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High-fidelity large-eddy simulations of the flow around two rectangular obstacles are carried out
at a Reynolds number of 10, 000 based on the free-stream velocity and the obstacle height. The
incoming flow is a developed turbulent boundary layer. Mean-velocity components, turbulence fluc-
tuations, and the terms of the turbulent-kinetic-energy budget are analyzed for three flow regimes:
skimming flow, wake interference, and isolated roughness. Three regions are identified where the
flow undergoes the most significant changes: the first obstacle’s wake, the region in front of the sec-
ond obstacle, and that around the second obstacle. In the skimming-flow case, turbulence activity
in the cavity between the obstacles is limited and mainly occurs in a small region in front of the
second obstacle. In the wake-interference case, there is a strong interaction between the free-stream
flow that penetrates the cavity and the wake of the first obstacle. This interaction results in more
intense turbulent fluctuations between the obstacles. In the isolated-roughness case, the wake of
the first obstacle is in good agreement with that of an isolated obstacle. Separation bubbles with
strong turbulent fluctuations appear around the second obstacle.

I. INTRODUCTION

Urban areas are a vital element of our society: currently, about 75% of the population lives in cities in the European
Union (EU), and it is estimated that by 2050, seven out of every ten people in the world will become urban residents
[1]. Approximately 90% of the urban population in the EU was exposed to air pollution levels that exceeded the
levels recommended by the World Health Organization (WHO). Pollution leads to around 800,000 premature deaths
in Europe every year [2, 3]. Moreover, sustainable cities are the eleventh Sustainable Development Goal of the United
Nations. Therefore, there is an urgent need to improve forecasting and assessment methods to meet these challenges
and achieve urban sustainability soon.

Due to the reasons above, the flow around building-like obstacles has been extensively studied [4–6] to improve
pollutant dispersion, heat propagation, or energetic efficiency. For a complete review of these methods, we refer to
Ref. [7]. These studies are mainly based on empirical observations, meteorologic models, or experimental results.
However, turbulence is present in a wide variety of physical phenomena, and urban environments are certainly no
exception [8]. In this work, we present a numerical study to analyze the interaction of a developed turbulent boundary
layer with two buildings in three different configurations.
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Overall, the studies dealing with urban flows can be gathered around three main lines of investigation: experimental,
numerical, and data-driven. Experimental studies tend to combine empirical descriptions of the flow with specific
physical quantities measurements that are relevant to analyzing the flow dynamics. These kinds of works are usually
divided by their scope: on the one hand, we find studies that characterize the overall dynamics of the flow in urban
environments. Within this group, Oke [8] observed that three zones of disturbance could characterize the flow in the
envelope of a squared cross-section obstacle: ahead of the obstacle, a bolster eddy vortex; behind, a lee eddy that is
drawn into a cavity of low pressure. Finally, a wake region appears downstream, characterized by increased turbulent
intensity but lower horizontal speeds. In this way, fully understanding urban flows inevitably leads to the study of
turbulence. We can also mention the work of Britter & Hanna [9], describing the urban environment in terms of the
length scale. These authors divided the urban environment into a wide range of scales bounded by the regional (from
10 to 200 km) and neighborhood (from 100 m to 2 km) scales. The present work deals only with the latter.

On the one hand, we find experimental studies that focus on particular flow applications. For instance, Di Sabatino
et al. [10] carried out the Phoenix Urban Heat Island experiment, in which an extensive database of temperature
measurements in various areas of Central Phoenix, Arizona, was gathered. The authors used this database to study
the urban heat island (UHI) in Central Phoenix and validate UHI models. Similarly, Weerasuriya et al. [11] assessed
the effect of twisted winds on pedestrian comfort. A scaled model of Tsuen Wan street in Hong Kong was tested in
a wind tunnel to obtain the mean flow, turbulent intensities, and yaw angles. Pedestrian comfort was also studied
experimentally by Corke et al. [12], and pollutant dispersion was assessed in a number of urban environments by Nagib
& Corke [13] and Monnier et al. [14]. More complicated geometries were also analyzed experimentally by Monnier et
al. [15].

Numerical simulations, even though they are limited by the computational cost, can provide a detailed description
of the flow properties and have been used to characterize the overall dynamics of urban flows. There is a wide range of
numerical methods available with different levels of accuracy. Reynolds-averaged Navier–Stokes (RANS) simulations,
in which all turbulent scales are modeled, are not able to fully characterize the physical processes that take place
in urban environments [16, 17], so direct numerical simulations (DNS) and large-eddy simulations (LES) are usually
employed. The LES category also encompasses a wide range of resolutions, where sub-grid models can represent a
larger or smaller portion of turbulent scales.

Similarly to experimental studies, numerical ones also differ in the type of geometrical model being considered.
The choice of a different balance between geometrical complexity, simulation accuracy and computational cost led to
create a few distinct kinds of study cases. We summarize the most recent papers that are relevant to the context of
the present work in Table I.

The first works focused on so-called urban canyons, where the simulation describes the cavity between two rect-
angular bodies and the laminar free-stream flow above [41–43]. Later on, it became possible to consider arrays of
obstacles with different arrangements in pattern and packing ration, but still periodic boundary conditions in the
direction of the incoming flows, e.g. in Refs. [18, 19, 21, 44]. These types of flow configurations do not allow however
to examine the effects of an incoming boundary layer or of the more complex geometries typical of realistic landscapes.
We then observed developments in two complementary directions of investigation.

Models for urban geometries have beingbeen considered, although they often require to employ a very low number
of grid points per each single obstacle to be affordable. Some of the studies that adopted this perspective have focused
on measuring the impact of e.g. resolution [20], surface modelling [23] and boundary conditions [37] on quantities
that can be measured experimentally to assess the reliability of simulations. Others aimed at reproducing specific
atmospheric phenomena [27, 28] or they provide information not easily measurable in experiments, such as terms of
the turbulent-kinetic-energy (TKE) budget [34]. This type of study takes advantage of the fact that the main features
of urban flows have a weak dependency on the Reynolds number and therefore can be captured even when a small
portion of the active scales are simulated.

On the other hand, simplified geometries have been considered in highly-resolved numerical simulations. In certain
cases, these studies are aimed at developing or testing models [26], sometimes with the aid of experiments [22, 24, 31].
In other studies, the main purpose of the authors is to describe the connection between the obstacle geometry and
global features of the flow, such as drag coefficients or vortex-shedding frequencies [29, 35], or turbulence properties,
such as velocity fluctuations, TKE budget, and spectra [30, 36, 39]. Note that in these studies, an incoming turbulent
flow is often implemented as a prescribed mean velocity profile with synthetic turbulent fluctuations [30, 31], or using
a precursor simulation [36, 45]. The incoming flow in the works just mentioned is not representative of atmospheric
conditions.

Only few of the works employing wall-resolved simulations considered both a combination of obstacles and a
developed turbulent flow. For instance, Zhao et al. [40] studied the flow between two building-like obstacles in several
configurations with DNS, with a uniform inlet profile and at a relatively low Reynolds number of 500 (defined in
terms of the obstacle height, the fluid kinematic viscosity, and the incoming velocity). The aim of the present work
stems from the lack of high-fidelity numerical simulations for the case of obstacles in tandem subjected to an incoming
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TABLE I: Summary of studies relevant to the present paper. In cases with multiple simulations, the one at highest
Reynolds number is shown. For inflow conditions, U + S.T.F. denotes prescribed mean flow with synthetic

turbulent fluctuations and P.S. denotes a precursor simulation. We include the number of points per obstacle edge
(np) or the grid spacing in physical (∆x) or inner-scaled units (∆+

x ), as well as the total number of grid points in
millions (Np/10

6).

Reference Year Obstacle(s) Inflow ReH Methodology Np/10
6 Main focus / Aim

Kanda et al. [18] 2005 Array Periodic 5× 103 LES (np = 10) 1.4 effects of obstacle areal density
Xie et al. [19] 2006 Array Periodic 5× 106 LES (np = 16) 0.25 comparison DNS/LES/RANS
Tseng et al. [20] 2006 Array Periodic 2.2× 104 LES (np ≤ 10) 0.8 LES validation
Coceal et al. [21] 2007 Array Periodic 5× 103 LES (np = 32) 50 test theoretical frameworks
El-Okda et al. [22] 2008 1 rectangular U + S.T.F. 30× 103 LES 1.4 flow statistics, inflow conditions
Bou-Zeid et al. [23] 2009 Urban model P.S. - LES (∆x = 15m) 0.8 surface modelling
Santiago et al. [24] 2010 Array Steady profile 1× 106 LES (np = 11) 1.6 comparison LES/RANS
Kono et al. [25] 2010 Array Periodic 1.3× 104 LES (np = 32) 10.6 aid modelling
Einian et al. [26] 2011 1 rectangular Steady profile 500 LES (np ≃ 6) 1.8 sub-grid model effects
Nakayama et al. [27, 28] 2012 Urban model U + S.T.F. - LES (∆x = 20m) 2.9 reproduce atmospheric phenomena
Saha [29] 2013 1 rectangular Uniform 250 DNS (np = 34) 1.8 vortex shedding, separation & drag
Saeedi et al. [30] 2014 1 rectangular U + S.T.F. 1.2× 104 DNS (∆+

x = 0.8) 35 mean, fluctuations & TKE budget
Jourbet et al. [31] 2015 1 rectangular U + S.T.F. 7.6× 104 LES (np = 32) 3.5 mean & flow structures
Cheng and Porté-Agel [32] 2015 Array P.S. 3× 104 LES (np = 10) 8 rural-to-urban transition
Vinuesa et al. [33] 2015 1 rectangular P.S. 1.1× 104 DNS 250 inflow effects & flow statistics
Giometto et al. [34] 2016 Urban model Periodic - LES (np = 30) 42 complement exp. measurements
Zhang et al. [35] 2017 1 rectangular Uniform 1× 103 DNS (np = 48) 14 flow statistics & vortex shedding
Diaz-Daniel et al. [36] 2017 1 rectangular P.S. 3× 103 DNS (np = 320) 538 interaction wake- laminar/turb. BL
Tolias et al. [37] 2018 Urban model U + S.T.F. - LES (∆x = 1.2m) 28 LES validation
Kumar and Tiwari [38] 2020 1 rectangular Shear layer 250 DNS (np = 140) 1.6 flow structures & transition
Tian et al. [39] 2021 Array Periodic 5× 104 LES (np = 128) 28 mean, fluct., TKE budget & spectra
Zhao et al. [40] 2021 2 rectangular Uniform 500 DNS (np = 60) 7.8 wake interactions & flow statistics
Present study 2023 2 rectangular ZPG TBL 1× 104 LES (np = 196) 142 wake interactions & flow statistics

turbulent boundary layer. For this geometry, as observed at transitional Reynolds numbers [40], the rate between
wake length and obstacle distance enables identifying different flow regimes, similarly to what observed by Oke [8] in
urban canyons. We carried out wall-resolved LES, using a resolution that is only a factor of two coarser than that
of a DNS and a domain size that allows establishing a turbulent boundary layer before the obstacles. Through these
simulations we will describe how the flow regimes differ in the distributions of turbulent fluctuations, TKE budgets
and properties of the anisotropy tensor. The conditions that we choose do not correspond to a realistic urban flow yet,
but are a step forward with respect to previous works on wall-mounted rectangular obstacles towards fully-resolved
simulations of similar system with larger scale.

The paper is organized as follows. In §II we introduce the computational method and setup used during the
simulations. The results of the simulations are presented and discussed in §III. Finally, we will introduce conclusions
and some closing notes on other lines of investigation on urban flows, including coherent structures, in §IV.

II. COMPUTATIONAL METHOD AND SETUP

The flow of air in urban environments is characterized by relatively low velocities, well below the speed of sound.
Thus, the incompressible Navier–Stokes equations can be used to model the flow. These equations have been solved
using the computational-fluid-dynamics (CFD) code Nek5000, which was developed by Fischer et al. [46]. Nek5000
is based on the spectral-element method (SEM) developed by Patera et al. [47], which combines the geometrical
flexibility of the finite-elements method (FEM) with the accuracy of the global spectral methods. Within the elements,
the governing equations are discretized using a Galerkin projection in the so-called PN–PN−2 formulation. In this
formulation, PN denote the polynomial space of the trial function for the velocity, where N is the maximum order,
and PN−2 denote the space of the trial functions for the pressure. The space of trial function for the pressure reaches
a maximum order of N −2, because the pressure is defined on a staggered grid within each element without points on
the element edges. Nek5000 has been extensively used for turbulent-flow simulations in complex geometries [48–52],
and it is thus adequate for the urban-environment cases considered here. The turbulence statistics are computed with
the toolbox developed by Vinuesa et al. [53].

The complexity of turbulent urban flows requires using high-fidelity methods to resolve the relevant flow structures
correctly. Direct numerical simulations (DNSs) are often used in wall-bounded turbulent flows [54, 55]; however,
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in the case of urban environments, the presence of obstacles forbids the use of classical tools of DNS such as fast-
Fourier methods [56, 57], making computational cost unaffordable. In the present work, we conduct wall-resolved
LES, the resolution criteria of which is close to that of a coarse DNS. The LES filter is based on the approximated
deconvolution model (ADM) proposed by Schlatter et al. [58]. The implementation and validation of this filter in
Nek5000 is extensively documented by Negi et al. [59], who obtained excellent agreement with DNS statistics in
turbulent wings while significantly reducing the computational cost. The same methodology has also been recently
examined by Rezaeiravesh et al. [60], who used various uncertainty-quantification techniques to describe how grid
spacing and filter parameters affect the solution. In these simulations, the governing equations for the filtered velocity
are written in dimensionless form as:

∂Ũi

∂t
+ Ũj

∂Ũi

∂xj
= − ∂P

∂xi
+

1

Reh

∂2Ũi

∂xj∂xj
−H(Ũi) (1)

∂Ũi

∂xi
= 0 . (2)

The symbol H(Ũi) denotes the LES relaxation that acts as a volume force, and dealiasing with over-integration is
used to evaluate the non-linear term of the momentum equation. The effect of the filter is to remove energy from
the system by acting on a subset of modes within each spectral element. Hereafter, we drop the symbol of filtered
quantities for the sake of brevity. The operator H is written as a high-pass filter in the frequency domain, i.e.:

H(uN ) = χ

N∑
k=0

γkakLk , (3)

where Lk and ak denote the Legendre polynomials and spectral coefficients, respectively, N is the polynomial order,
χ is the filter weight, and γk is the filter transfer function, which is defined as:

γk =

0, k ≤ kc(
k−kc

N−kc

)2

, k > kc
, (4)

where kc is the cut-off mode. The cut-off mode, which is the same for all elements, the polynomial order, and the size
of each spectral element determine the local cut-off frequency within elements. The filter with this definition does not
affect continuity and its intensity does not depend on the time interval.

The instantaneous velocity field is denoted by U(x, y, z, t), where x, y, and z are the streamwise, vertical and
spanwise directions, respectively, and t is time. The pressure is denoted by P . The three components of the velocity
in the spatial directions are U = (U, V,W ). Note that the indexes i and j run from 1 to 3, spanning through the spatial
coordinates, and that the Einstein’s notation of summation for repeated indexes is applied. All length quantities are
normalized using the obstacle height, denoted by h, and the velocity scale is the free-stream value, denoted by U∞.
The Reynolds number Reh = U∞h/ν, is based on the free-stream velocity, the obstacle height, and the kinematic
viscosity. Following the Reynolds decomposition, U is defined as U = U + u, where U is the average in time and u
is the turbulent fluctuation. The components of the Reynolds-stress tensor are thus denoted by uiuj .
In Figure 2 we show a schematic representation of the geometry used in the three simulations, where Lx, Ly,

and Lz represent the dimensions of the computational domain in the streamwise, vertical, and spanwise directions,
respectively. The vertical and spanwise dimensions are the same in the three cases, while the streamwise dimension
of the domain is varied proportionally to the distance between the obstacles l. The obstacles are defined using three
parameters: h, wb, and b, their height, length, and width, respectively. Table II gathers the geometrical data of the
three cases considered in the present work. In all cases, the Reynolds number is defined with a value of Reh = 10, 000.
As stated in the introduction, we present here the results of three different configurations, representative of the

three flow regimes documented by Oke [8]. As explained by Sini et al. [41], these configurations depend on the ratio
l/h as follows: if this ratio is small enough, i.e. for narrow streets, the flow above the buildings slightly penetrates on
the street, in a configuration denoted by skimming flow (SF). The second situation, wake interference (WI), is present
for wider streets, where the wake of the first building interacts with the second one. Finally, the third configuration
is called isolated roughness (IR), and it corresponds to very broad streets, where the interaction of the wake of the
first building with the second one is small. Table II summarizes the geometrical parameters of the three cases.

The inflow is set at face A (Figure 2) and the outflow is set at face C. To improve our results, we have applied the
stabilized outflow developed by Dong et al. [61]. In the spanwise direction, i.e. faces E and F, we impose periodicity.
At face B we prescribe a stress-free condition in y, zero velocity in z and we set U∞ in x. Face D and the faces that
form the obstacle are set as solid walls, i.e. no-slip and no-penetration conditions.



5

FIG. 1: Overview of the computational domain for the wake-interference case with vortex clusters identified with
the λ2 criterion [62] (we show the isosurface λ2 = −1) and coloured with the streamwise velocity component (values

from ≈ −1 in blue to ≈ 2 in red).
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FIG. 2: Schematic representation of the simulation domain, where the top and bottom panels show the side and top
views, respectively. The flow goes from left to right and the obstacles are marked in blue. The center of the first
obstacle is at distance of 10h from the inflow, and faces A, B, C, D, E, and F are the boundaries of the domain.
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TABLE II: Geometrical parameters of the three flow cases under study. The reported number of grid points is based
on polynomial order N = 7, and the reported averaging periods to obtain turbulence statistics follow 40 convective

time units, which are discarded to avoid initial transients. All the averaging periods correspond to over 13
eddy-turnover times, based on the uτ and h values of the TBL at x/h = −2.

Case Name Case code Lx/h Ly/h Lz/h b/h wb/h l/h N. grid points Av. period
Skimming flow SF 16 3 4 0.5 0.5 1.5 103× 106 104

Wake interference WI 17 3 4 0.5 0.5 2.5 116× 106 104
Isolated roughness IR 21 3 4 0.5 0.5 4.5 142× 106 105

FIG. 3: Streamwise evolution of (left) the friction and momentum-thickness-based Reynolds numbers, and (right)
the Rota–Clause parameter and the skin-friction coefficient in the region upstream of the first obstacle.

A. Turbulent-boundary-layer development

As discussed in the introduction, urban flows are turbulent [8]. Thus, we set up the flow so that the incoming
turbulent boundary layer (TBL) can develop before reaching the obstacles. In this study, the inflow condition is a
Blasius laminar profile with Reδ∗ = 450, which is the Reynolds number based on displacement thickness δ∗. Then, we
trigger the transition to turbulence employing a numerical tripping force, acting along an horizontal line on the ground
wall and at x = −9h. Numerical tripping is a technique that consists of introducing a weak random volume in the
forcing terms of the incompressible Navier–Stokes equation acting in the wall-normal direction such that disturbances
are created in the flow, as documented in Refs. [63, 64]. Next, we will discuss the turbulence statistics of the TBL
upstream of the first obstacle in the SF case, noting that these results are the same in the other two cases.

In Figure 3 (left) we present the streamwise evolution of the friction Reynolds number Reτ = uτh/ν and the

Reynolds number based on momentum thickness Reθ = U∞θ/ν. Here uτ =
√
τw/ρ is the friction velocity, τw the

wall-shear stress, ρ the fluid density, ν the fluid kinematic viscosity and θ is the momentum thickness. As expected,
Reθ increases with the streamwise coordinate, starting at the application of the tripping force. Upstream of the first
obstacle we obtain Reτ ≃ 175, which corresponds to fully-turbulent conditions. Note that the recirculation region
upstream of the first obstacle induces an adverse pressure gradient (APG) on the TBL, which can be characterized in
terms of the Rota–Clauser pressure-gradient parameter β = δ∗/τwdPe/dx, where dPe/dx is the streamwise pressure
gradient at the boundary-layer edge. This parameter, together with the skin-friction coefficient Cf = 2(uτ/Ue)

2

(where Ue is the local edge velocity) are shown in Figure 3 (right). Note that the boundary-layer thickness is obtained
using the method proposed by Vinuesa et al. [65]. The streamwise APG produces the increase of β with x, reaching
a value of around 0.6 at x/h = −2. This value corresponds to a moderate APG. The skin-friction coefficient slightly
grows between x/h = −8 and x/h = −7, which is explained by the effects of the tripping force. However, Cf decreases
in the region upstream the first obstacle, a behavior consistent with the TBL development and the APG.

The statistics presented in Figure 3 are validated with the results by Eitel-Amor et al. [66] for a zero-pressure-
gradient (ZPG) TBL, simulated by wall-resolved LES up to Reθ = 8, 300. In Figure 4 (left) and (middle) we show the
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FIG. 4: (Left) Inner-scaled mean and (middle) velocity-fluctuation profiles at the following streamwise locations:
(blue) x/h = −7, (red) x/h = −6, (yellow) x/h = −5, (purple) x/h = −4 and (green) x/h = −3; the dots represent
the profiles from the wall-resolved LES data-set by Eitel-Amor [66] at the same Reτ as the profile at x/h = −4.

(Right) TKE budget terms at x/h = −4, where lines denote data from our simulation and dots results in Ref. [66] at
matched Reτ . Blue, red, green, cyan, black and magenta represent production, dissipation, turbulent transport,

viscous diffusion, velocity-pressure correlation and advection terms, respectively.

inner-scaled mean velocity and streamwise-velocity fluctuation profiles of our TBL at various streamwise positions,
together with the profiles extracted from Ref. [66] at Reτ ≃ 145, which is the Reτ of our TBL at x/h = −4. Note
that we choose this location for comparison because here turbulence is already developed, and β ≃ 0.1, i.e. the TBL
is in nearly-ZPG conditions. The various streamwise profiles reflect an adequate TBL development, and comparison
at x/h = −4 with the ZPG TBL in Ref. [66] shows excellent agreement, a fact that indicates that the incoming TBL
is properly simulated. Furthermore, in Figure 4 (right), we compare the terms of the TKE budget in the incoming
TBL with those of the same reference [66]. Additional information on the calculation of all the terms can be found in
the work by Vinuesa et al. [53]. Interestingly, this figure shows that all the terms are in perfect agreement, including
the near-wall production peak and the turbulent transport. For y+ < 3, both the TKE dissipation and the viscous
diffusion are slightly lower than the reference values, which can be attributed to the small effect of the filter in
the smallest scales. Overall, the agreement is entirely satisfactory, a fact that highlights the quality of the present
simulations.

B. Mesh design and resolution

As discussed above, Nek5000 is based on the SEM developed by Patera [47]. The mesh comprises a number of
spectral elements, ranging from 200,000 to 280,000 for the cases under consideration here, and each element has a
total of 83 points which follow the Gauss–Lobatto–Legendre (GLL) quadrature. The element size is refined near
the wall and the obstacles in order to increase resolution. The mesh is designed following the criteria by Negi et
al. [59] for wall-resolved LES: in the TBL part, ∆x+ < 18 and ∆z+ < 9, which are the inner-scaled resolutions in
the streamwise and spanwise directions averaged over the spectral elements. Furthermore, ∆y+ < 0.5, which is the
wall-normal resolution of the first grid point in inner units. In Figure 5 we show the streamwise evolution of these
quantities for x/h < −1, i.e. for the region upstream of the first obstacle, and it can be observed that the criteria for
wall-resolved LES is satisfied within the incoming TBL. Note that the resolution in the x and z directions corresponds
to approximately half of the one required for a DNS [55]. It is interesting to note that the increase in the streamwise
grid spacing at x/h = −9 is explained by the tripping force applied at this location. Farther from the wall, an

additional requirement is satisfied for mesh resolution: defining h = (∆x∆y∆z)
1/3

, the ratio h/η < 9 everywhere in
the domain, where η = (ν3/ε)1/4 is the Kolmogorov scale and ε is the local isotropic dissipation.
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FIG. 5: Streamwise evolution of the inner-scaled resolution in the (left) streamwise direction, where blue denotes the
local spacing and the black dashed line the average over the element. (Middle) Wall-normal resolution of the first
grid point. (Right) Spanwise resolution, where blue and orange denote the minimum and maximum grid spacing of

the element respectively, and the black dashed line again the average over the element.

III. RESULTS AND DISCUSSION

In this section we analyze the turbulence statistics, including mean velocities, Reynolds stresses and TKE budgets
in a selected portion of the computational domain. We show the statistics at the planes y/h = 0.25 and z/h = 0; We
take advantage of the central symmetry of the case, averaging between the right and left portions of the domain for
the statistics on the horizontal plane, y/h = 0.25. Note that the following results are presented in outer scaling, i.e.
in terms of U∞ and h.

A. Mean flow

In this section, we focus on the properties of the mean flow. The most evident effect of the increasing distance
between the obstacles is the transition from a “cavity-like” flow and a “wake-like” flow in the region between the
two obstacle, as already described by Zhao et al. [67] for a slightly different geometry and lower Reynolds number.
The cavity-like flow is characterize by a very large circulation zone attached to the rear face of the first obstacle,
which transports fluid in a clockwise motion. This feature of the mean flow occupies most of the space between the
obstacles. The wake-like flow also exhibits a clockwise circulation zone but this is limited to the first portion of the
space between the obstacles. The second portion of this space, in front of the second obstacle, is occupied by flow
that is still moving in the direction of the free stream.

Figure 6 shows the streamwise mean velocity on the planes z/h = 0 and y/h = 0.25, together with streamwlines
computed using the mean velocity components on the two planes. In the SF case, there is only little penetration
of the flow from above the canopy into the cavity. As the distance between the obstacles increases, the wake of the
first obstacle becomes more apparent and there are stronger interactions between free-stream and cavity regions, as
observed in the WI case. For an even higher distances between obstacles, in the IR case, the effects of the second
obstacle on the wake of the first are negligible. Interestingly, the wake behind the second obstacle is relatively similar
between the three regime, even thought the low speed of the incoming flow avoids the occurrence of separation at the
edges in cases SF and WI.

In Figure 7 we show the vertical and spanwise mean-velocity components for the three cases. Both of these velocity
components are less intense than the streamwise component in large part of the domain, with a few notable exceptions.
The first exception, are the wake regions and the cavity between the obstacle in case SF, where U changes sign. The
second one is the separation regions caused by the obstacle edges. These are particularly evident for the first obstacle
in all three cases, and are also present in the second obstacle in the IR case. The third occurrence of where U is not the
dominant mean velocity component is in regions just in front of the obstacles where the flow is deflected downwards.
This is even more evident for the second obstacle than for the first one, in all cases. The effects of varying intensities
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FIG. 6: Mean streamwise velocity U at (left) z/h = 0 and (right) y/h = 0.25. The red lines and black contours
denote streamlines and U = 0, respectively. The streamlines are computed using U and V for vertical planes and U
and W for horizontal planes (note that streamlines of the 3D mean flow do not lay on the horizontal plane). From

top to bottom: SF, WI and IR cases.

FIG. 7: (Left) Mean vertical velocity V at z/h = 0 and (right) spanwise velocity W at y/h = 0.25. The red lines
and black contours denote streamlines and V = 0, respectively. The streamlines are computed using U and V for
vertical planes and U and W for horizontal planes (note that streamlines of the 3D mean flow do not lay on the

horizontal plane). From top to bottom: SF, WI and IR cases.

and sings of the three velocity components are well summarized in the streamlines computed on the mean flow. In
the WI case, where U remains high above and around the relatively short cavity, most streamlines with origin before
the first obstacle pass over or to the sides of the cavity. The longer cavities in cases SF and IR however correspond
to a longer region of deceleration before the second obstacle. In this region, where V is negative, streamlines laying
on the vertical plane are deflected downwards.

The three flow regimes also differ in how the signs of V and W change in the domain, which is particularly affected
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FIG. 8: Turbulent kinetic energy, denoted by k, at (left) z/h = 0 and (right) y/h = 0.25. The yellow, red, and black

contours denote regions of high u2, v2, and w2 respectively. In these regions, the considered quantity is higher than
1/3 of its maximum in the domain. From top to bottom: SF, WI and IR cases.

by the change of regime between cases SF and WI. In case SF, with the large zone of clockwise mean motion, V is
negative in most of the region between the obstacles, resembling the pattern of the classical two-dimensional lid-driven
cavity. In cases WI and IR, the region with positive V behind the first obstacle expands. In these cases the mean
flow is still moving downstream in the higher portion of the wake, but upstream in the lower one. The topology of
the mean-spanwise velocity, W , at intermediate heights, such as y/h = 0.25, is particularly interesting. In front of
the first obstacles, the flow is deflected sideways, around the front edges, and it also moves from the center plane
towards the outside of the cavity in the wake. In the SF case, W changes sing only once, so that the flow moves
toward the center of the domain in the region in front of the second obstacle. In the WI and IR cases however, at this
y/h, W changes sing at least twice, so that the flow in the cavity moves outwards behind the first obstacle, inwards
afterwards, and outwards again before the second obstacle. These differences in the topology of W are yet another
aspect of the modification of the mean flow between case SF, where the second object is completely engulfed by the
wake of the first one, and cases WI and IR, where the wake of the first object is confined between the obstacles. In
case IR, W also shows the further development of the wake flow around the second obstacle, due to the appearance
of mean separation over the side faces.

There are both similarities and differences between our results and those reported by Zhao et al. [67], who also
studied the flow around two obstacles but with a lower width-to-height ratio of wb/h = 0.25, with laminar incoming
flow, and at Reh = 500. They considered distances between obstacles up to l/h = 2, corresponding with the first
two regimes that the examined. The transition between a cavity-like flow in the SF regime and a wake-like flow in
the WI regime is also observed, but it already occurs for l/h = 1.25, which is a distance lower than that of SF case
in our data-set (l/h = 1.5). The wake behind the second obstacle seems longer for SF configurations than for WI
configurations in the database studied in Ref. [67], a phenomenon that is not as evident in our data. This sort of
comparison is however made difficult by the fact that both Reh and wb/h are different between the two studies.

B. Reynolds stresses

The Reynolds stresses show the distribution of turbulence fluctuations within the domain. In Figure 8 we illustrate
the turbulent kinetic energy, denoted by k = 1/2(u2+v2+w2), as well as contours highlighting regions of higher values
for each of the three components of the Reynolds stress. Turbulence fluctuations tend to be more intense between the
two obstacles in all the cases and the horseshoe vortex in front of the obstacles (when present). The highest values
of k tend to be located after approximately 1 unit length downstream of the first obstacle. In the SF case, where
the cavity is particularly short, this region of intense fluctuations is adjacent to the front face of the second obstacle.
Both the first obstacle wake and the region in front of the second one exhibit high fluctuations in the WI case. In
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FIG. 9: Contour plots of the shear-Reynolds stresses (left) uv, at z/h = 0 and, (right) uw at y/h = 0.25. Note that
a symmetric range of values is chosen for all figures, to help distinguish positive and negative values. The red

contours denote regions of high turbulent kinetic energy, k, reported as reference. In these regions, k is higher than
1/3 of its maximum in the domain. From top to bottom: SF, WI and IR cases.

the IR case, the region of higher k within the wake of the first obstacle does not reach the second one due to an even
more extended cavity. However, the first obstacle’s influence on the second is still very apparent. The most intense
fluctuations around the second obstacle are generated in the separation region around the obstacle edges rather than
in the wake. Note that this finding seems to contrast with the description of Oke [8], who found only negligible effects
for the flow around the downstream obstacle for a similar cavity length.

The three diagonal components of the Reynolds-stress tensor have their maxima in different positions. The highest
values of the streamwise normal stress are found in the upper region of the wake, in the high-shear flow immediately
following the separation bubble on top of the first obstacle and, in the IR case, in the turbulent region of separation
on top of the second obstacle. As the distance between the obstacles increases, the streamwise normal-Reynolds
stress values also increase in the region between the obstacle. This increment of u2 is probably connected with the
interaction between low-momentum flow in the wake and high-momentum flow in the free-stream. In fact, in the WI
case – where the interaction between the layers of fluid is maximum within the cavity – the largest region of high
values of u2 is observed. In addition, the values of u2 in the second obstacle wake are larger than those of the SF case.
In the IR case, we observe that the region of high u2 between the two obstacles remains attached to the first one.
Regarding the vertical normal component of the Reynolds stresses (denoted by v2), in the SF regime, we find a

region of high values attached to the front wall of the second obstacle. The strong fluctuations at the front wall of
the second obstacle can be explained by interactions between the high-momentum fluid moving from the free stream
– that descends into the cavity parallel to the front wall of the second obstacle – and the low-momentum fluid in the
cavity. An increase in the distance between the obstacle, as we can see for the WI case, produces a new region of high
v2 at the centre of the cavity, as the miximing between flow in the cavity and flow outside the cavity becomes more
pronounced. At the wake of the second obstacle, the region of high v2 is extended from that in the SF case. This
extension is the result of the overall increase of turbulent fluctuations around the second obstacle, which is invested
by flow with higher speed. In the IR case, intense vertical fluctuations are not present anymore in the region in front
of the second obstacle.

The spanwise fluctuations, w2, reflect the same trend as the other normal components of the Reynolds stress tensor,
and further confirm the significant impact that the presence of the first obstacle still has on the second in the IR case.

The shear-Reynolds stresses uv and uw are shown in Figure 9 (left and right, respectively). These quantities allow
to discuss the prevalent orientation of turbulent fluctuations. They both tend to be particularly intense in regions
where u2 also have higher values, i.e. in the upper region of the wakes and, in the IR case, in the turbulent region of
separation on top of the second obstacle. The vertical shear-Reynolds stress, uv, is negative in the regions where it is
more intense, showing that turbulent fluctuations tend in general to drive momentum downwards into the cavity. The
extension of regions with different sign however varies between the three flow regimes. In the SF case, uv is positive in
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FIG. 10: Anisotropy-invariant maps for vertical profiles at the center plane and from y/h = 0 to y/h = 1 for (from
left to right) cases SF, WI, and IR. The circles and the squares in each line denote values at y/h = 0 and y/h = 1,
respectively. Black rectangles enclose states at locations from the wall in the range 0 < y/h < 0.5. Dashed black

lines denote the theoretical limits to values of II and III.

most of the cavity, including relatively vast portion of space where the mean vertical velocity, V , is negative. In this
case, mean advection contrasts turbulent transport. In the WI case, which is the case with stronger mixing between
the low-speed flow in the wake and the high-speed flow outside the wake, the region of negative and intense uv occupies
the higher portion of the cavity. The region of positive uv underneath includes the location with the highest positive
uv observed in the three cases, which is attached to the lower portion of the front face of the second obstacle. In this
region again, relatively intense turbulent fluctuations have opposite orientation than the mean advection. Lastly, in
the IR case, the region of intense negative uv is also limited to approximately 2 length units downstream the first
obstacle.

The horizontal shear-Reynolds stress, uw, exhibits a similar behaviour to that of uv, as turbulent fluctuations
carries momentum towards the inner region of cavity. This term of the Reynolds stress however tends to be of higher
values then uv, because fluctuations in the spanwise direction are not limited by the presence of the ground as those in
the vertical direction are. In particular, the patter of uw on the left and the right of the obstacles, tends to reproduce
that of uv in the upper half of the cavities, in all cases.

We now consider the anisotropy-invariant maps (AIM) to better describe how the structure of the turbulent flow
within the cavity changes in the different cases. The anisotropy tensor, originally introduced by Lumley and Newman
[68], is defined as:

aij =
1

2

uiuj

k
− 1

3
δij , (5)

and AIMs are constructed using its second and third invariants, i.e. II = aijaji and III = aijainajn. The space
of possible values of II and III is enclosed within boundaries determined by a set of limit cases: 3D isotropic
turbulence, where energy is equally distributed in the three components, is (II = 0, III = 0); 2D isotropic turbulence
is (II = 1/6, III = −1/36); the limit of 1D turbulence is (II = 2/3, III = 2/9). The three paths between these
limit cases are boundaries for allowed configurations, and they represent: axisymmetric contraction, between the
3D- and 2D-isotropic limits, II = 3/2(4/3III)2/3; axisymmetric expansion, between the 3D-isotropic and 1D limits,
II = 3/2(−4/3III)2/3; and the path between the 2D-isotropic and 1D limit, II = 2/9+ 2III. In Figure 10, we show
the AIMs for a set of vertical profiles within the cavity for each case. For case SF, we examine x/h = 0.5, 0.75, and
1, and for cases WI and IR we also consider x/h = 1.5 and x/h = 2. The profiles are limited to the cavity region, i.e.
0 < y/h < 1.

In all cases, the distributions of II and III move from the limit of 2D turbulence from the wall towards a state
close to the limit of 3D-isotropic turbulence far from the wall, as expected. This is particularly evident for the first
profile (x/h = 0.5), in the proximity of the obstacle, where the mean velocity is relatively low at y/h ≈ 1. In case SF,
along the first profile with a low turbulence intensity, we move from the 2D limit to the 3D limit almost following the
axisymmetric contraction, with a predominance of flattened structures (so-called pancake-shaped turbulence). Moving
along the second profile (x = 0.5), which is located at the middle of the cavity for this case, we transition from the
2D-isotropic limit to the 3D-isotopic state almost along the vertical line III = 0. On the other hand, along the third
profile (x = 1), where we observe stronger but still relatively low turbulent fluctuations, the AIM departs from the
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FIG. 11: Selected terms of the turbulent-kinetic-energy budget on the vertical plane z/h = 0. From top to bottom:
production, turbulent transport, and velocity-pressure-gradient correlation, denoted by Pk, Tk, and Πk, respectively.
From left to right: SF, WI and IR cases. Note that the same symmetric color map is used, to highlight positive and

negative values in all cases, even though it may not properly represent maxima and minima.

2D limits. In case WI, moving along the first profiles still means to approach the the isotropic case from the 2D limit,
as in case SF. The profiles downstream however exhibit a different behavior. In correspondence with more intense
turbulent fluctuations, turbulent structures depart more significantly from the 2D limit along the profile, and the
state at y = 1 is farther from the 3D-isotropic limit. A particularly evident distinction between cases SF and WI is
apparent along the profile closer to the second obstacle, which is at x = 1 for SF and x = 2 for WI. In the latter, in
the proximity of the region with even more intense turbulent fluctuations, the AIM indicates a prevalence of elongated
structures along the axisymmetric-expansion limit (so-called cigar-like turbulence). In case IR, the profiles close to
the first obstacle (x = 0.5, 0.75, and 1) exhibit an even more pronounced shift towards the 1D limit state than in
case WI. Profile x = 1.5 however is in good agreement with the same profile for case WI, underling that structures in
this region for case WI are quite similar to those in the wake behind an isolated obstacle despite the proximity of the
second obstacle. Lastly, profile x = 2 in case IR, which is now behind the region with more pronounced fluctuations
in the wake of the first obstacles, departs again from the 2D-limit case at the wall with a trajectory closer to an
axisymmetric contraction, but it also arrived to states with more elongated structures farther from the wall, as the
same profile in case WI.

C. Budget of the turbulent kinetic energy

To close the present discussion we will analyse terms of the turbulent-kinetic-energy (TKE) budget. We show
production, turbulent transport, and velocity-pressure-gradient correlation in Figures 11 and 12 for the vertical plane
z/h = 0 and the horizontal plane y/h = 0.25, respectively. Each quantity is defined as described by Pope [69].

All terms of the TKE budget are virtually negligible in the free stream, away from the obstacles. On the other
hand, most terms exhibit relatively high values in the horseshoe vortices. These vortices are always present in front
of the first obstacle and the second one in the IR case. In the cavity and the proximity of the obstaclesobstacle
proximities, the three flow regimes differ significantly.

In the SF case, turbulent production, denoted by Pk, is particularly intense in three regions, i.e. immediately
downstream of the separation region on top of the first obstacle, in front of the front face of the second obstacle, and
downstream the trailing edge of the second obstacle. In this case, Pk is almost negligible within most of the cavity.
In the WI case, a relatively large region with negative Pk appears in front of the second obstacle, and production
occurs within the cavity. In the IR case, Pk in the cavity is more intense just behind the first obstacle. Around the
second obstacle, however, the most intense production occurs in the regions of separated flow adjacent to the faces.
Interestingly, Pk remains negative in front of the second obstacle in case IR, even though it is much less intense in
that region than in case WI. The contours on the horizontal plane highlight the importance of high-shear regions on
the sides faces of the first obstacles, which are also relatively similar for all cases.

Turbulent transport, denoted by Tk, tends to be negative in regions of very high turbulent fluctuations and positive
in the adjacent regions where their intensity rapidly decreases. This fact is particularly apparent on the horizontal
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FIG. 12: Selected terms of the turbulent-kinetic-energy budget on the horizontal plane y/h = 0.25. From top to
bottom: production, turbulent transport, and velocity-pressure-gradient correlation, denoted by Pk, Tk, and Πk,

respectively. From left to right: SF, WI and IR cases. Note that the same symmetric color map is used, to highlight
positive and negative values in all cases, even though it may not properly represent maxima and minima.

plane. In the SF case, Tk is almost negligible in most of the cavity, where fluctuations are low, and it has negative
values in front of the second obstacle, where we found the highest values of v2. In both cases WI and IR, the turbulent
transport is negative in the upper region of the wake and positive in the lower region, but, in case IR, Tk becomes
negligible before the second obstacle.

The velocity-pressure-gradient correlation, denoted by Πk, is negative in regions of very intense turbulent fluctu-
ations, which is a trend similar to what observed for the turbulent transport, Tk. The change of sign of Πk in the
region in front of the second obstacle is however particularly interesting. In case SF, this term of the TKE budget
is negative in that region. In case WI, Πk becomes positive and reaches relatively high values there. In case IR, Πk

remains positive in front of the second obstacle, but its value decreases significantly. The qualitative behaviour of Πk

is then opposite to that of the production term, in this particular region of the domain.
We can discuss the TKE budgets in light of the anisotropy-invariant maps shown in the previous section. In case

SF, the profile at x/h = 1, which is in front of the second obstacle, roughly corresponds with the region of positive Pk,
negative Tk, and negative Πk, where the AIM indicates that turbulence is approaching the 3D isotropic limit along
the asymmetric-contraction limit (pancake turbulence). In case WI, downstream of the first obstacle, the distinction
between the region close to the wall with positive Tk and negative Πk and the region far from the wall with negative
Tk and positive Πk corresponds to the transition observed in the AIMs from states closer to the 2D limit to state
closer to the 3D-isotropic limit. The opposite signs of Tk and Pk in profiles x/h = 2 for case WI, and x/h = 1 in case
SF, which are the corresponding profiles at front of the second obstacle, are linked to the fact that in case WI those
profiles exhibit states close the asymmetric-expansion limit (cingar-like turbulence).

Regarding the other terms of the TKE budget that are not shown here, they are viscous diffusion, pseudo dissipation,
and advection. Viscous diffusion is negligible, except for small near-wall regions in all cases. Pseudo dissipation is
also relatively low, if compared to the other terms of the budgets in most of the domain. Advection, denoted by Ck,
reaches it highest positive values in the high-shear regions related to separation, similarly as it happens for the other
terms already described. In cases SF and WI, in the cavity, it has negative values in proximity of the front face of
the second obstacle, where the mean vertical velocity is negative and carries turbulent kinetic energy downwards. In
cases WI and IR, where a wake region is clearly distinguishable downstream of the first obstacle, Ck exhibits positive
values in the upper region of the wake and negative values in the lower region, which is qualitatively the opposite
pattern than that of turbulent transport.

IV. CONCLUSIONS

We studied the results of highly-resolved large-eddy simulations of the flow around two rectangular obstacles
invested by a turbulent boundary layer. The Reynolds number based on the free-stream velocity and obstacle height
is Reh = 10, 000, whereas the incoming boundary layer reaches approximately Reτ = 170 before the first obstacle.
We considered three different configurations with various distances between the obstacles, corresponding to the three
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different flow regimes identified in the literature.
In the first regime, denoted by skimming flow (SF), there is little penetration from the free stream into the cavity

between the two obstacles, and the wake of the first one engulfs the second obstacle. In this case, the topology of
the mean-velocity components is more similar to a cavity than a wake flow. In the second regime, denoted by wake
interference (WI), there are strong interactions between the free stream and the wake of the first obstacle. In the
third regime, denoted by isolated roughness (IR), the wake behind the first obstacle is not significantly affected by the
presence of the second obstacle. In the first two cases, the reduced velocity of the incoming flow prevents separation
from the edges of the second obstacle. In the IR case, separation around the second obstacle occurs, but the separation
bubbles are smaller than those for the first obstacle.

The inflow conditions and the relatively high Reynolds number in our study, compared to previous numerical works
with multiple obstacles, allow us to discuss in detail the turbulent flow properties in the three regimes. This discussion
includes the distribution of turbulent fluctuations and terms of the turbulent-kinetic-energy (TKE) budget, which are
not considered in previous studies on similar geometries. Our analysis identify three critical regions of the domain
that are fundamentally affected by the increasing distance between the obstacles:

i) The first region is immediately behind the first obstacle. This region is occupied by cavity-like flow in case SF
and wake-like flow in cases WI and IR. The cavity flow exhibits lower turbulent fluctuations and TKE production to
the wake flow.

ii) The second region is adjacent to the second obstacle’s front face. This region immediately reflects the more
effective flow penetration from the free stream as the distances between obstacles increase. In the SF case, we
have the most intense turbulent fluctuations and production of turbulent kinetic energy in this region. In the WI
case, relatively intense turbulent fluctuations are still observed, but the production term of the TKE is negative,
and turbulent kinetic energy is created with more complex mechanisms, as shown by the velocity-pressure-gradient
correlation. In the IR case, turbulent fluctuations are less intense, and the classical horseshoe vortex is also present
in front of the obstacle.

iii) The last region, which more dramatic changes due to the increasing obstacle distance, immediately surrounds
the second obstacle. In cases SK and WI, there is no separation. In case IR, there is mean separation and very intense
turbulent fluctuations in the separation bubbles attached to the three faces.

There are also two regions of the domain where the increasing distance between obstacles has only mild repercussions.
These are the surroundings of the first obstacle, as expected, and, perhaps more surprisingly, the wake of the second
obstacle.

Important distinctions between the three regimes also appear in the anisotropy-invariant maps, which provide
information about the structure of turbulence. In case SF, there is a prevalence of states close to the asymmetric-
contraction limit within the cavity, including the region in front of the second obstacle with the more intense turbulent
fluctuations, and where TKE production is positive while the TKE turbulent transport and the velocity-pressure-
gradient correlation are negative. On the other hand, at the corresponding location in case WI, where turbulent
fluctuations are also intense, there is a prevalence of states close to the asymmetric-expansion limit.

The results that we just summarized provide important indications for future works on similar geometries that will
not employ high-fidelity numerical simulations. A similar distribution of turbulent fluctuations has to be obtained if
particles or scalar dispersion are relevant in the conducted study, in particular if dispersion models are employed [70,
71]. The anisotropy-invariant map that we showed also suggests a note of caution for the usage of turbulence models
that employ a linear eddy viscosity hypothesis, as these models often fail to correctly predict anisotropy.

Nevertheless, our study has obvious limitations if the general context of urban flows is considered. The first
limitation is the still very low Reynolds number compared with realistic length and velocity scales. It is reassuring to
observe that our results are qualitatively similar to those in e.g. the study by Zhao et al. [40] conducted at a Reynolds
number twenty times lower than the present one. Our results also show the complexity of the turbulent flow in the
three regimes, confirming that numerical studies at even higher Reynolds numbers may be required.

The second limitation is the simplicity of our configuration, which is evident in both inflow conditions and the
obstacle geometry. The crucial phenomenon in the flow that originates from a boundary layer impacting a group of
obstacles is the interaction of the wake created by leading obstacles with subsequent ones. In our idealized study
case, this phenomenon was governed by the only geometrical parameter that we let vary, i.e. the obstacle distance.
However, different obstacle alignments with the inflow velocity as well as different aspect ratios and relative sizes
will lead to an even greater variety of flow regimes, indicating other possible directions for future investigations. A
larger array of obstacles should also be considered to study the interaction between the wakes of obstacles farther
downstream.

A further extension of the present study worth considering pertains to additional methodologies to characterize the
different flow regimes. One approach is to examine coherent structures and link features of the instantaneous flow
with the turbulence statistics that we considered here, following the work by Torres et al. [7], or causality analysis,
as done by Mart́ınez-Sánchez et al. [72]. A second approach is to determine how the three flow regimes differ in
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the dispersion of passive scalars and particles with inertia, which are both relevant in applications connected with
pollution and pathogen contamination.

———————————————————————

Data availability: The data used to perform this study is available in the following repository: Urban flow
statistics.
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[55] S. Hoyas, M. Oberlack, F. Alcántara-Ávila, S. V. Kraheberger, and J. Laux, Wall turbulence at high friction reynolds
numbers, Phys. Rev. Fluids 7, 014602 (2022).

[56] C. Canuto, M. Y. Hussaini, A. M. Quarteroni, A. Thomas Jr, et al., Spectral methods in fluid dynamics (Springer Science
& Business Media, 2012).
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