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Fluid inertia is known to exert a dominant control over transport processes in fracture flows. In8

particular, recirculating flows readily arise in inertial rough fracture flows and have been shown to9

cause anomalous transport by trapping particles. However, the combined effects of fluid inertia and10

solute diffusion on reactive transport involving fluid–solid reactions have thus far been elusive. This11

study investigates reactive transport involving an irreversible fluid–solid bimolecular reaction for12

wide ranges of Reynolds (Re) and Péclet (Pe) numbers and elucidates how the interplay between13

inertia and diffusion effects controls the dynamics of reactive transport. Solute diffusion (Pe) con-14

trols mainly the total reaction amount, whereas fluid inertia (Re) governs the reaction dynamics15

by inducing complex flow structures such as flow channeling and recirculating flows. Specifically,16

recirculating flows are shown to facilitate fluid-solid reactions by increasing the residence time of17

particles near the fluid-solid interfaces, and such trapping effects increase as Pe increases. Further,18

flow channeling and recirculating flows exert dominant control over the transport of both reactants19

and products. We elucidate the reactive transport dynamics by analyzing particle trajectories and20

quantifying Lagrangian velocity statistics and reaction-related measures. Based on the improved21

understanding, we then propose an upscaled reactive transport model that incorporates Lagrangian22

velocity statistics and velocity-dependent reaction probability, and show that the upscaled model23

successfully captures reactive transport over wide ranges of Re and Pe.24

I. INTRODUCTION25

The reactions between dissolved reactants in the fluid phase and mineral components in the solid phase in frac-26

ture flows govern many subsurface processes and applications such as groundwater contamination and remediation,27

geothermal energy extraction, nuclear waste disposal, geologic carbon sequestration, karst formation, and global28

biogeochemical cycling [1–15]. Surface reactions in channel flows also govern many hydrologic processes and engi-29

neering applications such as hyporheic flow, microfluidic mixers, water filtration technologies, fuel cells, and catalytic30

reactors [16–27].31

In such contexts, reactive transport dynamics can vary widely depending not only on the structural heterogeneity32

of channel geometry, but also on inertia and diffusion regimes. Recent studies indeed have shown that the interplay33

between fluid inertia and reactant diffusion is a key controlling factor for reactive transport in rough fracture flows [28–34

32]. More specifically, fluid inertia can induce complex flow structures, such as flow channeling and recirculating flows,35

in rough fracture flows [32–37]. These flow structures govern the advective transport of reactants. On the other hand,36

the diffusion of reactants leads to mixing and chemical reactions. Therefore, the respective roles of inertia and diffusion37

effects on reaction dynamics should be properly understood to accurately predict reactive transport in fracture flows.38

The effects of fluid inertia and solute diffusion on conservative solute transport in rough fracture flows have been39

widely investigated [33–36, 38–44]. Previous studies have shown that recirculating flows developed at inertial flow40

regimes can induce non-Fickian (anomalous) transport, manifested as both the anomalously early arrival and late-time41

tailing of tracers compared to those in Fickian transport [33–36, 38]. For example, recirculating flows increase flow42

channeling by narrowing the effective aperture of a fracture, thereby inducing early arrivals of solutes at downstream43

locations. On the other hand, recirculating flows induce late arrivals of solutes by increasing the solute residence time44

via a trapping effect, where the degree of the trapping effect has been demonstrated to be highly sensitive to solute45

diffusivity [38].46

Recent studies have also shown the strong effects of recirculating flows and solute diffusion on reactive transport47

in fracture flows. For example, Lee and Kang [45] and Yoon and Kang [46] revealed that the increased residence48

time of reactants in recirculating flows causes mixing-induced fluid-fluid reaction hot spots in channel flows. With49

regard to fluid-solid reactions, Deng et al. [30] discussed the potential effects of recirculating flows’ trapping effect on50
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fluid-solid reactions, and Zhou et al. [47] showed the effects of recirculating flows on the effective dissolution rates and51

channel dissolution patterns. Sund et al. [48] and Sherman et al. [49] focused more on investigating the trapping effect52

of recirculating flows on the transport of solutes with bimolecular fluid-solid reactions, such as removal of reactants53

at the reaction location or adsorbing/desorbing processes in idealized sinusoidal channels. However, the studies are54

limited to relatively low Reynolds number regimes (Re < O(1)) [48, 49], although inertia effects can vary considerably55

in fracture flows. Further, we currently lack a comprehensive understanding of the effects of fluid inertia and solute56

diffusion on reactive transport with surface reactions. Although it is known that inertia and diffusion effects can vary57

widely in rough fracture flows, their compounding effects on reactive transport involving fluid–solid reactions have58

thus far remained elusive.59

To improve the fundamental understanding of reactive transport involving fluid–solid reactions in rough fracture60

flows, we study such transport over wide ranges of inertia and diffusion regimes. We consider a simple instantaneous61

bimolecular fluid–solid reaction, A + Solid → C, where A converts to C via a surface reaction. The use of such62

a simple reaction allows us to focus on the effects of inertia and diffusion on the reactive transport dynamics. We63

then systematically explore wide ranges of inertia and diffusion regimes using Lagrangian-based reactive transport64

simulations and elucidate the respective role of inertia and diffusion on the fluid-solid reactive transport dynamics.65

Based on the improved understanding, we also propose an upscaled reactive transport model with fluid-solid reactions66

by incorporating the velocity-dependent reaction probability into the spatial Markov model. The velocity-dependent67

reaction rule effectively captures the inertia and diffusion effects on the fluid-solid reactions, and the proposed upscaled68

model successfully captured the full reactive transport dynamics, including reactants and products. To the best of our69

knowledge, this is the first study that successfully captures both reactants and products from the fluid-solid reactions70

using a continuous time random walk (CTRW) framework.71

This paper is structured as follows. In Section II, we present methods for rough fracture generation, fluid flow, and72

reactive transport simulations. In Section III, we discuss the key characteristics of fluid flow and fluid–solid reaction73

dynamics in rough fracture flows. In Section IV, we analyze Lagrangian velocity statistics and characterize reaction74

probability in terms of the Lagrangian velocity statistics. Based on these, we then propose an upscaled modeling75

framework that is efficiently parameterized as a function of Lagrangian velocity statistics. Finally, in Section V, we76

present the conclusion of the study.77

II. SIMULATION METHODS78

A. Generation of Rough Fractures79

To study reactive transport in rough fracture flows, we first generate an ensemble of self-affine profiles, which are80

often observed in nature [50–52]. The self-affine profiles are scale-invariant, such that the standard deviation of the81

height difference ∆z between two points separated by lateral distance ∆x can be expressed as82

σ∆z(∆x) = λ−Hσ∆z(λ∆x), (1)83

where λ is the scaling factor, and H is the Hurst exponent that determines the surface roughness. We consider the84

Hurst exponent H = 0.7 which is a commonly observed value in nature [2, 53, 54]. Note that the surface profile is85

flat for H = 1 and becomes rougher as the value of H decreases. We generate 2D fracture geometries as shown in86

Fig. 1 (a), using the successive random addition algorithm [55, 56]. Note that the channel flows are often simplified87

as 2D as considered in this study, but the 3D flow effects can potentially be important in fluid-solid reactions [35, 45].88

Understanding 3D flow effects on reactive transport with surface reactions should be the topic of future study. The89

longitudinal length of the fracture is 100a, where a is the aperture. We generate an ensemble of ten rough fracture90

realizations with the same length, aperture, and the roughness parameter H = 0.7.91

B. Flow Simulations92

We simulate fluid flow through the generated rough fractures by solving the steady-state incompressible Navier–Stokes93

equations (Eq. (2)) and the continuity equation (Eq. (3)) using the finite volume method [57]:94

u⃗ · ∇u⃗ = −1

ρ
∇p+ ν∇2u⃗, (2)95
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FIG. 1. (a) Example of rough fracture geometry, with aperture a and fracture length 100a. Vertical arrows show the inlet
and outlet of fluid and the injection location of solute particles. Particles are injected at x = 10a. (b) Schematic of fluid–solid
bimolecular reaction process. C particles are released when A particles react with solid surfaces. (c) Trajectory of A particle
that reacts in recirculation zone at Re = 1 and Pe = 103. Locations of entrance (green downward triangle), reaction (red dot),
and exit (magenta upward triangle) in recirculation zone are indicated.

∇ · u⃗ = 0, (3)96

where t is the time, u⃗ is the fluid velocity, p is the pressure, ν is the fluid kinematic viscosity, and ρ is the fluid density.97

We set a constant flux condition on the fluid inlet boundary and a zero-gradient pressure condition on the fluid outlet98

boundary (Fig. 1 (a)). At the fracture walls, the no-slip boundary condition is imposed. We quantify the fluid inertia99

effect using Reynolds number (Re), defined as:100

Re =
ūa

ν
, (4)101

where ū is the mean fluid velocity. We solve the flow equations at Re = [1, 10, 20, 40, 60, 80, 100] to encompass a wide102

range of steady inertia flow regimes [44]. The discretization of fracture domains is 10,000 grid cells in the x-direction103

and 100 grid cells in the y-direction; thereby, a single-cell size is a/100 × a/100. We confirmed that flow fields with104

a finer discretization exhibit negligible difference.105

C. Reactive Transport Simulations with Surface Reactions106

We quantify the diffusion effect using the Péclet number (Pe), defined as107

Pe =
ūa

D
. (5)108

We consider Pe = [102, 103, 104] to investigate a wide range of diffusion regimes. In this study, we vary Re and109

Pe values independently by adjusting the fluid kinematic viscosity, ν, and the molecular diffusivity, D, to discern110

the respective roles of inertia and diffusion on the dynamics of reactive transport. A similar approach was recently111

used to elucidate inertia and diffusion effects on conservative and mixing-induced reactive transport [32, 38, 46, 58].112
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The ranges of Re = [1 – 100] and Pe = [102 – 104] are in the observable range of Schmidt number, Sc = Pe/Re,113

which represents various combinations of fluids and solutes under various thermodynamic conditions [59–61]. To avoid114

case-specific results, we consider ten rough fracture realizations with the length of 100a and the aperture of a for each115

combination of Re and Pe. In total, we run 10(H) × 7(Re) × 3(Pe) = 210 reactive transport simulations.116

For surface reactions, we consider an irreversible fluid–solid bimolecular reaction as follows:117

A(aq) + Solid → C(aq). (6)118

The reactant species, A, and product species, C, are dissolved chemical species in the fluid phase. On the other hand,119

Solid represents a reactive mineral species that is assumed to be sufficient and evenly distributed on the fracture120

surfaces such that the reactivity is constant across the solid boundaries and over time. We also assume that the121

aperture evolution is negligible during the reactive transport simulations. This allows us to simplify the modeling122

approaches and also to focus on the role of flow fields on reactive transport dynamics. The effects of aperture evolution123

due to dissolution on reactive transport should be a topic of future research. The reaction between the chemical species124

A and the solid surfaces releases the chemical species C as a passive solute into the fluid, as schematically shown in125

Fig. 1 (b). Similar setups of the bimolecular fluid-solid reactions have been used in previous studies to understand126

reactive transport processes in channel and porous media flows [48, 49, 62–64]. However, the previous studies are127

limited to relatively narrow Peclet and Reynolds number regimes (Re < O(1)), and did not track the product particle.128

It is important to track both reactant and product species under wide ranges of mass diffusion and fluid inertia regimes129

in subsurface processes. For example, in the carbon mineralization process, dissolution of mafic and ultramafic rocks130

by CO2-dissolved acidic fluid releases cations, such as calcium and magnesium, into the fluid; then, the cations react131

with CO2 and form stable carbonate minerals [65, 66]. Therefore, the fluid-solid reaction, such as mineral dissolution,132

is a critical step in the carbon mineralization process, and understanding the respective transport of reactant and133

product ions under various mass diffusion and fluid flow conditions is essential to understand the carbon mineralization134

process rigorously. In addition to that, the simple fluid–solid reaction can be considered as a building block of more135

complex reactions such as mineral dissolution and precipitation [30, 63, 64, 67–70], fate of contaminated water [71, 72],136

metabolic activity in biofilms [14], water filtration and purification [20–23], and catalytic surface reactions [26, 27].137

Reactive transport involving the fluid–solid reaction is described using the advection–diffusion equation with reactive138

boundary conditions [49, 73, 74] as follows:139

∂Ci(x, t)

∂t
+∇ · [u⃗(x)Ci(x, t)] = ∇ · [D∇Ci(x, t)] i = A & C ∀ x ∈ Γfluid, (7a)140

141

∂CA(x, t)

∂t
= −D

∂CA

∂n
∀ x ∈ Γsurface, (7b)142

143

∂CC(x, t)

∂t
= D

∂CA

∂n
∀ x ∈ Γsurface, (7c)144

where CA(x, t) and CC(x, t) are the reactant and product concentration fields, respectively, at time t. Moreover, D145

is the molecular diffusivity, and n is the normal vector pointing toward the fluid from the fracture surfaces. The146

advection–diffusion equation (Eq. (7a)) governs the transport of A and C in the fluid phase, whereas the reactive147

boundary conditions (Eqs. (7b) and (7c)) determine the fluid–solid reaction at the fracture surfaces. We consider148

a catalytic reaction such that the A particles that diffuse toward the surfaces instantaneously convert into the C149

particles at the contact locations between the A particles and the surfaces. In such a reaction system, the reaction150

rate is directly determined by the diffusive flux toward the fracture surfaces [75–80]. The simplicity of this catalytic151

reaction allows us to focus on the role of transport-limited, specifically diffusion-limited, reaction on the fluid–solid152

reactive transport dynamics [62]. Fig. 1 (c) shows an example of a particle trajectory where an A particle enters a153

recirculating flow, is converted into a C particle by the collision with the surface, and exits from the recirculating154

flow.155

To numerically solve Eq. (7), we use a Lagrangian method [81–83]. The Lagrangian approach can simulate so-156

lute transport without numerical dispersion, allowing particle motions to be accurately captured even at high-Pe157

regimes [81, 82]. The particle motion is described by the discretized Langevin equation [84]:158

x(t+∆t) = x(t) + u⃗(x(t))∆t+
√
2D∆tη(t), (8)159
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where x(t) is a particle trajectory, ∆t is a time step, and η(t) represents independent and identically distributed160

Gaussian variables with zero mean and unit variance. For each simulation, we inject 5 × 104 A particles as a flux-161

weighted line injection at the downstream location of x = 10a (Fig. 1 (a)). At each time step ∆t, the A particles first162

move via advective particle motion, followed by a diffusion step. The advective step is solved using a streamline-based163

particle tracking algorithm that honors no-slip boundary conditions [81, 82]. To determine the time step ∆t for each164

particle movement, we compute characteristic advection and diffusion times; then, we choose the smaller between the165

two. Thus, the time step is not fixed and dynamic. The characteristic advection time, ∆tadv, is defined as a time for166

a particle to travel to a grid cell boundary from its position by advection [82], and the characteristic diffusion time167

step is defined as ∆tdiff = (dx/10)2/Dm. Here, dx is the grid cell size, and Dm is the molecular diffusion coefficient.168

Thus, ∆tdiff is the characteristic time required for a solute particle to move a tenth of the grid cell size by diffusion,169

which is a strong constraint to avoid any numerical artifacts. Additionally, the size of the time step (∆t) used in170

the simulation could affect the outcomes [85, 86]. To address this issue, we conducted tests using smaller time steps171

(∆t/2 and ∆t/4) and observed that the essential simulation results remain consistent and independent of the time172

step. However, to gain a deeper understanding of the impact of the time step on the particle-tracking algorithm for173

a bimolecular fluid-solid reaction, further theoretical analysis is necessary in future research [85, 86]. We consider a174

reflection boundary condition when the particles encounter the fracture walls during the diffusion step [49, 58, 87]. If175

an A particle collides with fracture surface, the A particle converts into a C particle at the collision location. The C176

particle gets released into the fluid phase via the reflection boundary condition, and the C particle continues to be177

transported without further reactions. Movies showing examples of the reactive transport simulations can be found178

in the supplementary material [88].179

III. SIMULATION RESULTS AND ANALYSIS180

A. Inertia Effects on Flow Properties181

Transport and reaction processes in rough fracture flows are fundamentally controlled by the underlying flow182

fields [38, 45, 58]. Thus, we first analyze the flow properties at different Re values to quantify the inertia effects on183

fluid flow. Figs. 2 (a) and (b) show the normalized velocity fields with streamlines at Re = 1 and 100. The color bar184

shows the normalized velocity magnitudes, where the normalization is based on the maximum velocity magnitude for185

a given case. In contrast to the Re = 1 case, significant recirculation zones are observed at Re = 100 (Fig. 2 (b)). The186

recirculating flows, induced by the interplay between fluid inertia and rough surfaces, reduces the effective aperture,187

thereby also enhancing the flow focusing (channeling) along the center of the fracture.188

We delineate recirculation zones using the zero-integral-flux method [89] and quantify the area of the recirculation189

zones at each Re case. Figs. 2 (c) and (d) show the delineated recirculation zones in gray and the main flow channels190

in white at Re = 1 and 100. We then calculate the ratio of the recirculation area over the entire domain area for the191

ensemble of 10 realizations. As shown in Fig. 2 (e), the ratio of the recirculation area is negligible up to Re = 20 but192

then increases up to approximately 23 % at Re = 100. The increasing trend is approximately linear from Re = 20 to193

Re = 100.194

We further quantify the inertia effects on the flow fields by plotting the probability density functions (PDFs) of195

the Eulerian velocity magnitudes. Fig. 3 shows the PDFs of the velocity magnitudes in the entire domain, main196

flow channel, and recirculation zones at Re = 1 and 100. The recirculation zones led to the noticeable differences197

between the velocity PDFs for Re = 1 and 100 (blue circles and red triangles, respectively). First, the effects of strong198

recirculating flows at Re = 100 are evident in the slow velocities. As shown in Fig. 3 (a), the probabilities of slow199

velocities (velocity magnitudes smaller than 10−2 m/s, the vertical dashed line) are noticeably higher at Re = 100200

(solid red line with triangles) than at Re = 1 (solid blue line with circles). This is because the recirculation zones201

consist of slow velocities, as shown by the yellow line with triangles in Fig. 3 (a). This implies that the recirculation202

zones will act as trapping zones where particles are kept near the fracture surfaces for an extended time, as evidenced203

by the particle trajectory in Fig. 1 (c).204

The enhanced flow channeling at Re = 100 is evident from Fig. 3 (b). The velocity PDFs of the main channel at Re205

= 100 (solid red line with triangles) and Re = 1 (solid blue line with circles) have a similar shape, but the Re = 100 case206

shows a higher probability for higher velocity magnitudes (velocity magnitudes greater than 10−2 m/s, the vertical207

dashed line). This is because the recirculating flows increase the velocities in the main flow channel by decreasing208

the effective aperture. The strong flow channeling will cause the particles to travel through the fracture faster, which209

may inhibit fluid–solid reactions because the channeling will inhibit particles from reaching the fracture walls. On the210

other hand, the flow channeling will increase the spreading of reactants, which may contribute to fluid–solid reactions.211

We investigate the effects of the aforementioned flow properties on transport and reaction dynamics in the following212

subsections.213
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Re=1 Re=100(a) (b)

(c) (d)

(e)

FIG. 2. (a–b) Normalized Eulerian velocity magnitude fields at Re = 1 and 100 with streamlines. Velocity magnitudes are
normalized based on maximum velocity for a given case. (c–d) Delineated recirculation zones in gray and main flow channels
in white. (e) Ratio of recirculation area over entire domain area as function of Re. Circles and error bars show mean and
standard deviation, respectively, of 10 realizations.

Full Domain & Recir. Zone Main Channel(a) (b)
Log binning
normal plot

FIG. 3. Probability density functions (PDFs) of Eulerian velocity magnitudes from (a) full domain (FD) at Re = 1 (solid blue
line with circles) and Re = 100 (solid red line with triangles), and recirculation zones (RZ) at Re = 100 (solid yellow line with
triangles). (b) Velocity PDFs of main flow channel (MC) at Re = 1 (solid blue line with circles) and Re = 100 (solid red line
with triangles). Note that “full domain” refers to the entire domain, including the main flow channel (white area in Figs. 2 (c)
and (d)) and recirculation zones (gray area in Figs. 2 (c) and (d)). The vertical dashed lines indicate the location of 10−2 m/s
on the x-axis. Eulerian velocity magnitudes are obtained from ensemble of 10 realizations.

B. Inertia and Diffusion Effects on Reactive Transport214

1. First-passage Time Distributions215

Herein, we present and discuss the first-passage time distributions (FPTDs), also known as breakthrough curves,216

for each combination of Re = [1, 100] and Pe = [102, 103, 104]. We examine both conservative tracer scenarios and217

reactive tracer scenarios, in which we inject 5×104 particles for each simulation. In the conservative scenario, we inject218

passive tracers that do not undergo any reactions. The comparison of FPTDs obtained from the conservative and219

reactive transport simulations is helpful for understanding both the transport and reaction dynamics. Fig. 4 shows220

the FPTDs at x = 90a for the conservative scenario (blue lines) and for the reactive scenario (red lines showing the221

FPTDs of reaction-product C particles). Because both the reactant A particles and the product C particles behave222
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as passive tracers in the fluid phase, we can view the product C particles as a subset of the conservative particles.223

Fig. 4 (a) shows the FPTDs for the conservative scenario and of the C particles at two different Re values, where224

Pe/Re is fixed to 100. The other figures show the FPTDs at two different Re values but with fixed Pe values of 102,225

103, and 104.226

(c) (d)Pe=103 Pe=104

Pe/Re=100(a) (b) Pe=102

FIG. 4. First-passage time distributions (FPTDs) at x = 90a. Herein, y-axis is normalized based on total number of injected
particles, whereas x-axis is normalized based on one pore volume injection (1 PVI), i.e., time required to inject fluid volume equal
to that of the fracture domain. (a) Solid red lines indicate FPTDs of conservative-scenario particles (conservative transport),
whereas dashed blue lines indicate FPTDs of product C particles (reactive transport) in cases wherein Re and Pe increase
proportionally (Pe/Re = 100). Re = 1 & Pe = 102 (triangle marks) and Re = 100 & Pe = 104 (circle marks). (b)–(d) Solid
orange lines indicate FPTDs of conservative-scenario particles (conservative transport), whereas dashed sky-blue lines indicate
FPTDs of product C particles (reactive transport) at Re = 1 (triangle marks) and 100 (circle marks) for Pe = [102, 103, 104].

First, increase in the Re and Pe significantly increases the overall spreading. For both the conservative-scenario227

particles and reaction products, the early arrival and late-time tailing in the FPTDs intensify as the Re and Pe228

increases (Fig. 4 (a)). To elucidate the effects of inertia, we compare FPTDs at two different Re values but with fixed229

Pe (Figs. 4 (b–d)). The increase in Re clearly leads to enhanced spreading. Early arrival and late tailing are the230

two key features of non-Fickian transport, and the role of recirculating flows in inducing such anomalous transport231

in rough fracture has been demonstrated [33–35, 38, 58, 90, 91]. This study shows that the inertia effect also exerts232

a dominant control over reactive transport with heterogeneous reactions. As discussed in the previous section, an233

increase in Re develops recirculating flows, and recirculating flows enhance the flow channeling. Therefore, as Re234

increases, both the conservative and product C particles can arrive earlier through the fast main flow channels and235

also arrive later because of the trapping effect of the recirculating flows.236

Second, in general, there are large differences between the conservative and product C particles in the early-arrival237
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regimes, whereas those in the late-arrival regimes are almost identical. The double-headed arrows in Fig. 4 indicate238

the differences in the early arrivals, and these differences magnify as both Re and Pe increase. The difference is not239

noticeable at Pe = 102 (Fig. 4 (b)) but becomes significant as Pe increases (Fig. 4 (c) and (d)). This is mainly due to240

the natures of the fluid–solid reaction and the diffusion effect. The A particles that stay near the fracture walls have241

higher chances to undergo reactions compared to the A particles that stay near the channel center. Therefore, the242

reaction probability is larger for the particles with larger arrival times, leading to a similar tailing behavior between the243

conservative-scenario particles and product C. On the other hand, the A particles that stay near the channel center244

tend not to undergo the reaction, leading to significant differences in the early arrivals. Such effect diminishes as the245

diffusion effect increases because the increase in diffusion allows particles to easily travel across in the fracture-width246

direction.247

Fig. 5 (a) shows the ratio of the number of product C particles to the number of injected A particles at the248

breakthrough location x = 90a as a function of Pe for both Re = 1 and 100. When the ratio is one, it indicates249

that all the injected particles underwent the reaction. The figure shows that Pe is the primary control on the overall250

reaction amount. At Pe = 102, most A particles undergo reactions because of the enhanced diffusion, leading to the251

identical FPTDs between the conservative-scenario particles and product C particles (Fig. 4 (b)). To quantify the252

inertia effect on the overall reaction amount, we estimated the percentage change in the number of the C particles253

between the Re = 100 and Re = 1 cases ((
∑

Nc@Re=100 −
∑

Nc@Re=1)/
∑

Nc@Re=1) at fixed Pe values. As shown in254

Fig. 5 (b), the percentage increases as Pe increases (0.3% at Pe = 102, 8% at Pe = 103, and 75% at Pe = 104). This255

indicates that the recirculation zones facilitate the fluid–solid reactions and that this effect increases as Pe increases.256

The 2D recirculation zones are advectively disconnected from the main flow channel [33, 34], and the recirculating257

flows could act as reaction barriers for fluid–solid reactions [30]. However, for the transport-limited reaction considered258

in this study, once the particles enter the recirculation zones via diffusion, the trapped particles have a significantly259

higher chance to undergo reactions. In 3D, recirculation zones and main flow channel are connected through advective260

flow paths and such connectivity can strongly affect mixing and transport [35, 45]. Such 3D recirculating flow features261

would have a potential influence on surface reactions. Therefore, the effects of 3D recirculating flows on fluid-solid262

reaction requires a future work.263

(a)

0.3%
8%

75%

(b)
(∑Nc@Re=100 - ∑Nc@Re=1)/ ∑Nc@Re=1

FIG. 5. (a) Mass ratio of product C particles to injected A particles estimated at breakthrough location x = 90a for Re = 1
(blue bars) and Re = 100 (red bars) at Pe = [102, 103, 104]. (b) Percentage change in reaction amount between Re = 100 and
Re = 1 ((Nc@Re=100 −Nc@Re=1)/Nc@Re=1) for three Pe values.

2. Reaction Dynamics264

To further quantify the effects of inertia and diffusion on reactive transport dynamics, we characterize the bulk265

fluid–solid reaction dynamics using the global (effective) reaction rate, RC , defined as the time derivative of the C266

particle accumulation, NC , as defined as follows [63]:267
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RC =
dNC

dt
. (9)268

Fig. 6 shows the time evolution of the global reaction rate for combinations of Re = [1, 100] and Pe = [102, 103, 104].269

Fig. 6 (a) shows the results for two cases wherein the ratio of Pe to Re is fixed to 100, whereas Figs. 6 (b–d) show the270

results for Re = 1 and Re = 100 at three different Pe. Fig. 6 (a) can be understood as showing two cases wherein the271

solute–solvent combinations are fixed, but the injection rates differ by two orders of magnitude. On the other hand,272

Figs. 6 (b–d) help to discern the respective effects of Re and Pe on the global reaction rate. The results show that273

the early reaction regime is controlled mainly by Pe, whereas the later regime is more sensitive to Re. Specifically, for274

the same Pe, Re = 1 and Re = 100 result in similar initial global reaction rates, and increasing the Pe significantly275

decreases the initial global reaction rates (see the y-intercepts in Figs. 6 (b–d)).276

The facilitation of fluid–solid reactions by the increase in fluid inertia (Re) is evident in the later stages of the277

reactive transport: the increase in Re significantly enhances the reaction duration, and this effect intensifies as Pe278

increases. This is because the recirculating flows increase the residence time via the trapping effect, which enhances279

reaction. Because the trapping effect increases as Pe increases, the enhanced reaction rate and the prolonged reaction280

duration at Re = 100 become more evident as Pe increases. The reaction enhancement by the increase in Re is281

consistent with the result in Fig. 5 (b).282

The results have direct implications on the well-known discrepancy between effective reaction rates measured under283

fluid flow conditions and the reaction rates measured under well-mixed conditions [3, 14, 31, 92–99]. For fluid–solid284

reactions, the effective reaction rates depend on the reactant concentrations near the fracture surfaces, and flow285

structures and diffusion affect spatiotemporal distribution of reactants [28, 29, 100]. The estimated global reaction286

rates highlight the effects of fluid inertia and solute diffusion on the effective reaction rates.287

The time evolution of the total number of C particles further highlights the inertia and diffusion effects on fluid–solid288

reaction dynamics. As shown in Fig. 7, fluid inertia increases the generation rate of C particles, as shown by the289

slopes. Specifically, the slopes are consistently larger at Re = 100 than at Re = 1, and the difference between these290

two cases increases as Pe increases. This is because of the flow channeling and trapping effects by recirculation zones;291

the flow channeling increases overall spreading of the particles and once the A particles are trapped, they are more292

likely to react with the walls because the diffusion effect becomes dominant in the recirculation zones. Fig. 7 confirms293

that recirculation zones facilitate the fluid–solid reaction, and that such effect intensifies as Pe increases. Note that294

the magnitude of the slope is more sensitive to Pe than to Re, which is consistent with the results shown in Fig. 6.295

Fig. 7 also shows that fluid inertia increases the reaction duration, which is defined as the time interval between296

the first and last reactions. The differences in reaction duration between Re = 1 and Re = 100 are denoted by ∆T297

(Figs. 7 (a–c)). The increased reaction duration at Re = 100 shows that the recirculating flows increase not only the298

global reaction rate but also the reaction duration. To directly estimate the role of recirculating flows on the reactive299

transport dynamics, we estimated the percentage of the reactions that occurred in recirculation zones during ∆T and300

during the entire reaction duration for Re = 100. Fig. 7 (d) shows that the percentage is consistently larger during301

the ∆T period (red lines) than in the entire reaction duration (blue lines). Furthermore, the percentage increases as302

Pe increases. This indicates that the recirculation zones play a more dominant role in the fluid–solid reaction at high303

Pe regimes and at later times. The result confirms that the recirculating flows are the main cause of the prolonged304

reaction duration.305

To elucidate the relation between transport and reaction dynamics, we now quantify the reaction frequency as306

a function of Lagrangian velocity magnitudes. First, for each particle trajectory, we estimate average Lagrangian307

velocity magnitudes at every ∆x = a. In other words, we estimate the average Lagrangian velocity whenever a308

particle travels a longitudinal distance of a. Subsequently, we sample the velocity values for the injected A particles309

up to the point when they undergo reactions and the velocities at which the A particles underwent reactions. From310

this information, we count the total frequency of each velocity class from all sampled velocities (All in Fig. 8) and311

also from the velocities at which the A particles underwent reactions (Reac in Fig. 8). Note that we discretized the312

velocity magnitudes into 100 classes (bins) that are equally spaced in log scale.313

Fig. 8 highlights the importance of the underlying flow fields on heterogeneous reactions. First, small velocity314

magnitudes (< 100) exhibit significantly higher frequencies at Re = 100 than at Re = 1. This is because the315

recirculating flows that develop at Re = 100 significantly enhance the frequencies of small velocities. Second, the316

solid (velocity frequencies for A particles) and dashed (velocity frequencies at reaction locations) lines are almost317

identical at small velocity magnitudes (< 100) but exhibit a large discrepancy at larger velocity magnitudes (> 100).318

This result indicates that the A particles are highly likely to undergo reactions at small velocities, but not at high319

velocities. Lastly, particles experience broader velocity ranges at Re = 100 than at Re = 1. In the following section,320

we use the understanding of reaction dynamics that we have established thus far to upscale the reactive transport.321
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(a) (b)

(c) (d)

Pe=102Pe/Re=100

Pe=104Pe=103

FIG. 6. (a) Time evolution of global reaction rate (RC) at Re = 1 & Pe = 102 (solid blue line) and Re = 100 & Pe = 103

(solid red line). Global reaction rates (RC) at Re = 1 (solid sky-blue lines) and Re = 100 (solid orange lines) for (b) Pe = 102,
(c) Pe = 103, and (d) Pe = 104. Time is normalized by one pore volume injection (1 PVI).

IV. UPSCALED MODEL FOR REACTIVE TRANSPORT WITH FLUID–SOLID REACTIONS322

In this section, we present the development of a parsimonious upscaled model that effectively captures reactive323

transport. The upscaled model helps identify the key factors controlling the fluid-solid reactive transport dynamics.324

It can also effectively capture the key reactive transport processes without substantial computational resources. The325

computation time is 40 to 800 times faster, depending on the Re and Pe combination, for the upscaled model. Note326

that the computation time depends on the number of particles used in the upscaled model and this comparison assumes327

that the parameters for the upscaled model are known. In recent years, upscaled models based on continuous-time328

random walk (CTRW) theory have been successfully applied to both conservative [38, 39, 58, 101–110] and reactive329

transport in heterogenous media [46, 48, 49, 58, 62, 87, 110–113]. However, it is currently unclear how to upscale330

reactive transport with surface reactions over wide ranges of inertia and diffusion regimes in rough fracture flows.331

Here, we extend the Spatial Markov model (SMM), a type of CTRW that explicitly honors velocity correlation [104].332

We extend the SMM by incorporating a reaction probability model that is parameterized with Lagrangian velocities.333

A. Lagrangian Velocity Statistics334

We first characterize the Lagrangian velocity statistics which are the key input parameters to the SMM. We335

discretize the particle trajectories as successive jumps of a fixed distance ∆x = a in the longitudinal direction (mean336

flow direction):337
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FIG. 7. Number of product C particles normalized based on total number of injected particles at Re = 1 (solid blue lines)
and Re = 100 (solid orange lines) for (a) Pe = 102, (b) Pe = 103, and (c) Pe = 104. Each line represents the average of ten
realizations, and time is normalized based on one pore volume injection (1 PVI). (d) Percentage of reactions that occurred in
recirculation zones (RZ) in ∆T (blue solid line with circles) and for the entire time (Entire T, orange solid line with triangles)
at Re = 100 as function of Pe.

Pe=102 Pe=103 Pe=104

FIG. 8. Frequencies of sampled velocities up to point when particles undergo reactions (solid blue lines for Re = 1 and solid
orange lines for Re = 100) and sampled velocities at which reactions occurred (blue dashed lines for Re = 1 and red dashed
lines for Re = 100) at Pe = [102, 103, 104].

x(n+1) = x(n) +∆x, t(n+1) = t(n) + τ (n), (10)338
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where x(n) and t(n) are the particle location and time at a jump step n, and τ (n) is the transition time. The transition339

time is related to the Lagrangian velocity v(n) as τ (n) = ∆x
v(n) . For each Re-Pe combination, we sampled the Lagrangian340

velocities v(n) from all particle trajectories of 10 ensembles.341

Lagrangian velocity statistics can be effectively characterized by velocity transition matrices, as shown in Fig. 9342

(a). To construct the velocity transition matrices, the Lagrangian velocities, v(n) = ∆x
τ(n) , are classified into the 100343

velocity classes, i = [1, ..., 100], which are evenly spaced in log scale. Note that i = 1 and i = 100 are the slowest and344

fastest velocity classes, respectively. The velocity transition matrices show the velocity transition probability (Tij)345

between the current i and next j velocity classes. The value of Tij indicates the probability of sampling the j-th346

velocity class given the i-th velocity class.347

Re
=1

Re
=1

00

Pe=102 Pe=103 Pe=104(a)

(b) Pe=102 Pe=103 Pe=104

FIG. 9. (a) Velocity transition matrices for combinations of Re = [1, 100] and Pe = [102, 103, 104]. (b) Velocity-dependent
(Prxn|i) reaction probabilities as function of velocity classes for Re = 1 (dashed blue lines with circle marks) and 100 (dashed

red lines with circle marks) at Pe = [102, 103, 104]. Note that velocity class 1 is the slowest velocity class, and 100 is the fastest
velocity class.

The transition matrices effectively capture the effects of both flow channeling and recirculating flows on transport.348

First, the diagonal elements of the transition matrices tend to have larger values compared to the off-diagonal elements,349

especially for high-velocity regimes (75 ≤ i ≤ 100). Higher probabilities along the diagonal elements imply the350

tendency to maintain one’s velocity. Thus, the diagonal values are large when the velocity correlation is large which351

is the case for high-velocity regimes: the particles in the main flow channel are likely to continue to experience fast352

velocities. Furthermore, the probability along the diagonal elements increases as Re increases, which can be explained353

by the enhancement of flow channeling due to the recirculating flows developed at Re = 100 (Fig. 2 (b)). The354

probability along the diagonal elements also increases as Pe increases because particles tend to stay in a streamline355

at high Pe regimes.356
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Velocity correlation decreases as velocity magnitude decreases, especially for Re = 1, but an interesting phenomenon357

arises at Re = 100. The particles with low velocities tend to transit to higher velocities, as indicated by the red arrows358

in Fig. 9 (a). This is because the trapped particles in recirculating flows tend to experience high velocities in the main359

channel flow when they exit the recirculation zones. A similar phenomenon was recently reported for solute transport360

in turbulent channel flows over porous media [114].361

Lastly, we compute the velocity-dependent reaction probabilities. We first obtain Ni and Nrxn,i, where Ni is the362

total frequency of the sampled i-th velocity class that A particles experience until reaction, and Nrxn,i is the total363

frequency of the sampled i-th velocity class at which reaction occurs. We then calculate the velocity-dependent364

reaction probability at each i-th velocity class, P[rxn|i], by dividing Nrxn,i by Ni as follows:365

P[rxn|i] =
Nrxn,i

Ni
, i = [1, ..., 100]. (11)366

Fig. 9 (b) shows the velocity-dependent reaction probabilities for all combinations of Re = [1, 100] and Pe =367

[102, 103, 104]. The figure shows that the reaction probabilities decrease as velocity magnitude increases. This is368

because the fluid–solid reaction is more likely to occur at small velocities. At Re = 100, the reaction probability369

decreases as Pe increases because the particles become less likely to react due to low diffusivity. However, recirculation370

zones still enhance the overall reaction amount because the recirculation zones significantly enhance the frequencies371

of experiencing small velocities (as shown in Fig. 8), which have higher reaction probabilities than those at high372

velocities. In particular, the red solid lines and red dashed lines in Figs. 8 (a) and (b) (Re = 100 & Pe = 102 and Re373

= 100 & 103 cases) almost overlap at small velocities. This means that the reaction probability at the small velocities,374

which occurs mostly inside recirculating flows, is almost one, as illustrated in the first and second panels (Pe = 102375

and 103 cases) of Fig. 9 (b). However, for the Re = 100 and Pe = 104 case, the strong advection prevents particles376

to react even at small velocity regions and therefore the reaction probability decreases significantly.377

B. Upscaled Model Predictions378

Here, we extend the SMM framework by incorporating a reaction step with the velocity-dependent reaction prob-379

ability (Eq. (11)) as follows:380

x(n+1) = x(n) +∆x, t(n+1) = t(n) + τ (n), p =

{
A, otherwise

C, if P[rxn|i(n)] ≥ ξ
, (12)381

where i(n) is the velocity class at the n-th step, p is the particle type (A or C), and ξ is a sampled random variable382

from a uniform distribution between 0 and 1. The transport and reaction steps sequentially iterate as follows. At the383

n-th step, an A particle moves ∆x, and the transition time τ (n) is determined based on the previous transition time384

τ (n−1) and the transition matrix (Fig. 9 (a)). The A particle then converts to a C particle if the velocity-dependent385

reaction probability at the velocity class i(n), P[rxn|i(n)], is larger than the sampled value ξ. The transport and reaction386

steps continue sequentially. Once an A particle converts to a C particle, it remains as a C particle, and undergoes387

only the transport step. We refer to the SMM framework coupled with the reaction step as reactive SMM.388

Fig. 10 shows the FPTDs of the A and C particles from the direct numerical simulations (DNS) and the reactive389

SMM predictions for combinations of Re = [1, 100] and Pe = [102, 103, 104] at the two breakthrough locations (x =390

[20a, 90a]). Fig. 10 (b) shows the FPTDs of A particles that survived until they reached the breakthrough locations.391

The reactive SMM accurately captures the FPTDs of both A and C particles in all Re and Pe cases at both locations392

(x = [20a, 90a]). The good performance of the model indicates that the effects of inertia and diffusion on the reactive393

transport with fluid–solid reactions can be effectively described by the reactive SMM.394

To elucidate the importance of honoring the velocity-dependent reaction probability for the reactive transport395

predictions, we also perform upscaled modeling with an average reaction probability. We derive the average (velocity-396

independent) reaction probability from the concept of the survival probability Psur = (1− Prxn)
Njump , i.e., the prob-397

ability of the A particles to not undergo reactions while they take Njump steps along the x-direction (mean flow398

direction). Note that Njump is determined as a quotient of the longitudinal travel distance and ∆x. The average399

reaction probability can be expressed with the survival probability, as follows:400

Prxn = 1− P
1

Njump
sur , where Psur = 1− NC

Ninj
, (13)401
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FIG. 10. (a) FPTDs of C particles from direct numerical simulations (DNS) (solid blue lines) and FPTDs from reactive SMM
predictions (dashed orange lines) at x = [20a, 90a]. (b) FPTDs of A particles from direct numerical simulations (DNS) (solid
green lines) and FPTDs from reactive SMM predictions (dashed brown lines) at x = [20a, 90a].

where NC is the total number of the product C particles, and Ninj is the total number of injected A particles. The402

velocity-independent reaction probabilities for all combinations of Re = [1, 100] and Pe = [102, 103, 104] are shown in403

Table 1. Note that the average reaction probability honors the total reaction amount but does not account for the404

velocity-dependence of reaction probability.405

Fig. 11 shows the FPTDs of the C particles from DNS and from SMM predictions with the average reaction406

probability, Prxn, for combinations of Re = [1, 100] and Pe = [102, 103, 104] at both locations (x = [20a, 90a]). At407

Pe = 100, the SMM with the average reaction probability still reasonably captures the FPTDs because the velocity408
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Prxn Pe = 102 Pe = 103 Pe = 104

Re = 1 0.050 0.0054 0.00034
Re = 100 0.052 0.0059 0.00059

TABLE I. Average reaction probabilities for combinations of Re = [1, 100] and Pe = [102, 103, 104].

𝑥
=
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𝑎

𝑥
=
20
𝑎

Pe=102 Pe=103 Pe=104

FIG. 11. FPTDs of C particles from direct numerical simulations (DNS) (solid blue lines) and from model predictions (dashed
orange lines) with the average reaction probability at x = [20a, 90a].

correlation is weak when diffusion is strong. However, the accuracy significantly deteriorates as Pe increases (at both409

locations of x = [20a, 90a]). When the advective transport is strong, the particle movements become sensitive to410

the flow properties, and thus the fluid–solid reactions are strongly affected by the flow properties. Therefore, as Pe411

increases, the model with the average reaction probability results in poor predictability because the model does not412

honor the flow effects on the reaction probability. This result confirms that transport and reaction dynamics are413

intimately coupled, and that both transport and reaction dynamics can be well captured by reactive SMM but not by414

models that do not honor the velocity-dependent reaction probability. Note that the upscaled model is validated with415

the diffusion-limited catalytic reaction system only. So, further study is necessary to verify the model’s capability for416

other reaction systems.417

V. CONCLUSIONS418

In this study, we investigated the effects of fluid inertia and solute diffusion on reactive transport involving fluid–solid419

reactions in rough fracture flows. To focus on the Re and Pe effects on reactive transport, we considered an irreversible420

and instantaneous fluid–solid reaction, A+Solid → C, using the Lagrangian-based reactive particle tracking method.421

We improved the fundamental understanding of inertia and diffusion effects on reactive transport and, consequently,422

successfully upscaled the reactive transport.423

Both fluid inertia and solute diffusion are shown to control the fluid–solid reactive transport dynamics. Solute424

diffusion (Pe) controls mainly the total reaction amount, whereas fluid inertia (Re) governs the reaction dynamics by425

inducing complex flow structures such as flow channeling and recirculating flows. Flow channeling, featured by fast426
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velocities and high-velocity correlation, limits fluid–solid reactions. For example, in high-Pe regimes, the particles in427

the flow channeling region tend to stay in the fast flow channel, which limits surface reactions. By contrast, in low-Pe428

regimes, the injected particles can easily traverse the fracture width via diffusion, lowering the prominence of the flow429

channeling effect.430

Recirculating flows are shown to significantly affect surface reactions via the trapping effect. The recirculation431

zones exhibit slow velocities and are advectively separated from the main flow channels. Once particles enter these432

recirculation zones, the trapped particles stay for a long time near the fracture surfaces, which increases reaction433

probability. Our study explicitly showed that these recirculating flows can significantly facilitate surface reactions434

and increase reaction duration via the trapping effect for the transport-limited reaction considered in this study.435

Further, we showed that such inertia and diffusion effects on fluid–solid reactions can be effectively captured by the436

velocity-dependent reaction probability.437

Based on this improved understanding of the fluid–solid reaction dynamics in rough fracture flows, we successfully438

upscaled the reactive transport in rough fracture flows by incorporating the velocity-dependent reaction probability439

into the Spatial Markov model. The proposed reactive SMM accurately captured the transport of both the reactant440

and product particles. The good performance of the proposed reactive SMM demonstrates that reactive transport441

in fracture flows can be effectively upscaled using Lagrangian velocity statistics and the velocity-dependent reaction442

rule. The proposed upscaled model could be incorporated into a network-scale model such that one can accurately443

incorporate the effects of fracture-scale processes in network-scale reactive transport.444
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