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We propose a pairwise influence framework for the complex unsteady compressible particle-laden
flow problem by accounting for the scattered hydrodynamic waves emitting from neighboring parti-
cles in an Euler-Lagrange simulation. It has been observed from particle-resolved (PR) simulations
of randomly dispersed particle beds under a loading shock that the compressible pseudo-turbulence
dominates the flow system even after the primary shock has passed, which causes fluctuations ob-
served in the forces experienced by the particle. Moreover, the fact that each particle exists in the
vicinity of a random arrangement of other particles modifies the time history of the drag force ex-
perienced by each particle during and after the passage of the shock. First, the scattering flow field
due to an incoming shock interacting with a single sphere is constructed using an analysis of the
flow in the acoustic limit. Then we examine the validity of the compressible Maxey-Riley-Gatignol
force model by comparing the force prediction against a PR simulation of two interacting particles
for various particle arrangements and incoming shock strength. Subsequently, the neighboring influ-
ences are stored as a library of maps that can be used readily in the calculation of the perturbation
force. Finally, the pairwise interaction assumption is evaluated by comparing the force predicted
with the model with PR simulations of a randomly packed particle bed of 10% volume fraction for
both water and air as the fluid medium for an incoming shock Mach number 1.22. With a consider-
ably lower cost for the implementation of the model compared to PR simulations, it is verified that
the model is reasonably accurate in pinpointing particles whose peak force is significantly larger or
smaller than the mean drag but also to capture the prolonged fluctuations after the initial shock.

I. INTRODUCTION

Numerical and experimental work on the interaction between a planar shock wave and a random distribution
of particles (see [14, 29–31, 37, 38, 41, 42, 46]) highlights the rich flow phenomena in such systems. The force
on the particles remains zero before the shock arrival, rapidly increases to a maximum when the shock is located
approximately near the particle center, then slowly decays to a value that corresponds to the post-shock uniform flow.
Although the above general trend is followed by all particles, the actual force history experienced by each particle
within the random distribution substantially differs from one to another. In particular, particle-to-particle variation
of key quantities, such as the magnitude of peak force, the time at which the peak force is realized, and the steady
force long after the passage of the shock, is comparable in magnitude to their mean values averaged over the entire
bed of particles. This particle-to-particle variation in force experienced by the different particles is due to interaction
among the randomly distributed particles [9, 38].

All the particles within the bed see nominally the same shock propagating past them. However, as the moving shock
touches the first layer of particles, the incident primary shock wave is both transmitted through the particle layer and
reflected backward. Upstream particles interacting with the incoming shock produce disturbances that travel with
the incoming shock downstream to other particles, thus creating a different local flow condition for the downstream
particles. Additional disturbances from the downstream particles travel upstream and can exist in between particle
pairs. Interaction between the transmitted waves can create shock focusing effect, but in general, the total energy
dissipates as the first shock penetrates deeper into the bed [37, 38]. Thus, in addition to the primary shock, each
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particle also sees the waves emanating from all other particles that are located upstream and downstream. The
perturbation flow due to the neighboring particles has a substantial influence in altering the force experienced by each
particle.

From the perspective of the fluid flow, the compressible flow passing through the bed of particles substantially
differs from the standard uniform post-shock flow behind a propagating planar shock. A substantial amount of spatial
and temporal fluctuation is generated around the particles contributing to the chaotic nature of the flow within the
bed and these fluctuations are termed pseudo turbulence. The complex particle-to-particle variation seen in the force
evolution of each particle is due to the perturbation flow or pseudo turbulence generated by its neighbors [34, 45, 55].
Several mechanisms, including flow acceleration due to the blockage effect of the particles, transmitted waves around
the particles, and waves that are reflected off the particles, contribute to pseudo turbulence.

The interaction between different particles in the cluster is extremely complicated. Even in the case of a steady
high-speed compressible flow over a random distribution of particles, each particle is subjected to the near wake, far
wake, and the recompression region created by other particles in the neighborhood [11, 41, 42, 51, 56]. Experimental
works that analyze the motion of multi-spheres are also insightful but such analysis is hard to achieve due to the rapid
evolution of the particles. Park and Park [43] conducted experiments in a shock tunnel with free-stream Mach number
6 and performed separation trajectory analysis for single and multiple spheres aligned in a ring shape. Whalen and
Laurence [56] designed a suspension gadget that enabled the release of numerous equal-sized spheres.

Other works have addressed the force estimation on a sphere under the influence of a disturbing neighbor in the
compressible flow regime. Laurence et al. [27] based their estimation on the analytical blast wave analogy in both
two and three-dimensions in the hypersonic regime. One of the interesting phenomena observed in their study,
dubbed shock-wave surfing, is also studied extensively in Laurence and Deiterding [26]. Marwege et al.[32] provided
an insightful means to estimate forces experienced by bodies immersed in the compressible wake of a leading sphere
under steady compressible incoming flow. Register et al. [47] also studied the trajectory of a second particle by
time-marching it with the aid of a finely-computed force map, which was constructed using steady-state two-sphere
simulations.

A. Pairwise Modeling Approach

The pairwise interaction extended point particle (PIEP) approach has proven to be successful in explaining the
complex interaction between the flow and a random distribution of particles in the incompressible steady flow limit
[2, 39]. The overarching goal is to develop a similar theoretical framework that can explain shock interaction with a
distribution of particles.

Particle-resolved (PR) simulations of particle-laden compressible flows offer direct access to all the above-mentioned
complex flow physics. However, PR simulations of shock-particle interaction pose a great computational challenge.
The wide range of lengths and time scales in the system increase the simulation cost and thus hinder the simulation
of a large distribution of particles. When compared to the size of the particle, one typically needs O(104) grid points
resolving the particle surface in order to capture the diffraction of the shock waves and the post-shock flow around
the particle [37]. As a result, PR simulations of shock-particle interaction have typically been limited to systems
consisting of hundred to thousand of particles [9, 35, 38]. For practical applications consisting of millions of particles,
one must resort to Euler-Lagrange (EL) or Euler-Euler (EE) approaches [5, 10, 12, 13, 52–54, 58].

In the EL approach, the fluid phase is treated in the Eulerian frame, while particles are individually tracked or
followed in the Lagrangian frame of reference. Furthermore, the grid resolution is typically chosen to resolve the
large-scale features of the flow and therefore will be of the order of a particle diameter or larger. Since the flow is not
resolved on the scale of a particle, a first-principle evaluation of force on the particle is not possible. A point-particle
model must be employed, which models the instantaneous force on the particle as a function of the state of the flow
surrounding the particle. For accurate prediction of the force, the state of the surrounding flow must be properly
characterized by taking into account both the macroscale flow (i.e., the planar shock and the post-shock flow) and the
pseudo turbulence generated by the neighboring particles. This leads to the following three fundamental challenges
to accurate point-particle modeling of shock interaction with a random distribution of particles: (i) Compressible
flow features such as shocks and contact discontinuities are often much thinner than the particle diameter. Therefore,
even the macroscale flow around the particle cannot be taken to be spatially uniform on the scale of the particle. (ii)
The time scale of shock crossing a micron-sized particle is of the order of only nanoseconds. Thus, the particle sees
a highly-transient flow as the shock passes over it, and the unsteady effect must be properly accounted for in the
point-particle model. (iii) As discussed earlier, each particle also sees the pseudo turbulence generated by its neighbors
which must also be accounted for in the point-particle model if we want to capture the substantial particle-to-particle
variation in shock-induced force.

Commonly used point-particle models, such as the standard drag model, do not account for the above challenges. To



3

capture the effect of rapid time variation one must adopt the Basset–Boussinesq–Oseen (BBO) equation to calculate
the unsteady force on the particles [15]. In the present context of shock interaction with a random distribution of
particles, the compressible version of the BBO equation (C-BBO) must be used [4, 44]. It must be noted that the
unsteady force on a particle depends on the history of flow as the shock passes over the particle. Spatial variation of
the surrounding flow on the scale of the particle requires the use of the compressible Maxey–Riley–Gatignol (C-MRG)
equation [4, 16, 33, 44] in the particle force calculation. The C-MRG equation is qualitatively similar to the C-BBO
equation, except that the undisturbed fluid properties are expressed as surface and volume averages over the particle.

The accuracy of the C-MRG equation for predicting the force on an isolated particle with air and water as the
ambient fluid medium has been established [8]. The performance of the C-MRG model was substantially better and
highlighted the importance of the unsteady and nonuniform nature of the planar shock propagating over a particle.
It must be emphasized that all point-particle models, including the C-MRG model, are based on the undisturbed flow
seen by the particle, where undisturbed flow refers to the flow that would exist in the absence of the particle. In the
case of an isolated particle, the undisturbed flow is simply the planar shock propagating over the particle. In the case
of a planar shock propagating over the distribution of particles, the undisturbed flow of a particle includes the pseudo
turbulence created by all other neighbors. Since the details of pseudo turbulence are not known in an EL or EE
simulation, the undisturbed flow of a particle within a random distribution must be approximated. It is noted that
the C-MRG model, like other point-particle models, requires the undisturbed flow of the particle to be not corrupted
by the self-induced velocity of the particle. If the self-induced perturbation is substantial, then a correction procedure
is required to extract the true undisturbed flow of the particle. Such correction procedure has been developed in the
incompressible regime [6, 7, 17, 22, 24], but not in the compressible regime. The self-induced perturbation will not
be an issue in the present work.

We now address the challenge of calculating the undisturbed flow of a particle (henceforth referred to as the reference
particle whose time evolution of force is the quantity of interest) taking into account the pseudo turbulence created
by its neighbors. In an EL simulation, pseudo turbulence is a sub-grid quantity that is not computed and therefore
must be modeled. Pseudo turbulence and its effect must be evaluated based on the following macroscale information:
the planar shock flow approaching the particle (i.e., the macroscale flow) and the microscale information of the
relative location of the neighboring particles. In the context of steady incompressible flow over a random distribution
of particles, Akiki et al. [2, 3, 39] introduced the concept of pairwise interaction extended point-particle (PIEP)
model where pseudo turbulence was modeled as a superposition of perturbation flow generated by each neighbor
in response to the ambient flow around it. They observed that the application of the MRG model (because of the
incompressible flow) using the pairwise superposition of the perturbation flows of neighbors yielded a good prediction
of the particle-to-particle variation in the force.

The primary purpose of this paper is to develop a compressible pairwise interaction extended point-particle (C-
PIEP) framework and test its ability to predict the force on a particle in the presence of neighbors subjected to
a propagating planar shock. The compressible nature of the present problem adds to the complexity of modeling
pairwise interaction [2, 3, 48, 49]. More specifically, the problem of shock-particle interaction is inherently unsteady,
while previous development of pairwise interaction perturbation flow and force maps have been in the context of
steady flows. Extension of these maps to unsteady conditions and proper accounting of the unsteady forces within
the framework of pairwise superposition is not straightforward.

We simplify the modeling task by considering the small time limit. We will consider the short-time pairwise
superposition of force on a particle immediately following the propagation of a shock. The time-dependent nature
of the perturbation flow will be accounted for with an analytic solution that is available in the acoustic limit. The
compressible unsteady force map will be developed under the linear assumption of inviscid weakly-compressible
perturbation. This allows the use of a classical acoustic scattering solution. The setup consists of a pair of disturbing-
disturbed spheres that are subjected to an incoming weak planar shock. We are interested in analytically calculating
the perturbation flow generated by the disturbing sphere and its influence on the force history of the disturbed sphere.
This setting is analyzed with a fundamental solution of the acoustic field (see Hasegawa and Yosioka [18], Lamb [21],
and Morse [40]).

As a planar shock propagates over a pair of particles, the force on the reference perturbed particle is calculated with
the C-MRG model with the undisturbed flow over the reference disturbed particle approximated as a superposition
of the undisturbed planar shock wave and the perturbation flow computed with the acoustic scattering solution of
a shock wave around the perturbing neighboring particle. The results of the C-MRG model are compared against
those obtained from corresponding two-particle PR simulations. The C-MRG model will allow for the investigation
of contributions arising from pressure-gradient and inviscid unsteady force components. The contribution to the
two force components from a perturbing neighbor is stored as respective perturbation maps. Using these maps,
the perturbing influence of each neighbor can be evaluated and added to obtain the total perturbation force. The
utility of this pairwise superposition approach will be evaluated by comparing its prediction against corresponding
PR simulation results.
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This paper is organized as follows: In Section II, as the first step of pairwise interaction model development, we start
with a closed-form solution of acoustic scattering solution of a weak shock by a sphere. The acoustic approximation
is then validated against particle-resolved simulation results. In Section III we then present the compressible Maxey-
Riley-Gatignol (C-MRG) force model and its validation against PR simulation results at the level of two interacting
particles. Then in Section IV, the approach is extended to a random array of particles using the compressible
pairwise interaction approximation and demonstrated against PR-simulation results of shock propagation over a
random distribution of particles. This section also presents the force component maps obtained from the acoustic
limit solution. Finally, conclusions are drawn in Section V.

II. UNSTEADY COMPRESSIBLE PIEP MODEL

A. Closed-Form Solution of Scattering of a Weak Shock by a Sphere

The aerodynamic force on the disturbed reference sphere will be evaluated in terms of its undisturbed flow using
the C-MRG model. In this section we start with the compressible Navier-Stokes equations and obtain an explicit
expression for the undisturbed flow of the reference particle subjected to a weak shock in the presence of another
disturbing sphere:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂(ρu)

∂t
+∇ · (ρuu) = ∇ · σ , (2)

where ρ is the density of the fluid, u is the fluid velocity, and σ is the stress tensor, which for an inviscid flow reduces
to −pI. The flow is assumed to be isentropic, so pressure p is a function of fluid density. The undisturbed flow
of a particle will include both the original planar shock, which corresponds to the macroscale component, and the
scattered flow field of the disturbing neighbors, which corresponds to the microscale component of the undisturbed
flow.

We consider a planar shock approaching two nearby spherical particles, one of which is the disturbed or the reference
particle, the modeling of whose force is the object of interest, while the other is the disturbing particle. The incoming
planar shock is denoted by the superscript in and the perturbation flow due to the scattering by the disturbing
neighbor is denoted by the superscript sc. Thus, the pressure, density, and velocity fields that the reference particle
is subjected to can be represented as

pun = p0 + pin + psc, ρun = ρ0 + ρin + ρsc, uun = uin + usc (3)

where ρ0 and p0 are respectively the background density and pressure, while the background velocity is zero. The
superposition gives the undisturbed flow of the reference particle and is denoted by the superscript un.
Substituting (3) into (1) and (2) and linearizing we obtain the following equations for the scattering part

∂ρsc

∂t
+∇ · (ρ0usc)≈0 , (4a)

∂(ρ0u
sc)

∂t
≈∇ · (−pscI) , (4b) and psc≈c2gρ

sc , (4c)

where cg is the post-shock speed of sound.
The incoming and scattered velocity fields can be written in terms of velocity potentials as uin = ∇ϕin and usc =

∇ϕsc. If we consider a monochromatic incoming plane wave of a unit amplitude of the form uin = exp{−i(kz−ωt)}ez,
the corresponding incoming velocity potential can be expressed as [4]

ϕin =

∞∑
n=0

Cn(2n+ 1)(−i)njn(kr)Pn(cosφ)e
iωt , (5)

where jn is the spherical Bessel function of the first kind of order n, Pn is the Legendre polynomial of the first kind of
order n, and Cn = i/k is the amplitude (note i =

√
−1). The wavenumber k and frequency ω are related by ω/k = c0,

where c0 is the the pre-shocked ambient speed of sound. In this work, a spherical coordinate is used with r being
the radial direction, θ defined as the azimuthal angle, and φ as the polar angle. The flow direction z is then defined
as z = r cosφ. When the monochromatic wave is scattered by the disturbing sphere, the scattered potential can be
expressed as

ϕsc =

∞∑
n=0

Cn(2n+ 1)(−i)nSnh
(2)
n (kr)Pn(cosφ)e

iωt , (6)
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Using the no-penetration boundary condition on the surface of the scattering sphere, one can solve for the scattering
coefficient Sn to obtain

Sn =
−{njn(kR)− (kR)jn+1(kR)}
nhn(kR)− (kR)hn+1(kR)

, (7)

where R is the radius of the sphere. As can be observed from equations (5) and (6), they are not functions of the
azimuthal direction θ and therefore the solution has rotational symmetry with respect to the flow direction.
A planar shock propagating along the z-axis is now expressed as a superposition of monochromatic planar wakes as

uin
sh(z, t) = ug H(−(z − Zs(t)))êz =

1√
2π

∫ [
ug

(
δ(k)

2
− i√

2πk
eikZs(t)

)]
︸ ︷︷ ︸

ũsh(k)

e−ikzdkêz , (8)

where ug is the post-shock gas velocity, H is the Heaviside function, Zs(t) is the location of the shock front as a
function of time, and ez is a unit vector along the z-direction. From (5) we note that e−ikzez = ∇ϕin. Making this
substitution we obtain

usc
sh(z, t) =

1√
2π

∫
ũsh(k)∇ϕscdk . (9)

The density of the incoming shock and the scattered field by the disturbing sphere can be expressed as,

ρinsh(z, t) = ρg H(−(z − Zs(t)))ez =
1√
2π

∫
ρg
[δ(k)

2
− i√

2πk
eikZs(t)

]
︸ ︷︷ ︸

ρ̃sh(k)

e−ikzdk

ρsc(z, t) =
1√
2π

∫
ρ̃sh(k)

−∇2ϕsc

ik
dk ,

(10)

where ρg is the post-shock density. Scattered pressure can then be obtained from the isentropic relation (4c).

1. Numerical Evaluation

We now briefly address the evaluation of the scattered fields through numerical integration of the expressions given
in (9) and (10). These evaluations will be made in non-dimensional variables with D as the length scale and c0 as
the velocity scale. Furthermore, noting that the non-dimensional wavenumber and frequency of each monochromatic
wave are the same, these integrals are numerically evaluated over the frequency space. The numerical integration
introduces two parameters: ωtr, which is the largest frequency considered in the integration by limiting the integrals
to |ω| < ωtr and Nω, which is the number of frequencies included in the numerical integration. Thus, the frequency
resolution of integration is ∆ω = ωtr/Nω. Furthermore, in the representation of the scattered velocity potential,
the summation given in (5) and (6) must be limited to a large but finite value of ntr, which is the third numerical
parameter.

The proper choice of the three numerical parameters, ntr, ωtr, andNω is established through simple experimentation.
First, the sensitivity of the summation of the scattered velocity potential is investigated based on the magnitude of the
nth term. Since the denominator of the scattering coefficient Sn grows larger as n increases, the terms being summed
decay with increasing n. It is observed that if the first 300 terms are included in the summation, the neglected
higher-order terms are smaller than 10−15 times the largest term of the series. As a result, we choose ntr = 300.

The convergence with increasing ωtr is presented in Fig. 1(a), where streamwise velocity normalized by ug at a
point xp = (0, 0, 2D) is presented as a function of time. Note that the velocity presented is uun which includes
both the planar shock and the scattered fields. The time axis has been shifted by t0, which is the time of arrival of
the planar shock at the point xp, and normalized by the time it takes for the shock to cross a particle radius (i.e,
normalized by τ = D/us, where us is shock velocity). The flow and the shock propagation are in the z-direction and
the disturbing sphere of unit diameter is located at the origin. Without the scattering effect of the disturbing sphere,
the velocity would be a unit-step function. Thus, the deviation from the step function is the scattering effect of the
disturbing sphere. From the figure, it can be seen that ωtr = 500 is sufficient and this has been verified at other
points within the domain. Figure 1(b) shows the same result on a longer time time for varying nω. It is clear from
the figure that Nω = 1400 is adequate and this result has been confirmed at other points within the scattered field. In
Fig. 1(b) we also plot particle-resolved inviscid simulation results of normalized streamwise velocity at the point xp
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for a planar shock propagating past a single sphere of unit radius. The results of the lower Mach number simulation
M = 1.05 is in reasonable agreement. There are quantitative differences in the magnitude of the predicted post-shock
peak and as a result in the subsequent decay rate. These differences are partly due to the finite Mach number of the
particle-resolved simulation and the difficulty in capturing sharp discontinuities with a Fourier expansion. It must
be pointed out that in the analytical calculation, the gradient and Laplacian of velocity potential are calculated with
second-order finite difference approximation to a relative accuracy of 10−8.
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FIG. 1. The plot of normalized streamwise velocity at the point xp = (0, 0, 2D) analytically calculated with the acoustic scattering theory:
(a) Convergence with increasing frequency range included in the integration. Results are shown for ωtr = 250, 500, 1000, and 1500 (nω

was kept at 1400). (b) Convergence with increasing number of frequency samples used in the integration for nω = 1400, 2100, and 2800
(ωtr was kept at 500). Also shown in frame (b) is the particle-resolved simulation result for a shock Mach number of M = 1.05.

2. Arrival Time of the Scattering Signal

As shown in the schematic presented in Fig. 2, consider the disturbing sphere located at the origin and the disturbed
reference sphere located at position xr. We are interested in evaluating the first arrival time of the scattered field
from the disturbing sphere to the reference sphere. With the help of the Huygens–Fresnel principle, it is possible to
estimate the time it takes for the scattered wave generated at the surface of the scattering particle to travel to the
surface of the reference sphere. For the theoretical estimation, we assume the speed of propagation to be at the speed
of the shock us.

We start by defining the reference time t = 0 to be when the planar shock contacts the upstream front of the
disturbing sphere. As the shock propagates over the disturbing sphere, the surface point marked A encounters the
shock after a time tl = l/us, where l is the streamwise distance of point A from the leading edge. Huygens–Fresnel
principle states that the point on a wavefront can be viewed as a source for a spherical wavelet. As a result, the
scattered field from point A will first arrive at the point marked B on the reference sphere (B lies on the line connecting
point A and the center of the reference sphere). The time it takes for an acoustic signal to travel from point A to
point B can be evaluated from their distance. Together, the first time of arrival of the scattered field can be evaluated
as

tsc(zB , yB) = min
0≤l≤2

ttotal = min
0≤l≤2

 l

us
+

√
(l − 1− zB)2 + (yB −

√
2l − l2)2

us

 , (11)

where, without loss of generality, we have assumed the point B to be on the y− z-plane and its location (0, yB , zB) is
a function of l (see Fig. 2). Here the first arrival time is the minimum over all possible values of ttotal, the total time
since the shock first touch the disturbing sphere.

The accuracy of this estimate in the acoustic limit is tested in the following manner. The normalized streamwise
velocity of the scattered field only (without the planar shock) evaluated at 10 different points (see inset of Fig. 3(a)) is
shown in the figure, where the time axis has been shifted by the estimated first arrival time given in (11) and normalized
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1 −

FIG. 2. A schematic illustrating the concept of scattering time tsc, which captures the delay of the signal received by a point B on the
reference particle from the instance when the shock (marked as vertical blue line) first touches the scattering sphere. The sphere radius
is 1 in this case.

by τ . From the figure, it is clear that the theoretical estimate of first arrival time using the Huygens–Fresnel principle
is quite accurate. The corresponding normalized streamwise velocity of the scattered field at the 10 different points
computed using a particle-resolved inviscid simulation of a shock propagating over an isolated particle is shown in
3(b).
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FIG. 3. (a) The velocity signal of the scattered field computed using the acoustic solution (8) at the points shown in the inset. The
time axis has been shifted by the first arrival time tsc, which is a function of the location of the individual points. (b) The corresponding
scattered velocity plots computed from a particle-resolved simulation at Ms = 1.05.

As a further evaluation of the estimation of arrival time, we compute the arrival time at the reference sphere whose
center is located at (0, 3

√
2, 0) and (0, 3, 0) relative to the disturbing sphere, with the shock propagating along the

z-direction. The arrival time computed as a function of l for the two different locations is plotted in Fig. 4. In the
two cases, the minimum values of tsc = 1.6803 and 2.8927 were achieved at l = 0.39 and 0.36. These particle locations
were chosen since the particle-resolved simulations of Mehta et al. [36] considered these relative locations at a shock
Mach number of Ms = 1.22. Their observed first arrival times are tsc = 1.7 and 2.97 respectively.
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FIG. 4. Time of arrival as a function of l to determine the first time of arrival of the scattered field (blue lines) and the comparison with
tsc measured in two-sphere PR simulation (red lines) performed at a shock Mach number of 1.22.

III. PAIRWISE SUPERPOSITION USING C-MRG EQUATION

The C-MRG model of force on a particle due to an undisturbed flow is given by [4, 8, 44]

F = −Sp punn
s︸ ︷︷ ︸

Fun

+3Vp

∫ t

−∞
Kiu

[
∂(ρur)un

s

∂t
+ (ρu)un

s
· ∇uun

r
s
]
ξ

dξ︸ ︷︷ ︸
Fiu

. (12)

In the above equation, the first term on the right-hand side, Fun, corresponds to the undisturbed flow force (also
known as the pressure-gradient force) due to the undisturbed flow of the particle. It is simply given by the surface

integration of pressure, where ()
s
indicates an average over the surface of the sphere and Sp is the surface area of the

sphere (Vp in the second term denotes the volume of the sphere). The surface average is computed with the Lebedev
quadrature of order 974 [28], which was found to yield converged values. The second term Fiu corresponds to the
inviscid unsteady force (which is the compressible analog of the added-mass force) due to the undisturbed flow.

Just as any other force model, the above expression predicts the force on a particle with the undisturbed flow,
characterized by the pressure pun, density ρun, and the velocity fields uun as input. In evaluating the two force
contributions given in (12), the undisturbed pressure and velocity are required only on the surface of the particle.
Note that in the above expression uun

r is the radial component of undisturbed velocity on the particle surface. The
advantage of the above formulation over the standard drag law is that (i) it accounts for the spatial variation of the
undisturbed flow on the scale of the particle with the surface and volume averages, and (ii) accounts for the time
variation of the undisturbed flow with the history integral in the second term, where Kiu is the history kernel and it
is a function of the delay time t− ξ and the Mach number based on relative velocity.

The accuracy of the above model has been carefully evaluated in the context of an isolated particle subjected to
a planar shock [8]. In this case, since there is no disturbing second sphere as neighbor, the undisturbed flow of the
isolated particle is simply given by pun = p0 + pin and uun = uin, where superscript in simply refers to the incident
planar shock. Thus, the undisturbed flow of an isolated particle subjected to a shock is known and well-characterized.
By comparing the model prediction against particle-resolved simulations for both air and water as the fluid medium,
Behrendt et al. [8] established the accuracy of the C-MRG model for the case of an isolated particle.

Our objective here is to use the C-MRG model in evaluating force on a particle where the undisturbed flow
includes not only the incident planar shock but also the scattering fields of the neighboring particles. In other
words, the undisturbed flow of the reference particle is given by the summation (3). While the macroscale portion
of the undisturbed flow is from the incoming shock, the microscale portion due to the scattering of the neighboring
spheres will be taken to be the analytical acoustic solution of the previous section. Before we proceed to consider the
perturbation flow due to a distribution of neighbors, we will demonstrate the procedure with the disturbance flow
created by a single neighbor.
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A. Particle-resolved Two-Sphere Simulations

Towards evaluating the accuracy of the C-MRG model in the context of two nearby particles subjected to a planar
shock, we have performed particle-resolved inviscid simulations using the in-house finite-volume solver, RocfluMP,
which solves the governing compressible Euler equations on an unstructured grid. The time evolution of the flow is
computed with the fourth-order Runge-Kutta method [19]. Multiple works have confirmed the accuracy of the solver
[4, 8, 20, 36, 38]. An example two-particle simulation is shown in Fig. 5 where the two particles are of the same size
and are separated 2.5 radii along the flow direction. Thus, as the shock propagates from left to right, the downstream
particle is sheltered by the upstream neighbor. The advantage of this inline arrangement is that the flow remains
axisymmetric, thus simplifying the computation. The inflow and outflow boundaries are 16 diameters away from the
center of the leading sphere. The height of the computational domain is 15 diameters. The spheres are rigid and
remain fixed in the domain.

We use 1000 grid points to resolve the surface of each sphere. In the region outside of the sphere, Triangle [50], a
two-dimensional mesh generator was used to generate 5.9× 106 elements. The initial condition for the simulation is
set up as a shock interface that is placed 0.25 radius upstream of the upstream end of the sphere, as can be seen in
Fig. 5. The blue region is the pre-shock gas and the green region is the post-shock gas. Once the simulation starts,
the inlet boundary condition (which has the same gas state as the green region) will push the shock downstream and
let it interact with the spheres.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Snapshots of the two-sphere PR simulation pressure field for an inline arrangement where the centers are separated by a distance
of 1.25D. The spheres are marked in white. Incoming shock Mach number is Ms = 1.05. The unit for the colorbar is Pa. The time stamp
for each of the figures is (a) 0 s (b) 1.2 × 10−4 s (c) 2.4 × 10−4 s (d) 3.6 × 10−4 s (e) 4.8 × 10−4 s (f) 6 × 10−4 s (g) 7.2 × 10−4 s (h)
8.4× 10−4 s. Here τ = D/us = 2.22× 10−4 s.

Figure 5 shows snapshots of the pressure field for a weak shock of Mach number M = 1.05. First from Fig. 5(b) one
can see that as the shock hits the leading sphere, a stagnation region forms and creates higher pressure in front. Then,
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as can be seen from Fig. 5(c), the leading sphere blocks part of the incoming shock front and create a delay in shock
propagation behind the leading sphere. The shock then hits the front of the second sphere in Fig. 5(d) and creates a
higher pressure region. In Fig. 5(e) it is evident that the reflected shock from both the tail of the leading sphere and
the front of the trailing sphere bounces back and forth in the region between the two spheres, then propagate outwards
in Fig. 5(f). The outward propagating spherical waves keep spreading and lose their strength. As shown in Fig. 5(h),
near the centerline, the deformed shock front profile slowly recovers. The time evolution of force experienced by the
particles is obtained by surface integration of the computed pressure distributions. Axisymmetric PR simulations
were performed for other inline arrangements with different separation distances between the two particles and at
other values of shock Mach numbers. The grid resolution of these simulations was comparable and adequate since
further refinement did not change the drag force experienced by the reference particle.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Snapshots of inviscid PR simulation pressure fields of two side-by-side spheres whose centers are separated by 1.5D. The spheres
are marked in white. Incoming shock mach number is Ms = 1.05. The unit for the colorbar is Pa. The time stamp for each of the figures
is (a) 0 s (b) 1.2× 10−4 s (c) 2.4× 10−4 s (d) 3.6× 10−4 s (e) 4.8× 10−4 s (f) 6× 10−4 s (g) 7.2× 10−4 s (h) 8.4× 10−4 s.

PR simulations were also performed for a planar shock propagating over two spheres that are arranged side-by-side
with their centers separated by specified distances. The in-line configuration is axisymmetric about the flow direction
and thus permits an axisymmetric simulation. The side-by-side arrangement requires a three-dimensional simulation
and therefore more expensive. However, the flow is symmetric about both the bisector plane that is normal to the
line connecting the two sphere centers and the plane that slices both spheres in half. This allows simulation in only
one-fourth of the simulation domain with symmetry conditions on the two planes. The grids are locally refined around
the sphere and the smallest element in the refined region is set to be 1/40D [37]. These simulations employ a resolution
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of 9.5 million grid points in the domain.

B. C-MRG prediction and Comparison with PR Simulation Results

This section will compare the force prediction of the C-MRG model against that obtained from the two-particle PR
simulations. Three different two-particle configurations are considered and in all cases, the disturbing particle is taken
to be located at the origin and the position of the reference sphere whose force is being considered is varied. The
three cases to be compared are: (i) the center of the reference sphere is 1.25 diameters downstream of the disturbing
sphere; (ii) the center of the reference sphere is 2.5 diameters downstream of the disturbing sphere; and (iii) the center
of the reference sphere is 1.5 diameters displaced along the transverse y direction from the center of the disturbing
sphere. First, we test the accuracy of the C-MRG model for a weak planar shock of Mach number 1.05.

In the application of the C-MRG model given in (12) to the shock-two-particle interaction problem, we assume the
following superposition to hold in the evaluation of force on the reference particle
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(13)

The pressure, density, and velocity fields of the incident shock are known from the propagating planar shock relations.
The corresponding scattered fields from the disturbing particle are taken to be those given by the analytic acoustic
solution. These superpositions when substituted into the C-MRG equation yield the undisturbed and the inviscid
unsteady force components. The total force on the reference particle normalized by πρ0D

2u2
ps/2 is plotted as a function

of normalized time (t − tsc)/(τps) in the two-particle cases, where ups is post-shock fluid velocity and τps = D/cps
is the timescale based on the post-shock speed of sound. In each case, the force predicted by the C-MRG model is
compared against the companion PR simulation.

1. Weak shock comparison

The comparisons are shown in Fig. 7, where frame (a) shows the C-MRG and PR simulation results of an isolated
particle, where F in denotes the C-MRG force prediction of an isolated particle due to only the incident shock. Thus,
frame (a) establishes the accuracy of the C-MRG model for an isolated particle in the absence of any scattered field.
This comparison establishes the baseline that the C-MRG model is quite accurate in capturing the rapid rise of force
as the shock propagates over the front half of the particle. The magnitude and the time of peak force are also well
captured. Slight differences appear in the decay of the force as the shock moves over the back half of the particle.
It can be noted that the inviscid force becomes negative (i.e., temporarily the inviscid force on the sphere points
opposite to the flow direction) as the shock is located slightly downstream of the particle. These features and the
good predictive capability of the C-MRG model have been previously discussed [4, 8]. Frame (b) shows the force
contribution from the scattered field of the disturbing sphere located 1.25 diameters upstream. This contribution is
computed as the difference between the total force experienced by the reference particle in the two-sphere case and
the total force experienced by the reference particle in the absence of the second particle. The total force on the
reference particle is the sum of forces shown in frames (a) and (b). First, it should be noted that the force due to
the scattered field is substantial. The initial sharp negative peak and the subsequent positive peak followed by an
oscillatory approach to zero seen in the PR simulations are well captured by the C-MRG model. The arrival times of
both the shock and the scattered field are important in determining how they superpose. In the present calculation,
the shock arrival time is dictated by the shock speed, and the scattering arrival time is computed by the model.

However, there are important differences. The first is, while the trend of the negative peak is captured well, the
magnitude of the sharp peak is underpredicted. The negative peak is due to the neighboring particle blocking part of
the shock, such that the shock front goes around the particle and arrives at the reference particle later in time. This
delay in time is somewhat mispredicted by the model and this is perhaps due to the linear assumption involved both
in the evaluation of the scattered field using the acoustic approximation, as well as in the derivation of the C-MRG
model. The second difference is in the distinct bump that can be seen in the PR simulation result after the shock
has propagated past the reference particle. In frame (b), this bump can be observed at (t− tsc)/τps ≈ 1. This bump
arises from the pressure wave that reverberates in the streamwise gap between the two particles. When the pressure
is positive it contributes to a higher force and when negative contributes to a lower force magnitude. This mechanism
of wave reflections between the two spheres is not captured in the C-MRG model. The C-MRG model accounts only
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for the perturbation flow generated by the reference particle in response to its undisturbed flow in an unbounded
domain. Whereas, in the presence of the neighbor, the perturbation flow gets reflected off the neighbor. A complete
accounting of this inter-particle interaction requires the implementation of the method of reflections pursued in Stokes
flow, which is beyond the scope of the C-PIEP model.

Figure 7(c) shows the force contribution from the scattered field of the disturbing sphere located farther upstream
at 2.5 diameters. Though the separation between the two spheres has increased, the force due to the scattered field
remains substantial. The pattern of the initial sharp negative peak and the subsequent positive peak followed by
an oscillatory approach to zero can again be observed, and this trend is well captured by the C-MRG model. The
negative peak is still underestimated by the C-MRG model due to reasons mentioned above. It can be observed that
with increasing separation between the spheres the effect of pressure oscillation resulting from repeated reflections in
the gap between the two particles decreases in magnitude.

Figure 7(d) shows the scattered force contribution for the third two-particle case, where the disturbing sphere is
located laterally at a separation of 1.5 diameters. The effect of the scattered field on the drag force is substantial even
in the case of the side-by-side arrangement. However, the scattered field of a neighbor appears to have a stronger
influence on the drag force of a downstream particle than on a laterally displaced particle. It must be noted that while
the peak in Fig. 7(c) remains narrow and negative, the corresponding perturbation force in Fig. 7(d) is positive and
extends over a longer time. The drag force in Fig. 7(d) is significantly smaller than in Fig. 7(c) since the reference
particle in the side-by-side configuration happens to be in a region where the disturbance changes sign (this will be
evident later in Section IVA). Furthermore, as we will see below, in the lateral case, the reference particle experiences
a substantial lift force. The increase in total drag in the lateral case is due to the blockage effect of the neighbor.
The oscillations seen in the PR simulation are due to the repeated reflection of waves between the two particles. The
C-MRG model recovers the force trend quite well, however, as can be expected, it does not account for the oscillations
arising from the wave reflections between the two particles. With the increasing lateral separation between the two
particles, we can expect the oscillation amplitude to decrease and the comparison to improve.

The C-MRG model allows for the separation of the force due to the incident shock and the scattered field into
(i) undisturbed flow and (ii) inviscid unsteady contributions (i.e, separate the two terms of the right-hand side of
(12)). Also plotted in Fig. 7 are time evolution of Fun and Fiu. Frame (a) shows the undisturbed flow and inviscid
unsteady contributions of the primary shock. Those due to the scattered field of the disturbing neighbor are presented
in the other three frames. The sum of the two contributions is the C-MRG model prediction denoted as F in in frame
(a) and as F sc in the other three frames. In all cases, the undisturbed flow and inviscid unsteady contributions are
comparable in magnitude. Only for a very short duration immediately following the arrival of the scattered field, the
two contributions reinforce each other to create a strong negative peak in the inline cases. At later times, the two
contributions oscillate, but in a phase-shifted manner. Nevertheless, especially from frame (c), it is clear that both
these contributions are needed to explain the effect of the scattered field.

In the drag force experienced by the side-by-side case in Fig. 7(d), it is interesting to point out that during the
interval 0 ≤ t− tsc ≤ τps the behavior of both components resembles Fig. 7(a), which suggests that the effect of the
scattered field is essential to reinforce the strength of the incident shock, although with a time delay of tsc. This
reinforces the intuitive expectation that the blockage effect of the side-by-side neighbor increases the post-shock flow.
This simple augmentation of the streamwise flow remains accurate only for a short duration after which the time
evolution of the force contributions is complex. Also, the scattered field propagating in the y-direction will contribute
to a lift force, which we shall consider below.

2. Finite shock comparison

We now investigate the accuracy of the C-MRG model and the superposition given in (13) at higher shock intensities.
The two inline configurations presented in Fig. 8 are now considered at progressively higher shock Mach numbers of
Ms = 1.1, 1.22 and 1.55. The comparison of drag forces obtained from PR simulations and predicted by the C-MRG
model are presented in Fig. 8. In the limit of shock Mach number being close to unity, the post-shock incident flow
and the scattered fields are close to the acoustic limit. Thus, in this limit, the error in C-MRG prediction arises from
two main factors: (i) the limitation of C-MRG not accounting for the wave interactions between the two particles
and (ii) any numerical error in approximating the scattered field and in the evaluation of convolution integrals of the
C-MRG equation. When the incident shock is of finite amplitude (i.e., Ms > 1), there are additional sources of error
that arise from the non-linear nature of the resulting flow. The acoustic scattering field is now only an approximation.
It can be seen that the C-MRG model reasonably captures the behavior of the force contribution on the reference
particle due to the scattered field, although the difference between the prediction and the PR simulation result tends
to increase with Ms. The primary differences are again the amplitude of the negative peak as well as the positive
peak that follows. The finite Mach numbers prediction can be improved by (i) improving the representation of the
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FIG. 7. Normalized drag force experienced by the reference particle as a planar shock passes over it, plotted as a function of time-shifted
by the time of shock arrival and normalized by τ . In each case, the PR simulation result is compared against C-MRG prediction for
Ms = 1.05. (a) Force on an isolated particle. (b) Force contribution of only the scattered field due to an upstream neighbor located
inline with its center 1.25 D upstream of the center of the reference particle. (c) Scattered flow force due to an inline neighbor located
2.5 D upstream. (d) Drag force due to the scattered field of a neighbor located 1.5 D to the lateral side. In all four cases, the individual
components in terms of the undisturbed flow force Fun and the inviscid unsteady force Fiu are also shown.

undisturbed flow of the reference particle beyond the acoustic approximation, (ii) adapting the C-MRG model to finite
Mach numbers with improved kernels, and (iii) accounting for the effect of wave reflections between the particles.
Also, we point out that the magnitude of the normalized force decreases with the Mach number since the forces are
normalized by the post-shock velocity and post-shock density. The stronger the shock is, the stronger the post-shock
conditions are, thus lowering the normalized force magnitude.

In the two inline cases, the effect of the scattered field only alters the drag force of the reference particle. Due
to axisymmetry, the lateral force remains zero. In contrast, in the case of shock propagation over two size-by-side
particles, the influence of the neighbor will not only alter the drag force as seen in the previous figures but will also
introduce a non-zero transverse force. Figure 9 presents the normalized transverse force as a function of normalized
and shifted time for the Mach number cases of Ms = 1.05 and 1.55. Note that the incident planar shock has no direct
contribution to the lateral force and as a result, the entire lateral force is due to the scattering effect of the neighbor.
Also plotted in each figure are Fun and Fiu components of the lateral force. tsc adequately captures the timing of
the rise of the lateral force. The values of the first peak in the lateral force shown in frame (a) compared to the drag
contribution observed in Fig. 7(d) is larger since the reflected shock emitted from the disturbing sphere primarily
travels in the transverse direction.

The lift force for the stronger Ms = 1.55 shock is shown in Fig. 9(b). The agreement is only qualitative, there are
quantitative differences between the simulated force and the model prediction. Although the amplitude of the lateral
force variation is reasonably predicted, it can be observed that there is a time shift that appears to increase. This
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FIG. 8. Normalized drag force experienced by the reference particle as a planar shock passes over it. In each case, the PR simulation
result is compared against C-MRG prediction and the force contribution of only the scattered field is presented. Frames (a) and (b) are
for Ms = 1.1. Frames (c) and (d) are for Ms = 1.22. Frames (e) and (f) are for Ms = 1.55. Frames (a), (c), and (e) are for an inline
configuration where the two particle centers are separated by 1.25D. Frames (b), (d), and (f) are for an inline configuration where the
two particle centers are separated by 2.5D.

behavior can also be observed in frame (a), although the shift there is smaller. The C-MRG model evaluated with
the acoustic approximation of the scattered flow assumes the disturbance to travel at the ambient speed of sound,
whereas the disturbance waves from the finite Mach shock are expected to travel differently. The disturbance must
arrive at a lateral location while being advected downstream by the finite Mach number flow. This has the effect of
slowing down the effective velocity in the lateral direction due to the Doppler effect.
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FIG. 9. The normalized lateral force experienced by the reference particle as a planar shock passes over the side-by-side particle pair. In
each case, the PR simulation result is compared against C-MRG prediction. (a) Ms = 1.05 and (b) Ms = 1.55.

IV. C-MRG MODEL WITH PAIRWISE SUPERPOSITION

We now proceed to extend the above analysis to a distribution of particles subjected to a planar shock, similar to
those considered in several recent investigations [9, 23, 25, 38, 41, 42, 57]. We will again consider the situation where
the particles are held stationary during the shock propagation, which is a reasonable assumption in the limit when
particle density is much larger than the gas density and when attention is focused on the short time immediately
following shock propagation. In evaluating the force, each particle within the distribution, one at a time, must be
considered as the reference particle. The chosen reference particle will then be subjected to the incident planar shock
plus the scattered flow of its neighbors. Under the pairwise interaction assumption [2, 3, 39], the perturbation flow
induced by the collective action of all the neighbors is represented as a sum of perturbations (or scattered field) due to
individual neighbors. This pairwise superposition of the undisturbed flow of the reference particle can be represented
as
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In the above, the index j corresponds to the jth neighbor of the reference particle. The sum from 1 to J is intended to
cover the influence of all the neighbors, with j = 1 corresponding to the closest neighbor, j = 2 the second closest, and
so on. Typically J can be restricted to O(10) since neighbors that are closest to the reference particle are expected
to have the greatest influence.

In the above superposition, we intend to approximate the pressure, density, and velocity perturbations of the jth

neighbor in terms of the acoustic approximation to the scattering of the propagating shock presented in section II. The
superposition is only an approximation for the following reasons. First, the scattered fields considered in section II
are the disturbance fields created by an isolated particle subjected to a planar shock. In the present case, each
neighbor is not subjected to a perfect planar shock. Each neighbor in fact encounters a shock that is modified by the
perturbations induced by all its neighbors. Second, while the scattered field of the nearest neighbor may arrive at
the reference particle relatively unaffected by the presence of all other distant particles, the same is not true of the
scattered field of distant neighbors. The scattered field from a neighbor that is farther away may be modified by other
closer neighbors before it arrives at the reference particle. Third, the acoustic approximation ignores the non-linear
nature of finite amplitude shock. In essence, these approximations will influence the accuracy of the undisturbed flow
and the resulting force evaluation. Nevertheless, for lack of any better theoretical approach, we proceed with the
linear assumption implicit in the pairwise superposition, ignoring non-linear interactions presented by the N-body
problem.
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A. Perturbation Maps

The advantage of the pairwise interaction approximation is that the perturbing pressure and velocity influence of
a neighbor can be pre-computed and stored. In particular, the surface averages contained in quantities −Sppn

S ,

∂(ρur)
S
/∂t, ρuS , and ∇ur

S that appear in the C-MRG equation given in (12) can be computed and stored as fields.
These fields are functions of time, and also depend on xP the relative location of the reference particle with respect
to the disturbing neighbor (which is taken to be located at the origin). Since the scattered field of the disturbing
neighbor is axisymmetric, the variation of xP only over the upper half of the y − z-plane needs to be considered.

The map of the streamwise component of −Sppn
S at six different time instances normalized by τ is presented in

the upper half of each frame of Fig. 10. The map must be interpreted in the following manner. For any chosen
point within the contour, for a reference particle that is centered at that point, the streamwise component is given by
the contour level, which according to (12) is equal to the undisturbed flow drag. The black region is the disturbing
particle and the white annular band around it corresponds to the region within which the center of the reference
particle cannot lie since the distance between the two particles cannot be less than one particle diameter. Outside
this band of the excluded region, the maps are created with 31 radial positions discretizing |xp|/D from 1.025 to 4
and 81 angular positions. The maps are also resolved with 501 time instances extending from −τ to 5τ , where zero
time corresponds to when the incoming shock first touches the black disturbing sphere.

The corresponding transverse component of −Sppn
S is shown in the lower half of each frame of Fig. 10. The

outward propagating waves contributing to positive and negative fluctuations can be seen in both the streamwise
and transverse components. The temporal decay of the emanating waves from the disturbing sphere is clear. Also,
it can be seen that the intensity of the first train of positive and negative regions (i.e., the intensity of blue and red
regions) decreases over time. As a result, as can be expected, the influence of the disturbing sphere (shaded black) on
the reference particle depends on the distance. With increasing distance, the undisturbed flow force on the reference
particle will decrease. From the spatial structure of the contours, it can be noted that the undisturbed flow drag due
to the scattered field is relatively low for a reference particle that is located laterally with its center near the z = 0
plane, since the waves happen to change sign near this plane, except at an early time and very close to the disturbing
sphere. In contrast, the transverse component is zero along the y = 0 plane and reaches a larger value to the lateral
sides of the reference particle.

The corresponding contours of ∂(ρur)
S
/∂t are shown here in Fig. 11. Again six different time instances are shown

and the upper and lower halves present the streamwise and transverse components. Again an outward propagating
wave packet can be observed and due to the radial expansion of the packet, its intensity decreases over time. It
must be cautioned that the contours shown in Fig. 10 directly correspond to streamwise and transverse force on the
reference sphere, whereas, the contours shown in Fig. 11, only when weighted by the history kernel and integrated
over past times, corresponds to inviscid unsteady force contribution due to temporal acceleration of the scattered field
of the neighbor. Thus, the inviscid unsteady force contribution on the reference particle immediately after the arrival
time of the scattered field will be negative and given by the contour value. However, with the passage of time, the

time integration will receive contributions from past values of ∂(ρur)
S
/∂t as well and thereby damping the level of

the force oscillation. As in the undisturbed flow force, here too, we observe the force to be lower along the z = 0
plane. The maps of the other quantities are presented in the Supplemental Material [1]. From these sets of maps the
perturbation of each neighbor can be calculated, which can then be added as given in (14) and substituted into the
C-MRG model to obtain the force prediction.

B. Validation with PR Simulations

In this section, we will evaluate the capability of the C-MRG force model along with the pairwise superposition of
the primary shock with the disturbance fields of the surrounding neighbors in predicting the time evolution of the force.
In evaluating the surface average of the undisturbed flow seen by each particle, we will use the maps presented in the
previous section for the perturbation of each neighbor. The model prediction will be compared against corresponding
PR simulations of shock propagation over a random distribution of particles. In this section, t = 0 corresponds to the
first instance the shock touches the leading particle and τ is defined as D/us, where us is the velocity of the incident
shock.

Results from two different PR simulations will be used for evaluating the C-MRG force model prediction. Both are
randomly distributed particle beds of volume fraction 10% and the location of the particles is maintained identically
the same in both simulations. The two cases use two different fluids, namely water and air. Both these datasets
were previously considered by Behrendt et al. [9]. The Mach number of both cases is 1.22. The specification of the
thermodynamic properties of the pre-shock region of the two datasets is tabulated in Table I. In the current C-MRG
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FIG. 10. −SppnS disturbance maps. The inner black half circle denotes the location of the disturbing particle and the region shaded in
white denotes locations that the reference particle’s center cannot reach. The upper half plots the streamwise component and the lower
half plots the transverse component. D2ρ0c20 is the normalizing factor and the quantities plotted are noted in the first frame.

model, the inputs required to estimate the time-dependent force of a particle within the random bed are the pre-
and post-shock fluid properties and the location of the particle and its immediate J neighbors. Perturbation maps
computed at 200 time instances after shock arrival were used to calculate the scattered field of each of the J neighbors.

Figure 12 shows the time evolution of both the predicted force (blue line denoted as “PIEP”) and the PR simulation
result (red line denoted as “PR”) for the case of water as the fluid medium. Also plotted in the figure as an orange
dashed line is F in, which corresponds to the force due to the primary incident shock alone without including the
scattering effect of all the neighbors. Thus the difference between the red solid and orange dash line can be interpreted
as the effect of neighbors in altering the force. In the case of particle numbered 11, shown in frame (a), the neighbors
cause the peak force to increase above that of an isolated particle subjected to shock. Whereas in the case of particles
numbered 57, 74, and 145 shown in frames (b), (c), and (d) the effect of neighbors decreases the magnitude of peak
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FIG. 11.
∂(ρur)

S

∂t
disturbance maps. The inner black half circle denotes the location of the disturbing particle and the region shaded in

white denotes locations that the reference particle’s center cannot reach. The upper half plots the streamwise component and the lower
half plots the transverse component. ρ0/D is the normalizing factor and the quantities plotted are noted in the first frame.

force and delays the time of the peak force relative to the time of arrival of the shock. It can be observed that the
C-MRG model, although not perfect, can correctly identify the increase and decrease of the peak force by accounting
for the constructive and destructive influence of the neighbors. The agreement between the simulation and C-MRG
model prediction (red and blue curves) is quite good not only in predicting the dominant positive peak, but also
the subsequent oscillations. Although, the frequency of predicted oscillation becomes increasingly higher than that
obtained in the simulation at later times. Although not perfect, given the fact that there does not exist any other
theory, the C-MRG model’s prediction seems very encouraging.

Also plotted in each frame are two other results that correspond to the undisturbed flow force and the inviscid
unsteady force on the particle. Each of these components is in turn made up of contributions from the primary
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TABLE I. Values for the pre-shock ambient condition in the randomly packed PR simulations.

p0 (Pa) ρ (kg/m3) c0(m/s)
water 101325 998 343.21
air 101325 1.2041 1626.57

incident shock as well as scattering fields from the J immediate neighbors. It was observed in Fig. 7 that both the
undisturbed flow force and the inviscid unsteady force components are important in accurately capturing the time
evolution of force on an isolated particle subjected to a planar shock. It can be observed this conclusion remains valid
even in the case of a random distribution of particles. Furthermore, the initial shape of these forces also remains
qualitatively similar. Only their amplitude is altered and this results in the increase or decrease of the peak observed
in the overall force.

Figure 13 shows the time evolution of force of two different particles in the case of air as the fluid medium. From the
plots, it is clear that the CD is substantially lower in the case of air (note that the actual force magnitude is expected
to be far lower due to the lower density of air than water). Nevertheless, we observe the peak force on individual
particles to be substantially higher or lower than that of an isolated particle. This clearly indicates the importance
of the relative location of neighbors in influencing the local undisturbed flow to the force experienced by a particle.
The C-MRG model is again able to capture the time evolution of force, including the magnitude and timing of the
peak, quite accurately. Here, it should be noted that the PR simulation with water as the medium used the stiffened
equation of state, while the simulation with air as the medium used the ideal gas law for the equation of state. Despite
these differences in the equation of state, the C-MRG model is able to reasonably accurately account for the effect of
neighbors. Of course, the comparison is only qualitatively good at later times. This is perhaps due to the use of the
acoustic model and perhaps can be improved by evaluating the finite Mach number effect on the scattered fields.

We now proceed to evaluate the difference between the force evolution obtained in the PR simulation and the
C-MRG model prediction for all the particles of the random bed. For such a comparison we use the peak value of the
force as the comparison metric. The neighbors can influence the value of the peak force in different ways: if several
neighbors directly block the reference particle by being on the upstream side, the reference particle will effectively see
a weaker shock and therefore the peak shock value will be smaller. On the other hand, if there are disturbing spheres
located upstream, but to one side, channel the flow between them towards the reference particle thus generating a
larger peak drag [9]. Scatter plots of peak predicted force with the C-MRG model against the actual PR simulation
peak force for water and air are shown in Fig. 14. In both cases, the mean drag averaged over all the particles has
been subtracted, since it has been shown to be dictated by the average shock strength as it passes through the bed [9].
Thus the focus is on the model’s ability to predict whether a particle will experience a higher- or lower-than-average
force based on the influence of its neighbors. It is clear from the scatter plots that the model is not perfect, for
otherwise in a perfect model all the data points would have fallen along the 45◦ line. Nevertheless, it is quite clear
that the model can identify those particles whose peak force is substantially larger or smaller than the mean. The
correlation coefficient for the case of water is 0.558 and for air is 0.587. In fact, we can partition the 200 particles
within the bed into four sections - upstream, left-of-center, right-of-center, and downstream sub-slabs of particles, each
containing about 50 particles. In the most upstream section of the bed, the strength of the primary incident shock
remains unaffected, while in the subsequent sections the incident shock seen by the particles is modified (weakened)
by the upstream particles. Since the model assumes the incident shock to remain unaffected, it can be expected that
the model performance is likely to be at its best in the upstream section. The correlation coefficient calculated only
with the upstream particles yields 0.767 and 0.805 for water and air, respectively. It should also be pointed out that
comparisons between the PIEP model prediction and PR results in the incompressible regime for steady flow over
a random distribution of particles yielded similar results, where the model is not perfect, but was able to capture a
significant portion of the actual trend [2].

We then consider the time gap between when the peak drag force is reached and the earlier moment when the
leading shock first touches the particle. The difference between the simulation result and the model prediction of the
time gap is shown in Fig. 15 for all the particles as a function of their axial location. The results for both water and
air are shown. The timing is captured well for the first few particles in the bed and as the depth z increases, the
delay goes larger, and the difference is more severe for the air shock case compared to the water shock case. Behrendt
et al. [9] provided similar findings, as the shock front strength decreases faster for an air shock compared to a water
shock going through the particle bed. In the current model, we assume the shock strength to be constant, regardless
of its axial location. In reality, the disturbing spheres see disturbed and deformed shock fronts. These secondary
interactions are not considered in the model.

Another important effect of neighbors is that they prolong the duration of force fluctuation due to wave reflections
between the particles. In the case of an isolated particle shown in Fig. 7(a), the force oscillations die out rapidly in
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FIG. 12. Unsteady force comparison between PR simulation (red) and prediction using the C-MRG model (blue) for a water shock
through the particle bed. The orange curve is the force experienced by that particle without any neighboring disturbances, subject to a
pure shock. The green curve is the undisturbed contribution and the cyan curve is the inviscid unsteady contribution. The streamwise
location for each of the particle center is: p.11 - 1.00D, p.57 - 4.17D, p.74 - 5.81D, and p.145 - 11.65 D.

contrast to force fluctuations seen by the different particles seen in Fig. 12. This can be quantified in terms of rms
force fluctuation Frms, which is computed by taking rms of the force oscillation within a time window for each of
the particles. The start of this time window is when the primary shock passes the particle and the force crosses zero
and the end of the time window is 9τ , after the moment the primary shock touches the reference sphere. The rms
force fluctuation of the different particles can then be averaged to obtain ⟨Frms⟩. The average rms force fluctuation
obtained from the PR simulation is compared with that predicted by the model in Table II for both water and air.
Also shown for comparison is that of an isolated particle. The magnitude of the oscillation for water is larger than
that for air, as in general F in is higher in magnitude. Compared to the small post-shock oscillation values observed in
F in
rms, ⟨FPR

rms⟩ is significantly larger, and the C-MRG model is able to capture the increased force fluctuations due to
neighbor interactions. Since the current model only considers the effect of disturbing particles on a reference particle,
the secondary effects such as wave reflection between the particles are ignored. These secondary reflections tend to
create more force oscillation contributing to enhanced pseudo-turbulence. Hence it is to be expected that ⟨FPR

rms⟩ is
larger than ⟨FPIEP

rms ⟩. It is also interesting to observe that PIEP prediction is closer to PR results in the case of water
due to perhaps reduced compressibility effects and wave reflections.
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FIG. 13. Unsteady force comparison between PR simulation (red) and prediction using the C-MRG model (blue) for an air shock through
the particle bed. The orange curve is the force experienced by that particle without any neighboring disturbances, subject to a pure shock.
The green curve is the undisturbed contribution and the cyan curve is the inviscid unsteady contribution. The streamwise location of the
particle centers are: p.60 - 4.42D, and p.145 - 5.82 D.
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FIG. 14. Peak force comparisons for the case of (a) water and (b) air shock. Each of the points is colored corresponding to the quarter
in which the center is located. Colors red, blue, green, and purple correspond to upstream, left-of-center, right-of-center, and downstream
sections of the bed. Several particles are highlighted in each figure and the force curves experienced by these particles are shown in
Figures 12 and 13. The mean peak drag has been subtracted: CD,peak denotes the peak value for each particle and the overline () denotes
the average value.

V. CONCLUSIONS

As a planar shock propagates through a randomly placed particle bed, it is observed that in addition to the
transmitted shock and the waves reflected by the upstream edge of the bed, there are distorted compression and
rarefaction waves that linger within the particle bed. Aside from using PR simulation to study common systems as
such in nature, existing force models consider only individual particles interacting with the shock. In this work, we
construct a framework to account for the particle-wave-particle interaction by extending the incompressible pairwise
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FIG. 15. The time delay between when the drag force in PR simulation reaches the maximum and that predicted by the model. The
horizontal axis is the depth in z where the particles sit and the vertical axis is the time delay observed. The blue circles denote results for
the water shock case and the red crosses are for the air shock case.

TABLE II. Rms values of post-shock oscillation for PR-simulation (superscript PR) and the model (superscript PIEP ).

F in
rms ⟨FPR

rms⟩ ⟨FPIEP
rms ⟩

Water 0.2366 1.4193 1.1660

Air 0.0980 0.6442 0.4278

interaction extended point-particle (PIEP) approach to the unsteady compressible regime.

A classical solution of scattering acoustic waves from a hard sphere is utilized to reconstruct the flow field due to a
moving shock. We established the accuracy of a numerical evaluation of the analytical spherical harmonics solution
to model the flow field by comparing it with the results of a PR simulation of a single sphere subject to a planar
shock. In the process, we formulated relations for the timing of the scattered shock signal to arrive using the Huygens-
Fresnel principle. To step-by-step verify the validity of the compressible Maxey-Riley-Gatignol (C-MRG) force model
in conjunction with the acoustic scattering theory, two-sphere force predictions are compared to corresponding two-
particle PR simulations subjected to a planar shock. It is observed that even though higher-order wave interactions
between the two particles are not considered, the C-MRG model predicts well the time evolution of the drag and lift
forces, even at finite shock Mach numbers.

We store the key components of the C-MRG force expression as influence maps in the form of data libraries and
investigate the superposition assumption by reading the maps to obtain the individual influence of each neighbor and
sum up the influences to approximate the force components of a reference particle. The C-MRG model is computed
with the approximate undisturbed flow fields to obtain the force prediction. Since the force is time-dependent we
use the peak force as the shock propagates over a particle as the proxy to the time evolution and analyze the peak
predictions of the drag forces compared to PR simulation. This comparison is made for both water and air as the
surrounding fluid for a randomly packed particle bed at a volume fraction of 10 %. It is observed that the model
captures well the particle-to-particle peak drag variation based on the location of the neighboring particle. The
effectiveness of the model slightly decays as the shock front is deeper into the bed, as the shock front seen by each
disturbing neighboring sphere is more deformed. This effect is more severe in the air shock system compared to
the water shock system. The model is also capable of predicting the persistent drag oscillations from disturbance
waves bouncing between the particles even after the passage of the primary shock. Thus the C-MRG model pairwise
superposition of the scattering of the neighbors is a cost-effect computational method to resolve the particle forces in
EL simulations. As future work, it will be interesting to consider a larger range of volume fractions of the dispersed
phase and Mach numbers to investigate the limit of this pairwise interaction model.
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