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A filter membrane may be frequently used during its lifetime, with filtration and drying processes
occurring in the porous medium for several cycles. During these cycles, the concentration and
distribution of molecules or contaminants as well as the medium morphology evolve. As a consequence,
the filter performance ultimately deteriorates after several cycles. In this work, we formulate a
coupled mathematical model for the filtration and drying dynamics in a porous medium occurring
consecutively. Our model accounts for the porous medium internal morphology (internal structure,
porosity, etc.), the contaminant deposition, and the evolution of dry-fluid interfaces due to evaporation.
An asymptotic model is derived based on the small aspect ratio of the thin filter membrane. The
reduced model provides insights to the overall porous medium evolution over cycles of filtration and
drying processes and predicts the timeline to discard the filter based on its optimum performance.
Given the complexity of fluid boundary movements due to the filtration and drying processes,
the reduced model still acts as an efficient prediction tool offering a tremendous reduction in
computational costs.

Keywords: porous media flow, low-Reynolds number flows, suspensions, mathematical modeling, asymptotic
analysis

I. INTRODUCTION

Particle deposition and solvent evaporation from porous media both play a significant role in many environmental
processes and industrial applications [1]. They are essential in affecting land-atmosphere exchanges, surface energy
balance, and many other biological and engineering applications [2]. An improved understanding of the contaminant
transport and solvent patterns during filtration and drying processes in porous media is critical to these applications
[3]. Researchers have looked into these phenomena from different perspectives including the effects of the solvents’
properties, the porous internal structure geometry and wettability on the evaporation process as well as stages related
to internal transport mechanisms that affect evaporation flux [4–7].

Generally speaking, filtration is a separation process that uses membrane filters to remove undesired particles
from a fluid [8]. In typical liquid filtration problems, a fluid flows through a porous medium designed to trap solute
molecules [9, 10]. Depending on applications, different kinds of membrane filters can be used to sieve contaminants from
the fluid [11–13]. The practical applications of filtration attracted many comprehensive works from both experimental
and theoretical perspectives over the past few decades. For instance, an extensive overview of membrane separation
technology [14], various fouling mechanisms during the filtration process [15], and compiling experimental and modeling
results on interfacial interactions and membrane fouling [16] have been one of the main focus of the filtration community.

Filter performance is affected by a number of key design features, such as the filter thickness, internal pore structure
and shape, pore connectivity, variation of pore dimensions in the depth of the filter, and the material [17, 18]. Therefore,
determining the filter performance and lifetime is a culmination of understanding all the fundamentals of filter behaviors,
and one can not investigate the latter without a detailed knowledge of the former. As a filtration process progresses,
the particles removed from the feed solution are deposited on or in the filter. Therefore, understanding and predicting
the flow and resulting fouling and behavior of the filter is a critical part of the design process. Experimental approaches
are costly, and it is difficult to visualize accurately where particles are trapped in the depth of the membrane [19].
Mathematical modeling and simulation provide vital tools in helping manufacturers gain insight into filtration processes
and operating conditions, thus providing a cost-effective way of optimizing filter design.

In many filtration applications, membranes are reused several times. Between any two consecutive filtration time
laps (when the filtration process stops and before it starts again), the solvent evaporates from the saturated membrane.
Therefore, filtration-evaporation cycles occur until the membrane performance and efficiency drop drastically. At this
point, the membrane is discarded and replaced with a new one. The solvent evaporation mostly occurs from the top
and bottom of the membrane. As evaporation proceeds, contaminant concentration increases, and the particles are left
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behind on the internal structure of the porous medium. The interplay between the transport process and contaminant
deposition in the internal structure of the porous medium influences the solvent evaporation rate [20].

The topic of filtration-drying of multiphase flow in porous media has been recently studied by researchers experimen-
tally, numerically and analytically from different point of views [21–26]. For instance, Scanziani et al. [27] identified a
two-phase flow invasion pattern in a three-dimensional mixed-fluid porous medium (a small rock sample initially-filled
with oil) using time-resolved high-resolution synchrotron X-ray imaging. Their study focused on the distribution of
local contact angles as water invades the pore space. Wang et al. [28] used the lattice Boltzmann method to investigate
the effects of topological disorder and its coupling with wettability on fluid displacement in porous media by defining
a disorder index to characterize disordered geometry and by reflecting the degree of fluctuation of local porosity,
respectively. In 2018, Cueto-Felgueroso et al. [29] proposed a diffuse-interface model for the liquid-vapor flow of a van
der Waals fluid in a porous medium at the pore scale. Using a simplified Darcy-Korteweg model, they investigated the
dynamics of vaporization-condensation fronts under various filtration conditions and pore geometry. The works of
Huinink et al. [30] and Panda et al. [31] introduced pore-scale network models for the drying processes in porous
media with the presence of imposed thermal gradients. Last but not least, Sharma and Yortso [32–34] developed
several mathematical models which are formulated for the general class of problems that involve the transport of stable
particulate suspensions, the processes of fines migration and fines injection and the deep bed filtration in porous media.
While extensive research has been carried out for pore-scale modeling and simulation of the drying processes in porous
media, a detailed study of evaporation in porous media at the macroscopic scale is still lacking.

In this work, we first develop a continuum model for the filtration process in a filter membrane that accounts for
membrane internal morphology and porosity. The membrane fouling occurs due to both particle sieving and particle
adsorption operating simultaneously [9]. We also propose a different continuum model for the drying process after
the filtration halts. We consider a porous material filled with a liquid solution containing molecules, and the drying
process starts with a prescribed concentration. As the solvent evaporates, molecules are left behind and deposited
on the membrane pore walls within the porous material. Our model tracks the interfaces between the dry and fluid
regions, where the fluid evaporates from the saturated membrane. The internal membrane morphology and the particle
concentration evolve due to the fluid evaporation as well as the deposition of particles within the membrane internal
structure. The filtration and drying processes occur in consecutive cycles until the membrane performance deteriorates.
As a result, our reduced model offers insights into the evolution of the porous medium throughout cycles of filtration
and drying processes, enabling us to predict the optimal timeline for replacing the filter based on its performance.

This paper is structured as follows: we introduce mathematical models for filtration and drying in a porous medium
in §II A and §II B, respectively. We perform the non-dimensionalization of the models described in §II for the filtration
and drying processes in §III A and §III B, respectively. In §IV, we apply asymptotic analysis to simplify the governing
equations based on the porous medium-small aspect ratio. We then summarize the simplified governing equations
along with the numerical methods in §V. §VI presents the results for filtration, drying, and combined cycles of both
processes. Finally, we conclude in §VII with a discussion of our model and results with potential future improvements.

II. MODEL FORMULATION

We consider filtration as well as drying processes through a planar porous membrane in (x̂, ŷ), as shown in Fig. 1.
Note that in §II, hats demonstrate the dimensional variables. We assume that the membrane is saturated with liquid
during the filtration process and the solvent enters from the top of the membrane, while the fluid is stationary when
evaporation occurs from the top and bottom of the membrane. The membrane region Ω̂ = [0, L̂]× [0, Ĥ] consists of
fluid and dry regions, Ω̂f and Ω̂d, respectively. We monitor the particle concentration ĉ as well as the membrane
porosity ϕ̂ during the filtration and drying processes. The membrane properties and flow are assumed homogeneous
perpendicular to the plane of the medium Ω̂. The membrane permeability k̂(x̂, ŷ, t̂) is both spatial (x̂, ŷ) and time
t̂ dependent. We note that even if the permeability is initially uniform, fouling and particle deposition will lead to
nonuniformities over time.

A. Filtration

In this section, we consider the filtration process through the membrane as shown in Fig. 1(a). The flow can be
modelled by Darcy’s law [9, 17]. The superficial Darcy velocity û = (û, v̂) within the membrane is then given in terms
of the pressure p̂ by

û = − k̂

µ̂
∇̂p̂, ∇̂ · û = 0, in Ω̂, (1)
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̂y = ĥT( ̂x, ̂t )
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FIG. 1: Schematics of a membrane region Ω̂ = [0, L̂]× [0, Ĥ]. (a) and (b) represent the filtration and the drying (or evaporation)
processes, respectively. The filtration process takes place under constant pressure drop across the membrane i.e. the pressure at ŷ = 0 and
ŷ = Ĥ are prescribed as p̂inlet and 0, respectively. Particle deposition occurs within the membrane with the inlet particle concentration
being ĉinlet at ŷ = 0. During the drying process, the domain consists of dry Ω̂d and fluid Ω̂f regions in the x̂− ŷ plane. ŷ = ĥi(x̂, t̂),
i ∈ {T,B} are the dry-fluid interfaces at the top and bottom of the membrane respectively, which evolve in time t̂ due to evaporation.

where ∇̂ = ( ∂
∂x̂ ,

∂
∂ŷ ) and µ̂ is the viscosity of the fluid [35]. The membrane permeability k̂(x̂, ŷ, t̂) must be linked to

membrane characteristics, which evolve in time due to fouling. Filtration commonly takes place under one of two
scenarios: specified flux or pressure drop. In this paper, we only focus on the latter case, however, our model can be
readily extended to the specified flux scenario. For a constant applied pressure drop, the conditions applied at the
upstream and downstream membrane surfaces, ŷ = 0, Ĥ, as well as the left and right walls, x̂ = 0, L̂, are

p̂|ŷ=0 = p̂inlet, p̂|ŷ=Ĥ = 0,
∂p̂

∂x̂

∣∣∣∣
x̂=0, L̂

= 0. (2)

We use the Kozeny-Carman model [35] to describe the membrane permeability k̂ as a function of the local membrane
porosity or void fraction ϕ̂(x̂, ŷ, t̂):

k̂ =
χ̂ϕ̂3

(1− ϕ̂)2
, in Ω̂, (3)

where χ̂ is the Kozeny coefficient (with dimensions of length squared, as for permeability). Porosity ϕ̂(x̂, ŷ, t̂) ∈ (0, 1)
is the local pore volume fraction in any small membrane element at (x̂, ŷ) and time t̂. The superficial Darcy velocity û
is the fluid velocity averaged (locally, at (x̂, ŷ)) over both membrane and pore volume, which differs from the actual
mean velocity of the fluid within the membrane pores (denoted by ûf and averaged over the pore cross-section at
(x̂, ŷ)). The membrane porosity links ûf and û via

û = ϕ̂ûf , in Ω̂. (4)

The mass transport of the particles in the feed through the membrane is described by an advection-dispersion-reaction
equation,

∂(ϕ̂ĉ)

∂t̂
+ ∇̂ · (ûf (ϕ̂ĉ)) = ∇̂ ·

(
Ξ̂∇̂(ϕ̂ĉ)

)
− f̂f (û, ϕ̂, ĉ), in Ω̂, (5)

where ĉ(x̂, ŷ, t̂) is the concentration of particles per unit volume of fluid in the membrane, Ξ̂ is the dispersion coefficient
of particles in the feed suspension (here assumed constant) and f̂f (û, ϕ̂, ĉ) is the deposition function for the filtration
process, which models how particles carried by the feed are deposited locally within the membrane and depends
on the Darcy velocity, membrane porosity, and local particle concentration. Note that here we adopt the general
dispersion-advection-reaction equation for the particle concentration within the porous medium as shown in (5).
However, in § III and § IV we carry out further analysis and after nondimensionalization and applying the asymptotic
analysis respectively, the dispersion term is dropped as shown in (43) and discussed by Sharma and Yortso [32–34].
The reason we keep the dispersion term in (5) is due to some application that might be of interest of. Practically, in a
slow filtration process, or during the late stages of filtration when the flow rate is naturally very low due to a high
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level of fouling, the particle effective dispersion might play an important role. The initial particle concentration within
the membrane for the filtration process is prescribed by

ĉ|t̂=0 = ĉfinitial
, in Ω̂. (6)

We assume the particle concentration is constant at the membrane inlet and the mass flux of particles continuous
across the membrane outlet [9, 36, 37], as well as the left and right walls, i.e.,

ĉ|ŷ=0 = ĉinlet,
∂(ϕ̂ĉ)

∂ŷ

∣∣∣∣∣
ŷ=Ĥ

= 0,
∂(ϕ̂ĉ)

∂x̂

∣∣∣∣∣
x̂=0, L̂

= 0. (7)

The membrane porosity decreases as particles are deposited within the membrane on the pore walls. We assume
this occurs at a rate proportional to the deposition function f̂f (û, ϕ̂, ĉ), hence

∂ϕ̂

∂t̂
= −α̂f f̂f (û, ϕ̂, ĉ), in Ω̂, (8)

where α̂f is a constant specific to the particular membrane/feed system or pore shrinkage coefficient, with dimensions
of volume (inverse of concentration). We solve (8) subject to a specified initial porosity profile,

ϕ̂(x̂, ŷ, 0) = ϕ̂finitial
(x̂, ŷ), in Ω̂. (9)

The model is closed by specifying the deposition function f̂f (û, ϕ̂, ĉ). We consider two distinct mechanisms for particle
deposition: (i) adsorption (particles much smaller than the membrane pores are deposited onto the pore walls, shrinking
pores and thus reducing the local porosity); and (ii) blocking (particles larger than the local membrane pore size get
stuck and block the pore inlet). These two components will be modeled independently [9].

To propose a reasonable choice for f̂f (û, ϕ̂, ĉ), consider a membrane with cylindrical pores of radius r̂ contained
within lattices of fixed size. For the adsorption, we note that the rate at which the particles arrive at the pore wall (and
thus adhere) should be proportional to the local particle concentration and pore surface area, therefore we propose
an adsorption rate proportional to ϕ̂

1
2 ĉ. Here, we note that for the proposed membrane structure, the pore surface

area scales with ϕ̂
1
2 , since ϕ̂ ∼ ( r̂

lattice cross sectional size )
2. In this model, we assume that adsorption simply requires

that small particles in the vicinity of the wall deposit onto it. The rate at which this happens is assumed to depend
primarily on the local concentration, independently of the local flow velocity. For blocking, we require a large particle,
bigger than the local pore size, to arrive and block the pore from above, hence we anticipate blocking to proceed at a
rate proportional to the local advective flux of particles |û|ĉ (large particles can either pass through a pore or they
cannot: the more that pass a location the greater the blocking rate). Noting that pore radius scales with ϕ̂

1
2 , with the

above assumptions blocking will also be proportional to (1− ϕ̂
1
2 ) (smaller pores are more readily blocked). Hence, the

blocking term is proportional to |û|(1− ϕ̂
1
2 )ĉ, and the deposition function f̂f (û, ϕ̂, ĉ) is taken as

f̂f (û, ϕ̂, ĉ) = λ̂f ϕ̂
1
2 ĉ︸ ︷︷ ︸

adsorption

+ δ̂f |û|
(
1− ϕ̂

1
2

)
ĉ︸ ︷︷ ︸

blocking

, (10)

where λ̂f ≥ 0 is the average adsorption rate of particles, relating to the physics of the attraction between particles
and pore wall, and δ̂f ≥ 0 is the average blocking coefficient, with dimensions of inverse length (in the absence of
adsorption, 1/δ̂f gives a measure of the penetration depth of blocking particles into the porous medium). The model
assumes implicitly that particle sizes are uniformly distributed, and that all particles can enter the membrane, thus
can be deposited within it by either adsorption or blocking fouling modes. According to the proposed model, blocking
will dominate at high fluxes, while adsorption is more important in a low-flux scenario. The effect of changing porosity
on the blocking behavior is inherent in the model. As pore constriction occurs and porous medium resistance increases,
the mean velocity of the fluid within pores decreases. The changes in fluid velocity and porosity are both reflected in
the blocking model, as explained by (5)-(10).

In order to evaluate the performance of model filter membranes, we define two quantities which are the common
experimental characterization of filter membrane performance. The total dimensional volumetric flux Q̂(t̂) through the
membrane filter is given by

Q̂(t̂) =

∫ L̂

0

∣∣∣ûf (x̂, Ĥ, t̂)
∣∣∣ dx̂, (11)
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and the volumetric throughput V̂(t̂), represents the total cumulative volume of filtrate processed by time t̂, is defined
as the time integral of the volumetric flux Q̂(t̂):

V̂(t̂) =
∫ t̂

0

Q̂(t̂′) dt̂′. (12)

B. Drying

We now present a model for the drying process as shown in Fig. 1(b). We assume that the porous medium is
saturated with stationary liquid, and the evaporation occurs from the top and bottom of the membrane i.e. ŷ = 0 and
ŷ = Ĥ, respectively. The interfaces between the dry and fluid regions are located at ŷ = ĥT (x̂, t̂) and ŷ = ĥB(x̂, t̂) for
the top and bottom of the membrane respectively, which we expect to be nontrivial, as the membrane porosity ϕ̂(x̂, ŷ)
evolves in time non-uniformly (this will be explained in details below). As time evolves, the particle concentration
in the fluid region changes due to (i) evaporation at ŷ = ĥi(x̂, t̂), i ∈ {T,B} and (ii) deposition of particles on the
membrane internal structure. We assume there is no effective flow in the fluid region during the drying process,
therefore the particle concentration in the fluid region follows a reaction-dispersion equation,

∂(ϕ̂ĉ)

∂t̂
= ∇̂ ·

(
Ξ̂∇̂(ϕ̂ĉ)

)
− f̂d(ϕ̂, ĉ), in Ω̂f , (13)

where f̂d(ϕ̂, ĉ) is the deposition function for the drying process. Here, f̂d(ϕ̂, ĉ) depends on the porosity and local
particle concentration and models how particles are deposited locally within the membrane [17, 37]. The initial particle
concentration within the membrane for the drying process is prescribed by

ĉ|t̂=0 = ĉdinitial
, in Ω̂f . (14)

We apply no flux of particles at the left and right walls of the fluid region, i.e.,

∂(ϕ̂ĉ)

∂x̂

∣∣∣∣∣
x̂=0,L̂

= 0. (15)

Since we assume the flow is static and there is no effective flow in the fluid region during the drying process, the
particle concentration in the fluid region follows a reaction-dispersion equation. Therefore, the evaporation is related
to the dispersion-driven particle deposition at the dry-fluid interfaces. In other words, at the dry-fluid interfaces, the
particle deposition, which only happens due to particle dispersion, is proportional to the evaporation rate, porosity
and particle concentration. Therefore, the boundary condition at the dry-fluid region interfaces, where evaporation
occurs, is

Ξ̂∇̂(ϕ̂ĉ) · ni

∣∣∣
ŷ=ĥi(x̂)

= − γ̂dÊϕ̂ĉ
∣∣∣
ŷ=ĥi(x̂)

, i ∈ {T,B}, (16)

where γ̂d is a dimensionless scaling parameter for the particle deposition rate and it is related to the properties of the
particles and solvent, Ê(ϕ̂, ĉ) is the evaporation flux, and ni is the outward unit normal on the interface pointing out
of the fluid.

The evolution of the dry-fluid interfaces ŷ = ĥi(x̂, t̂), i ∈ {T,B} is driven by the solvent evaporation,

∂ĥT

∂t̂
= Ê(ϕ̂, ĉ), ĥT |t̂=0 = 0,

∂ĥB

∂t̂
= −Ê(ϕ̂, ĉ), ĥB |t̂=0 = Ĥ, (17)

where the different signs in the equations arise from the direction of evaporative fluxes at the top and bottom interfaces
(see Fig. 1(b)). The evaporation rate of the solvent depends on many factors such as the liquid temperature, the
pressure difference at the liquid-gas interface, intermolecular forces, and the relative humidity in the surrounding air.
A commonly-used model for evaporation flux can be written as [38–41]

Ê = α̂v
ρ̂v
ρ̂l

(
R̂gT̂sat

2π

)1/2(
p̂ve
p̂v

− 1

)
, (18)
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where the nonequilibrium interfacial condition at the gas-liquid (in our case dry-fluid) interfaces ŷ = ĥi(x̂, t̂), i ∈ {T,B}
gives [38–40]

p̂ve
p̂v

− 1 =
p̂l − p̂v

ρ̂lR̂gT̂sat

+
L̂v

R̂gT̂sat

(
T̂ |ĥ
T̂sat

− 1

)
, (19)

where α̂v is an accommodation coefficient for evaporation, p̂v is the vapor pressure, p̂l is the fluid pressure at the
interface, p̂ve is the equilibrium vapor pressure, R̂g is the specific gas constant, T̂sat is the equilibrium saturation
temperature, L̂v is the specific internal latent heat of vaporization, T̂ |ĥ is the interfacial temperature at the dry-fluid
interfaces. The work by Karapetsa et al. [40] used α̂v to account for the influence of interfacial surfactant concentration
on the evaporation rate.

In the present work, the evaporative flux depends on both the particle concentration ĉ and porosity ϕ̂ at the dry-fluid
interfaces. The particle at the dry-fluid interfaces hinders evaporation, and the solid in the porous medium acts as a
barrier to local evaporation. To account for these effects, we model the accommodation coefficient as

α̂v(ϕ̂, ĉ) =
ϕ̂ĉsat

ĉsat + Ψ̂ĉ
, (20)

where ĉsat is the saturation particle concentration in the solvent, and the dimensionless constant Ψ̂ > 0 scales
the importance of the particle concentration to the evaporation effects. Moreover, we assume that the interfacial
temperature T̂ |ŷ=ĥi

= T̂sat, and the liquid-vapor pressure difference ∆p̂ = p̂l − p̂v > 0 at the interface is constant.
Combining (18) –(20) yields a simplified model for the evaporation flux

Ê(ϕ̂, ĉ) =
η̂dϕ̂ĉsat

ĉsat + Ψ̂ĉ
, η̂d =

ρ̂v∆p̂

ρ̂2l

(
2πR̂gT̂sat

)1/2 , (21)

where Ê(ϕ̂, ĉ) depends on ambient vapor pressure, temperature, and liquid properties. For the low particle concentration
limit, Ψ̂ĉ ≪ ĉsat, the evaporative flux Ê approaches η̂dϕ̂ which highlights the impact of membrane porosity on the
evaporation. In this simplified model, we focus on the influence of porosity ϕ̂ and particle concentration ĉ on
evaporation. Both the temperature field in the liquid and the relative humidity near the evaporation fronts are assumed
spatially-uniform. Our model also does not include the influences of surface tension and the wettability of the material.
We note that the one-sided evaporation model we use does not consider the impact of liquid evaporation on the
dynamics of the gas phase near the free surface. This differs from the approach taken by Mahadevan et al. [42, 43],
who utilized a two-phase model to describe the evaporation occurring in porous media due to saturated or dry gas flow
through the media.

We assume that the membrane porosity decreases as particles are deposited within the internal structure of the
membrane, i.e.,

∂ϕ̂

∂t̂
= −α̂df̂d(ϕ̂, ĉ), in Ω̂f , (22)

subject to a specified initial porosity profile for the drying process,

ϕ̂(x̂, ŷ, 0) = ϕ̂dinitial
(x̂, ŷ), in Ω̂f , (23)

where α̂d is the pore shrinkage coefficient and f̂d is the deposition function for the drying process,

f̂d(ϕ̂, ĉ) = λ̂dϕ̂
1
2 (ĉ− ĉsat)+. (24)

Here, λ̂d is the average deposition rate of particles relating to the physics of the attraction between particles and pore
wall, ĉsat represents the saturation concentration of particles, and (ĉ− ĉsat)+ = max{ĉ− ĉsat, 0}. Similar to what we
explained in §II A, if we consider a membrane with cylindrical pores of radius r contained within lattices of fixed size,
then we can assume the rate of particles arriving at the pore wall should be proportional to pore surface area as well
as the difference between the local particle concentration and the saturation particle concentration [9]. Note that for
the proposed membrane structure, the pore surface area scales with ϕ̂

1
2 . Therefore, the adsorption rate is proportional

to ϕ̂
1
2 (ĉ− ĉsat)+, and we propose (24) for f̂d(ϕ̂, ĉ).
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III. NONDIMENSIONALISATION

To reduce the number of independent parameters, we nondimensionalize the models for the (i) filtration and (ii)
drying processes described in §IIA and §IIB respectively, using appropriate scalings introduced for each one below.
Recall that, the membrane is thin with a small aspect ratio, i.e., ϵ = Ĥ/L̂ ≪ 1.

A. Filtration

We use the following scalings to nondimensionalize the model given (1)-(12) in §II B,

(x̂, ŷ) = L̂(x, ϵy), p̂ = p̂inletp, ϕ̂ = ϕ, (û, ûf ) =
χ̂p̂inlet

ϵL̂µ̂
(u,uf ), ĉ = ĉinletc,

k̂ = χ̂k, t̂ =
ϵL̂µ̂

α̂f δ̂f χ̂p̂inletĉinlet
t, Q̂ =

χ̂p̂inlet
ϵµ̂

Q, V̂ =
L̂

α̂f δ̂f ĉinlet
V, Tf = ϵL̂α̂f δ̂f ĉinlet,

Pe =
χ̂p̂inlet

Ξ̂µ̂
, λf =

ϵ2L̂2µ̂λ̂f

χ̂p̂inlet
, δf = ϵL̂δ̂f , αf =

ϵL̂µ̂λ̂f

δ̂f χ̂p̂inlet
=

λf

δf
,

(25)

where u = (u, v) and uf = (uf , vf ) are the dimensionless Darcy velocity and the actual mean velocity of fluid within
the membrane pores, respectively. Using these scalings, from (1)-(12) we obtain the dimensionless model for the
filtration process as,

u = −ϵk
∂p

∂x
, v = −k

∂p

∂y
, ϵ

∂u

∂x
+

∂v

∂y
= 0, p|y=0 = 1, p|y=1 = 0, (26)

k =
ϕ3

(1− ϕ)2
, (27)

u = ϕuf , (28)

Tf
∂(ϕc)

∂t
+ ϵu

∂c

∂x
+ v

∂c

∂y
=

1

Pe

(
ϵ2
∂2(ϕc)

∂x2
+

∂2(ϕc)

∂y2

)
− λfϕ

1
2 c− δf |u|

(
1− ϕ

1
2

)
c, (29)

c|t=0 = cfinitial
, c|y=0 = 1,

∂(ϕc)

∂y

∣∣∣∣
y=1

= 0,
∂(ϕc)

∂x

∣∣∣∣
x=0,1

= 0, (30)

∂ϕ

∂t
= −αfϕ

1
2 c− |u|(1− ϕ

1
2 )c, ϕ(x, y, 0) = ϕfinitial

(x, y), (31)

Q =

∫ 1

0

|uf | dx, V =

∫ t

0

Qdt′. (32)

B. Drying

In order to nondimensionalize the model (13)-(24) presented in §II B, we use (25) along with new scalings

ĉsat = ĉinletcsat, ĥi = ϵL̂hi, i ∈ {T,B}, Ê = η̂dE, Td =
ϵL̂α̂f δ̂f χ̂p̂inletĉinlet

Ξ̂µ̂
,

λd =
ϵ2L̂2λ̂d

Ξ̂
, γd =

ϵL̂γ̂dη̂d

Ξ̂
, ηd =

µ̂η̂d

α̂f δ̂f χ̂p̂inletĉinlet
, αd =

ϵL̂µ̂α̂dλ̂d

α̂f δ̂f χ̂p̂inlet
, Ψ =

Ψ̂ĉinlet
ĉsat

,

(33)
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to obtain the non-dimensional equations

Td
∂(ϕc)

∂t
= ϵ2

∂2(ϕc)

∂x2
+

∂2(ϕc)

∂y2
− λdϕ

1
2 (c− csat)+, c|t=0 = cdinitial

,
∂(ϕc)

∂x

∣∣∣∣
x=0,1

= 0, (34)

1√
1 + ϵ2

(
∂hi

∂x

)2
(
−ϵ2

∂(ϕc)

∂x

∂hi

∂x
+

∂(ϕc)

∂y

)∣∣∣∣
y=hi(x)

= ± γdEϕc|y=hi(x)
, i ∈ {T,B}, (35)

∂hT

∂t
= ηdE, hT |t=0 = 0,

∂hT

∂t
= −ηdE, hB |t=0 = 1, (36)

E(ϕ, c) =
ϕ

1 + Ψc
, (37)

∂ϕ

∂t
= −αdϕ

1
2 (c− csat)+, ϕ(x, y, 0) = ϕdinitial

(x, y). (38)

Note that to obtain (35), we use the unit normal vectors at the dry-fluid interfaces given by nT = −
(
−ϵ

∂hT
∂x ,1

)
√

1+ϵ2
(

∂hT
∂x

)2
and

nB =

(
−ϵ

∂hB
∂x ,1

)
√

1+ϵ2
(

∂hB
∂x

)2
.

IV. ASYMPTOTIC ANALYSIS

The complete dimensionless system described in §III is extremely hard to solve analytically, and it is also computa-
tionally costly to solve numerically in a brute force way. Therefore, we make use of the fact that the membrane aspect
ratio ϵ = Ĥ/L̂ ≪ 1. This allows us to achieve a simpler, computationally-feasible, reduced asymptotic model. Below,
we asymptotically expand the variables u, v, uf , vf , k, ϕ, c, hi (for i ∈ {T,B}), E, Q and V in the form of

i = i0 + ϵi1 + ϵ2i2 +O(ϵ3). (39)

Note that there are four timescales in the model: a short timescale based on the flow transit time across the
membrane during the filtration process (see (5)), and three longer timescales, on which the particle deposition occurs
in both filtration and dying processes (see (8) and (22)) and the dry-fluid interfaces evolve during the drying process
(see (17)). For the filtration process, since our investigation primarily concerns the long-time fouling due to particle
deposition, we assume that the flow adapts quasi-statically to the changing of porosity and set Tf = O(ϵ) in our
analysis for the timescale given in (25). We will present the leading-order model for the filtration process in subsection
IVA. For the drying process discussed in section IVB, since there is no effective flow, we will first consider the case
Td = O(1) in (33) so that the particle concentration in the fluid region continuously evolves and is driven by both
particle deposition and dispersion. We will also discuss the particle deposition-limited regime where Td ≫ 1 and the
dispersion is negligible.

A. Filtration

With the quasi-static assumption (Tf = O(ϵ)) as well as assuming Pe = O(ϵ−1) (as shown later in Table II), (26)-(32)
along with the asymptotic expansions (39) yield the leading-order model for the filtration process in the membrane
region Ω as

u0 = 0, v0 = −k0
∂p0
∂y

,
∂v0
∂y

= 0, p0|y=0 = 1, p0|y=1 = 0, (40)

k0 =
ϕ3
0

(1− ϕ0)2
, (41)



9

uf0 = 0, v0 = ϕvf0 , (42)

v0
∂c0
∂y

= −λfϕ
1
2
0 c0 − δfv0

(
1− ϕ

1
2
0

)
c0, (43)

c0|t=0 = cfinitial
, c0|y=0 = 1,

∂(ϕ0c0)

∂y

∣∣∣∣
y=1

= 0, (44)

∂ϕ0

∂t
= −αfϕ

1
2
0 c0 − v0

(
1− ϕ

1
2
0

)
c0, ϕ0(x, y, 0) = ϕinitial(x, y), (45)

Q0 =

∫ 1

0

|v0| dx, V0 =

∫ t

0

Q0 dt
′. (46)

B. Drying

To simplify the governing equations for the drying dynamics, we first define the effective particle concentration as
β0 = ϕ0c0. The system (34)–(38), along with the asymptotic expansions (39), reduces to the leading-order model for
the drying process in the fluid region Ωf = {(x, y) | 0 < x < 1, hT0

(x, t) ≤ y ≤ hB0
(x, t)} as

Td
∂β0

∂t
=

∂2β0

∂y2
− λdϕ

1
2

(
β0

ϕ0
− csat

)
+

, β0|t=0 = βdinitial
= ϕdinitial

cdinitial
, (47)

∂β0

∂y

∣∣∣∣
y=hi0 (x)

= ±γdE0β0, i ∈ {T,B}, (48)

∂hT0

∂t
= ηdE0, hT0 |t=0 = 0,

∂hB0

∂t
= −ηdE0, hB0 |t=0 = 1, (49)

E0 =
ϕ2
0

ϕ0 +Ψβ0
, (50)

∂ϕ0

∂t
= −αdϕ

1
2
0

(
β0

ϕ0
− csat

)
+

, ϕ0|t=0 = ϕdinitial
. (51)

V. SUMMARY AND NUMERICAL METHOD

In this section, we summarize the model given in §IV and discuss the numerical method to solve them. For brevity,
we drop the subscript “0" from the variables.

A. Filtration

From (40) and (41), we obtain the leading order of the Darcy velocity in y direction v(x, t) as

v =

(∫ 1

0

(1− ϕ)2

ϕ3
dy

)−1

. (52)
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Then we solve (43) for the particle concentration at leading order c(x, y), by using the first boundary condition in (44)
along with (52), to obtain

c = exp

(
−
∫ y

0

(
λf

ϕ
1
2

v
+ δf

(
1− ϕ

1
2

))
dy′

)
. (53)

Furthermore, (53) is used in (45) to find an initial value problem for the leading order of porosity ϕ(x, y, t)

∂ϕ

∂t
= −

(
αfϕ

1
2 + v

(
1− ϕ

1
2

))
c, ϕ(x, y, 0) = ϕfinitial

(x, y). (54)

Note that (54) can be simply solved by forward Euler’s method. Finally by using (52), the leading order of the
dimensionless flux Q(t) and throughput V(t) given in (46), are obtained as

Q =

∫ 1

0

v dx, V =

∫ t

0

Qdt′. (55)

All integrals in (52), (53) and (55) are calculated by using trapezoidal quadrature.

B. Drying

In the context of the drying process, we consider two distinct scenarios based on the role of particle dispersion in the
system dynamics. The first case addresses the interplay between particle dispersion and deposition, and the second
case focuses on the scenario where particle deposition is the dominant effect in the drying process.
Case I: The drying model includes the particle dispersion and deposition terms. Under the assumptions Td = O(1) and
λd = O(1), equations (47) and (48) form the initial boundary value problem for β(x, y, t) in the fluid region Ωf ,

Td
∂β

∂t
=

∂2β

∂y2
− λdϕ

1
2

(
β

ϕ
− csat

)
+

,
∂β

∂y

∣∣∣∣
y=hi(x)

= ±γdEβ, i ∈ {T,B}, β|t=0 = βdinitial
. (56)

From (49) and (50), the motion of the top and bottom dry-fluid interfaces hT,B(x, t) is governed by

∂hT

∂t
= ηdE, hT |t=0 = 0,

∂hB

∂t
= −ηdE, hB |t=0 = 1, where E =

ϕ2

ϕ+Ψβ
. (57)

Finally, from (51) the leading-order dynamics of porosity ϕ(x, y, t) in the fluid region Ωf is governed by the initial
value problem

∂ϕ

∂t
= −αdϕ

1
2

(
β

ϕ
− csat

)
+

, ϕ|t=0 = ϕdinitial
. (58)

Case II: The drying model does not include the particle dispersion term. Under the assumption Td ≫ 1 and
λd/Td = O(1), particle dispersion becomes negligible during the drying process, and the initial boundary value problem
(56) reduces to a simplified initial value problem

∂β

∂t
= −λ̃dϕ

1
2

(
β

ϕ
− csat

)
+

, β|t=0 = βdinitial
, (59)

where λ̃d = λd/Td is a rescaled deposition coefficient. The governing equations for the dry-fluid interfaces and porosity,
(57) and (58), remain unchanged.

Next, we discuss the numerical method to solve the system (56) – (58) for the drying process in Case I. Starting from
the initial porosity and particle concentration profiles specified in (56) and (58), we iteratively solve the leading-order
equations (56) and (58) for β(x, y, t) and ϕ(x, y, t) in the fluid region Ωf with moving boundaries hT (x, t) and hB(x, t),
which are governed by the equations (57). Given dry-fluid interfaces hT (x, t

n) and hB(x, t
n), as well as (β, ϕ) at the

time step t = tn, where tn = n∆t and ∆t is the time increment, we solve (56) and (58) for (β, ϕ) at the new time
step t = tn+1. Centered finite differences and implicit-explicit time stepping scheme are used for equation (56), where
the dispersion term ∂2β/∂y2 is treated implicitly and the deposition term λdϕ

1/2(β/ϕ− csat)+ is treated explicitly.
The equation (58) is solved by using forward Euler time-stepping. The updated ϕ(x, y, tn+1) and β(x, y, tn+1) at the
interfaces are then used to evaluate the leading order of the evaporative flux E given in (57). Finally, we solve the
evolution equation (57) using the forward Euler time-stepping scheme to obtain the dry-fluid interfaces hT (x, t

n+1)
and hB(x, t

n+1) at the new time step t = tn+1. For the drying model without particle dispersion, as outlined in Case
II, we apply a similar numerical scheme, with the exception that the governing equation (59) for β is solved by a
forward Euler method.
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Parameter Description Typical value and units
Ĥ Membrane thickness 2× 10−4 m
L̂ Membrane length 0.2 m
µ̂ Viscosity of feed 10−3 kg m−1 s−1

P̂inlet Pressure drop across membrane 105 kg m−1 s−2

χ̂ Kozeny coefficient (characteristic membrane permeability) 10−16 m2

ĉinlet Total concentration of particles in feed suspension 10−3 mol m−3

Ξ̂ Dispersion coefficient of particles in feed suspension 10−11 m2 s−1

α̂f Pore shrinkage coefficient, see (8) 0.125 mol−1 m3

λ̂f Average adsorption rate of particles, see (10) 0.01− 4 s−1

δ̂f Average blocking coefficient, see (10) 4× 104 m−1

γ̂d Scaling parameter for particle deposition rate, see (16) 2 (unitless)
η̂d Evaporation coefficient, see (21) 2.5× 10−8 m s−1

α̂d Pore shrinkage coefficient, see (22) 104 mol−1 m3

λ̂d Average adsorption rate of particles, see (24) 10−5 − 4 s−1

ĉsat Saturation concentration of particles 10−4 mol m−3

TABLE I: Dimensional parameter values (V. Venkateshwaran, Private Communication, 2017; see also [9, 44]).

Parameter Formula and description Typical value
ϕinitial Initial average porosity (void fraction) 0.5–0.7
Tf ϵL̂α̂f δ̂f ĉinlet Assumed

Ratio of rates of pore-blocking and advective particle transport asymptotically small
Pe (χ̂p̂inlet)/(Ξ̂µ̂) Assumed

Ratio of advective and dispersive particle transport (Peclet number) asymptotically large
λf (ϵ2L̂2µ̂λ̂f )/(χ̂p̂inlet) 1

Ratio of rates of particle adsorption and advective particle
transport (deposition coefficient)

δf ϵL̂δ̂f 8

Blocking coefficient (δf−1 measures penetrative potential
of blocking particles in depth of membrane)

αf (ϵL̂µ̂λ̂f )/(δ̂f χ̂p̂inlet) = λf/δf 0.125

csat ĉinlet/ĉsat 0.1

Td (ϵL̂α̂f δ̂f χ̂p̂inletĉinlet)/(Ξ̂µ̂) = TfPe 1

Ratio of rates of pore-blocking and dispersive particle transport
λd (ϵ2L̂2λ̂d)/Ξ̂ 0.1

γd (ϵL̂γ̂dη̂d)/Ξ̂ 1

ηd (µ̂η̂d)/(α̂f δ̂f χ̂p̂inletĉinlet) 0.1 – 0.8

Evaporation parameter
αd (ϵL̂µ̂α̂dλ̂d)/(α̂f δ̂f χ̂p̂inlet) 0.5 – 1

Ψ (Ψ̂ĉinlet)/ĉsat 0.1

TABLE II: Dimensionless parameter definitions and range of values used.

VI. RESULTS

In this section, we numerically investigate the models for filtration and drying processes in filter membranes in
subsections VIA and VIB, respectively. Inspired by industrial applications, in subsection VIC, we also study the
evolution of the membrane structure over several filtration-drying cycles by coupling the filtration and drying models
in time.

Our models involve system parameters that are estimated based on the typical ranges arising in filtration-drying
applications. The values of these parameters depend on physical dimensional parameters that must be measured
for the particular system under investigation, and in many cases reliable data are lacking. Instead of conducting an
exhaustive investigation of the impacts of all parameters [13], we rely on our best judgment to determine the most
suitable values to use in simulations. The parameters are summarized in Tables I (dimensional parameters) and II
(dimensionless parameters) along with typical values, where known. Although a high level of variability and uncertainty
in parameter values is noted, in practice users and filter membrane manufacturers should be able to work together to
provide values or estimates for most of the parameters listed in Table I for specific applications. These values are
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Concentration c

(b) Drying process

FIG. 2: Numerical simulations for filtration and drying processes. (a) Dynamic solution of the leading-order asymptotic model (52)-(54)
for the filtration process starting from initial porosity defined in (62). The system parameters are λf = 1, δf = 8, and αf = λf/δf = 0.125.
(b) Dynamic solution of the leading-order model (56)-(58) for the drying process starting from the initial porosity and particle
concentration defined in (63). The system parameters are csat = 0.1, Td = 1, λd = 0.1, γd = 1, ηd = 0.5, αd = 1 and Ψ = 0.1.

dependent on physical characteristics of the filter membrane and the feed fluid. Certain other parameters, such as the
average adsorption rate of particles in the filtration and drying processes, denoted by λ̂f and λ̂d respectively, are more
difficult to estimate and will require preliminary experiments. Methods such as fluorescence microscopy (see Jackson
et al. [45]), with particles in the feed suspension fluorescently tagged, can be used to estimate the values of λ̂f and λ̂d.
By comparing solutions of (43) and (56) with experimental images that reveal the density and location of particles
trapped within the filter, one can arrive at a reliable estimate of these parameters.

To capture the overall evolution of the dry-fluid interfaces, it is useful to define an effective evaporation rate based
on the averaged evaporative flux over the top and bottom dry-fluid interfaces, i.e.,

Ēi =

∫ 1

0

E(ϕ, c) dx, at y = hi(x), i ∈ {T,B}. (60)

We also define the average porosity and particle concentration in the fluid region as

ϕ̄ =

∫ 1

0

∫ hB(x)

hT (x)

ϕ dy dx, c̄ =

∫ 1

0

∫ hB(x)

hT (x)

c dy dx. (61)

The integrals in (60) and (61) are numerically evaluated using trapezoidal quadrature.

A. Filtration

We first numerically simulate the leading-order asymptotic model (52) - (54) for the filtration process, where the
initial porosity profile is chosen to be

ϕfinitial
(x, y) = 0.8− 0.2 tanh(y) + 0.03 sin(2πx). (62)

This spatially-varying initial porosity profile represents a typical filter membrane with higher and lower porosity near
the membrane upstream and downstream sides, respectively. Such negative porosity gradient in the depth of the filter
has been demonstrated to improve filter efficiency by using more porous structure to address intensive filter fouling
near the upstream side [9, 17]. While we present numerical results for the initial porosity profile (62), our discussions
can be readily extended for filters with any initial porosity profiles.

For all the simulations for the filtration process in this paper, we set the dimensionless parameters λf = 1, δf = 8,
and αf = λf/δf = 0.125. Figure 2a presents the dynamic evolution of the porosity ϕ and concentration c for 0 ≤ t ≤ 1,
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FIG. 3: (a) Plots of the effective evaporation rates (ĒT , ĒB) at the dry-fluid interfaces, as well as the average porosity and particle
concentration (ϕ̄, c̄) respectively, in the fluid region versus time t, corresponding to the drying process shown in Fig. 2b. (b) The average
porosity and particle concentration (ϕ̄, c̄) respectively, for several values of the evaporation coefficient ηd. The other parameters are identical
to those use in Fig. 2b. In (a) we have ηd = 0.5, and for both (a) and (b) we set γd = 1, Td = 1, αd = 1, csat = 0.1, Ψ = 0.1, and λd = 0.1.

showing that the porosity near the top region of the membrane significantly decays during the filtration process. We
also observe that regions with higher porosity have lower particle concentration. As the porosity ϕ attains its minimum
near the top boundary of the membrane y = 0, the particle concentration c approaches 1. This implies that the
porosity of regions that are exposed to higher particle concentration evolves more drastically.

B. Drying

Here we study and simulate the leading-order asymptotic model (56)-(58) for (β, ϕ, h) during the drying process,
where β = ϕc. For simplicity, we fix the initial porosity profile and concentration and set

ϕdinitial
(x, y) = 0.9− 0.5 tanh y + 0.05 sin(2πx), cdinitial

(x, y) = 0.9− 0.8 tanh y. (63)

For all the simulations presented in this section, we set the dimensionless parameters Td = 1, γd = 1, csat = 0.1,
Ψ = 0.1, and λd = 0.1. In this section, we will focus on the influence of the evaporation coefficient ηd and the pore
shrinkage coefficient αd on the drying dynamics.

In Fig. 2b, we present the evolution of the porosity ϕ and concentration c for the drying process with a moderate
evaporation coefficient (ηd = 0.5). Here, the gray area at the top and bottom of the membrane represents the dry
region. The evolution of the dry-fluid interfaces hT (x, t) and hB(x, t) are governed by the local porosity and particle
concentration at the interfaces. As shown in Fig. 2b, at the early stage, the concentration c is nearly uniform in x, and
the spatial variation in ϕ at the interface leads to spatially varying dry-fluid interfaces. Since the evaporative flux (see
(57)) is proportional to the porosity ϕ, the dry-fluid interfaces hT and hB move at a faster speed in regions where the
porosity ϕ is higher.

Figure 3a characterizes the effective evaporation rate at the top and bottom interfaces, ĒT and ĒB, respectively
(see (60)), as well as the average porosity and particle concentration in the fluid region ϕ̄ and c̄ (see (61)), respectively.
Since the porosity ϕ is much higher near the top interface than near the bottom interface, the effective evaporation
rate ĒT is significantly larger than ĒB during the evolution. Moreover, Figure 3a shows that due to excessive particle
deposition during the drying process, both of the average porosity ϕ̄ and the average particle concentration c̄ defined
in (61) decrease in time.

The parameter ηd appeared in (57) scales the evaporation flux through the two dry-fluid interfaces. To study
the effects of ηd, we simulate the drying process with varying ηd while keeping the other parameters and the initial
conditions identical to those in Fig. 2b. In Fig. 3b, we present the influence of the parameter ηd on the average porosity
ϕ̄(t) and particle concentration c̄(t) in the fluid region. Our results with ηd = 0.1, 0.5, 0.8 show that with stronger
evaporation effects (ηd = 0.8), both ϕ̄(t) and c̄(t) in the fluid region decrease at a faster rate in time t.
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FIG. 4: The average porosity in the x direction, ⟨ϕ⟩x (y) =
∫ 1
0 ϕ(x, y) dx, at times t = 0 (black dotted curve) and t = 1 for several values

of the pore shrinkage coefficient αd = 0.5, 0.8, 1. (a) shows the results obtained by solving the drying system in Case I (56) – (58); (b)
corresponds to the results from the reduced system in Case II (57) – (59) where λ̃d = 0.1. The other parameters are identical to those used
in Fig. 2b.

The pore shrinkage coefficient αd in (58) is an important parameter in analyzing the dynamics of the drying process.
In Fig. 4a, we use the drying model in Case I given by (56) – (58) to plot the average porosity in the x direction
⟨ϕ⟩x =

∫ 1

0
ϕ(x, y) dx at the intial time t = 0 as well as the final time t = 1 for different values of αd (αd = 0.5, 0.8, 1),

while keeping the other system parameters and initial configurations identical to those used in Fig. 2b. The initial
average porosity in the x direction at time t = 0 is plotted in a black dotted curve. Here we observe that the combined
effects of evaporation, particle dispersion, and particle deposition lead to a decreased x-direction average porosity
profile at the final time t = 1. Moreover, a larger value of the pore shrinkage parameter αd corresponds to a stronger
particle deposition rate, lowering ⟨ϕ⟩x more significantly. Figure 4a also shows that the average porosity ⟨ϕ⟩x at
the top and bottom membrane boundary, y = 0 and y = 1, does not change in time. This is due to the fact that
the interaction between the particles and the membrane only occurs in the fluid region, and the dry-fluid interfaces
y = hi(x), i ∈ {T,B} move away from the membrane boundary immediately at t = 0 as evaporation occurs.

When particle dispersion is negligible during the drying process (as outlined in Case II), the evolution of porosity
and concentration in the fluid region is governed by the reduced system (57) – (59). Fig. 4b shows the average porosity
in the x direction over time obtained by solving the reduced system, while keeping all other settings identical to those
used in Fig. 4a. Comparing Fig. 4a and Fig. 4b reveals that particle dispersion can significantly slow down the decay
in material porosity near the top dry-fluid interface. For the rest of this study, we will concentrate on the drying model
that takes into account the presence of particle dispersion.

C. Filtration-drying cycles

In many industrial applications, filter membranes can be reused several times during their life time, while their
performance deteriorates. Motivated by this, we monitor the membrane porosity evolution during coupled filtration
and drying cycles to find out how long a filter membrane can be used before it becomes ineffective. Starting with
a membrane of the prescribed initial porosity given in (62), the system undergoes a filtration process, during which
the deposited particles in the porous medium reduces the membrane porosity. This is followed by a drying process,
during which the evaporation takes place and governs the evolution of dry-fluid interfaces. The membrane porosity also
changes due to the particle dispersion and deposition. After completing a full filtration-drying cycle, the membrane
with reduced porosity will be used again for another cycle.

By coupling the filtration model (52)-(55) and the drying model (56)-(58) in time t, we construct a filtration-drying
cycle model to characterize the evolution of a membrane filter. A complete filtration-drying cycle starting from time
t = t0 consists of a filtration process from time t = t0 to time t = t0 +∆Tf , followed by a drying process to time
t = t0 +∆Tf +∆Td. For simplicity, we assume that the filtration and drying processes have the same length of period,
∆Tf = ∆Td = ∆T , however our model and analysis can be readily extended to more general scenarios. The initial
porosity for the filtration process (see (54)) is specified by the initial porosity of an unused filter or the porosity profile
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FIG. 5: (a) Plots of flux Q(t) and throughput V(t) in time over three filtration-drying cycles with the initial porosity profile given in (62).
The evaporation parameter ηd = 0.5 and the length of individual filtration/drying period ∆T = 1. (b) The flux-throughput curves over
three filtration-drying cycles for several values of the evaporation coefficient ηd. Other system parameters are identical to those used in
Fig. 2.

obtained from the previous filtration-drying cycle. After simulating the filtration process by solving the filtration model
(52)-(55), we then apply the particle concentration c and the reduced porosity ϕ at time t = t0 +∆T to construct the
initial conditions for the drying model (56)-(58). The updated membrane porosity at the end of the drying process at
time t = t0 + 2∆T is then used as the initial condition for the next cycle of the filtration process.

To determine the lifespan of the filter membrane, in practice, it is crucial to trace key membrane properties and
performance metrics such as the flux Q(t) and throughput V(t) defined in (55) over the filtration-drying cycle. Figure 5a
presents the flux Q(t) and the throughput V(t) in time t for a filter membrane undergoing three filtration-drying cycles
from t = 0− 2, t = 2− 4, and t = 4− 6, where the length of each individual filtration and drying process is ∆T = 1.
The initial porosity for the first filtration-drying cycle is set as in (62). The flux Q(t) drops significantly after each
filtration process, and the flux Q = 0 during the drying processes after each filtration process halts. The throughput
V(t) increases with time and reaches a plateau after the third cycle completes, indicating that the filter performance
dramatically drops after three cycles and re-using the filter for another cycle becomes ineffective.

The throughput-flux relation over multiple cycles also depends on the evaporation parameter during the drying
process. Figure 5b represents the flux-throughput curves over three filtration-drying cycles for several values of the
evaporation coefficient ηd. This figure shows that the flux-throughput relation is sensitive to the evaporation parameter
ηd. With the presence of weak evaporation effects (ηd = 0.1), more particles are deposited in the fluid region during
the drying process, which leads to further reduced membrane porosity and a slightly faster decrease in the flux Q.
Note that in Fig. 5 other system parameters are chosen to be identical to those used in Fig. 2.

To further investigate the porous medium internal morphology evolution over multiple cycles, we perform a sequence
of numerical simulations starting from identical initial filter porosity given in (62) over several filtration-drying cycles,
where the number of cycles Ncycle = 1, 2, · · · , 5. For each study with a fixed Ncycle, we also vary the length of
individual filtration/drying period ∆T and track the overall throughput Voverall after Ncycle complete cycles, where
the overall throughput is defined by Voverall = V(t = 2Ncycle∆T ). Figure 6 presents the overall throughput Voverall

as a function of ∆T , where 0.02 ≤ ∆T ≤ 1. It shows that with a fixed number of Ncycle, the overall throughput
Voverall increases with ∆T , and the curves become more flattened with larger values of ∆T . Similarly, for a fixed
∆T , the overall throughput Voverall also increases with the number of cycles Ncycle. This observation indicates that
while both Ncycle and ∆T contribute positively to the overall throughput, using the filter membranes for too many
cycles or unnecessarily extending the length of individual process only marginally increases the overall throughput.
This analysis provides insights to the trade-off between the lifespan of filter membranes and their overall performance.
Based on the prediction of the overall throughput over multiple cycles, one may optimize the filtering process over
Ncycle and ∆T and decide when to discard the filter based on its optimum performance.
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FIG. 6: A plot of the final throughput Voverall as a function of ∆T , after a varying number coupled filtration and drying cycles, showing
the dependence of the filter performance on the length of individual filtration/drying period ∆T and the total number of cycles Ncycle.
The initial porosity is given by (62). The system parameters are identical to those used in Fig. 2.

VII. DISCUSSION AND CONCLUSIONS

We have developed a comprehensive macroscopic model for the filtration and drying processes in a thin filter membrane,
where the key elements include particle transport and deposition, solvent evaporation, and the morphological changes
to the porous media. Specifically, for the drying process, our model describes how the dry-fluid interfaces evolve across
the porous media and predicts how the particle deposition changes the media porosity. In addition, we model the
filtration and drying processes both occurring in consecutive cycles until the membrane performance deteriorates. With
that our reduced model provides insights into the overall porous medium evolution over cycles of filtration and drying
processes, allowing us to predict the timeline for discarding the filter based on its optimum performance. We have
observed interesting pattern formation in the media porosity and particle concentration from the coupled filtration and
drying models, which provides insights to the performance of the porous media structure over multiple cycles.

Given the complexity of the membrane structure, the chemical interactions between the filtrate particles and the
membrane material, and the evaporation conditions that highly depends on the application, our simplified model
necessarily contains several parameters that could be difficult to measure for a particular membrane-evaporation
system. In future, we plan to further study the dynamics predicted by the coupled model with parameter values
appropriate for typical solvent and porous media structures provided by experimentalists in industry. We also note
that our model does not incorporate the impact of thermal gradients, capillary forces, and wettability of the material
to the evaporation fronts. It is of interest to develop a multi-scale drying model for porous media that incorporates
both the macroscopic and pore-level modeling approaches [22, 29, 30] in appropriate experimental settings.

In this paper, we focus on the two-dimensional filtration-drying model, and we expect some of the results can be
naturally extended to three-dimensional cases, where more complex morphological changes to the membrane geometry
and the evaporation fronts should be considered. It would also be of interest to incorporate the evaporation dynamics
into more recently developed network-based models [46, 47] for porous media flows, where the membrane filters are
modeled by networks of connected pores.
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