 1, counter

cell 2, counter

cell 1, co

cell 2, co

δ 
(K

)

FIG. 11. Stable fixed point parameter values with a differ-
ence between the mean temperature of the plates of the two
cells ∆Tm. (a) The preferred orientation θp. (b) The mean
amplitude δ̄, averaged over the two cells. (c) The difference
in mean temperature of the two rolls ∆T̄0. Solid symbols:
counter-rotating states. Open symbols: co-rotating states.
Solid lines: fits to co-rotating data for ∆Tm < 0. Dotted lines:
fits to counter-rotating data. In the counter-rotating state, a
small ∆Tm drives a temperature difference ∆T̄0, which drives
a change in preferred orientation θp,i in different directions in
the two cells. With a large enough ∆Tm, this forcing desta-
bilizes the counter-rotating state so only the co-rotating state
is stable.

VII. TESTING THE MODEL WITH A
DIFFERENCE IN MEAN TEMPERATURE OF

THE PLATES OF THE TWO CELLS ∆Tm

In this section we extend the predictions of Eqs. 4,
5, and 6 and test them in cases where the difference
in the mean temperatures of the plates of the two cells
∆Tm 6= 0. Controlling ∆Tm allows testing several terms
of these equations which depend on ∆T̄0, explains how
some asymmetries in counter-rotating states come about
due to a small unintentional ∆Tm in experiments, and
helps identify the conditions for stable counter- or co-
rotating states.
Figure 11 shows measurements of the stable fixed

points θp,i, δ̄ ≡ (δ1 + δ2)/2, and ∆T̄0 for different val-
ues of ∆Tm at Ra=5.5 × 108 (∆T = 3.8 K). A smaller

value of Ra was chosen for this set of experiments be-
cause switching between states is more frequent at this
Ra [27], making the sampling of different states easier.
A counter-rotating state is found for small ∆Tm, with
θp = π/4 rad in both cells at ∆Tm = 0.04 K. This offset
from zero suggests a slight asymmetry in the cells result-
ing in a horizontal temperature difference that is 1% of
∆T . For small ∆Tm, θp varies with ∆Tm in opposite di-
rections in the two cells, corresponding to counter-offset
states. δ̄ and the magnitude of ∆T̄0 also increase with
|∆Tm| for these counter-offset states. At larger |∆Tm|,
only co-rotating states are found.

The different states in Fig. 11 can be understood qual-
itatively from Eqs. 5 and 6. When ∆Tm > 0 and thus
∆T̄0 > 0 from Eq. 6, the interface between cells is hotter
than cell 1, so there will be a forcing on θ1 towards the
interface with the hotter cell according to Eq. 5. θ2 is
forced in the opposite direction as the interface is colder
than cell 2. In the counter-rotating state, this results in
the opposite shifts in θp,i with increasing |∆Tm|. When
the forcing in Eq. 5 becomes large enough as |∆Tm| and
|∆T̄0| increase, it pushes θp across an unstable fixed point
of Eq. 5 at θp = π/2 rad so that only a co-rotating state is
stable. In agreement with this prediction, the measured
values of θp for counter-offset states in Fig. 11a approach
but do not cross π/2 rad, and beyond that value of ∆Tm

only co-rotating states are found.

In principle we could solve the coupled Eqs. 4, 5, and
6, to make direct predictions of how θp and ∆T̄0 depend
directly on ∆Tm. However, the predictions end up be-
ing due to small differences between terms, which are
sensitive to uncertainties in parameter values. Since the
parameters have uncertainties as large as a factor of 3,
resulting model predictions can have much larger uncer-
tainties and even an uncertain sign. Instead, we evaluate
stable fixed point values for one parameter at a time,
using other parameters as input, to test the direct de-
pendences of the model and check for self-consistency.

A. Offset of the preferred orientations ∆θp in
counter-offset states

In counter-rotating states when |∆T̄0| > 0, the

third term of Eq. 5 gives a forcing on θ̈1 of
−
√
2Aκt∆T̄0 sin θ1/πL

2δ̄τθ̇, which pushes the orientation
θp of the LSC in the colder cell towards alignment with
the hotter cell, and pushes θp in the hotter cell away from
the colder cell, so that the θp is pushed equally in oppo-
site directions in the two cells. We define the shift in pre-
ferred orientations ∆θp ≡ (θp,2−θp,1)/2. Treating this as
a small perturbation away from a counter-diagonal state
where sin θ1 ≈ (θ1 − θp)/

√
2, ∆θp is obtained by balanc-

ing this forcing from Eq. 5 with the overdamped forcing
obtained in a single cubic cell −∇Vg = −ω2

r(θ1 − θp),
where ωr is the natural frequency of oscillation in the
geometric potential around the corner [48]. At lowest
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order, this leads to a shift in θp of

∆θp = ± Aκt∆T̄0

πL2δ̄ω2
rτθ̇

. (13)

The ± sign corresponds to the sign of sin θp.
To test the prediction of ∆θp from Eq. 13, we use as

input τθ̇ = 22 s , and ω2
r = (2.1 ± 0.4) × 10−4 s−2 from

the linear regression of Sec. VIA2, both from data at
Ra=5.4 × 108 for a single LSC in a cubic cell [48] [64].
We also use as input the measured value δ̄ = 0.12 K, a
linear fit of ∆T̄0 = (0.57± 0.05)∆Tm from Fig. 11c, and
κt/κ = 3200 ± 400 at Ra = 5.5 × 108 from Fig. 8. This
yields the prediction ∆θp = (1.9 ± 0.2)∆Tm rad/K. A
linear fit to θp in Fig. 11a yields ∆θp = (3.7 ± 0.4)∆Tm

rad/K, which is within a factor of 2 of the prediction of
Eq. 13. This discrepancy also means Eq. 13 overpredicts
the maximum ∆T̄0 where counter-offset states are stable
by about the same factor, by extrapolating ∆θp to where
it crosses the unstable fixed point of Eq. 5 at θi = π/2
rad.

B. Increase of steady-state temperature difference
∆T̄0,co with ∆Tm in co-rotating states

In the co-rotating state, Eq. 6 has a stable fixed point
solution

∆T̄0,co(∆Tm) =
±1.76δ̄co + (2Nuκ/Aκt)∆Tm

1 + 2Nuκ/Aκt
. (14)

The ± corresponds to the sign of ∆Tm. Values of Nu are
known from fits of the Grossmann-Lohse scaling model
[1]. Specifically, at Ra = 5.5×108, Nu=55 in a cylindrical
cell at the same Ra [62] (values of Nu in cubic and cylin-
drical cells are found to agree within 2% in this range
[65]). This corresponds to Nuκ/κt = 0.017± 0.002. Us-
ing this value, and the fit slope |∂δ̄co/∂∆Tm| = (0.042±
0.006)∆Tm for ∆Tm < −0.02 K, yields a prediction
of |∂∆T̄0,co/∂∆Tm| = 0.14 ± 0.02, about a factor of
2 larger than the measured slope |∂∆T̄0,co/∂∆Tm| =
(0.062± 0.014). However, we note that the trends start
to change for values of ∆Tm > 0.2, such that the discrep-
ancy becomes a factor of 5 in the range 0.2 < ∆Tm < 1.

C. Increase of ∆T̄0 with ∆Tm in counter-rotating
states

While ideal symmetric counter-rotating states corre-
spond to ∆Tm = 0, in practice the LSC is very sensi-
tive to asymmetries [3, 58]. Even in nominally symmet-
ric counter-rotating states, ∆Tm is not exactly zero. In
our experiment, ∆Tm is not directly controlled. Rather,
we control the temperature of the water baths pump-
ing water through the top and bottom plates, but the
plate temperatures are also affected by heat losses in the
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FIG. 12. Steady-state values of the difference in mean tem-
perature ∆T̄0 as a function of parameters predicted in Eq. 15.
The linear fit to counter-rotating state data is consistent with
the predicted scaling, confirming the validity of the detailed
functional form of the neighboring roll interaction terms in
Eq. 6 and suggesting that many of the asymmetries observed
in counter-rotating states are explained by small differences
in ∆Tm.

piping from the baths to the plates, and the finite con-
ductivity of the aluminum top and bottom plates in our
experiments allows them to be coupled to the tempera-
ture profile of the LSC. In practice, this coupling results
in a typical change in ∆Tm between counter-rotating and
co-rotating states of 0.002∆T . That small asymmetry in
driving has a large consequence, with a |∆T̄0|/δ̄ typically
varying by 0.1 in cases where we intended to produce
symmetric counter-rotating states, which can lead to sig-
nificant terms in the model Eqs. 4, 5, and 6 in counter-
rotating states. In particular, a general steady-state so-
lution of Eq. 6 for both counter- and co-rotating states
that includes variations in θp,i and δ̄i with ∆Tm is

∆T̄0 =
−0.88(δ̄2 cos θp,2 − δ̄1 cos θp,1) + (2Nuκ/Aκt)∆Tm

1 + 2Nuκ/Aκt
.

(15)
To test the θp,i-dependent terms of Eq. 15, we plot

measured values of ∆T̄0/δ̄ as a function of measured
values of [δ̄2 cos θp,2 − δ̄1 cos θ1]/δ̄ in Fig. 12. The nor-
malization of both axes by δ̄ allows us to include all of
our counter-rotating data at different Ra on the same
scale to better interpret the magnitude of the asymmetry.
Co-rotating state data with ∆Tm/δ̄ < 1.3 are shown to
be tightly clustered because δ2 cos θp,2 − δ1 cos θ1 = 2δ̄co
consistently in co-rotating states with small ∆Tm. For
counter-rotating data, a linear function plus a constant
is fit to the data in Fig. 12. The fit yields a slope of
−0.88 ± 0.05 plus a constant offset of 0.20 ± 0.02. The
offset must be the result of some undetermined asymme-
try in the nominally symmetric system. The predicted
slope in Fig. 12 is −0.93, obtained by rearranging Eq. 15
to isolate ∆T̄0, ∆Tm = ∆T̄0/0.57 from a fit of Fig. 11c,
and the measured value Nuκ/κt = 0.017 ± 0.002. The
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FIG. 13. Difference in δ̄ between neighboring rolls in counter-
rotating states. The line is a linear fit based on Eq. 16. The
linearity and consistency with the magnitude of the predic-
tion within 20% confirm the validity of the detailed functional
forms of the first and second terms of Eq. 4.

predicted slope is within a standard deviation of the fit
slope of −0.88± 0.05 in Fig. 12, so this confirms the va-
lidity of Eq. 15, and thus the detailed functional form
of the third term of Eq. 6. Since Eqs. 4 and 5 for δ̇i,κ
and θ̇i,κ depend directly on T0, the small uncontrolled
differences in ∆Tm and resulting changes in ∆T̄0 likely
account for much of the scatter in plots such as Fig. 4,
and corresponding asymmetries in Fig. 3.

D. Trends of δ̄i with ∆Tm

1. Co-rotating states

In the co-rotating state, δ̄ increases linearly with ∆Tm

in Fig. 11b. This change is predicted from the linear ex-
pansion in Eq. 12 since ∆T̄0,co also increases linearly with
∆Tm. Using the fit ∂∆T̄0,co/∂∆Tm = (0.061± 0.014) in
the co-rotating state for |∆Tm| < 0.2 K from Fig. 11c,
τδ = 81 s from a cubic cell with a single LSC at the
same Ra = 5.5 × 108 [48], and κt/κ = 3200 ± 400
from the fit in Fig. 8 yields a prediction |∂δ̄co/∂∆Tm| =
(0.019± 0.004), a factor of 2 smaller than the measured
slope |∂δ̄co/∂∆Tm| = 0.042 ± 0.006 for ∆Tm < −0.2 K
in Fig. 11b. There is a reduction in the slope of both
∆T̄0,co and δ̄co with ∆Tm for 0.2 K < ∆Tm < 1 K. This
change in slope is not predicted by the model. In the
range 0.2 K < ∆Tm < 1 K, using the measured slope
∂∆T̄0,co/∂∆Tm = (0.019 ± 0.007) the predicted slope
|∂δ̄co/∂∆Tm| = 0.006 ± 0.001 is 5 times smaller than
the measured slope 0.031± 0.002.

2. Asymmetry δ2 − δ1 in Counter-rotating states

When a small ∆Tm produces counter-offset states,
there is a shift in δ̄ with increasing ∆Tm in opposite di-
rections in the two cells. This shift ∆δ̄ ≡ (δ̄2 − δ̄1)/2 is
shown in Fig. 13 for the counter-offset data from Fig. 11.
Such a difference is predicted from Eq. 4. ∆δ̄ is obtained

by inserting Eq. 4 with a linear expansion in ∆θp around
a diagonal (e.g. θp = π/4 rad) into a linear expansion
around the stable fixed point of δ = δ0 in Eq. 2, resulting
in

∆δ̄ = 2τδ

(

δ̇κ,2 − δ̇κ,1
2

)

counter

=
2τδAκt

πL2
(δ̄∆θp −∆T̄0) .

(16)
Using τδ = 81 s from measurements in a single cu-
bic cell [48], the fits of ∆T̄0 = 0.57∆Tm and ∆θp =
(3.7 ± 0.4)∆Tm rad/K from Fig. 11, and measurements
κt/κ = 3200 ± 400 and δ̄ = 0.12 K, yields the predic-
tion ∆δ̄ = (−0.039 ± 0.006)∆Tm. The data in Fig. 13
is fit by a linear function plus a constant, yielding ∆δ̄ =
(−0.046 ± 0.006)∆Tm + 0.005 K. The offset of 0.005 K
is indicative of an asymmetry of the setup, comparable
to the uncertainty on thermistor measurements. The fit
slope is consistent with the predicted value and within
20%, which confirms the validity of the detailed form of
the first and second terms of Eq. 4.

3. Second order expansion of δ̄(∆Tm)

Figure 11b showed an increase in δ̄ with |∆Tm| in
counter-offset states. Since it increases with both positive
and negative ∆Tm, we fit a quadratic function, obtaining
a curvature ∂2δ̄/∂∆T 2

m = 0.26± 0.11/K. This quadratic
trend can be predicted from Eq. 4 using the prediction
and observation from Fig. 11 that both ∆θp and ∆T̄0

are linear in ∆Tm, so that cos θp,i =
√
2(1 ±∆θp). Av-

eraging over cells 1 and 2, the first-order expansions
in ∆T̄0 or θp of the first two terms of Eq. 4 have op-
posite signs for the two different cells at a diagonal
(e.g. θi = π/4 rad), and cancel out in the average over
the two cells (these are the terms that were responsi-
ble for ∆δ̄). The expansion of the first and third terms
of Eq. 4 up to second-order in ∆θp and ∆T̄0 yields

δ̇counter = (Aκt/πL
2)(2∆θp∆T̄0 − πδ0∆θ2p/8). Plug-

ging this into a first-order expansion of Eq. 2, using
the fit ∆T̄0 = (0.57 ± 0.05)∆Tm from Fig. 11c, the fit
∆θp = (3.7 ± 0.4)∆Tm rad/K from Fig. 11a, and using
the measured value of δ̄ at ∆Tm = 0 to approximate
δ0 = 0.12 K yields the prediction

δ̄counter = δ0 + 2τδ δ̇counter = δ0 +
3.6Aκtτδ

πL2
∆T 2

m (17)

Using τδ = 81 s [48] and κt/κ = 3200 ± 400, the pre-
dicted curvature in ∆T 2

m is 0.54 ± 0.18, consistent with
the fit curvature 0.26± 0.11/K. This confirms that Eq. 4
is consistent with measurements even to 2nd order.
The self-consistency of all of the model predictions of

the dependencies of ∆θp, ∆T̄0, δ̄, and ∆δ̄ on ∆Tm was
confirmed within a factor of 3 in Sec. VIIA, VII B, VIIC,
and VII D. This confirms the validity of the dependence
of Eqs. 4, 5, and 6 on ∆Tm.
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FIG. 14. The ratio S of stabilizing force from effective turbu-
lent thermal diffusion at the orientations of co-rotating states
to the destabilizing forcing from the geometry of the cell at
these orientations. Co-rotating states exist when this value is
greater than S > 1.13, close to the predicted value of 1. This
confirms that the model prediction that co-rotating states are
stable when the neighboring roll interaction due to turbulent
thermal diffusion is strong enough to overcome the geometric
forcing. Solid line: linear extrapolation of S with increasing
∆Tm. The co-rotating state is predicted to become unstable
when this drops below 1.

E. Does the model quantitatively predict the
conditions for stable co-rotating states?

In this section, we check whether the model can quanti-
tatively predict the conditions in which co-rotating states
are stable. To be stable at the alignment θp = 0 or
π rad, there has to be a forcing to overcome the geo-
metric forcing −∇Vg, which has unstable fixed points at
θp = 0 and π rad [48]. A first-order expansion in θi − θp
at fixed δi of the predicted unstable geometric forcing
is −∇Vg ≈ πω2

r δ̄
2
co(θ1 − θp)/10δ

2
0 [48]. This expansion

for the geometric potential was untested due to limited
data near the unstable fixed points of the potential Vg

in previous experiments [48]. We compare this predicted
unstable forcing to the stabilizing forcing from the neigh-
boring roll interaction, using a linear expansion in θi−θp
of Eq. 5 for a fixed δi (this corresponds to the second
term of Eq. 8). We calculate the magnitude of the ra-
tio S of stabilizing forcing for co-rotating states to the
destabilizing forcing from the expansion of the geometric
forcing−∇Vg to obtain the forcing ratio

S =
10Aκtδ0[

√
2|∆T̄0,co|/δ̄co − 2]

π2L2τθ̇ω
2
r δ̄co

. (18)

To predict values of S for different datasets, we use
κt/κ = 0.8Ra0.41 from the fit in Fig. 8, τθ̇ = 2.7 ×
104Ra−0.35 from a fit of data with a single LSC in a
cubic cell data [48], ω2

r = 6.3 × 10−13Ra0.98 from linear
regression of data with a single LSC in a cubic cell [48],

δ̄/δ0 = 0.57 for co-rotating states from Fig. 9, and the
measured ∆T̄0,co/δ̄co for each dataset. The ratio of sta-
bilizing to destabilizing forces is plotted Fig. 14a for each
co-rotating state, including data at all measured Ra and
∆Tm for completeness. Since counter-diagonal states are
predicted to be stable to both forcings, the stabilizing ra-
tio is not relevant for them. Co-rotating states are found
to be concentrated in Fig. 14 with S > 1.13. This con-
centration of many points just above this measured mini-
mum of 1.13 suggests a critical value slightly below this is
required for co-rotating states. This threshold is near the
predicted threshold of 1, well within typical uncertainties
of this model. This confirms that the model successfully
predicts the conditions for co-rotating states to be stable
due to turbulent thermal diffusion, when it overcomes
the geometric forcing that destabilizes co-rotating state
orientations. In co-rotating states, the stabilizing factor
b sin(θ2 − θ1) is typically small (on average, b = 0.36a in
co-rotating states), thus while an understanding of the
source of the stabilizing b in co-rotating states might ad-
just the threshold value of S, the stability of co-rotating
states can be explained independent of the unexpectedly
stabilizing values of b.

F. Unpredicted stable state at large ∆Tm

In Fig. 14, the ratio of stabilizing to destabilizing forc-
ings for co-rotating states S is seen to drop towards the
threshold of stability at S = 1 for large ∆Tm. This lin-
early decreasing S and loss of stability is predicted be-
cause the stabilizing forcing (which scales as ∆T̄0/δ0) is
growing linearly with ∆Tm, but not as fast as the linearly
increasing destabilizing term (which scales as δ̄2co/δ

2
0) (see

trends in Fig. 11). A linear fit of S for a series of points
at ∆T = 3.8 K for ∆Tm > 0.14 K is shown to intercept
the predicted threshold of stability at ∆Tm/δ̄co = 10 in
Fig. 14. At this point, both the co-rotating state and
counter-rotating state are predicted to be unstable, so
some new state should appear.
To see if the co-rotating state destabilizes at larger

∆Tm, we plot δ̄ and ∆T̄0/δ̄ as a function of ∆Tm for
fixed ∆T = 3.8 K (Ra = 5.5× 108) in Fig. 15, extending
the range of experiments from Fig. 11. For ∆Tm < 0.9 K,
the data is the same as Fig. 11, with the predicted insta-
bility threshold of the co-rotating state at ∆Tm = 0.9 K.
When ∆Tm > 0.9 K, new scaling behaviors appear where
δ̄ starts to decrease with ∆Tm, and ∆T̄0/δ̄ starts to in-
crease significantly above its typical value of 2.22± 0.13
for co-rotating states. Values of θp,i are not shown be-
cause they remain constant as ∆Tm increases. While
the values of θp,i appear as if this is still a co-rotating
state, the decrease in δ̄ and large increase in ∆T̄0/δ̄ are
inconsistent with Eqs. 4 and 6. In particular, values of
∆T̄0/δ̄ ≫ 2 mean the temperature on the two sides of the
interface between neighboring rolls is very different, and
no longer dominated by a balance of turbulent thermal
diffusion across the interface. A likely candidate for this
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FIG. 15. Measurements at large ∆Tm revealing a state with
new scaling behavior for ∆Tm > 0.9 K when ∆T = 3.8 K.
(a) mean LSC amplitude δ̄. (b) mean temperature difference
between rolls ∆T̄0/δ̄. (c) ratio of stabilizing to destabilizing
forcing for co-rotating states. Solid lines show fits of the pre-
dicted linear behavior of co-rotating states for small ∆Tm.
Vertical dashed line shows the point where the co-rotating
state is predicted to become unstable at S = 1. The new
state is oriented like a co-rotating state, but with a much
larger ∆T̄0/δ̄, suggesting it is no longer driven by turbulent
thermal diffusion.

behavior is more coherent advection of heat between the
cells, which can transport heat more coherently between
the cells to balance the larger turbulent thermal diffu-
sion for ∆T̄0/δ̄ ≫ 2. However, we cannot make specific
predictions without more detailed knowledge of such ad-
vective flow fields. The rapid increase of ∆T̄0/δ̄ means
S increases again for ∆Tm > 0.9 K and does not drop
below the threshold of instability for co-rotating orien-
tations, so the stability of this high-∆Tm state is still
consistent with Eq. 5 for θ̇κ,i, and perhaps only Eq. 6 for

Ṫκ,i requires modification.

G. Stability of counter-axis states

Counter-axis states – in which the preferred orientation
is somewhere between a corner and axis – were found for
∆T < 2 K instead of counter-diagonal states. However,
counter-axis states are not predicted to be stable from

Eq. 5.
What might cause counter-axis states? Equations of

motion in θ̈i could in principle produce stable counter-
axis states if there is a force pushing both cells to be sta-
ble in ± sin θi. For example, if there was an asymmetry in
the temperature profile of the plates such that the both
plates are hotter near the interface. It is notable that
our counter axis states all have an unexpectedly large
∆T̄0 > ∆Tm, which is inconsistent with Eq. 15 and thus
Eq. 6 for turbulent thermal diffusion. Thus, the large
∆T̄0 must come from some other mechanism for these
counter-axis states. This unexpectedly large ∆T̄0 might
be an indication of asymmetric heating within the plates,
although the forcing that would push both cells toward
a counter-axis state would not be best represented by
the parameter ∆T̄0. We found counter-axis states to be
more likely when the flow direction in some of the cool-
ing baths controlling the plate temperatures was switched
(individual plate thermistor mean temperatures typically
changed by 0.001∆T ), suggesting the plate temperature
profile can produce such an asymmetry. We also found
counter-axis states to be more prominent in an early ver-
sion of the apparatus with a different middle wall cov-
ering only the top half of the interface between the two
rolls. This suggests that there was some stabilizing force
in ± sin θi with the same sign in both cells, presumably
due to an interaction of the LSCs with the middle wall
[66]. This asymmetry could have resulted from an in-
teraction between a corner-roll and the middle wall, as
corner-rolls are more prominent at the top only on the
side of the up-flow (not down-flow), so the interaction
could be different for a top-half middle wall depending on
whether the flow in the middle is upward or downward.
Whatever the source, it seems likely that the observed
counter-axis states are due to some unpredicted asym-
metry of our setup, and the forcing can be surprisingly
significant in systems with mild-seeming asymmetries.

H. Tilt

Tilting the cell relative to gravity by an angle β in
the vertical plane going between the center of both cells
results in a component of buoyant forcing aligned with
θ = 0 in one cell and θ = π rad in the other cell
[32, 45, 67]. Since this is similar to the effect of a tem-
perature difference ∆Tm, it should be no surprise that a
tilt of about β = 2 degrees generally results in co-rotating
states, with a mix of co-rotating and counter-offset states
at smaller |β| (data is included in Fig. 4), analogous to
Fig. 11a. A detailed analysis of tilting a single cubic
cell was presented previously [32], and the same forc-
ing terms are expected to apply here, in addition to the
forcing in Eqs. 4 and 5. Some quantitative data on the
tilt-dependence is presented for the earlier version of our
experiment with the middle wall only in the top half of
the cell, which also included an extra forcing term that is
responsible for the counter-axis states [66]. These obser-
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vations serve as a confirmation that forcing terms from
different physical mechanisms can be added in the low-
dimensional model.

VIII. DYNAMICS OF SWITCHING BETWEEN
CO-ROTATING AND COUNTER-ROTATING

We observed numerous stochastic switching events be-
tween co-rotating and counter-rotating states such as in
Fig. 3. To obtain statistics to characterize these events,
we searched through experiments with a total run time
of 148 days with different Ra, ∆Tm, and tilt angles β.
To intentionally produce more switching events, we also
occasionally enforced a co-rotating state in one direction
or the other by biasing |∆Tm|/δ0 >

∼ 1.7 using Fig. 11 as
a guide.
To systematically identify switching events between

counter-rotating and co-rotating states, we define a tran-
sition based on the time-dependent difference in LSC ori-
entations |θ1 − θ2|. We first smoothed values of θi over
a duration of 1.5τδ. We define a transition from counter-
rotating to co-rotating as starting when |θ1 − θ2| last
exceeds π/2 rad, and ending when |θ1 − θ2| first exceeds
3π/4 rad, without returning below π/4 rad in between.
These first and last crossing times at different thresholds
are used to avoid counting jitter around these threshold
values. We set the threshold π/2 rad further from the
ideal counter-diagonal state value to include counter-axis
states where |θ1 − θ2| is larger. Likewise, a change from
co-rotating to counter-rotating is defined to start when
|θ1−θ2| last drops below 3π/4 rad, and end when |θ1−θ2|
first drops below π/2 rad, without returning above 3π/4
rad in between. To make sure the change in |θ1 − θ2| is
not a false event due to a temporary fluctuation in one
variable, we also calculated short-time averages of param-
eters |θ1 − θ2|, (δ1 + δ2)/2, and |T0,2−T0,1| in the steady
states before and after the event – in the final analysis
we used the range of 14τδ to 56τδ before and after the
event, excluding data where cos(θ2 − θ1) has the wrong
sign for the expected state, and excluding data with ei-
ther δi < 0.3δ0. We only considered a switching event
to have occurred if the parameters |θ1 − θ2|, (δ1 + δ2)/2,
and |T0,2 − T0,1| averaged over the specified time range
changed from before to after the event by more than 60%
toward the expected counter- or co-rotating state: the
expected differences going from counter- to co-rotating
states are |θ1 − θ2| increased by π rad (when values of
θ1 − θ2 are reduced to the range −π rad to π rad),
|T0,2 − T0,1| increased by 2.22δ̄co based on Fig. 10, and
(δ1 + δ2)/2 decreased by 0.37δ0 based on Fig. 9.
We found 89 switching events between counter- and co-

rotating states, corresponding to an average frequency of
0.60 per day, and only 0.48 per day if we do not count
events that occurred shortly after we forced a switch
to a co-rotating state by applying a large |∆Tm|. We
only observed a few direct switching events from one
counter-diagonal state to another corner. We never ob-

parameter change in to counter-rotating to co-rotating
dθ |θ1 − θ2| 0.12 0.37
dT |T0,2 − T0,1| 0.01 0.52
dδ (δ1 + δ2)/2 -0.23 0.53
dc δ̄i − δi 0.36 0.31

TABLE II. Fractional changes of various parameters towards
their new steady state values before switching events to
counter- and co-rotating states. Switching to counter-rotating
states is mostly driven by cessations (dc) during the event, in
which a reduction in one of the δi reduces the damping on
motion in θi which can be driven to large changes by random
fluctuations. Switching to co-rotating states is driven by a
mix of diffusive fluctuations in θ1 − θ2, T0,2 − T0,1, and δi
which have a positive feedback that destabilizes the counter-
rotating state.

served a direct switch between two co-rotating orienta-
tions. Even in cases where a co-rotating state was sta-
ble, and we changed ∆Tm to drive the co-rotating state
in the opposite direction, the system always switched to
a counter rotating state and resided there for at least
1000s before switching to the new preferred co-rotating
state. Switching between two orientations of counter-
axis states is relatively frequent, and statistics of switch-
ing between counter-axis orientations are reported else-
where [66]. Mechanisms of switching between counter-
axis states will not be addressed here because they are
driven by some uncharacterized asymmetry.

A. Different driving mechanisms for switching
events

In previous work, changes in LSC orientation between
stable fixed point states were often found to be due to
dramatic reorientations in θ0, driven by extreme fluc-
tuations in θ0 coming from the stochastic term fθ̇(t)
[27, 44, 66, 68]. Other events are driven by cessations – a
reduction in δ to near zero driven by stochastic fluctua-
tions to overcome a potential barrier due to Eq. 2. Cessa-
tions reduce the damping in Eq. 3 so that the stochastic
term fθ̇(t) allows θ0 to change more rapidly [5, 35, 44, 55].
For either mechanism the behavior could be quantified
statistically as a rare event due to diffusive fluctuations
crossing a large potential barrier in Eq. 2 or 3, respec-
tively [27, 44, 48]. However, with only 89 switching events
and a large number of variables, we do not have enough
statistics to meaningfully test quantitative predictions of
barrier crossing rates as a function of any parameter.
Instead, to identify the relevant mechanisms for switch-

ing between counter- and co-rotating states, we calculate
correlations between changes in LSC parameters before
an event, with the expected change towards the new sta-
ble value after switching. These fractional changes dθ, dδ,
and dT are calculated as the average fractional change of
each parameter (|θ1−θ2|, (δ1+δ2)/2, and |T0,2−T0,1|, re-
spectively) in the time period of 2τδ before the start of a
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switching event, relative to the expected change towards
the stable state value after switching. These fractions
are averaged separately for events switching to either a
counter- or co-rotating state, and summarized in Table
II. We also include a row for a fractional change toward
cessation driving dc, calculated as the fractional change
in δ toward zero (δ̄i − δi) relative to the stable value of δ̄
before switching . We only count the maximum dc among
the two cells, since a cessation of one of them is enough
to cause a change in state.

Table II suggests that switching from the co-rotating
to counter-rotating state is most strongly correlated with
cessation, with an average dc = 0.36, indicating a signif-
icant drop in δ from its previous stable fixed point in
the co-rotating state, which weakens the damping of mo-
tion in θi (Eq. 3) [44]. This strong correlation is espe-
cially notable because the new stable fixed point in the
counter-rotating state has a larger δi, meaning the ces-
sation initially moves δi further from its new stable fixed
point value at the start of the transition between states.
All but one of the switching events to counter-rotating
states has a reduction in one of the 〈δi〉 either within
the 2τδ before the event, or during the event, The sin-
gle event with negative dc is telling, because it occurred
in the first 4000 s of one of the counter-offset states in
Fig. 11a, which we did not find to have a longer stable
lifetime in a counter-rotating state, suggesting the poten-
tial barrier that needed to be crossed was relatively low
in that case.

An example of a switching to a counter-rotating state
Ra = 2.7×109 is shown in Fig. 16. To represent a typical
state, we chose the event with the median value of dc
among switching events to counter-rotating states. In
this example, there is a large drop in δ1 in cell 1 that
allows a rapid change of θ1 due to smaller damping on θ1
from Eq. 3 [44]. Once θ1 reaches near a new stable fixed
point orientation for a counter-rotating state, the other
parameters θ2, T0,1, T0,2, δ1 and δ2 follow to their new
stable fixed point values within a few turnover times, or
a few τδ.

Generally, switching from co-rotating to counter-
rotating states due to cessation (reduced δi) can be un-
derstood to be due to reduced damping in Eq. 3, which
allows fθ̇ to drive large changes in θi in the same cell
to cross the potential barrier that stabilizes co-rotating
states in Eq. 5. We generally find during switches to
counter-rotating states that the drop in δi causes θi in
the same cell to change further than the neighboring cell,
consistent with this explanation. Note that the reduction
in δi only allows the motion of θi to be dominated by the
stochastic term if the damping factor in Eq. 25 includes
the factor of δi/δ0 to cancel out the 1/δi in Eq. 23, so
this observation is our best justification for using that
factor δi/δ0 in Eq. 25. In principle, Eq. 5 also allows
for the co-rotating state to become unstable due to large
fluctuations that reduce |T0,2−T0,1|. We see no evidence
that this is a major driving factor in switching from co-
rotating to counter-rotating states (dT = 0.01) without
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FIG. 16. Example of a switching event from a co-rotating
state to a counter-rotating state. This transition is driven by
a large drop in one of the δi, which allows θi in the same cell
(in this case in cell 1) to be rapidly driven by stochastic fluc-
tuations, as are most transitions to counter-rotating states.
The vertical dashed lines indicate from left to right the time
2τδ before the start of the switching event, the start, and end
of the switching event based on crossing thresholds in |θ1−θ2|.

the aid of a cessation, perhaps because fluctuations in T0

tend to be relatively small (see Fig. 3).

In the other case of switching from a counter-rotating
state to a co-rotating state, Table II shows that cessa-
tion (dc) has the weakest correlations with these switch-
ing events, and is difficult to distinguish from a driving
towards δco, which also involves a reduction in δ in this
case. The correlations with an increase in |T0,2 − T0,1|,
decrease in (δ1 + δ2)/2 and increase in |θ1 − θ2| are all
stronger than the driving due to cessation, and much
stronger than when switching to a counter-rotating state.

An example of a switching event from a counter-
rotating state to a co-rotating state led by random diffu-
sive motion in T0,2 − T0,1 at Ra = 2.7× 109 is shown in
Fig. 17. To represent a typical switching to a co-rotating
state, we chose the event with nearly median values in
each of dθ, dT , and dδ. In this example, T0,1 and T0,2

start slowly drifting apart about 66,200 s, well before
the change in θi and δi to their new stable values in a co-
rotating state. Generally, as |T0,2−T0,1| increases, it pro-
duces an increasing forcing on θi in the third term of Eq. 5
to push θ1 and θ2 apart. Additionally, fluctuations in
both θi and δi away from the counter-rotating state fixed
point drive an increase in |T0,2−T0,1| in Eq. 6, providing
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FIG. 17. A switching from a counter-rotating state to a co-
rotating state driven by a diffusion in T0,2−T0,1. The vertical
dashed lines indicate from left to right the time 2τδ before
the start of the switching event, the start, and the end of
the switching event. Positive feedback between fluctuations
in T0,i, θi, and δi away from the counter-rotating state fixed
point ultimately and a destabilizes the counter-rotating state,
leading to a co-rotating state.

a positive feedback that destabilizes a counter-rotating
state to drive a transition to a co-rotating state. This
positive feedback can be seen in Fig. 17 as the changes in
θi, δi, and T0,i all start to increase more rapidly at about

the same times. In Eq. 5, when sin θ ≈
√
2/2 near the

stable counter-rotating state, the third term that desta-
bilizes the counter-rotating state becomes dominant over
the first term that stabilizes the counter-rotating state
when T0,2 − T0,1 > πδ/4 (alternatively, the threshold of
instability in Eq. 5 can also be identified as |θ1−θ2| > π/2
as seen in Fig. 11). In the example in Fig. 17, both of
these thresholds are crossed roughly in between the first
2 timing lines, which is about when the rate of change in
θi starts to increase. Once the threshold of instability is
crossed, the values of θi, δi, and T0,2 −T0,1 quickly move
towards their stable fixed point values for co-rotating
states. Since the positive feedback between increasing
|T0,2−T0,1|, decreasing (δ1+δ2)/2, and increasing |θ1−θ2|
is what destabilizes counter-rotating states, this explains
why dT , dδ, and dθ are all correlated with switching to
the co-rotating state in Table II.

The behavior described above for switching from
counter-rotating to co-rotating states is qualitatively sim-
ilar in most events. Notably, during switching from

counter- to co-rotating states, we generally observe that
T0,1 and T0,2 are driven in opposite directions at nearly
equal rates, as seen for example in Fig. 17, and as ex-
pected from Eq. 6. The cell that starts slightly hotter
also generally continues to get hotter, as seen for example
in Fig. 17c. This determines which orientation is easier
to switch to, as smaller fluctuations in θi and T0,2 − T0,1

in this direction are required to destabilize the counter-
offset state in Eq. 6.
If switching to counter-rotating states is due to ces-

sation and other large drops in δi, we can predict that
switching to counter-rotating would occur in some frac-
tion of cessations, which depends mainly on the mean
value of δi. Any forcing that leads to a larger δ̄i is ex-
pected to decrease the likelihood of events [27, 44], such
as increasing ∆Tm or tilting the cell. On the other hand,
a prediction of switching to co-rotating states would in-
stead depend on crossing barriers in a three-dimensional
space of |T0,2−T0,1|, (δ1+δ2)/2, and |θ1−θ2|. For either
type of switching, due to the rarity of events, we do not
have enough statistics to test such predictions.

IX. DISCUSSION

A. Rejected model: modified drag at the interface
between two rolls

We originally considered a modification of viscous drag
at the interface to model the interactions between neigh-
boring rolls. Since the effects of viscous drag at the inter-
face between neighboring rolls could be modeled as a tur-
bulent viscous diffusion of a vertical velocity U cos(θi−θ0)
at the interface, some of its effects could be in part math-
ematically analogous to turbulent thermal diffusion of
temperature Ti = T0,i + δ cos(θi − θ0).
One important difference between the velocity and

temperature is the offset temperature T0,2−T0,1 between
the neighboring cells, as there is no analogous offset for
velocity. The difference between the mean temperature
of neighboring rolls T0,2 − T0,1 is important because it
is the term that stabilizes the observed co-rotating state
in Eq. 5. Without a mathematically analogous offset,
viscous drag would only tend to align neighboring rolls
toward a counter-rotating state. T0,2−T0,1 is also the in-
termediary parameter for effects of the difference in mean
plate temperature of the two cells ∆Tm. Thus, we rule
out the hypothesis that the drag force is the most im-
portant interaction between neighboring convection rolls
in our experiments, at least when it comes to determin-
ing the temperature profile and stable states of the flow
structures.
On the other hand, viscous drag may play a smaller

role in modifying parameter values. Since the Prandtl
number of the water is Pr = ν/κ = 6.41, viscous diffusion
should in principle be stronger than thermal diffusion by
that factor. Since we could represent both the temper-
ature difference and velocity profiles as sine functions in
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the coordinate θ [44], the diffusion equations and effec-
tive thermal diffusivity κt measured may actually contain
contributions from viscous diffusion. Larger coefficients
depending on Pr might be expected for terms without
T0,2 − T0,1. However, since the threshold for stability of
co-rotating states is just barely met by the third term of
Eq. 5 overcoming the first and second terms, a signifi-
cant destabilizing drag added to other terms would over-
whelm the stabilizing term which depends on T0,2−T0,1,
resulting in co-rotating states being unstable, in disagree-
ment with observations. Thus, any contribution of drag
is probably small compared to the stabilizing term in
our experiments. It remains to be seen if systems with
larger Pr, or those driven by forced convection rather
than buoyancy, are dominated by turbulent viscous dif-
fusion rather than turbulent thermal diffusion.
In Eq. 4 for δ̇κ,i, a modified drag term would be smaller

in a counter-rotating state relative to a single LSC due
to the flow in the same direction at the interface. On
the other hand, this modified drag may also change the
time a fluid parcel spends near the top and bottom plates
to lose or gain heat, respectively, and change the rate of
turbulent mixing. These effects may cancel each other
out in the temperature profile, since there is little change
in δ̄ [we observed a 6% reduction of δ̄ in the counter-
rotating state compared to a single roll (Fig. 9)]. The
fact that there is not a larger change in δ̄ in the counter-
rotating state suggests that any change in drag due to
neighboring rolls has a small effect on δ̄.

B. Discussion of previous work on co-rotating
states

Previous observations of co-rotating rolls in systems
with horizontal forcing due to lateral heating [52] or tilt
[53] are analogous to a one-dimensional version of our
model with forcing due to ∆Tm. We found that motion
in θi is important for determining the stability of states in
three dimensions. In particular, the stability of counter-
and co-rotating states is determined by Eq. 5, which has
terms that both stabilize and destabilize flow in terms of
θi, and stabilize in θ1 − θ2 (Sec. VIA). In addition, in
any non-circular cross-section, the forcing −∇Vg(θi) due
to the geometry of the cell can potentially add to the
stabilizing or destabilizing terms (Sec. VII E).
The behaviors of stacked co-rotating rolls [55] are not

explained by our model, as the forcing terms in the ver-
tical direction would be different, and vertically stacked
co-rotating states likely have more coherent advection
between the two cells.

C. Preferred states in other systems

Our observations of stable co-rotating states leads to
the question of why are co-rotating states not reported
more often in other convective flows? Equation 5 pre-

dicts stable co-rotating states when the stabilizing forc-
ing in θ1 from the 3rd terms of Eq. 5 are larger than
the 1st and 2nd terms that stabilize counter-rotating
states and any destabilizing forcing −∇Vg(θi) due to
the geometry of the cell (Sec. VII E). For co-rotating
states to be stable with θ2 = θ1 + π rad and assuming
δ̄2 = δ̄1, this requires ∆T̄0,co/δ̄co > 1.62, not including
contributions from Vg which can increase this threshold
by an amount depending on the geometry. Equation 6
gave a prediction of ∆T̄0,co/δ̄co = 1.76, which is only
9% greater than the threshold of stability for co-rotating
states, and we measured T0,co/δ̄co = 2.22, which is 40%
larger than this threshold. We do not yet know how
∆T̄0,co/δ̄co varies in other systems. Since the numeri-
cal coefficients in Eq. 5 are expected to change with the
shape of the interface and the shape of the convection
patterns, it seems plausible that a version of Eqs. 5 and
6 for another system might not produce a large enough
∆T̄0,co/δ̄co to be above the threshold required for sta-
bility of co-rotating states. These variables, might be
part of the reason that co-rotating states are not often
reported. In other words, while this idealized laboratory
system can reproduce many qualitative and quantitative
features of natural convection rolls, the large number of
model terms and the sensitivity of behavior to parameter
values means that behavior may not be representative of
all natural convection systems.
Equation 5 by itself does not predict any preferred

orientation for counter-rotating states. Thus, counter-
rotating rolls can in principle be aligned at any orienta-
tion. Specific systems likely have a preference for cer-
tain orientations based on their geometric potential Vg

(i.e. the longest diagonals of a closed cell), or other forces.
The counter-rotating predicted by Eq. 5 corresponds to
θ1 = θ2 such that the LSC orientation vectors line up
head-to-head, and do not in general have to be paral-
lel. For example, a hexagonal convection pattern with 3
counter-rotating rolls at 120 degree angles relative to each
other meeting at a vertex with adjacent upward-flowing
regions meet this criteria for counter-rotating states – in
this case it is the tessellation of a hexagonal pattern that
determines the preferred orientations of counter-rotating
states [50].

X. CONCLUSIONS

We observed both counter-rotating and co-rotating
states to be stable for adjacent convection rolls in cu-
bic Raleigh Bénard convection cells with 7.6 × 107 <
Ra < 3.5 × 109 and Prandtl number 6.41 (Figs. 3, 4).
Notably co-rotating states were observed in nominally
symmetric systems which are usually argued to support
only counter-rotating states. The stability of the ob-
served counter-rotating states and co-rotating states can
be explained by a low-dimensional model consisting of
three stochastic ordinary differential equations for each
roll. The interactions between neighboring rolls are pre-
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dicted from the scaling of heat transport by turbulent
thermal diffusion, and added to existing model equations
[44, 45, 48] for the LSC amplitude δi (Eqs. 2, 4), ori-
entation θi (Eqs. 3, 5), and a new equation for mean
temperature T0,i (Eq. 6). Despite there only being one
new mechanism in the model, projecting turbulent ther-
mal diffusion for two neighboring rolls with just simple
sinusoidal temperature profiles into the parameters θi, δi
and T0,i resulted in eleven new model terms.

To make quantitative predictions, the model required
a parameter as experimental input: a turbulent ther-
mal diffusivity κt in the horizontal direction across the
interface between neighboring rolls. Once κt was mea-
sured based on a fit of one model term, it could be used
to predict the magnitudes of all eight model terms in
which κt affects steady-state solutions for 5.5×108 < Ra
< 3.5×109. Predictions were not tested in the lower mea-
sured range of Ra due to an unknown additional forcing
from some asymmetry that was unquantified. One term
of the thermal diffusivity model depends on the Nusselt
number for vertical heat transport, and the remaining
two predicted terms of the model affect transients only,
which were not tested. Specifically, the turbulent ther-
mal diffusion model predicts the stabilizing forcing in
sin(θ1 − θ2) for counter-rotating states and the stabiliz-
ing forcing in θi for parallel co-rotating states (Figs. 5,
6), given the value of κt obtained from an independent
measurement of correlation time of T0,i (Figs. 7, 8). The
co-rotating states are stable if the difference ∆T̄0,co in
the mean temperature of the two rolls is large enough
that the heat flux between the rolls stabilizes the tem-
perature profile of aligned co-rotating states. It was con-
firmed that the model correctly predicts the value ∆T̄0,co

is large enough to produce a stabilizing forcing (Figs. 9,
10), and that we find stable co-rotating states in our
cubic cell if and only if this forcing is large enough to
overcome the forcing due to the cell geometry (Fig. 14).
This large ∆T̄0,co could be driven by a difference ∆Tm

between the mean temperatures of the plates of the two
cells (Fig. 11), tilt of the cell (Fig. 4), or even by stochas-
tic fluctuations from a stable counter-rotating state in a
nominally symmetric setup where both states are stable
(Fig. 3). These predictions are all consistent within a fac-
tor of 3 of measurements when using the same value of κt

for each term, a typical uncertainty of this modeling ap-
proach [44, 45, 48]. The model can predict the decrease
in the LSC amplitude δ̄co in co-rotating states if the mea-
sured ∆T̄0,co is used as an input (Fig. 9), however, the
model is not accurate enough to predict the sign or lower
bound of this change without experimental input due to
the predictions depending on differences of terms with
comparable magnitude and having large uncertainties.

When an asymmetry between neighboring cells is in-
troduced through an imposed temperature difference
∆Tm between the mean plate temperatures of the two
cells, the model for effective turbulent thermal diffusion
explains an observed increase in ∆T̄0 with increasing
∆Tm, which shifts the preferred orientations of counter-

rotating rolls in opposite directions by ∆θp, until the
shift is large enough that the state becomes unstable
and switches to a co-rotating state (Fig. 11). The model
self-consistently predicted the trends ∆θp, δ̄, and ∆T̄0

in ∆Tm for both counter- and co-rotating states, and a
difference ∆δ̄ between the two cells in counter-rotating
states, when using the other trends as input (Figs. 11,
12, 13) all within a factor of 3. However, the sensitivity
of the model to differences in estimated terms makes it
unable to predict these trends without any experimental
input.

We also observed spontaneous switching events of the
LSC between counter-rotating and co-rotating states.
Events switching from co-rotating to counter-rotating
states were almost all driven by cessations of the LSC
– or at least a significant reduction in δ (Fig. 16) – which
reduces the damping term in Eq. 3, so that the orienta-
tion of the LSC can be driven easily by random turbu-
lent fluctuations [27, 44]. We found that switching from
counter-rotating states to co-rotating states is generally
driven by a combination of fluctuations that cause in-
creases in |T0,2 − T0,1|, decreases in δi, and increases in
|θ1−θ2|, which result in a positive feedback in Eqns. 5 and
6 that destabilizes the counter-rotating state (Fig. 17).

The observations above tested each of the model terms
that affect stable fixed point values (including the first
3 terms of Eq. 5, the first 3 terms of Eq. 4, and all 3
deterministic terms of Eq. 6), confirming the validity of
the turbulent thermal diffusion model for the interaction
between neighboring rolls. This level of detail suggests
that the hypothesized mechanism of turbulent thermal
diffusion is dominant, and the κt that controls the inter-
actions between neighboring convection rolls is the same
turbulent thermal diffusivity that describes macroscopi-
cally averaged heat transport. It remains to be confirmed
whether the κt measured here based on the interaction
between convection rolls has the same magnitude as an
effective thermal diffusivity for macroscopically averaged
heat transport, or if the value of κt can be predicted
from a general scaling model. It also remains to be con-
firmed if the prediction for the term of Eq. 6 correspond-
ing to vertical heat transport is determined by the Nus-
selt number, as our data had very limited resolution to
test this (Sec. VII B). If these can be confirmed, then it
would suggest that low-dimensional models can include
both coherent flow structures and transport in the same
model, using equations such as Eqs. 2, 3, 4, 5, and 6 for
flow structure interactions (including interactions with
boundaries through predictable terms such as Vg), and
relating them to equations such as Eq. 19 for heat trans-
port.

While most of the features of the interaction between
neighboring LSCs could be explained by an effective tur-
bulent thermal diffusion between the cells, some stabi-
lizing features of the co-rotating state could not be ex-
plained. This includes the stabilizing forcing on the ori-
entation of co-rotating states in θ1 − θ2, and the value
of ∆T̄0,co/δ̄co > 2, which increases to much higher values
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at large ∆Tm (Fig. 15). These observations are not con-
sistent with turbulent thermal diffusion. It is likely that
these discrepancies are due to an additional coherent ad-
vection of heat from one cell to the other, which was not
included in the model.
The interaction between two neighboring rolls should

be straightforwardly generalizable to systems of more
rolls with the addition of similar interaction terms to
Eqs. 4, 5, and 6 for each neighboring roll, assuming that
there are no higher-order interaction terms that involve 3
or more rolls. In other words, systems with multiple rolls
– such as the cases with large lateral extend with a se-
ries of adjacent rolls – would then have a set of equations
of motion in θi, δi, and T0,i for each roll (the number
of rolls would have to be known), and each equation of
motion would have a set of interaction terms for each
neighbor. When considering flows in different geome-
tries, the geometry-dependence is expected to be mostly
addressed by the separate term Vg(θi) characterizing the
interaction with the boundary, which was predicted in
earlier papers [45, 48], while the neighboring-roll inter-
action terms are expected to be separate from boundary
geometry effects. The model terms were derived here
based on a sinusoidal temperature profile, which could in
principle have higher order Fourier terms in other flows,
adding even more terms to the model, although the sinu-
soidal temperature profile has been found to be a good
approximation (within a few percent) for flows in circular
cross-sections of different aspect ratios as well [23, 69].
The bounds of the integrals when evaluating terms of
Eqs. 21, 22, and 26 depend on the length of the interac-
tion region, but would only affect the coefficients of each
model term, and not the form of the terms. These co-
efficients could be re-derived for an interaction region of
different length following the procedure in the Appendix.
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APPENDIX: MODEL DERIVATIONS

A. Forcing terms δ̇κ,i and θ̈κ,i due to neighboring
roll interactions

We start with the assumption that Eqs. 2 and 3
describe a baseline model for each LSC, and that we
only need to derive terms for additional forcing due to

neighboring-roll interactions. The forcing on the tem-
perature profile along the interface between neighbor-
ing convection rolls is assumed to come from the tur-
bulent diffusion of heat in across the interface with effec-
tive turbulent thermal diffusivity κt, which is assumed
to be uniform and constant. The turbulent thermal dif-
fusion represents the enhancement of heat transport by
eddies relative to the thermal diffusivity κ due to induc-
tion, analogous to a turbulent viscosity or eddy viscos-
ity. This thermal diffusion is approximated from a heat
equation for heat flux only in the direction perpendicular
to the interface between neighboring cells, as a function
of the coordinate θ along the interface, as heat trans-
port in other directions should already be accounted for
in the existing Eqs. 2 and 3. We estimate the thermal
diffusion term as κ∇2T ≈ κt[T1(θ, θ1) − T2(θ, θ2)]/L

2,
where T1(θ, θ1) − T2(θ, θ2) is the temperature difference
between the neighboring cells over an interfacial mixing
layer of unknown thickness. We include the unknown
mixing layer thickness in the value of κt, which will be a
fit parameter, so we can use the known cell size L as the
lengthscale in the thermal diffusion equation. This for-
mulation is mathematically analogous to boundary layer
approximations with thermal diffusion in an interfacial
mixing layer of thickness Lκ/κt between the two cells,
although it seems unlikely that such a thin mixing layer
exists in this case. Because of the middle insulating wall
blocking half of the interface, the heat transport acts over
the exposed fractional area A = 0.50 of the interface be-
tween the two cells. An additional vertical heat transport
from each of the top and bottom plates is calculated using
the standard boundary layer approximation that the heat
transport from each plate at temperature Tm,i±∆T/2 to
the bulk at temperature T0,i is diffusive across thermal
boundary layers of thickness H/2Nu, where the Nusselt
number Nu is the dimensionless turbulent heat transport
in the vertical direction. In the vertical heat transport
term we ignore the variation in bulk temperature with θ,
which is a small correction since δ ≪ ∆T . The resulting
simplification of the heat equation for cell 1 is

Ṫ1(θ) =
Aκt

L2
[T2(θ, θ2)− T1(θ, θ1)] +

4Nuκ

H2
[Tm,1 − T0,1] .

(19)
For brevity, we write all equations in this section for the
forcing on cell 1 only, as the equations for cell 2 are iden-
tical other than an exchange of the subscripts 1 and 2 in
each equation.
Equation 19 is a function of the coordinate θ along the

interface between cells. To instead put it in terms of pa-
rameters θi, δi, and T0,i of the LSC, we need to transform
the equation into that parameter space. To do this, we
make use of the time derivative of the temperature profile
of Eq. 1:

Ṫ1(θ) = Ṫ0,1 + δ1θ̇1 sin(θ − θ1) + δ̇1 cos(θ − θ1) . (20)

In this equation, the lowest order terms of a Fourier series
of Ṫ1(θ) relate directly to the forcing terms θ̇1 and δ̇1. We
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assume for simplicity that these lowest order Fourier se-
ries terms are a good approximation of the LSC – i.e. the
only parameters needed to describe the LSC are θi, δi,
and T0,i from the sinusoidal temperature profile of Eq. 1,
and ignore the small higher order terms in the Fourier se-
ries [23, 33, 69]. Thus, we perform a Fourier transform of
Eq. 20 in terms of sines and cosines to obtain expressions
for forcing terms on the LSC parameters

θ̇κ,1 =
1

πδ1

∫ 2π

0

[Ṫ1(θ)− Ṫ0,1] sin(θ − θ1)dθ (21)

and

δ̇κ,1 =
1

π

∫ 2π

0

[Ṫ1(θ)− Ṫ0,1] cos(θ − θ1)dθ . (22)

Equations 21 and 22 are evaluated by inserting Eq. 19
for Ṫ1(θ), which uses as input Eq. 1 for T1(θ, θ1) and
T2(θ, θ2). Expanding the term cos(θ − θ2) = cos(θ −
θ1) cos(θ1 − θ2) − sin(θ − θ1) sin(θ1 − θ2) from Eq. 19
makes the integrands of Eqs. 21 and 22 functions only
of θ − θ1. The neighboring roll interaction terms along
the interface only need to be integrated over the range
−π/4 < θ < π/4 rad, while the second term of Eq. 19
due to vertical heat transport drops out when integrated
over θ from 0 to 2π rad. Integrating Eqs. 21 and 22 over
θ results in:

θ̇κ,1 = − Aκt

πL2δ1

[

δ2 sin(θ1 − θ2)[π/4− cos(2θ1)/2]

+[δ2 cos(θ1−θ2)−δ1] sin(2θ1)/2+
√
2(T0,2−T0,1) sin θ1

]

+

√
2Ṫ0,1

πδ1
sin θ1 (23)

and

δ̇κ,1 =
Aκt

πL2

[√
2(T0,2 − T0,1) cos θ1

+ δ2 sin(θ1 − θ2) sin(2θ1)/2

+ [δ2 cos(θ1 − θ2)− δ1][π/4 + cos(2θ1)/2]

]

−
√
2Ṫ0,1

π
cos θ1 . (24)

This forcing δ̇κ,1 can be inserted directly to the existing
equation of motion (Eq. 2). Since Eq. 3 is in terms of

θ̈1, but we derived a forcing in θ̇1 (Eq. 23), we assume

the forcing in θ̇1 can be treated as the forcing in the
overdamped limit, corresponding to an offset in the θ̇1-
term of Eq. 3, so that

θ̈κ,1 =
θ̇κ,1δ1
τθ̇δ0

. (25)

B. Equation of motion for T0,1

In an equation of motion for T0,i, we should also expect
to have some diffusive fluctuations driven by turbulence,
analogous to Eqs. 2 and 3, so we include a fluctuation
term fT (t) with diffusivity DT . The deterministic part
of the equation for T0,1 is assumed to be due to the net
heat flux between the cells and from the top and bottom
plates to the cells, calculated by integrating both sides
of Eq. 19 over dθ/ cos2 θ. The denominator of cos2 θ ac-
counts for the relative interface area at each infinitesimal
dθ to satisfy conservation of energy. The term of Eq. 19
with A due to the neighboring roll interaction only con-
tributes in the interaction region |θ| < π/4 rad so is only
integrated over that range. This results in:

Ṫ0,1 = fT (t) +
4Nuκ

H2
(Tm,1 − T0,1) +

Aκt

2L2
×

∫ π/4

−π/4

T0,2 − T0,1 + δ2 cos(θ − θ2)− δ1 cos(θ − θ1)

cos2 θ
dθ .

(26)

Using the same substitution as before for cos(θ−θ2), and
integrating, results in

Ṫ0,1 = fT (t) +
4Nuκ

H2
(Tm,1 − T0,1)+

Aκt

L2
[T0,2 − T0,1 + 0.88(δ2 cos θ2 − δ1 cos θ1)] . (27)

For simplicity of presenting equations for our cubic cells,
we present equations in the main paper for aspect ratio
1 (H = L).

C. Stable fixed points for counter-rotating states
for ∆Tm = 0

In a counter-rotating state where θ1 = θ2, the equa-
tions for the two cells are symmetric in cell 1 and cell 2,
so we expect a fixed point when δ1 = δ2 and T0,1 = T0,2 =
Tm,1 = Tm,2 in the Boussinesq approximation. Inspec-
tion of Eqs. 23, 24 and 27 shows that each term is zero in
this case, so θ̇i = 0, δ̇i = 0 and Ṫi = 0, corresponding to
a fixed point for counter-rotating states. Since Eq. 4 is a
forcing on δi in addition to Eq. 2, the zero forcing means
that δi has the same stable fixed point δ0 as Eq. 2.
Is this fixed point stable? The first term of Eq. 23 has

a restoring force proportional to − sin(θ1−θ2), where the
proportionality remains negative for all possible values of
π/4−cos(2θ1)/2, which is stable when θ1 = θ2. A Taylor
expansion of the second term of Eq. 23 in θ1 − θ2 has
second-order terms, but no first order terms, so is lin-
early stable in θ1 − θ2. The third term of Eq. 23 is zero
in the symmetric case when T0,1 = T0,2, and the fourth

term is zero at a fixed point where Ṫ0,i = 0. Thus, Eq. 23
is linearly stable in θ1 − θ2, and counter-rotating states
are a stable fixed point solution of this equation. The
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first term of Eq. 23 which is responsible for this stability
represents the heat transfer from effective turbulent diffu-
sion from the LSC of roll 2 projected onto an orientation
perpendicular to roll 1 to drive changes in orientation.

D. Stable fixed points for co-rotating states for
∆Tm = 0

Observed stable fixed points for co-rotating states cor-
respond to θ1 = 0 and θ2 = π rad or θ1 = π rad and
θ2 = 0, δ1 = δ2, and Ṫ0,i = 0 in steady state. All four
terms of Eq. 23 are zero in in this case, confirming these
are fixed points of Eq. 23 as well. There are forcings on
δ̇i in Eq. 4 and Ṫ0,i in Eq. 6 that shift their stable fixed
point values, which are addressed in Sec. VID. Assuming
constant ∆T̄0,co ≡ T̄0,2− T̄0,1 and δ̄co ≡ δ̄1 = δ̄2 in the co-
rotating state, a linear approximation around θp,1 = 0 or
π rad for co-rotating states of Eq. 23 plugged into Eq. 25
is

θ̈1,co ≈
Aκtδ̄co
πL2δ0τθ̇

[

+ 0.28(θ1 − θ2 − π)

−
(

1.41∆T̄0,co

δ̄co
− 2

)

(θ1 − θp,1) .

]

(28)

While the first term of Eq. 23 is what stabilized the
counter-rotating state, for the co-rotating state where

θ1 = θ2 + π rad, this forcing instead is predicted to
be destabilizing in the first term of Eq. 28. The second
term of Eq. 23 results in a restoring force proportional
to + sin(2θ1) which also destabilizes co-rotating states
where θ1 = 0 or π rad. The third term of Eq. 23 re-
sults in a restoring force proportional to ∆T̄0,co sin θ1,
which is stabilizing for θ1 = 0 and ∆T̄0,co > 0, or θ1 = π
rad and ∆T̄0,co < 0. These combinations correspond to
same combinations as observed co-rotating states. This
stabilizing term represents the heat transfer by effective
turbulent thermal diffusion from the difference in mean
temperatures ∆T̄0,co, which provides a uniform heat flux
across the interface, which when projected onto the LSC
temperature profile, tends to align the LSC of cell 1 with
θ1 = 0 if cell 2 is hotter (∆T̄0,co > 0) or θ1 = π rad if
cell 2 is colder (∆T̄0,co < 0). A stable co-rotating state
requires the third term of Eq. 23 to be larger than the
second term (which are combined in the second term of
Eq. 8), and the first term of Eq. 23, as well as the forcing
from the geometric potential −∇Vg(θi) which is desta-
bilizing at θi = 0 or π rad [48]. Whether ∆T̄0,co/δ̄co is
large enough to make the third term of Eq. 23 dominant
over all other terms so the model has stable fixed points
for co-rotating states is tested in Sec. VII E.
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