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Building efficient, accurate and generalizable reduced order models of developed turbulence remains a ma-
jor challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced
Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through
Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function ap-
proximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this
hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which
enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy,
two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH
simulators. For each model we experiment with different loss functions which are minimized using gradient
based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation
(AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with
weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible
SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that en-
coding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and
that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.

I. INTRODUCTION

Understanding and predicting turbulent flows is crucial for
many engineering and scientific fields, and remains a great
unresolved challenge of classical physics [1]. Turbulent flows
are characterized by strong coupling across a broad range of
scales and obtaining accurate solutions over all relevant scales
currently requires computationally intensive numerical meth-
ods, and is often prohibitive in applications [2]. This mo-
tivates the development of reducing the computational cost
by only simulating large scale structures instead of the full
set of relevant scales [3]. Many data-driven techniques have
emerged (or matured) over the last decades, such as the Proper
Orthogonal Decomposition [4], Dynamics Mode Decomposi-
tion [5, 6], Mori-Zwanzig [7–9], and also many other Ma-
chine Learning for Turbulence techniques [10–15]. The main
challenge of developing reduced models for turbulence, is in
generalizing to flows not seen in training. This motivates our
focus in this work on developing Reduced Lagrangian based
Simulators which encode physical conservation laws indepen-
dent of the resolution using Smoothed Particle Hydrodynam-
ics (SPH).

SPH [16–18] has been widely applied to weakly- and
strongly compressible turbulence in astrophysics and many
engineering applications [19]. It is one of a small set of ap-
proaches based on a Lagrangian construction: the fluid quan-
tities follow the flow using particles as opposed to the Eule-
rian approach which computes flow quantities at fixed loca-
tions on a computational mesh. This mesh-free, Lagrangian
approximation of Navier-Stokes (NS) is appealing because
it naturally unmasks correlations at the resolved scale from
sweeping by larger scale eddies [20, 21] making SPH use-

ful for understanding advection dominated flows, mixing and
dispersion, and turbulent transport. One of the main advan-
tages of SPH is that the conservation of mass, energy, and
momentum can be enforced within a discrete formulation, en-
suring conservation independent of the resolution. Further-
more, the mesh-free nature of SPH is advantageous for highly
compressible flows as the Lagrangian particles naturally re-
solve the variable density regions. Recently [22, 23], SPH has
been connected to Large Eddy Simulations (LES) as a method
to coarse grain the Navier-Stokes equations. Furthermore,
developing approximation-optimal SPH models (and simula-
tors) for turbulent flows is an ongoing area of research [24],
to which this paper contributes by developing two new pa-
rameterized smoothing kernels and a physics informed ma-
chine learning framework for estimating the parameters of a
weakly-compressible SPH formulation fit to Direct Numerical
Simulation (DNS) data.

Numerical simulators were recently blended with modern
machine learning tools [25–35] out of which a promising
field, coined Physics Informed Machine Learning (PIML), is
emerging (and being re-discovered [36]). As set, some eight
years ago at the first Los Alamos National Laboratory work-
shop with this name [37], PIML was meant to pivot the mixed
community of machine learning researchers on the one hand
and scientists and engineers on the other, to discover physical
phenomena/models from data. Early work incorporating sci-
entific domain knowledge (e.g. from physics in the form of
differential equations) and computational scheme within ma-
chine learning algorithms dates back to the 1990s [36]. How-
ever, in the context of modern machine learning and specif-
ically deep learning, interest in this area has been revived
[38–41]. In part, this is due to the increased computational
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power afforded by parallelism across both Central, Vector
or Tensor Processing Units, along with notable achievements
across disciplines (such as scientific applications [42], data-
compression algorithms [43], computer vision [44], and natu-
ral language processing [45]). The main computational utili-
ties and strategies of the Physics Informed Machine Learning
(PIML) includes embedding physical structure into learn-able
models, applying Neural Networks (NNs) as function approx-
imators [46], differential programming using automatic differ-
entiation [40, 47], and optimization tools to minimize a loss
function.

In this manuscript we focus specifically on building PIML
scheme(s) which take advantage of the Lagrangian formula-
tion. Other works have pursued similar directions; one of
the earliest contributions to this field was made in [41] where
SPH related models were used alongside regression forests
(a classical machine learning technique). In [48] evolution-
ary algorithms were applied to optimize parameters in SPH
flows. Differentiable programming techniques were utilized
in [27] for Lagrangian robotic control of flows and in [33]
where a continuous Convolutional NN approach was devel-
oped. NNs were used in [35] to train a closure model for
Lagrangian dynamics of the velocity gradient tensor in homo-
geneous isotropic turbulence on the Direct Numerical Simula-
tion (DNS) data. It was shown in [49–52] that skillful embed-
ding of NN helps to improve Particle Image Velocimetry tech-
niques to map a Lagrangian representation of the flow into its
Eulerian counterpart. Most recent approach of our team [23],
which is most related to this work, consisted in developing
a fully differentiable, NN-based and Lagrangian Large Eddy
Simulator trained on the mix of Eulerian and Lagrangian high-
fidelity DNS data. It was shown in [23] that the simulator is
capable to fit and generalize with respect to Mach numbers,
delayed times and advanced turbulence statistics.

We continue the thread of [23] and develop a hierarchy of
learn-able, NN-enforced, Lagrangian simulators to examine
reduced order physics at coarse grained scales within the in-
ertial range of homogeneous isotropic turbulent flows. How-
ever, in this work we focus on constraining the models us-
ing the SPH framework. Although including SPH structure
will enforce physical constraints, a priori it is not known if
this will improve its ability to generalize to different turbulent
flows at these scales, since enforcing constraints decreases the
expressiveness as compared to the NN based models. Thus, to
explore these effects, a hierarchy of parameterized Lagrangian
and SPH based fluid models are developed that gradually in-
cludes more of the SPH framework, ranging from a Neural
Ordinary Differential Equation (ODE) based model [39] to a
weakly compressible parameterized SPH formulation. Each
model is trained on two sets of the ground truth data: (a) a
synthetic weakly compressible SPH simulator, and (b) Eule-
rian and Lagrangian data from a high-fidelity DNS (similar
to the one used in [23]). Given our focus in this work is
on resolving only the large scale structures within the iner-
tial range, the ground truth data is properly coarse-grained,
where each model is trained on three different resolutions
(N = 123,163,203). An efficient gradient descent is devel-
oped using modern optimizers (e.g Adam by [53]), and mix-

ing automatic differentiation (both forward and reverse mode)
with the local sensitivity analyses (such as forward and adjoint
based methods).

A formulation of this hierarchy along with the learning
framework is given in Section IV, where a brief background
of the weakly compressible SPH framework used in this work
is provided in Section II. In Section V, we first validate the
methodology and learning algorithm on the synthetic ground
truth SPH data, in which we show the ability to recover pa-
rameters within the SPH model as well as to learn the equation
of state using NNs (embedded in the SPH framework). Fur-
thermore, in Section V, each model is trained on high-fidelity
weakly compressible (i.e. low Mach number) DNS data using
field and statistical based loss functions. Then a detailed anal-
ysis of each model is carried out, from which we show that
adding SPH informed structure not only increases the inter-
pretability of the models, but improves generalizability over
varying Mach numbers and time scales with respect to both
statistical and field based quantitative comparisons. We ob-
serve that NNs (considered as universal function approxima-
tors [46]) embedded within this structure, such as those used
in approximating the Equation of State, also improves this
generalizability over the standard weakly compressible SPH
using the cubic smoothing kernel. Moreover, we show that
the new proposed smoothing kernels (introduced in Section
IV), which when included in the fully informed SPH based
model, performs best at generalizing to different DNS flows.

II. SMOOTHED PARTICLE HYDRODYNAMICS

One of the most prominent particle-based Lagrangian
methods for obtaining approximate numerical solutions of the
equations of fluid dynamics is Smoothed Particle Hydrody-
namics (SPH) [54]. Originally introduced independently by
[55] and [16] for astrophysical flows, however, over the fol-
lowing decades, SPH has found a much wider range of appli-
cations including computer graphics, free-surface flows, fluid-
structure interaction, bio-engineering, compressible flows,
galaxies’ formation and collapse, high velocity impacts, ge-
ological flows, magnetohydrodynamics, and turbulence [19,
24]. Below, we give a brief formulation of a weakly com-
pressible SPH framework and in Section III we use this SPH
structure as the basis of our Physics informed machine learn-
ing models.

Essentially, SPH is a discrete approximation to a continu-
ous flow field by using a series of discrete particles as inter-
polation points (using an integral interpolation with smooth-
ing kernel W ). Using the SPH formalism the Partial Differ-
ential Equations (PDEs) of fluid dynamics can be approxi-
mated by a system of ODEs for each particle (indexed by i),
∀i ∈ {1,2, ...N} :

dri

dt
= vi, (1)

dvi

dt
=−

N

∑
j 6=i

m j

(
Pj

ρ2
j
+

Pi

ρ2
i
+Πi j

)
∇iWi j +fext . (2)
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Where Wi j = W (||ri − r j||,h), Pi, and ρi represents the
smoothing kernel, pressure and density respectively at particle
i. Πi j is an artificial viscosity term [18] used to approximate
the viscous terms. Density and pressure (for the weakly com-
pressible formulation) are computed by ρi = ∑ j m jW (|ri −
r j|,h), and P(ρ) = c2ρ0

γ

[(
ρ

ρ0

)γ

−1
]
.

Briefly, Eq. (2) is an approximation of Euler’s equations for
weakly compressible flows, with an added artificial viscosity
term Πi j. In this manuscript, a deterministic external forcing
f i

ext = (θin j/ke(t))vi consistent with DNS (as seen in [56])
provides the energy injection mechanism, where ke is the ki-
netic energy and θin j is an energy injection rate parameter. We
also utilize an artificial viscosity Πi j described in Eq. (A5),
which approximates in aggregate the contributions from the
bulk and shear viscosity (α), a Nueman-Richtmyer viscosity
for handling shocks (β ) [18, 57], as well as the effective, eddy
viscosity effect of turbulent advection from the under-resolved
scales, i.e. scales smaller than the mean-particle distance (see
Appendix A in the appendix for a more detailed discussion).

Fig. (1) shows consecutive snapshots of an exemplary
multi-particle SPH flow in three dimensional space, where
coloration is added for visualization purposes. We use a
standard set of parameters for weakly-compressible flows
(see [58]) α = 1.0 (bulk-shear viscosity), β = 2α (Nueman-
Richtmyer viscosity) , c = 10, γ = 7.0 with energy injec-
tion rate θ = 0.5, and deterministic external forcing, (see Ap-
pendix A for more details on the parameters and equations
such as the equation of state and artificial viscosity). In or-
der to validate the learning algorithm, an inverse problem is
solved on "synthetic" SPH data; given a sequence of snap-
shots of SPH particle flows, estimate the parameters of the
SPH model that best fits the SPH flow data over a predefined
time scale. The results of this inverse problem can be found
in Section V (and Appendix D).

(a) t0 (b) t1

(c) t2 (d) t3

FIG. 1: SPH particles advancing in time driven by ex-
ternal forcing fext used as training data to validate
the learning algorithm, where coloration is added
for visualization purposes and ti+1 − ti ≈ 50∆t.

III. HIERARCHY OF REDUCED LAGRANGIAN MODELS

We develop a hierarchy of parameterized Lagrangian mod-
els at coarse grained scales that gradually includes the SPH
framework. The motivation for this is twofold: (1) system-
atically analyze the effect of including more physical struc-
ture, and (2) a priori, we do not know which of the follow-
ing Lagrangian models (i.e. what level of SPH framework
vs. NN parameterizations) will best fit the DNS ground truth
data, as well as generalize to different flow regimes not seen
in training. The NNs used in this work are Multilayer Per-
ceptrons (MLPs) with hyperbolic tangent activation functions
which serve as universal function approximators [46] and are
embedded within the ODE structure evolving particles in the
Lagrangian frame. It was found through hyper-parameter tun-
ing that 2 hidden layers were sufficient for each model using a
NN. Defining X := {Xi := [ri,vi]

T , ∀i ∈ {1, ..,N}}, each
of the parameterized Lagrangian models take on the general
form

∀i : dXi/dt = F i(X(t,θ),θ) := (vi, Fi(X,θ))T . (3)

where the acceleration operator F is uniquely parameterized
in the following.
• NODE: In this least informed (and most flexible) Neu-
ral ODE [39] based Lagrangian model, the entire accelera-
tion operator is approximated by a NN, with the exception of
fext . Note that no pairwise interaction between particles is as-
sumed, which increases the flexibility of this model over SPH
based parameterizations along with the generic NN structure
used to approximate the acceleration of particles. This model
is most related to the work done by Chen et al. [39] where we
make an additional modification by considering the interac-
tion of particles to be within a local cloud (using a cell linked
list algorithm [59]). We assume that velocities, vi(t), and co-
ordinates, ri(t), of N particles evolve in time according to

dvi

dt
= NNθ

(
ηr(ri j),ηv(vi j)

∣∣∀ j : ||ri j|| ≤ 2h
)

(4)

+ fext(θin j),

where ri j = ri− r j, vi j = vi− v j, ηr(ri j), and ηv(vi j) are
min-max normalizations, NNθ : R2dm→Rl →Rl →Rd (d =
2,3 is the space dimension, m is the fixed number of particles
that are closest to the i-th particle in each cloud, and l is the
height, or number of nodes, of the hidden layer). Although
this NN is approximating a function which is interpretable
(acceleration), the individual parameters of the NN are not.
With some tuning, it was found that m ∈ {20,21, ...30} and
l ∈ {5,6, ...,12} generally produce the best fit. θ and θin j are
the trainable parameters.
• NN summand: In the direction of including more of the
SPH based physical structure, pairwise interaction is assumed
represented via a sum over the i-th particle neighborhood
(again using a cell linked list algorithm), where the summand
term is approximated by a NN. Here, Eq. (2) is modeled by
the Lagrangian based ODE

dvi

dt
=

N

∑
j

NNθ (ηr(ri j),ηv(vi j))+fext(θin j), (5)
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where NNθ : R2d → Rl → Rl → Rd , ηr(ri j), and ηv(vi j) are
min-max normalizations. With some tuning, l ∈ {5,6, ...}
generally produce the best fit. θ and θin j are the trainable
parameters.
• Rotationally Invariant NN: In this formulation, built on
the top of the NN summand, we use a neural network of the
form NNθ : R4→Rl→Rl→R to approximate the pair-wise
part of the acceleration term in Eq. (2), where the rotational
invariance is hard coded by construction (about a rotationally
invariant basis expansion using the difference vector ri j)

dvi

dt
=

N

∑
j

NNθ

(
Pi

ρ2
i
,

Pj

ρ2
j
,ri j ·vi j, ||ri j||2

)
ri j (6)

+ fext(θin j).

With some tuning, l ∈ {5,6, ...} generally produce the best fit.
θ and θin j are the trainable parameters.
• ∇P- NN: In this model, we embed a neural network NN
within the SPH framework to approximate the gradient of
pressure contribution (i.e ∇P- term in SPH Eq. (2)) and ex-
plicitly include the artificial viscosity term Π:

dvi

dt
=−

N

∑
j

m j

(
NNθ (ri j)+Πi j

)
∇Wi j (7)

+ fext(θin j),

where NNθ : Rd → Rl → Rl → R. l ∈ {5,6, ...} generally
produce the best fit. θ, α , β (from Π(α,β )) and θin j are the
trainable parameters.
• EoS NN: Approximating the Equation of State (EoS) with
a NN in the weakly compressible SPH formulation:

dvi

dt
=−∑

j
m j

(
Pnnθ(ρi)

ρ2
i

+
Pnnθ(ρ j)

ρ2
j

+Πi j

)
∇Wi j (8)

+ fext(θin j).

where Pnnθ(ρ) : R→ Rl → Rl → R. l ∈ {8,9, ...,12} gener-
ally produce the best fit. θ, α , β (from Π(α,β )) and θin j are
the trainable parameters.
• SPH-Informed: Fixed smoothing Kernel In this formula-
tion, the entire weakly compressible SPH structure is used,
and the physically interpretable parameters α,β ,γ,c, p0,θin j
from P(ρ)(c,γ, p0) and Π(α,β ) are learned

dvi

dt
=−∑

j
m j

(
Pi

ρ2
i
+

Pj

ρ2
j
+Πi j

)
∇Wi j (9)

+ fext(θin j).

• SPH-informed: Including Parameterized W In this for-
mulation, the entire weakly compressible SPH structure is
used along with a novel parameterized smoothing kernel
(described below), and the physically interpretable parame-
ters α,β ,γ,c, p0,a,b,θin j from P(ρ)(c,γ, p0), Π(α,β ), and
W (a,b) are learned (a,b are parameters defined below for a
parameterized smoothing kernel).

dvi

dt
=−∑

j
m j

(
Pi

ρ2
i
+

Pj

ρ2
j
+Πi j

)
∇Wi j(a,b) (10)

+ fext(θin j).

Let us emphasize that, as more of the SPH based structure is
added into the learning algorithm, the learned models become
more interpretable; i.e. the learned parameters are associated
with the actual physical quantities.

The choice of smoothing kernels is important, and effects
the consistency and accuracy of results [54], where bell-
shaped, symmetric, monotonic kernels are the most popu-
lar [60], however there is disagreement on the best smooth-
ing kernels to use [61]. In this work, we introduce two new
smoothing kernels to increase the flexibility of the SPH model
as well as to allow the optimization framework to "discover"
the best shaped kernel for our application (see Appendix A for
more details). Our parameterized smoothing kernel of the first
type is

W1(r;h,a,b) =

{
σ1(a,b)(1− (r/(2h))a)b, 0≤ r < 2h
0, otherwise

.

(11)
Here the parameters a,b control the shape of the kernel, h sets
the spatial scale of the kernel, and constant, σ , dependent on
the parameters a,b and the problem dimensionality, is chosen
to guarantee normalization,

∫
drW1(r;h,a,b) = 1, thus

σ1(a,b) =
3Γ(b+3/a+1)

32πh3Γ(b+1)Γ(3/a+1)
.

Our parameterized smoothing kernel of the second type,
which is introduced to make the second derivative at the ori-
gin, r = 0, smooth and thus to examine the effects of the kernel
smoothness on the quality of the trained models, is as follows:

W2(r;h,a,b) =
1

hDσ2(a,b)

(√
a2 +1−

√
a2 +(r/(2h))2

)
× (1− (r/(2h))2)2

×
{
(1+b(r/(2h))2), 0≤ r < 2h
0, otherwise

; (12)

σ2(a,b) = 4π((
√

1+a2(32(87+22b)+21a2(−48(5+b)

+a2(−380+96b+5a2(−30+(46+21a2)b)))))/80640

+(a4(−32+16a2(−2+b)+7a6b+10a4(−1+2b))

(log(a2)−2log(1+
√

1+a2)))/512),

where as with the smoothing kernel of the first type σ2 is in-
troduced to enforce normalization of the kernel.

IV. MIXED MODE GRADIENT BASED OPTIMIZA-
TION: EFFICIENT PARAMETER ESTIMATION

We develop a mixed mode method, mixing local Sensitivity
Analysis (SA) with forward and backwards Automatic Differ-
entiation (AD) for efficiently computing the gradients of the
loss functions (discussed in Section B).

SA is a classical technique found in many applications,
such as gradient-based optimization, optimal control, parame-
ter identification, model diagnostics [62, 63]. There are other
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ways that gradients can be propagated through numerical sim-
ulators, such as using differentiable programming [40], which
allows for a simple and flexible implementation of gradient
based learning algorithms, however this can require higher
memory costs due to storing large computational graphs when
computing gradients using reverse mode [39]. The two main
local SA methods are the direct, or forward, method and the
adjoint method (see Section B 1 d for more details). Like for-
ward mode AD, the forward SA method is more efficient when
the number of parameters is much less than the dimension of
the system and the adjoint method is more efficient when the
number of parameters is much larger than the dimension of
the system [63]. Therefore, in regards to this work, when the
number of particles N is large, the forward SA method will be
more efficient for the models described above (since the NNs
are relatively small compared to the dimension of the system
when N is large). When differentiating functions within the
local SA frameworks we mix forward mode and reverse mode
AD [47, 64] (depending on the input and output dimension of
each function to be differentiated, which can include NNs) for
improved efficiency over the fully differentiable programming
technique.

We consider loss functions of the form, L(X,θ) =∫ t f
0 Ψ(X,θ, t)dt, where X and θ are, respectively, the ma-

trix of states X (defined above) and the vector of parameters.
Ψ is some measure of performance at time t. Since our over-
all goal involves learning Lagrangian and SPH based models
for turbulence applications, it is the underlying statistical fea-
tures and large scale field structures we want our models to
learn and generalize with. Thus, two different loss functions
are considered; (1) a field based loss L f which tries to mini-
mize the difference between the large scale structures found in
the Eulerian velocity fields, and (2) a statistical based loss Lkl
which tries to capture the small scale statistical characteristics
of turbulent flows using well known single particle statistics
[65]. In the experiments below, first only the L f is used, then
a combination of the L f and Lkl are used with gradient descent
in order to first guide the model parameters in order to repro-
duce large scale structures with L f , then later refine the model
parameters with respect to the small scale features inherent in
the velocity increment statistics by minimizing Lkl .

The field based loss L f is introduced by set-
ting Ψ(X,θ, t) = ‖V f (t) − V̂ f (t)‖2/N f , where
V f

i = ∑
N f
j=1(m j/ρ j)v jWi j(||r f

i − r j||,h). This uses the
same SPH smoothing approximation to interpolate the
particle velocity onto a predefined mesh r f (with N f grid
points). The statistical based loss function Lkl , using a Kull-
back–Leibler (KL) divergence, is also introduced by setting
Ψ =

∫ ∞
−∞ Pgt(t,zgt ,x) log(Pgt(t,zgt ,x)/Ppr(t,zpr(θ),x))dx,

where zgt = zgt(t), and zpr(θ) = zpr(θ, t) represent sin-
gle particle statistical objects over time of the ground
truth and predicted data, respectively. For example,
we use the velocity increment, zi(t) = (δui,δvi,δwi),
where δui(t) = ui(t) − ui(0) and z ranges over all
particles. Here P(t,z(t),x) is a continuous probabil-
ity distribution (in x) constructed from data z(t) using
Kernel Density Estimation (KDE), to obtain smooth

and differentiable distributions from data [66]), that is
P(τ,z,x) = (Nhkde)

−1 ∑N
i=1 K ((zi−x)/hkde) (where hkde is

a smoothing parameter selected in this work as hkde = 0.9
based on Silverman’s rule [66]).

The gradient ∂θL =
t f∫
0

∂XΨ(X,θ, t)dθX(θ, t) +

∂θΨ(X,θ, t)dt, is computed with the forward SA equa-
tion by simultaneously integrating the states (Eq. 3) along
with the sensitivities Sk

i := dXi/dθk according to

∀i :
dSk

i

dt
=

∂F i(X(t),θ)
∂Xi

Sk
i +

∂F i(X(t),θ)
∂θ k . (13)

Where a mixed mode AD is used to compute the derivatives
of ∂F i/∂θ and within ∂F i/∂Xi (see Appendix B for more
details).

V. RESULTS: TRAINING AND EVALUATING MODELS

First, the methodology is validated on "synthetic" SPH
data, by training each model in the hierarchy on the SPH data
and testing their ability to interpolate and generalize. For ex-
ample, in Fig. 2 we see the ability for NNs embedded within
the SPH framework to learn the equation of state. Fig. 2
provides further validation of the mixed mode learning algo-
rithm for performing parameter estimation by learning the pa-
rameterized SPH "physics-informed" from SPH data (see Ap-
pendix D such as Fig. 23 for more details). Next, we analyze
the hierarchy of models trained on weakly compressible (low
Mach number) Eulerian based DNS data where the models
are evolved on a coarse grained scale using N = 123,163,203

particles.

A. DNS data

Our “ground truth” Lagrangian data are generated by track-
ing simultaneously multiple particles advected by velocity
which we extract from the Eulerian DNS (solving the Navier-
Stokes equations) of weakly compressible, thus low Mach
number, stationary Homogeneous Isotropic Turbulence. Our
numerical implementation of the Eulerian DNS is on a 2563

mesh over the three dimensional box, Ω = [0,2π]3. We use
sixth-order compact finite differences for spatial discretiza-
tion and the 4th-order Runge-Kutta scheme for time advance-
ment, also imposing triply-periodic boundary conditions over
the box. The velocity field is initialized with 3D Gaussian
spectral density enforcing zero mean condition for all compo-
nents.

A large-scale linear quasi-solenoidal forcing term is applied
to the simulation at wavenumber |k|< 2 to prevent turbulence
from decaying [56]. The forcing method allows the spec-
ification of the Kolmogorov scale at the onset and ensures
that it remains close to the specified value. The simulations
presented here have η/∆x = 0.8, where ∆x is the grid spac-
ing. Compared to a standard (well-resolved) spectral simula-
tion with ηkmax = 1.5, where kmax is the maximum resolved
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FIG. 2: Using a NN embedded within the SPH framework
to approximate Eq. 8 using L f . We see that P(ρ) is well

approximated, where Ptruth is the ground truth solution and
Pnn is the NN approximation. We note that the underlying
ground truth data has 99.73% of density values within the
black dotted vertical lines (within 3 standard deviations),

and so the NN does well at approximating the ground
truth within the data seen in training, however it fails to
capture the global shape of the function. Furthermore,
we see that the parameters that were used to generate
the synthetic SPH training data are learned where the
initial guesses are uniformly distributed about (0,1).

wavenumber, which has η/∆x = 1.5/π , the contraction factor
is ≈ 0.6 [56, 67] and the maximum differentiation error at the
grid (Nyquist) scale is less than 3.5%. Compared to a spectral
method with ηkmax = 1, which has η/∆x = 1/π , the contrac-
tion factor is ≈ 0.4 [56, 67] and the maximum differentiation
error at the Nyquist scale is less than 0.2%. The initial tem-
perature field is set to be uniform and the initial pressure field
is calculated by solving the Poisson equation. More details
about the numerical method and setup can be found in Refs.

[56, 68]. The simulation is conducted until the turbulence be-
comes statistically stationary, which is verified based on the
evolution of the kinetic energy and dissipation [56, 68].

Once a statistically-steady state of HIT is achieved, we ap-
ply a Gaussian filter to smooth the spatio-temporal Eulerian
data for velocity at the resolved scale, d, and then inject the
filtered flow with 163 non-inertial Lagrangian fluid particles.
We use a Gaussian filter, which is commonly used in LES,
with a filtering length scale of the order or larger than the scale
d that can be resolved for the particles. In dimensionless units,
where the energy containing scale, L, which is also the size of
the box, is L = 2π , the smallest scale d we can resolve with
this number of particles is π/8, i.e. 16 times smaller than the
size of the domain.

The particles are placed in the computational domain,
[0,2π]3, where the initial condition is set as an SPH equilib-
rium solution (particles are evolved according to SPH with
no external forcing until particles reach an equilibrium posi-
tion [69]), and then we follow trajectories of the passively ad-
vected particles for time, τ , which is of the order of (or longer)
than the turbulence turnover time of an eddy of size compara-
ble to the resolved scale, d, i.e. τ = O(d2/3/ε1/3), where ε is
the estimate of the energy flux transferred downscale within
the inertial range of turbulence. Note that d is bounded from
above by the size of the box, i.e. L = 2π in the dimensionless
units of our DNS setting, and from below by the Kolmogorov
(viscous) scale, η = O(ν3/4/ε1/4), where ν is the (kinematic)
viscosity coefficient.

In this work, we consider three turbulence cases for train-
ing and testing the model with comparable Reynolds numbers,
Reλ ≈ 80 and turbulent Mach numbers, Mt = 0.04, 0.08, and
0.16, as shown in Table I [23]. The Taylor Reynolds number
is calculated from the turbulence Reynolds number, Ret , us-
ing the isotropic turbulence formula Reλ =

√
20/3Ret [70],

where Ret = k2
t /(νε), with kt the turbulent kinetic energy

based on the filtered velocity. The turbulent Mach number in
DNS is defined as Mt = (2kt)

1/2/cs. In the limit of low Mach
number, for single component flows, density can be expanded
as ρ ≈ ρ0 +ρ1, where ρ1 ∼M2

t ρ0 [71], so that M2
t is propor-

tional to the fluid density deviation from the uniform distri-
bution. Note that any particle-based modeling of turbulence
requires introducing, discussing, and analyzing compressibil-
ity simply because any distribution of particles translates into
fluid density which is always spatially non-uniform, even if
slightly. Therefore, even if we model fully incompressible
turbulence, we should still introduce an effective turbulent
Mach number when discussing a particle based approxima-
tion, which for the weakly compressible limit can be approxi-
mated as M2

t ∼ |ρ−ρ0|/ρ0.
For the Mt = 0.08 case and over each resolution set (N =

123,163,203), training takes place on the order of the Kol-
mogorov timescale tη . When measuring the performance of
each model, generalization errors are computed over different
turbulent Mach numbers as well as over different time scales
(for Mt = 0.08) up to the eddy turn over time. Furthermore,
when DNS data is used in training, the equation of state used
in Eqs. 10 and 9 is P(ρ;c,γ, p0) = c2ργ + p0, to be consis-
tent with the DNS formulation used, where the background
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TABLE I: DNS Cases for training and validation of models.

Case number 1 2 3
Turbulent Mach number Mt 0.08 0.16 0.04
Taylor Reynolds number Reλ 80 80 80
Kolmogorov timescale tη 2.3 1.2 4.7
Usage training validation validation

pressure term p0 is added as a correction for SPH (the pres-
sure gradient term in the SPH framework is not invariant to
changes in this background pressure term, see Appendix A).

B. Training and Evaluating Models

Parameter estimation (i.e training) is performed on each
model on the order of the Kolmogorov time using the mixed
mode gradient based optimization with the field based loss
function (and statistical based loss Section C using velocity
increment) until convergence (see Fig. 3). Once all the mod-
els are trained, they are used to make forward predictions over
larger time scales as seen in Fig. 4 (on the order of the eddy
turn over time) and over different turbulent Mach numbers as
seen in Table I. The future state predictions are evaluated with
respect to loss functions as a performance measure, and de-
tailed statistical comparisons are given.

The shapes of the novel learned parameterized smoothing
kernels are reported in Fig 5. We use the field based loss nor-
malized with respect to the total kinetic energy from DNS as a
quantitative measure comparing each model over larger time
scales and different turbulent Mach numbers as seen in Figs.
6, 8, 7. The errors in translational and rotational symmetries
are recorded in Table II, which shows that as more SPH based
structure is included, conservation of linear and angular mo-
menta is enforced. Furthermore, the single particle statistics,
acceleration pdfs, and energy spectrum (as seen in Figs. 9,
10, 11, and 12 respectively) are used to evaluate the statis-
tical performance of each model as external diagnostics (not
used in training). The results in these figures show that the
SPH informed model using the novel parameterized smooth-
ing kernel W2 (Eq. (10)) performs best at generalizing, with
respect to the statistical and field based performance evalua-
tions, to larger time scales and different turbulent Mach num-
bers, as well as enforces physical symmetries and improves
interpretability over the less informed models.

Discussing in slightly more detail, Fig. 6 clearly shows
that there is a gradual improvement in generalizability as
more physics informed SPH based structure is included in the
model. Although the most generalizable model is the fully
parameterized SPH informed model using the new parame-
terized smoothing kernel W2(a,b), there is a close match be-
tween Pnn (using a NN to approximate the equation of state
within the SPH framework Eq. 8) and (∇P)nn (using a NN to
approximate the SPH based pressure gradient Eq. 7) and the
SPH-W2(a,b) model. Thus, within the SPH-informed mod-
els, using a NN embedded within the SPH framework (such
as in approximating the Equation of State and pressure gradi-
ent term) can actually improve generalizability over the unin-

FIG. 3: Losses converging over iterations when trained on
DNS up to the Kolmogorov time scale with Mt = 0.08.
The physics informed SPH based models achieve the

lowest losses. Each model is seen to interpolate onto the
DNS field data as seen in the u - component of velocity

snapshots in Figure 4 within in the training window.

formed models and the standard SPH-informed model when
using the classical cubic or quartic smoothing kernels. How-
ever, relying on a NN to approximate the full acceleration op-
erator without including any conservation laws, although still
being able to interpolate, does not generalize nearly as well as
the SPH-informed models.

In Figs. 9 and 10, the acceleration statistics comparing
smoothing kernels and each model respectively are reported
for one eddy turn over time with Mt = 0.08 (as seen in train-
ing) and Mt = 0.16, and Mt = 0.04. In this figure, we see a
clear improvement in generalization with respect to the accel-
eration statistics as more SPH structure is used and improv-
ing the accuracy of the SPH framework using the novel pa-
rameterized smoothing kernels. A similar trend is observed
in the single particle statistics as seen in Fig. 11. How-
ever, even the SPH informed models seem to struggle to pro-
vide a close match to DNS acceleration when generalizing
to Mt = 0.04 flow, indicating a limitation to this approach.
However, we should note that the only parameter that was
changed in making forward state predictions for different tur-
bulent Mach numbers was θin j, in order to be consistent across
models and with the DNS external forcing. Finally, in Fig. 12,
the energy spectrum shows some of the key statistical differ-
ences in the model predictions, that the less informed mod-
els, although able to interpolate on the training window like
the other models, predict more energy to be distributed in the
small scales and less in the large scales as compared to DNS
(and as seen in the volume plots of the u-component of veloc-
ity field Fig. 4); whereas the SPH informed models provide a
closer match to the large to small scale energy cascade. For
further analysis of the smoothing kernels and experiments us-
ing a combination of L f and Lkl see Appendix C.
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Training set Generalizability over time
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FIG. 4: Volume plots of snapshots over time comparing Eulerian u velocity component of coarse grained DNS data (at the
same resolution of the models and at Mt = 0.08) to the predictions made with the trained models. This qualitatively shows that
as more SPH structure is included, the better is the ability of the model to generalize all the way to the longest (physically rel-
evant) time scale, teddy (which is the turnover time scale of the largest eddy of the flow) even when it is trained on the shortest

relevant time scale tη . We see the large scale structures present in the u velocity are best captured with the SPH informed mod-
els, and predictions degrade as more reliance is put on using a Neural Network to parameterize the acceleration operator [72].
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FIG. 5: Comparing learned smoothing kernels W1(r;h,a,b)
and W2(r;h,a,b) with standard cubic Eq. (A1) and quartic

Eq. (A2) kernels. Notice the shape of the learned parameter-
ized smoothing kernels includes a relatively larger contribu-
tion from particles farther away and shallower gradients for
nearby particles. See Table IV for the learned parameters.

TABLE II: Rotational and Transla-
tional Invariance errors in trained models

Model Rotational Translational

NODE 3.5×10−4 4.1×10−4

NN summand 3.4×10−5 7.9×10−33

Rot-Invariant NN 1.5×10−32 3.3×10−32

∇P - NN 2.6×10−6 4.5×10−32

EoS NN 4.1×10−32 1.2×10−31

SPH-informed: Wcubic 3.5×10−32 8.5×10−32

SPH-informed: Wquartic 2.1×10−31 5.4×10−31

SPH-informed: W (a,b) 2.4×10−32 1.1×10−31

SPH-informed: W2(a,b) 3.4×10−32 1.2×10−31

(a) Normalized L f over time

(b) Normalized L f over turbulent Mach numbers Mt

FIG. 6: Measuring the generalization error using the
field based loss L f normalized with respect to the total
kinetic energy 〈ke〉 from DNS. (a) The generalization
error over t is computed over 20 different time scales

ranging from the Kolmogorov time to the eddy turn over
time. (b) Generalization error over Mt is computed using
3 different turbulent Mach numbers Mt , 0.04, 0.08, and
0.16, integrated up to the eddy turn over time scale. We

see that the SPH-informed model with the parameterized
smoothing kernel W2(a,b) performs best at generalizing with

time and turbulent Mach numbers. Furthermore, the NNs
embedded within the SPH structure, namely (∇P)nn and

Pnn, showing improvements over the standard SPH model.
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(a) Coarser resolution models over time

(b) Coarser resolution models over turbulent Mach numbers Mt

FIG. 7: Predictive performances of coarser resolution models
with N = 123 particles. Measuring the generalization error

using the field based loss L f normalized with respect to
the total kinetic energy 〈ke〉 from DNS. (a) The gener-

alization error over t is computed over 20 different time
scales ranging from the Kolmogorov to the eddy turn over
time. (b) Generalization error over Mt is computed using
3 different turbulent Mach numbers Mt , 0.04, 0.08, and
0.16, integrated up to the eddy turn over time scale. We

see that the SPH-informed model with the parameterized
smoothing kernel W2(a,b) performs best at generaliz-
ing with respect to time and turbulent Mach numbers.

(a) Finer resolution models over time

(b) Finer resolution models over turbulent Mach numbers Mt

FIG. 8: Predictive performances of finer resolution models
with N = 203 particles. Measuring the generalization error
using the field based loss L f normalized with respect to the
total kinetic energy 〈ke〉 from DNS. (a) The generalization

error over t is computed over 20 different time scales
ranging from the Kolmogorov time to the eddy turn over
time. (b) Generalization error over Mt is computed using
3 different turbulent Mach numbers Mt , 0.04, 0.08, and
0.16, integrated up to the eddy turn over time scale. We

see that the SPH-informed model with the parameterized
smoothing kernel W2(a,b) performs best at generalizing

with respect to time and turbulent Mach numbers. We see
that the improvements by using the SPH-informed model

with parameterized smoothing kernel W2(a,b) become
greater at the finer scale resolutions. We also note that

the DNS data are not fully barotropic, like in the weakly
compressible SPH framework. Thus, for the training Mt ,
Pnn is more flexible and learns a better fit for equation of

state than what is used in the standard SPH model. However,
this model may suffer from over-fitting as seen in (b).
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FIG. 9: Comparing acceleration statistics over time, and
turbulent Mach numbers of the trained SPH based models

showing the learned parameterized smoothing kernels
are a closer match to DNS as compared to the cubic and
quartic smoothing kernels over longer time scales as well
as at different Mach numbers Mt = 0.04 and Mt = 0.16.
However, each model misses the intermittent behavior

seen in the long tails from DNS, and performs poorly on
the Mt = 0.04 indicating limitations of this approach.

FIG. 10: Comparing acceleration statistics over time,
and turbulent Mach numbers of all trained models show-

ing the learned parameterized smoothing kernels are
a closer match to DNS as compared to the cubic and
quartic smoothing kernels on over longer time scales
as well as at different Mach numbers Mt = 0.04 and
Mt = 0.16. Here the smoothing kernels as compared
in Fig. 9 are reported again to compare all the models
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FIG. 11: A diagnostic check comparing single particle
statistics on larger time scales (roughly 20 times longer than

seen in training), with the new parameterized smoothing
kernels SPH-informed model having the best fit. In this

case, each is not seen in training, so represent an external
diagnostic, however, in the Appendix C we see the effects
of including the velocity increment statistical based loss.

FIG. 12: Comparing energy spectrum over time; t = 2.8s ∼
tη is on the Kolmogorov time scale, and t = 16.8s ∼ teddy
is at the scale of the eddy turn over time. We see that the

SPH based parameterized models captures the energy
cascade seen in DNS on both the training time scale and

in generalizing to larger time scales. Furthermore, as seen
qualitatively seen in Fig. 4, the less informed models do not
capture the cascade and show more energy in the small scale

structures and less in the large scales. However, the fully
parameterized SPH-informed models show a dissipation
rate from the large to small scales to be larger than DNS.
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Table III Shows a comparison of run-times and memory
used for training each model on an Intel Core i9-10900X CPU,
applying one step of the training algorithm (see Section B)
using 2D models with 1024 particles. In the numerical ex-
periments presented in this manuscript convergence was typ-
ically observed between 300-1000 iterations for both 2D and
3D training sets. Thus, in summary of training the 2D models,
NODE required up to 1.3-4.3 CPU hours, NN-Sum required
up to 3.5-11.5 CPU hours, Rot-Inv up to 2.4-8.1 CPU hours,
∇P - NN required up to 2.5-8.1 CPU hours, EoS NN required
up to 0.7-2.5 CPU hours, and SPH-informed models required
up to 0.5-1.7 CPU hours. Scaling up to 3D flows with 4096
particles required up to 240 CPU hours for the most expensive
NN-Sum model to achieve convergence.

TABLE III: Comparing (2D) models: Run-
times and Memory, t ∼ tλ : One iteration

Model with FSA Run-time (s) Memory (GiB)

NODE 15.50 9.62
NN summand 41.60 15.61
Rotationally Invariant NN 29.16 9.70
∇P - NN 29.37 9.51
EoS NN 8.87 5.19
SPH-informed 6.03 3.52

VI. CONCLUSIONS

Combining SPH based modeling, deep learning, automatic
differentiation, and local sensitivity analysis, we have de-
veloped a learn-able hierarchy of parameterized "physics-
explainable" Lagrangian models, and trained each model on
both a validation set using weakly compressible SPH data and
a high fidelity DNS data set (at three different resolutions)
in order to find which model minimizes generalization error
over larger time scales and different turbulent Mach num-
bers. We proposed two new parameterized smoothing kernels,
which, once trained on DNS data, improve the accuracy of the
SPH predictions compared to DNS, with the second kernel,
W2(r;h,a,b) (which is smooth at the origin), performing best.

Starting from a Neural ODE based model, we showed that
incrementally adding more physical structure into the La-
grangian models using SPH has several important benefits:

• Improves Generalizability: as seen in Section D 2 and
Section V, where we test the ability of the models
to predict flows under different conditions not seen in
training. The general trend emerged: as more physics
informed SPH based structure was embedded in the
model, the lower the generalization errors became (both
with respect to the loss function used in training and
with the external statistical diagnostics). Furthermore,
using NNs embedded within the SPH framework to
approximate unknown functions can improve general-
izability over the standard formulation, but the fully
parameterized SPH including the novel parameterized
smoothing kernels outperformed the rest.

• Learn new Smoothing Kernels: a key ingredient in the
construction of the SPH method relies on the proper-
ties of the smoothing kernel. Two novel parameter-
ized and learn-able smoothing kernels – non-smooth
and smooth at the origin, respectively – were developed.
We showed that introducing the parameterization free-
dom in the kernels increases flexibility of the physics
informed SPH based models and improves generaliz-
ability.

• Enforces Physical Symmetries: the parameterized
framework automatically enforces the Gallilelian
invariance and allows to keep conservation of linear
and angular momenta (translational and rotational
invariances) under control across the scales of coarse-
graining, see Table II.

• Improves Interpretability: as the learned parameters be-
come physically meaningful – in a critical contrast
to parameters of the NN models which are physics-
agnostic. For example, and as seen in Section C, our
approach is capable to reconstruct with minimal error
(counted against the ground truth) physical parameters,
associated with the equation of state, artificial shear and
bulk viscosity and external forcing.

• More Efficient to Train: as seen in Table III, where we
compare different models within the generalized SPH
hierarchy.

• Robust with respect to different levels of coarse-graining:
the reported results hold under different resolu-
tions within the inertial range of scales, namely at
N = 123,163,203 as seen in Fig. 7 and Fig. 8.

In future works, we plan to go beyond the weakly com-
pressible SPH Lagrangian modeling discussed so far and in-
clude compressible effects such as shocks. Specifically, we
aim to further investigate SPH as a reduced-order Lagrangian
model of highly compressible turbulent flows, and further in-
vestigate the ability to improve and optimize the SPH frame-
work using the two new parameterized smoothing kernels pro-
posed in this work, parameterized artificial viscosities and reg-
ularization terms.

The Julia source code of our parameterized Lagrangian
simulators, the gradient based learning algorithm, sensitiv-
ity calculations for each model in the above hierarchy, and
the post processing tools can be found in https://github.
com/mwoodward-cpu/LearningSPH.
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Appendix A: SPH (in more details)

1. Basic formulation

In this section we give a summary of SPH, most of which
can be found in [17, 18, 58, 69]. SPH is a discrete approxi-
mation to a continuous flow field by using a series of discrete
particles. Starting with the trivial identity

A(r) =
∫

V
A(r′)δ (r− r′)dr′,

where A is any scalar or tensor field. Using the smoothing
kernel W (for interpolation onto smooth "blobs" of fluid) and
after a Taylor expansion it can be shown that (according to
symmetry of smoothing kernel [58])

A(r) =
∫

V
A(r′)W (|r− r′|,h)dr′+O(h2).

where W is constrained to behave similar to the delta function,∫
V

W (r,h)dr = 1, lim
h→0

W (r,h) = δ (r).

The choice of smoothing kernels is important, and effects the
consistency and accuracy of results [54], where bell-shaped,
symmetric, monotonic kernels are the most popular [60], how-
ever there is still disagreement on the best smoothing kernels
to use (but generally should satisfy the conditions outlined in
[61]). Commonly used are the B-spline smoothing kernels
with a finite support (approximating a Gaussian kernel). The
cubic smoothing kernel used in this work has the following
form:

w(q) = σ


1
4 (2−q)3− (1−q)3 0≤ q < 1
1
4 (2−q)3 1≤ q≤ 2
0 2≤ q

(A1)

where, W (|r− r j|,h) = h−dw(q) with q = |r− r j|/h, and
σ = σ(d) = [1/π if d = 3, 10/7π if d = 2] is a normal-
izing constant to satisfy the integral constraint on W (see
[18, 58, 60] for more details). The finite support allows one
to use neighborhood list algorithms discussed below to uti-
lize computational advantages (only requires a local cloud of
interacting particles instead of all the particles in the computa-
tional domain that would be required with a Gaussian kernel).
The quartic smoothing kernel (see [73]) used in this work is

w(q) = σ

{
(2/3−9/8q2 +19/24q3−5/32q4) 0≤ q < 2
0 2≤ q

(A2)

Where σ = 315/(208πh3) for d = 3.
In Section IV, two new parameterized smoothing kernels

are introduced, where the shapes are described by the alge-
braic equations Eqs. 11 and 12. This is done in order to in-
crease the flexibility of the SPH model as well as to allow
the optimization framework to "discover" the best shaped ker-
nel for our application. Both kernels are introduced to cover
a wide range of possible shapes, not necessarily bell-shaped
(see Fig. 13 below), although both satisfy the conditions for
approximating the delta function. The main difference be-
tween the two is that W2(a,b) has a smoother second deriva-
tive and may reduce the likelihood of particle pairing as com-
pared to W1(a,b), however, we postpone a deeper analysis of
this comparison until future work, in which we will analyze
the effects to changing kernels with standardized compress-
ible flows (such as the Sod shock and Sedov blast wave [74]).

FIG. 13: Varying shapes for the two new parameterized
smoothing kernels as compared to the cubic and Wend-
land kernel for d = 3. The optimization framework is
applied in order to discover the best fit shape (see 5).
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SPH can be formulated through approximating integral in-
terpolants of any scalar or tensor field A by a series of discrete
particles

〈A(r)〉=
∫

V
A(r′)W (|r− r′|,h)dr′

≈∑
i

mi
A(ri)

ρ(ri)
W (|r− ri|,h), (A3)

(i.e a convolution of A with W ) where dr′ denotes a volume
element and W (r,h) is the smoothing kernel. Each particle
represents a continuous "blob" of fluid and carries the fluid
quantities in the Lagrangian frame (such as pressure Pi,
density ρi, velocity vi, etc.)

The convenience of this method becomes apparent when
the differential operators are approximated (see [73] for a
more detailed derivation). Using the integral interpolation,

〈∇rA(r)〉=
∫

V
∇rA(r′)W (||r− r′||2,h)dr′.

Now, using the particle approximation

〈∇rA(r)〉 ≈∑
i

mi
A(ri)

ρ(ri)
∇rW (||r− ri||2,h)),

where we see that in this direct approach to approximate
the gradient operator we only need to know the gradient of the
smoothing kernel (which is usually fixed beforehand). Multi-
ple methods have been proposed and different methods are
best suited for different problems. Similar approximations
hold for taking the divergence or curl of a vector field [16].
The most common "symmetrized" approximation of the gra-
dient operator is derived from the following identity,

∇rA(ri) = ρ

(
A(ri)

ρ2 ∇rρ−∇r
(

A(ri)

ρ

))
,

and is approximated with particles as

∇rAi ≈ ρi

N

∑
j

m j

(
A j

ρ2
j
− Ai

ρ2
i

)
∇riWi j. (A4)

2. Approximation of Flow Equations

The above integral interpolant approximations using series
of particles can be used to discretize the equations of motion
(as seen in Eq. (2) with more details found in [16, 18]. Each
particle carries a mass mi and velocity vi, and other proper-
ties (such as pressure, density etc.). We can use Eq. (A3) to
estimate the density everywhere by

ρ(ri) = ∑
j

m jW (|ri−r j|,h),

where although the summation is over all particles, because
the smoothing kernel has compact support the summation

only needs to occur over the smoothing radius (here 2h as
seen in Eq. (A1). Another popular way to approximate the
density is through using the continuity equation and approx-
imating the divergence of the velocity field in different ways
[17]. In what follows we use the notation Ai = A(ri). Us-
ing the gradient approximation defined above (Eq. (A4), the
pressure gradient could be estimated by using

ρi∇rPi = ∑
j

m j(Pj−Pi)∇riWi j,

where Wi j = W (|ri− r j|,h). However, in this form the mo-
mentum equation dtv =− 1

ρ
∇rP does not conserve linear and

angular momentum [17]. To improve this, a symmetriza-
tion is often done to the pressure gradient term by rewriting
∇rP

ρ
= ∂r

(
P
ρ

)
+ P

ρ2 ∇rρ . This results in a momentum equa-
tion for particle i discretized as

dvi

dt
=−∑

j
mi

(
Pj

ρ2
j
+

Pi

ρ2
i

)
∇riWi j,

which produces a symmetric central force between pairs of
particles and as a result linear and angular momentum are
conserved [17], however is not invariant to changes in back-
ground pressure p0. Next, including an artificial viscosity
term and external forcing, the full set of ODEs approximat-
ing PDEs governing fluid motion (namely Euler’s equations
with an added artificial viscosity Π) is

dri

dt
= vi ∀i ∈ {1,2, ...N}

dvi

dt
=−

N

∑
j 6=i

m j

(
Pj

ρ2
j
+

Pi

ρ2
i
+Πi j

)
∇riWi j +fext .

In this work, we start by using the weakly compressible for-
mulation by assuming a barotropic fluid, where equation of
state (EoS) is given by

P(ρ) =
c2ρ0

γ

[(
ρ

ρ0

)γ

−1
]
,

as in [18], where ρ0 is the initial reference density, and γ = 7
is used. In future work, we plan on including the energy
equation to extend these methods for highly compressible
applications.

There are many different forms of artificial viscosity that
have been proposed [75]. In this work, we use the popular
formulation of Πi j that approximates the contribution from
the bulk and shear viscosity along with an approximation of
Nueman-Richtmyer viscosity for handling shocks [18, 57]:

Πi j =


−αci jµi j +β µ2

i j

ρi j
, vi j · ri j < 0

0, otherwise
, (A5)
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where ci j = 0.5(ci + c j) and ci =
√

dP(ρi)/dρ represents the
speed of sound of particle i and

µi j =
hvi j · ri j

|ri j|2 + εh2, ρi j = 0.5(ρi +ρ j),

This artificial viscosity term was constructed in the standard
way following [75, 76]: The linear term involving the speed
of sound was based on the viscosity of an ideal gas. This
term scales linearly with the velocity divergence, is negative
to enforce Πi j > 0, and should be present only for convergent
flows (vi j ·ri j < 0). The quadratic term including (vi j ·ri j)

2 is
used to prevent penetration in high Mach number collisions by
producing an artificial pressure roughly proportional to ρ|v|2
and approximates the von Neumann-Richtmyer viscosity (and
should also only be present for convergent flows). There are
several advantages to this formulation of Πi j; mainly it is
Galilean and rotationally invariant, thus conserves total linear
and angular momentum. A more detailed derivation is found
in [58] (along with other formulations of artificial viscosities).

In practice the summation Eq. (2) over all particles is car-
ried out through a neighborhood list algorithm (such as the
cell linked list algorithm with a computational cost that scales
as O(N) [59]). We also note that Eq. (2) can also be derived
from Euler-Lagrange equations after defining a Lagrangian,
see [58] (for respective analysis of the inviscid case, when the
artificial viscosity term is neglected), then an artificial viscos-
ity Πi j term can be incorporated by using the SPH discretiza-
tions, see [54] for details.

Although the above SPH framework is the most com-
mon and contains the same elements as most formulations
[18, 54, 73, 74, 77, 78], additional terms can be included to
address certain applications and situations. For example, a
particle regularization can be included in an attempt to cor-
rect issues occurring in certain applications involving particle
instabilities and anisotropic distributions which can decrease
the accuracy of SPH. In the works of Lind et al. [77], a par-
ticle shifting is introduced for incompressible SPH solvers
to reduce noise in the pressure field by using Fick’s law of
diffusion to shift particles in a manner that prevents highly
anisotropic distributions. In Marrone et al. [78], the authors
introduce a density diffusion term for simulating violent im-
pact flows. However, in this work, we do not incorporate any
of these additional particle type regularization terms (on top
of the artificial viscosity term which also acts to regularize the
particle distributions) for two main reasons: (1) it is not ex-
pected that these additional particle regularization terms will
have a significant effect for the resolutions considered in this
study (as it was found that the artificial viscosity term used
was sufficient), and also because (2) the primary focus of this
manuscript is to develop a hierarchy of parameterized reduced
Lagrangian models for turbulent flows, and to investigate the
effects of enforcing physical structure within a Lagrangian
framework through SPH versus relying on neural networks
(NN)s as universal function approximators.

3. External Forcing

In order to approach a stationary homogeneous and
isotropic turbulent flow, a deterministic forcing is used (for
simplifying the learning algorithms), which is commonly used
in CFD literature, (e.g. as in [56] which is what is used in gen-
erating the ground truth DNS data) for analyzing stationary
homogeneous and isotropic turbulence. Then,

f i
ext =

θin j

KE
vi, KE =

0.5
N

N

∑
k=1

ρk(u2
k + v2

k +w2
k)

is the kinetic energy computed at each time step, θin j repre-
sents the rate of energy injected into the flow.

4. Numerical Algorithm for Forward Solving SPH

We use a Velocity Verlet (leap frog) numerical scheme for
generating the SPH ground truth data, and for making pre-
diction steps required in our gradient based optimization de-
scribed in Eq. (IV. Using the notation,

X = {(ri,vi)|∀i ∈ {1, ...,N}}, ρ= {ρi|∀i ∈ {1, ...,N}},

dri

dt
= vi,

dvi

dt
= F i(ρ,X),

we proceed according to the following algorithm
1: Compute ρk using Eq. (A3),
2: Compute Fk

i (ρ
k,Xk) using Eq. (2),

3: v
k+ 1

2
i = vk

i +
∆t
2

Fk
i ,

4: rk+1
i = rk

i +∆tv
k+ 1

2
i ,

5: Compute ρk+1 using Eq. (A3),

6: Compute F
k+ 1

2
i (ρk+1,Xk+ 1

2 ) using Eq. (2),

7: vk+1
i = v

k+ 1
2

i +
∆t
2

F
k+ 1

2
i ,

repeated for each time step, k ∈ {0,∆t, ...,T}, where the time
step, ∆t, is chosen according to the Courant-Friedrichs-Lewy
(CFL) condition, ∆t ≤ 0.4h/c. This algorithm has the fol-
lowing physical interpretation: it prevents spatial information
transfer through the code at a rate greater than the local speed
of sound (small in the almost incompressible case considered
in this manuscript).

Appendix B: Methods

In this section, we provide further details into the methods
of this work, including loss functions, sensitivity analysis, and
the learning algorithm.

1. Loss functions

In this section, we consider three different loss functions:
trajectory based (Lagrangian), field based Eulerian, and La-
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grangian statistics based, described in the following three sub-
sections. Since our overall goal involves learning Lagrangian
and SPH based models for turbulence applications, it is the
underlying statistical features and large scale field structures
we want our models to learn and generalize with. This is
discussed further in Section D and Appendix V, where we
compare the statistical and field based generalizability of each
model within the hierarchy.

a. Trajectory Based Loss Function

A naive loss function to consider is the Mean Squared Error
(MSE) of the difference in the Lagrangian particles positions
and velocities, as they evolve in time,

Ltr(θ) = MSE(X,X̂(θ)) = ‖X−X̂(θ)‖2/N,

where X and X̂ are the particle states – the ground truth and
the predicted, respectively. Minimizing this loss function will
result in discovering optimal parameters such that the pre-
dicted trajectories gives the best possible match (within the
model) for each of the particles. However, the Lagrangian
tracer particles are non-inertial, whereas the SPH particles
have mass, thus the trajectory based loss function is not con-
sistent with the data.

b. Field Based Loss Function

The field based loss function tries to minimize the differ-
ence between the large scale structures found in the Eulerian
velocity fields,

L f (θ) = MSE(V f , V̂ f ) = ‖V f − V̂ f ‖2/N f ,

where V f
i = ∑

N f
j=1(m j/ρ j)v jWi j(||r f

i −r j||,h) uses the same
SPH smoothing approximation to interpolate the particle ve-
locity onto a predefined mesh r f (with N f grid points). Lets
recall that SPH is, by itself, an approximation for the velocity
field, therefore providing a strong additional motivation for
using the field based loss function.

c. Lagrangian Statistics Based Loss Function

In order to approach learning Lagrangian models that cap-
ture the statistical nature of turbulent flows, one can use well
established statistical tools/objects, such as single particle
statistics [65]. In this direction, consider the time integrated
Kullback–Leibler divergence (KL) as a loss function

Lkl(θ) =
∫ t f

t=0

∫ ∞

−∞
Pgt(t,zgt ,x) log

(
Pgt(t,zgt ,x)

Ppr(t,zpr(θ),x)

)
dxdt,

where zgt = zgt(t), and zpr(θ) = zpr(θ, t) represent single
particle statistical objects over time of the ground truth and
predicted data, respectively. For example, we can use the

velocity increment, zi(t) = (δui,δvi,δwi), where δui(t) =
ui(t)−ui(0) and z ranges over all particles. Here P(t,z(t),x)
is a continuous probability distribution (in x) constructed from
data z(t) using Kernel Density Estimation (KDE), to obtain
smooth and differentiable distributions from data, as discussed
in [66]), that is

P(τ,z,x) = (Nh)−1
N

∑
i=1

K ((zi−x)/h) ,

where K is the smoothing kernel (chosen to be the normalized
Gaussian in this work). In the experiments below, a combina-
tion of the L f and Lkl are used with gradient descent in order
to first guide the model parameters in order to reproduce large
scale structures with L f , then later refine the model param-
eters with respect to the small scale features inherent in the
velocity increment statistics by minimizing Lkl .

d. Forward and Adjoint based Methods Supplemental

Let us, first, introduce some useful notations for our pa-
rameterized SPH informed models; Xi = (ri, vi)

T , X =
{Xi|i = 1, ...N}, where, ri = (xi,yi,zi), and, vi = (ui,vi,wi),
are the position and velocity of particle i respectively. Also,
θ = [θ 1, ...,θ p]T where p is the number of model parameters.
Now, each parameterized Lagrangian model in the hierarchy
can be stated in the ODE form

∀i : dXi/dt = F i(X(t,θ),θ) = (vi, Fi(X,θ))T , (B1)

where Fi(X,θ) = v̇i is the parameterized acceleration oper-
ator as defined in the above hierarchy. Forward and Adjoint
based Sensitivity Analyses (FSA, ASA), analogous to forward
and reverse mode AD respectively, can be used to compute
the gradient of the loss function (see Section B 1), as seen in
Eq.(B2)

∂θL =

t f∫
0

∂XΨ(X,θ, t)dθX(θ, t)+∂θΨ(X,θ, t)dt, (B2)

Briefly, FSA computes the sensitivity equations (SE) for Sk
i =

dXi/dθ k, by simultaneously integrating a system of ODEs:
(∀i, ∀k = 1, · · · , p : )

dSk
i

dt
=

∂F i(X(t),θ)
∂Xi

Sk
i +

∂F i(X(t),θ)
∂θ k (B3)

which has a computational cost that scales linearly with the
number of parameters (for derivations of FSA and ASA see
Appendix B). Sk

i is computed by solving the IVP Eq. (13)
with the initial condition Sk

i (0) = 0 (assuming X(0) does
not depend on θ). After solving for Sk

i , the gradient is com-
puted directly from Eq. (B2) which is used with standard op-
timization tools (e.g. Adam algorithm of [53]) to update the
model parameters iteratively to minimize the loss (see Ap-
pendix B). As opposed to the FSA method, the ASA ap-
proach avoids needing to compute dθX by instead numeri-
cally solving a system of equations for the adjoint equation



20

(AE) Eq. (B9) backwards in time, according to Section B 2 a.
Once λ is computed through integration backwards in time,
the gradient of the loss function can be computed according
to, ∂θL =−∫ t f

0 λ
T ∂F/∂θdt.

The computational cost of solving the AE is independent
of the number of parameters, however, for high dimensional
time dependent systems, the forward-backward workflow of
solving the AE imposes a significant storage cost since the
AE must be solved backwards in time [62, 79]. Through
hyper-parameter tuning we found that the number of parame-
ters O(1) . p . O(9∗102) for the best fit models within the
hierarchy, and so for N & 1000, the dimension of the system
is much larger than p so FSA is more efficient, and therefore
FSA forms our main structure to compute the gradient. The
gradient is computed over all parameters found from using
SA over all particles; alternatively stochastic gradient descent
(SGD) could be used, however, for each batch all the particle
would need to be simulated forward in time (since each par-
ticle is interacting with all neighboring particles) requiring a
full forward solve for each batch, defeating any computational
advantages of SGD.

e. Mixed Mode AD

In both FSA and ASA described above, the gradient of F i
with respect to the parameters, ∂F i(X(τ),θ)/∂θ, and the Ja-
cobian matrix, {∂F i(X(τ),θ)/∂X j|∀i, j}, need to be com-
puted. In this manuscript, we accomplish this with a mixed
mode approach, i.e. mixing forward and reverse mode AD
within the FSA framework, where the choice is based on effi-
ciency. This is determined by the input and output dimensions
of the function being differentiated. Depending on the above
model used, several functions need to be differentiated and
a mixture of forward and reverse mode can be implemented
within the FSA system for optimizing efficiency. For exam-
ple, when computing ∂F i(X(τ),θ)/∂θ α , with AD where,
F i(θ) : Rp→R2d , if p� 2d, then reverse mode AD is more
efficient than forward mode [47].

2. Forward Sensitivity Analysis

In general, the loss functions in this work can be defined
as

L(X,θ) =
∫ t f

0
Ψ(X,θ, t)dt.

The forward SA (FSA) approach simultaneously integrates
the state variables along with their sensitivities (with respect
to parameters) forward in time to compute the gradient of L;

dθL =
∫ t f

0
∂XΨ(X,θ, t)dθX(θ, t)+∂θΨ(X,θ, t)dt. (B4)

Where, through using the chain rule, we see that the sensitivi-
ties of the state variables with respect to the model parameters
(dθX) are required to compute the gradient of the loss. As-
suming that the initial conditions of the state variables do not

depend on the parameters, then ∂X(0)/∂θ α = 0. Now, de-
fine the sensitivities as Sk

i := dXi/dθ k. Then, from Eq. (3)
we derive

dSk
i

dt
=

dF i(X(t),θ)
dθ k , (B5)

then resulting, after applying the chain rule, in

dSk
i

dt
=

∂F i(X(t),θ)
∂Xi

Sk
i +

∂F i(X(t),θ)
∂θ α

. (B6)

Since the initial condition X(0) does not depend on θ, then
Sk

i (0) = 0. Now, computing the gradient of the loss func-
tion reduces to solving a forward in time Initial Value Problem
(IVP) by integrating simultaneously the state variablesXi de-
fined in the main text, and sensitivitiesSk

i , defined in Eq. (B6).
In order to integrate Eq. (B6) the gradient of F i with re-

spect to the parameters, both ∂F i(X(τ),θ)/∂θ α and the
Jacobian matrix, ∂F i(X(τ),θ)/∂Xi need to be computed.
In this work, this is done with a mixed mode approach.
∂F i(X(τ),θ)/∂θ α , with F i(θ) : Rk → R2d , is computed
with AD (the choice of forward or reverse mode is determined
by the dimension of the input and output space), where k is the
number of parameters and d is the dimension. For example, if
k� 2d (as is the case when NNs are used), reverse mode AD
is more efficient than forward mode [64]. The Jacobian matrix
is computed and obtained through mixing symbolic differen-
tiation packages (or analytically deriving by hand), as well as
mixing AD. For example, when there are NNs used for the
parameterization of the right hand side, then according to ex-
pression for the Jacobian from the main text, AD derivatives
will need to be computed on different functions each with po-
tentially different dimensions of input and output space. The
AD packages used in this work were both ForwardDiff.jl [80]
for forward mode and Zygote.jl [81] for reverse mode. The
Jacobian matrix for 2D problems is

∂Fi(X(t),θ)
∂Xi

=

 [0]2 I2
∂Fi(X(t),θ)

∂Xi



=



[0]2 I2

∂Fx
i

∂x1
i

∂Fx
i

∂x2
i

∂Fx
i

∂x3
i

∂Fx
i

∂x4
i

∂Fy
i

∂x1
i

∂Fy
i

∂x2
i

∂Fy
i

∂x3
i

∂Fy
i

∂x4
i


.

where, the individual derivatives
∂Fy

i

∂xd
i

are computed with AD

(Reverse or Forward mode depending on model chosen from
Section III, and a similar formulation is carried out in 3D).

a. Adjoint Method

This section provides an outline of the Adjoint SA
(ASA) method used in this work (for more details, see [82]



21

[62]). However, we note that the main results of the text did
not require using the adjoint method because the FSA was
found to be more efficient (since a relatively small number
of parameters were needed compared to the number of par-
ticles as discussed in Section IV), but we include this as a
reference to the associated source code that has the option
of using ASA in case the number of parameters becomes
large enough (p >> 2 ∗D ∗N). Again, the goal is to com-
pute the gradient of the loss function. This is a continuous
time dependent formulation, where the goal is to minimize
a loss function L(X(θ, t),θ) which is integrated over time,
L(X,θ) =

∫ t f
0 Ψ(X,θ, t)dt, subject to the physical structure

constraints (ODE or PDE), H(X,Ẋ,θ, t) = 0, and the depen-
dence of the initial condition, g(X(0),θ) = 0, on parameters.
Here, H is the explicit ODE form obtained through the SPH
discretization equations Eq. (3) (discretization of PDE flow
equations),

H(X,Ẋ,θ, t) = Ẋ(t)−F (X(t),θ). (B7)

A gradient based optimization algorithm requires that the
gradient of the loss function,

dθL(X,θ) =
∫ t f

0
∂XΨ(X,θ, t)dθX(θ, t)+∂θΨ(X,θ, t)dt,

be computed. The main difference in the FSA and ASA ap-
proach is that in the ASA calculating dθX is not required
(which avoids integrating the additional k ODEs as in FSA).
Instead, the adjoint method develops a second ODE (size of
which is independent of k) in the adjoint variable λ as a func-
tion of time (which is then integrated backwards in time).

The following provides a Lagrange multiplier approach to
deriving this ODE in λ. First define

L =
∫ t f

0
(Ψ(X,θ, t)+λT (t)H(X,Ẋ,θ, t))dt

+ µ
T g(X(0),θ), (B8)

where λ and µ are the Lagrange multipliers. Now, since H
and g are zero everywhere, we may choose the values of λ
and µ arbitrarily; also as a consequence of H and g being
everywhere zero, we note that ∇θL = ∇θL.

Now, taking the gradient of Eq. (B8), and simplifying

∇θL =
∫ t f

0
(∂XΨdθX+∂θΨ+λT (∂XHdθX

+∂ẊHdθẊ+∂θH))dt

+µ
T (∂X(0)gdθX(0)+∂θg).

Integrating the equation by parts, and eliminating, dθẊ , we
arrive at

∇θL =
∫ t f

0

[(
∂XΨ+λT (∂XH−dt∂ẊH)− λ̇T ∂ẊH

)
dθX

+∂θΨ+λT
∂θH]

]
dt +λT

∂ẊHdθX
∣∣∣∣
t f

+(−λT
∂ẊH +µ

T g)
∣∣∣∣
0
dθX(0)+µ

T
∂θg.

Since the choice of, λT , and, µ , is arbitrary, we set, λT (T ) =
0, and, µT =(λT ∂ẊH)|0(g|X(0))

−1, in order to avoid needing
to compute, dθX(T ), and thus canceling the second to the last
term in the latest (inline) expression. Now, assuming that the
initial values of the state variables, X(0), do not depend on
the parameters, then dθX(0) = 0, and, g = 0. Furthermore,
we use a loss function Ψ that does not depend on θ explicitly,
so that, ∂θΨ = 0. And finally, we can avoid computing dθX
at all other times t > 0 by setting

∂XΨ+λT (∂XH−dt∂ẊH)− λ̇T
∂ẊH = 0.

The resulting equation for the time derivative of λ can be re-
stated as the following Adjoint Equation (AE)

λ̇T = ∂XΨ−λT ∂F

∂X
, λ(t f ) = 0, (B9)

where we also used that according to Eq. (B7), ∂XH =
−∂XF and ∂ẊH = I2d .

Combining all of the above, we see that the simplified equa-
tion for the gradient of the loss function is

∇θL = ∇θL =
∫ t f

0
λT

∂θHdt.

Which, according to Eq. (B7), becomes

∇θL =−
∫ t f

0
λT ∂F

∂θ
dt.

Therefore, in order to compute the gradient, the IVP expres-
sion Eq. (B9) needs to be integrated backwards in time for
λ(t), starting from λ(t f ) = 0. Similar to the FSA formulation
found above, both ∂XF and ∂θF , are computed with a mix-
ture of forward and reverse mode AD tools, depending on the
dimension of the input and output dimension of the functions
to be differentiated.

3. Learning Algorithm

In what follows, we combine all of the computational tools
and techniques introduced so far to outline the mixed mode
learning algorithm.
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Algorithm 1 Mixed Mode Learning Algorithm

1: Given Ground Truth: {X(t0),X(t1), ...,X(t f )} SPH data
2: Select model: dtX(t) = F (X(t),θ) from hierarchy
3:
4: Select SA method (Forward or Adjoint)
5:
6: Choose Loss methods (combination of Trajectory, Field, or

Probabilistic)
7:
8: Choose optimizer: e.g Opt = {RMSprop,ADAM}
9: —————————————————————————

—————–

10:
11: for k← 1, ...,n do
12: Prediction step: Verlet integration of model X̂ =

Verlet(F ,θk,X(t0), t0, t f )
13:

14: Simultaneously compute
∂F

∂X̂i
,

∂F

∂θ
with mixed mode

AD.
15:
16: Simultaneously integrate system of ODEs for sensitivities

Sα
i ;

17:
18:

dtSi =
∂F i(X̂(t),θk)

∂X̂i
Si +

∂F i(X̂(t),θk)
∂θk

19: Compute ∇L
20: end for

21: update θ using optimizer;
22:
23: θk+1 = Opt(θk)

Appendix C: Evaluating models: additional results

In this section, we include additional results of the trained
models, for example using the combination of L f and Lkl .

1. Comparing Smoothing Kernels

In Fig. 5 we compare four different smoothing kernels
included when learning the fully parameterized SPH model;
two standard and fixed smoothing kernels, namely the cubic
Eq. (A1) and quartic Eq. (A2) splines (which follow the Gaus-
sian bell shape); and two novel parameterized smoothing ker-
nels that are learned from DNS data when training the fully
parameterized SPH-informed model Eq. (10). We provide nu-
merical evidence that shows including these novel parameter-
ized smoothing kernels in training improves the ability of the
SPH informed model to solve the interpolation problem and
generalize to flows not seen in training as in Fig. 14. This
result seems to suggest that an improvement to the SPH con-
struction can be made, at least in the weakly compressible set-
ting at the resolved scales as seen in this work, by considering
smoothing kernels which are not of the classical bell shape,

but rather of the more flexible and parameterized form pro-
posed in Eq. (11) and Eq. (12). Future work could be done
in this direction to further analyze and compare these new
smoothing kernels with regards to convergence and consis-
tency. We further compare these smoothing kernels from the
trained SPH models by making forward predictions and eval-
uating the acceleration statistics Fig. 9 and energy spectrum
Fig. 15 and single particle statistics Fig. 16; from which we
can conclude that the new parameterized smoothing kernels,
especially W2, has the best generalizability, i.e improves the
accuracy of SPH over the standard cubic and quartic smooth-
ing kernels to match DNS at different time scales and turbu-
lent Mach numbers with respect to field based and statistical
measures. The learned parameters are tabulated in Fig. IV.

The learned parameters found from training the SPH based
models are found in Table IV.

TABLE IV: Learned SPH parameters

Model ĉ α̂ β̂ γ̂ p̂0 θ̂ â b̂

SPH-informed: Wcubic 0.55 0.19 −0.29 1.69 −0.3 0.0013
SPH-informed: Wquartic 0.53 0.19 −0.25 1.82 −0.28 0.0013
SPH-informed: W (a,b) 0.48 0.21 0.62 2.05 −0.24 0.0009 2.82 3.05
SPH-informed: W2(a,b) 0.50 0.19 0.44 2.05 −0.26 0.0006 1.43 0.53

2. Generalizability: Training with Statistical Loss

In this section we show numerical evidence of the general-
izability of the models when using the Lkl defined above. This
is not reported in the main text as there are only slight differ-
ences seen in the results. However, the largest difference is
seen in Fig. 19 when compared to Fig. 6, namely, the general-
ization error in the rotational invariant model (when measured
with L f /〈ke〉) has improved by roughly 50%. The first part
of training is guided by L f , then switched to Lkl in order to
first guide the parameters to reproduce large scale structures,
then converge the loss using the Lkl in order to learn the small
scale characteristics seen in the velocity increment statistics.
Furthermore, this was done in order to drive the distributions
close enough to avoid large sensitivities of the KL divergence
with respect to the predicted and target distributions. In what
is shown below, we see that by using the statistics based loss,
the models perform better at generalizing with respect to the
single particle statistics (as seen in Fig. 20 when only L f was
used. However, now the energy spectrum of each model per-
forms worse at generalizing to longer time scales. This could
be due to the fact that the models are overfit to reproduce the
velocity increment of the DNS particles and degrade with re-
spect to other measures. This suggests that the field based loss
is a better choice to capture the energy spectrum, and the Lkl
is better to improve generalizability with respect to single par-
ticle statistics. The main conclusion between experimenting
with both loss formulations is that the SPH based parameter-
ization using W2 performs best with respect to both statisti-
cal and field based measures at generalizing over longer time
scales and different Mach numbers.
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(a) Over time

(b) Over Mt

FIG. 14: (a) Measuring (using the L f normalized with
the average kinetic energy) the generalization error over
(a) 20 longer time scales up to the eddy turn over time
and (b) over 3 different Mt ∈ {0.04,0.08,0.16} at the
eddy turn over time scale of each fully parameterized
SPH informed models, comparing two new parame-

terized smoothing kernels with two classic smoothing
kernels. This shows that the new parameterized smooth-

ing kernels outperform in their ability to generalize to
other DNS flows as compared to the the cubic and quar-
tic at this spatial resolution using N = 4096 particles.

FIG. 15: Plotting Energy spectrum over different time
scales and comparing each smoothing kernel. Each model
does well at capturing energy spectrum on the Kolmogorov

time scale, however, on the eddy turn over time, the
quartic and W (a,b) seem to perform marginally better.
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FIG. 16: A diagnostic check comparing single particle
statistics on larger time scales (roughly 20 times longer than

seen in training), with the new parameterized smoothing
kernels SPH-informed model having the best fit. Each is
not seen in training, so represent an external diagnostic.

FIG. 17: The field based loss converging, using
L f to guide large scale structures then switching
to Lkl to capture small scale statistical character-
istics found the velocity increment distribution.
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FIG. 18: Learned parameterized smoothing kernels
compared to cubic and quartic smoothing kernels.

FIG. 19: Measuring the relative error of L f as a percentage
of total kinetic energy. The generalization error over Mt
is computed over 3 different turbulent Mach numbers

Mt ∈ {0.04,0.08,0.16} and on the order of the eddy turn
over time scale. We see that the parameterized smoothing

kernel W2 outperforms under this field based measure.
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FIG. 20: Single particle statistics on larger time
scales (roughly 20 times longer than seen in train-
ing), with the new parameterized smoothing ker-

nels having the best fit. In this case, the velocity in-
crement distribution is used in learning with Lkl .

FIG. 21: Comparing energy spectrum over time;
t = 2.8s ∼ tη is the Kolmogorov time scale, and

t = 16.8s ∼ teddy is at the scale of the eddy turn over
time. We see that when, using L f then Lkl , as more SPH
structure is included in the models the better it is at cap-

turing energy contained in the large scales, however
the less informed models overestimate the energy con-
tained in small scales and the SPH-informed models

underestimate the energy contained in the small scales.
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Appendix D: Validating methodology: Train-
ing and Evaluating Models on SPH data

In this Section, we test the learning algorithm by training
the hierarchy of models on "synthetic" SPH data, and see if
the learned parameters of the fully parameterized SPH model
converge to the true parameters, as well as test if the other
models can interpolate onto the flow. Furthermore, we demon-
strate the effects of incrementally embedding physical struc-
ture into the Lagrangian models. We show the ability of the
mixed mode FSA + AD method to learn the parameterized La-
grangian and SPH based simulators on SPH flow data (as seen
in Section II) with the field based loss and a mixture of field
based and statistical based loss functions. We show that each
model is capable of solving the interpolation problem, which
we evaluate using several quantitative and qualitative diagnos-
tics, but as more physical structure is embedded in the model,
the better is the generalizability to flows not seen in training
and the better it conserves linear and angular momentum.

Each parameterized Lagrangian model within the hierarchy
(see Section III) is trained under equivalent conditions: (a) on
the same SPH samples (see Section II) of fixed temporal du-
ration (which we choose to be equal to the time scale required
for a pair of neighboring particles to separate by the distance
which is on average a factor of O(1) larger than the pair’s ini-
tial separation and henceforth denoted tλ ); (b) with the same
loss function Lkl +L f ; (c) with the FSA method; and (d) with
a deterministic forcing fext (Section A 3 with constant rate of
energy injection).

1. Interpolation of Models: SPH data

In Fig. 22 (and Fig. 23) we see that the physics in-
formed parameterized SPH simulator is learn-able; the esti-
mated physical parameters α̂, β̂ , ĉ, γ̂ , and energy injection rate

ˆθin j converging to the true values where the initial guess for
each parameter is uniformly distributed about (0,1). Further-
more, these figures show that the Weakly compressible SPH
flow is more sensitive to the parameters α and β , which con-
trol the strength of the artificial viscosity term, compared to
parameters c and γ , which control the local slope and shape
of the EoS. This is due to the weakly compressible nature of
the flow being less sensitive to changes in the speed of sound.
Fig. 2 illustrates the ability of the mixed mode method applied
to the EoS-NN model to learn (approximate) physically in-
terpretable functions (namely the barotropic equation of state
P(ρ)) using NNs embedded within an SPH model. However,
we notice that the learned EoS Pnn(ρ) begins to deviate from
the Ptruth(ρ) outside the domain of densities that are seen in
training.

In Fig. 24, we see that each model is capable of learning
the parameters so that the underlying velocity increment dis-
tributions are approximated on the time scale on which learn-
ing takes place. Furthermore, In Fig. 25 we test the trained
models on their ability to reproduce the distribution associ-
ated with the single particle dispersion statistic [65] (showing
how far the particle disperses from its initial condition on a

set time scale). Here it is important to note that the dispersion
statistic was not enforced in the Lkl loss, and so Fig. 24 illus-
trates an external diagnostic test. From this we find that with-
out enforcing the dispersion statistic in the loss function, the
less informed models (namely NODE, and NN summand) fail
to reproduce the true dispersion statistics on both time scales
(tλ , and teddy).

These Figures show that the Lagrangian models introduced
in Section III are learn-able (i.e. interpolated on the SPH
training set). We arrive at these results applying the methods
described in Section B 1 d to a mixture of the loss functions
Lkl +L f introduced in Section B 1.

2. Generalizability (extrapola-
tion capability) on SPH flow data

When the training is complete (i.e. when the loss function
reaches its minimum, and conditions are set as described in
Section D) we validate extrapolation capability of the models
on a validation set, and test data set. The validation data set
corresponds to data generated from the same initial conditions
but are longer in duration (up to the eddy turn over time). The
test set corresponds to flow derived from the setting corre-
sponding to stronger turbulent Mach numbers (which we con-
trol by increasing intensity of the injection term, fext , while
keeping the integral, i.e. energy injection scale, constant, thus
increasing the turbulent mach number, Mt ).

TABLE V: Errors in Rotational and Trans-
lational Symmetries on trained models

Trained Model Rotational Error Translational Error

NODE 4.59 6.57
NN Sum 5.42 1.51
Rot Inv 1.21×10−27 4.22×10−27

∇P 1.20×10−2 1.48×10−27

EoS NN 3.49×10−28 1.18×10−27

Phys Inf 2.31×10−27 7.88×10−27
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(a) Learning physical parameters

(b) Loss function converging

FIG. 22: Solving an inverse problem for the fully physics
informed model on 3D SPH flow with deterministic external

forcing on 4096 particles over the SPH based parameters.
The solid lines show the SPH model parameters (initially

chosen to be uniformly distributed about (0,1)) converging
to the dashed lines representing the ground truth parameters.

Here the Lkl + L f loss function (see Section B 1) is used
(where L f is used in pre-training up to 2100 iterations as

seen in the small increase in the loss as the Lkl is added in).

(a) Learning physical parameters

(b) Loss function converging

FIG. 23: Solving the inverse problems for 3D SPH flow
using L f with a linear deterministic external forcing on

4096 particles over physical parameters including the rate
of energy injection θin j. Notice the field based loss (using

MSE) converging to machine precision, validating the
learning algorithm and its stability. We also note that the
smoothness of the convergence of the loss is most likely
due to the relatively small number of parameters in this
constrained optimization problem leading to a smooth

loss landscape with an identifiable global optimum within
a reasonable neighborhood of initial parameters. For

example, when NNs were embedded withing in the ODE
structure, the loss functions were observed to have some

fluctuation along a downward trend towards convergence.
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FIG. 24: The velocity increment distribution learned over
each model in the hierarchy Section III on the time scale tλ

using the Lkl +L f loss function and the FSA method. We see
that, on the learned time scale, all the models do well at cap-
turing the small scale Lagrangian velocity increment statis-
tics, however, only the more physics informed models do

well at generalizing to larger time scales not seen in training.

FIG. 25: The single particle dispersion statistic dis-
tribution being used as a diagnostic check on each
model in the hierarchy Section III on the learned
time scale and on the eddy turn over time scale
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Training set Generalization over time

FIG. 26: Snapshots of SPH particles evolving, comparing the ground truth SPH data to the learned models, where learn-
ing is done with the LKL + L f loss function. Even though the training is occurring on the shortest (physically rele-

vant) time scale tλ the more physics informed models are able to generalize to much longer time scales – all the way
to the longest (physically relevant) time scale, teddy (which is the turnover time scale of the largest eddy of the flow).
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