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Abstract

Stokesian Dynamics is a well-established computational method for simulating dynamics of many

particles suspended in a conventional passive fluid medium. Active fluids composed of self-driving

particles with broken time reversal symmetry permit the emergence of a so-called odd viscosity.

In this work, we extended the conventional Stokesian Dynamics formalism to incorporate the

additional hydrodynamic effects due to odd viscosity, which enables simulating collective behaviors

of many particles suspended in an active fluid medium with both even viscosity and odd viscosity.

I. INTRODUCTION

Understanding and predicting the macroscopic properties, such as the diffusion coefficient[1],

thermal conductivity and rheology[2], of a suspension of particles from its micro-structural

mechanics is a long-standing science and engineering problem. In order to address this prob-

lem, a vast number of different simulation techniques have been developed in past decades

[3–9]. Stokesian Dynamics[10] is a well-known particle-based approach for dynamically sim-

ulating the collective behaviors of many particles suspended in a fluid medium. It has been

successfully applied to a diverse range of particle suspensions for understanding phenomena

such as sedimentation[11–13], phase transition of colloidal gels[14–16] and discontinuous

shear thickening[17–19], to name a few.

Hydrodynamic interactions have played an important role in describing suspensions of

particles in viscous fluids for decades. In the 1990s, Aron and co-workers[20, 21] showed that

the hydrodynamic equations in a system with broken time reversal symmetry are equipped

with a non-dissipative viscosity coefficient, termed odd viscosity. Such odd viscosity was

experimentally measured in a suspension of particles driven by an external field [22]. Ac-

tive fluids composed of self-propelling particles[23, 24] with broken time reversal symmetry

have thus attracted great interests. The constant injection of external energy leads to non-

equilibrium states of active particles, where diverse steady-state collective motions sharply

contrast with those commonly observed in equilibrium systems[25–31]. Most of the research

about active colloidal particles has focused on the active colloidal particles themselves and

limited attention has been put on the medium, which mediates the hydrodynamic inter-
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actions between active colloidal particles. Nearly all the collective behavior of active col-

loidal particles is studied in a liquid environment. This makes hydrodynamic interactions

essential[32, 33] for understanding phenomena observed in active systems. More importantly,

due to the constant input of external energy in active systems, the mechanical motions of

embedded active units also constantly disturb the surrounding liquid. These induced active

flows are absent in usual passive fluids.

In this work, we envision a collection of particles suspended in an active fluid, which

possesses both even and odd viscosity. In an analogy to the development of traditional

Stokesian Dynamics, we systematically derive an extended Stokesian Dynamics formalism to

explore possible physical effects of odd viscosity[34–37]. We first briefly review the concept of

odd viscosity in section IIA. Then, the Stokes’ equations governing the conventional micro-

hydrodynamics are generalized to include the additional effects caused by odd viscosity in

section II B and the Green’s function of the generalized Stokes’ equations is also derived

in section IIC. By considering up to the first order effect of odd viscosity in section III,

both near-field and far-field mobility tensors due to odd viscosity are calculated in section

III B and section III C, respectively. In section IIID, those results are incorporated into the

existing Stokesian Dynamics framework for simulating a population of particles suspended

in an active fluid medium with both even and odd viscosity. The whole work concludes with

a brief summary and discussions about possible future work.

II. STOKES’ EQUATIONS WITH ODD VISCOSITY

A. Odd viscosity

Readers already familiar with odd viscosity can skip this section, where the concept of

odd viscosity is briefly reviewed[21, 38–41]. Without loss of generality, the viscous stresses

of any fluids in response to external disturbances can be written as

σij = −pδij + µijkl∇luk (1)

where σij is the stress tensor, p is the isotropic hydrostatic pressure and ∇luk is the velocity

gradient tensor. Here, µijkl is the fourth order viscosity tensor, which describes resulting

viscous stresses in response to velocity gradients. The above relation is usually termed as

the linear constitutive relation of a fluid. Analogous to the case of a homogeneous isotropic
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linear elastic solid [42], the spatial symmetry properties of a homogeneous isotropic fluid

simplifies the general viscosity tensor to

µe
ijkl = µbδijδkl + µs(δikδjl + δjkδil) (2)

where µb and µs are the bulk and shear viscosity, respectively. Such viscosity tensor µe
ijkl

only depends on two independent material properties, which play similar roles of bulk and

shear modulus in linear elastic solids.

Furthermore, symmetry properties of the system enforce three important symmetry rela-

tions, which the viscosity tensor µe
ijkl must fulfill. Firstly, the rotational invariance of system

requires that µe
ijkl = µe

ijlk. Secondly, the conservation of local angular momentum (no ex-

ternal torques) requires that the stress tensor must be symmetric, that is, σij = σji, which

enforces that µe
ijkl = µe

jikl. Thirdly, according to the Onsager reciprocal relations[43, 44], the

time reversal symmetry requires that µe
ijkl = µe

klij. It is easy to verify that the above vis-

cosity expression µe
ijkl fulfills all three symmetry relations. The superscript e indicates that

it is even under the time-reversal transformation (ij ↔ kl) and the corresponding viscosity

µe
ijkl is therefore termed as even viscosity.

As an extension of the above symmetry considerations, Avron et al.[21] considered a

system under an external magnetic field, which possesses a broken time-reversal symmetry.

In such a scenario, the Onsager reciprocal relations can be further extended for systems with

a broken time reversal symmetry[45], which yields

µo
ijkl = −µo

klij (3)

where the superscript o indicates that the viscosity is odd under the time-reversal transfor-

mation and µo
ijkl is thus analogously termed as odd viscosity.

The most general expression of odd viscosity in a 3D system can be quite complex and may

contain numerous components depending on the symmetry of system, which is systematically

explored by Vitelli et al.[34]. Here, we restrict our attention to a more specific case by only

considering the possible rotational degrees of freedom of microscopic fluid particles. In

such a scenario, starting from a microscopic Hamiltonian, Lubensky et al. [39] derived an

expression of odd viscosity in a three-dimensional system as,

µo
ijkl = ℓn(εjlnδik + εilnδjk + εiknδjl + εjknδil) (4)
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where εijk is the three-dimensional (3D) Levi-Civita symbol, δij is the Kronecker delta, and

ℓi is the local angular momentum density of constituting particles. Please be aware that the

expression above derived in the work [39] matches with the general expression derived in

the work[34] by taking η01 = −2η02 = µ0 in their notations. And similar to the case of even

viscosity, the odd viscosity should fulfill three symmetry relations µo
ijkl = µo

ijlk, µ
o
ijkl = µo

jikl

and µo
ijkl = −µo

klij. It can be easily verified that all three symmetric relations are fulfilled by

Eqn. 4. For a quasi-2D system where the local angular momentum density is constrained

to be uni-axial such as ℓ = µoẑ, the above general expression of odd viscosity in 3D (Eqn.

4) can be further simplified to

µo
ijkl = µo(εjlδik + εilδjk + εikδjl + εjkδil) (5)

where εij is the 2D Levi-Civita symbol defined as εij = εijz and the index of εij is extended

to run over x, y and z. In such a simplified case, a single scalar material parameter — odd

viscosity µo — is sufficient to determine the whole odd viscosity tensor µo
ijkl.

Finally, for a fluid involving both even and odd interactions under the time-reversal

transformation, the general linear constitutive relation of such a fluid can be expressed as

σij = −pδij +
(
µe
ijkl + µo

ijkl

)
∇luk (6)

where the explicit expressions of even and odd viscosity tensors are given by Eqn. 2 and 4,

respectively.

B. Odd Stokes’ equations

With the constitutive relation of a fluid including both even and odd viscosity (Eqn.

6), the corresponding Stokes’ equations are ready to be derived via the balance of linear

momentum. For simplicity, we only consider quasi-2D systems here and the overall viscous

stress tensor is thus given by

σij = −pδij + µb∇kukδij + µs (∇jui +∇iuj)

+ µo (εjl∇lui + εil∇luj +∇iεjlul +∇jεilul)
(7)

For an incompressible fluid, ∇juj = 0, the balance of internal forces (∇ · σ) and external

forces (f) yields the Stokes’ equations with odd viscosity as,

−∇i (p− µoεjl∇jul) + µs∇2ui + µoεil∇2ul = fi (8)
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Please be aware that εil∇2ul ̸= ∇iεjl∇jul due to the existence of a third dimension. Thus,

the effects due to odd viscosity cannot be simply absorbed into the pressure term like 2D

incompressible flows[46]. The above equations can also be rewritten in an equivalent matrix

form as 
µs µo 0

−µo µs 0

0 0 µs

∇2u = ∇p̃+ f (9)

where the modified pressure p̃ is defined as p̃ = p−µoεjl∇jul and f denotes possible external

volumetric forces such as gravity. The above equation reduces to the conventional Stokes’

equation when µo = 0 and the odd viscosity µo emerges only at off-diagonal elements, which

introduces additional couplings between in-plane components (x and y components here,

with angular momentum density ℓ assumed to be along z axis).

C. Odd Oseen tensor

As the Stokes’ equations with odd viscosity (Eqn. 9) are still linear equations, here we

derive its corresponding Green’s function. Similarly to the Oseen tensor[47, 48] derived for

the conventional Stokes’ equations with only even viscosity, we start by considering a point

force −F applied at position r[49], that is,
µs µo 0

−µo µs 0

0 0 µs

∇2u = ∇p− Fδ(r) (10)

Here, the modified pressure p̃ (Eqn. 9) is denoted as p for brevity. Due to the linearity of

the odd Stokes’ equations, both the pressure field p and flow field u should be proportional

to the applied point force F. Since p(r) is a scalar field and u(r) is a vector field, such linear

relations can be expressed as

p(r) = Pj(r)Fj, ui(r) = Gij(r)Fj (11)

where Pi(r) and Gij(r) are the Green’s function of the pressure field and flow fields, respec-

tively. Applying the Fourier transformation to Eqn. 10, its corresponding expressions in

k-space can be computed as

−µijk
2ûj(k) = ikip̂(k)− Fi (12)
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where k is the wave vector, p̂(k) and û(k) are the respective pressure field and flow fields in

the k-space. For convenience, a second order auxiliary viscosity matrix µij is introduced,

µij =


µs µo 0

−µo µs 0

0 0 µs

 = µsδij + µoεij (13)

Utilizing the linearity of odd Stokes’ equations (Eqn. 11) and the incompressibility condition

of fluids (∇ · u = 0), the Green’s functions of both pressure and flow field can be solved

analytically in k-space as (see Appx. A 1):

P̂j(k) = −ikj
k2

+ iµ0εikkiĜkj(k), Ĝij(k) = Ĝ(ij)(k) + Ĝ[ij](k) (14)

where P̂j(k) and Ĝij(k) are the corresponding Green’s functions of pressure and flow fields

in the k-space. The k-space Green’s function of flow fields Ĝij(k) can be split as the sum of

its symmetric and anti-symmetric parts:

Ĝ(ij)(k) =
1

µs

1

Σ2(k)

(
−kikj

k4
+

δij
k2

)
, Ĝ[ij](k) = − 1

µs

χ

Σ2(k)
εijkkk

kz
k4

(15)

where indices in parentheses and brackets indicate symmetrizing and anti-symmetrizing the

original tensor, respectively. Two auxiliary variables Σ(k) and χ are defined as:

Σ2(k) = 1 + χ2k
2
z

k2
, χ =

µo

µs

(16)

Particularly, the dimensionless number χ is the ratio between odd viscosity µo and even

viscosity µs, which naturally characterizes the significance of odd viscosity related effects

relative to even viscosity.

The corresponding real-space expressions of Green’s functions can be obtained via the

inverse Fourier transformation of its k-space expressions (Eqn. 14). However, the additional

k-dependence introduced by Σ2(k) for non-vanishing odd viscosity makes the exact analyt-

ical calculation difficult. To avoid obscuring essential physics by tedious algebra, we only

focus on the fluids with a weak odd viscosity[22], that is, µo ≪ µs. Then, the viscosity

ratio χ ≪ 1 serves as a natural expansion parameter for obtaining the leading effects of odd

viscosity (see Appx. A 2).

By expanding to the first order of χ, the symmetric and anti-symmetric parts of the exact

k-space Green’s function(Eqn. 15) can be approximated as

Ĝ(ij)(k) ≈
1

µs

(
−kikj

k4
+

δij
k2

)
, Ĝ[ij](k) ≈ − χ

µs

(
εijkkk

kz
k4

)
(17)
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The inverse Fourier transformation of above first-order expansion of k-space expressions can

be computed straightforwardly as,

G(ij)(r) ≈
1

8πµs

Jij(r), G[ij](r) ≈ − χ

8πµs

Jo
ij(r) (18)

where Jij(r) is the conventional Oseen tensor [47] and Jo
ij(r) is analogously termed as odd

Oseen tensor, which are defined as

Jij(r) =
δij
r

+
rirj
r3

, Jo
ij(r) = εijkδl3

(
δkl
r

− rkrl
r3

)
(19)

It should be evident that the Oseen tensor is a symmetric tensor (Jij = Jji) while the

odd Oseen tensor is an anti-symmetric tensor (Jo
ij = −Jo

ji). Please note that the special

dependency of z-axis is purposefully split out in the above definition of Jo
ij(r), which is due

to the assumption of the constitutive relation(Eqn. 5) that the local angular momentum

density is only along the z-axis.

Therefore, up to the first order effect of odd viscosity, the real-space expressions of the

Green’s function can written as,

Gij(r) = G(ij)(r) +G[ij](r) ≈
1

8πµs

[
Jij − χJo

ij(r)
]

(20)

Because of the linearity of the odd Stokes equations(Eqn. 9), many nice mathematical prop-

erties are preserved separately for the symmetric and anti-symmetric parts of the Green’s

function. For example, the odd Oseen tensor is both divergence-free (∇jJ
o
ij = 0) and bihar-

monic (∇4Jo
ij = 0) just like the conventional Oseen tensor (∇jJij = 0 and ∇4Jij = 0).

For simplicity, the rest of this work will build upon the above Green’s function (Eqn.

20) expanded only to the first order of viscosity ratio χ. This gives us the leading order

effects of odd viscosity on top of the traditional Stokesian Dynamics. However, if necessary,

arbitrarily higher-order terms can be systematically derived as demonstrated in Appx. A 2.

III. STOKESIAN DYNAMICS WITH ODD VISCOSITY

With the real-space Green’s function (Eqn. 20) of the odd Stokes’ equations (Eqn. 9)

derived in previous sections, the flow fields induced by a point force F at origin can be

simply expressed as

uPF
i (r) = Gij(r)Fj =

[
G(ij)(r) +G[ij](r)

]
Fj ≈

1

8πµs

[
Jij(r)− χJo

ij(r)
]
Fj (21)
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Comparing with the conventional passive fluids, the above expression has one additional

term due to the first order effect of the odd viscosity. For simplicity, only the first order

effect of odd viscosity will be explored in this work but the formalism developed in this

section in principle can be extended to arbitrarily higher orders. By the linearity of the odd

Stokes’ equations (Eqn. 9), the total flow fields induced by a collection of N finite-sized

rigid particles can be written as

ui(x)− u∞
i (x) =

1

8πµ

N∑
α=1

∮
Sα

[
Jij(r)− χJo

ij(r)
]
fj(y)dS(y) (22)

where u∞
i (i = x, y, z) represents possible background linear velocity field, Sα is the surface

of α-th particle (α = 1, · · · , N), y denotes any locations at the particle surface, and fj(y)

is the force density distributed over the particle surface. And, hereafter, the shear viscosity

µs will be denoted as µ for short.

Based on the above integral representation of odd Stokes’ equations, we will extend

the conventional Stokesian Dynamics formalism to include the effects due to odd viscosity.

However, before diving into the formal derivations, it is helpful to decompose the overall

flow fields (Eqn. 22) into its respective components contributed by even and odd viscosity,

i.e.

ui(x) = ue
i (x) + uo

i (x), u∞
i (x) = ue∞

i (x) + uo∞
i (x) (23a)

ue
i (x)− ue∞

i (x) =
1

8πµ

N∑
α=1

∮
Sα

Jij(r)fj(y)dS(y) (23b)

uo
i (x)− uo∞

i (x) = − χ

8πµ

N∑
α=1

∮
Sα

Jo
ij(r)fj(y)dS(y) (23c)

where ue
i (u

o
i ) and ue∞

i (uo∞
i ) denote the even(odd) viscosity relevant flow fields and back-

ground flow fields. As shown in the above equations, for any given force density distribu-

tions at particle surfaces, the flow fields contributed by even and odd viscosity can be treat

separately and the overall flow fields is the sum of both even and odd flow fields. Due to

the linearity, it also suggests that the boundary conditions fulfilled by the overall flow fields

is the sum of respective boundary conditions fulfilled by even and odd flow fields. Since

the Stokesian Dynamics with only even viscosity has been extensively studied[9, 10], we will

only focus on the derivation of additional mobility tensors contributed by odd viscosity in

the following sections.
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A. Multipole expansion

Commonly speaking, the detailed information of force density distribution on each par-

ticle’s surface is difficult to obtain and usually only moments of force density distribution,

such as forces, torques and so on, are experimentally accessible. Therefore, induced flows

in response to each force density moment are of more interest in practice. Analogous to

electrostatics[50], the multipole expansion method can be applied to get the contributions

of flow fields in terms of force moments at large distance[47]. Unlike the case of electrostatics

which deals with scalar quantities (electric potential φ and electric charges q), here vectorial

quantities (flow velocity u and force density f) and anisotropic Green’s functions (Eqn. 20)

add extra mathematical complexities but also result in richer physical interactions. Consid-

ering the flow fields at positions far away from all particles (i.e. |x− y| ≫ |xα − y|), the

Tarloy expansion of the odd Oseen tensor yields that:

Jo
ij(x− y) = Jo

ij(x− xα) + (xα
k − yk)∇kJ

o
ij(x− xα) + · · · (24)

where x is the position of interests, y is any locations at the particle surface and xα denotes

the center position of α-th particle. If we only consider up to the first order moments of force

density distribution, the above expanded odd Oseen tensor can be plugged back into the

integral form expression of the induced odd flows. After evaluating the surface integrals, it

gives the multipole expansion of original integral representation (Eqn. 23c) at large distance

as,

uo
i (x)− uo∞

i (x) ≈ − χ

8πµ

N∑
α=1

[
Jo
ij(x− xα)Fα

j −Ro
ij(x− xα)Tα

j −Ko
ijk(x− xα)Sα

jk

]
(25)

where Fα, Tα and Sα are the total forces, torques and stresslets acting on the α-th particle,

respectively. Mathematically, they are the zeroth and first order moments of force density

distribution[51]. Denote the relative distance between particle surface and particle center of

α-th particle as Xα
k = yk − xα

k . Then, the explicit definitions of force moments in terms of

force density at the particle surface can be written as,

Fα
j =

∮
Sα

fjdS (26a)

Tα
j =

∮
Sα

εjmnX
α
mfndS (26b)

Sα
jk =

∮
Sα

1

2

[
fjX

α
k + fkX

α
j

]
dS (26c)
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Furthermore, Jo
ij(r), R

o
ij(r) and Ko

ijk(r) in Eqn. 25 are the respective odd viscosity relevant

propagators of forces, torques and stresslets, which are defined as

Jo
ij(r) =

εij3
r

− εijkrkr3
r3

(27a)

Ro
ij(r) =

1

2
εikl∇kJ

o
jl (27b)

Ko
ijk(r) =

1

2

[
∇kJ

o
ij(r) +∇jJ

o
ik(r)

]
(27c)

The above multipole expansion (Eqn. 25) is truncated at the first order although such

expansion can proceed to higher orders for a better accuracy. Particularly, for rigid spher-

ical particles, such expansion terminates very quickly and even an exact solution can be

obtained for isolated particles just like the case with only even viscosity [47]. Without loss

of generality, the induced odd flow fields can be expressed as

uo
i (x)−uo∞

i (x) ≈ − χ

8πµ

N∑
α=1

{
F
[
Jo
ij(x− xα)

]
Fα
j + T

[
Jo
ij(x− xα)

]
Tα
j + S

[
Jo
ij(x− xα)

]
Sα
jk

}
(28)

where F
[
Jo
ij(x− y)

]
, T

[
Jo
ij(x− y)

]
and S

[
Jo
ij(x− y)

]
denote linear functions which de-

scribe the odd viscosity related responses to external forces, torques and stresslets, respec-

tively. If the particles under consideration are ideal point particles, the explicit functional

forms of those response functions are just the propagators of each force moment (Eqn. 27).

However, due to the fact that particles are of finite size, there are additional non-vanishing

higher order force moments that need to be included.

Next, we will determine the exact functional forms of the response functions with higher-

order terms for rigid spherical particles. We first extend the Lorentz reciprocal theorem and

the Faxén laws to systems with odd viscosity. Then, the additional mobility tensors due to

odd viscosity are systematically derived in both near and far fields for the development of

Stokesian Dynamics with odd viscosity.

B. Near-field mobility tensors

1. Ambient flows in integral form

Here, we restrict our consideration to a collection of spherical rigid particles. If particles

are sufficiently far away from each other, then their spherical symmetry makes it reasonable
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to assume the force moments are uniformly distributed over the particle surface. Thus, the

integral form of ambient odd flows (odd flows induced by other particles excluding α-th

particle itself) can be written as

uo′
i (x)− uo∞

i (x) ≈ − χ

8πµ

N∑
β=1,β ̸=α

∮
Sβ

Jo
ij(x− y)

[
F β
j

4πa2
+

3

8πa3
εjklT

β
k nl +

3

4πa3
Sβ
jknk

]
dS

(29)

where uo′
i denotes the ambient odd flows and each term inside the square bracket corresponds

to the uniform force density generated by each force moments. According to the definitions

of force moments (Eqn. 26), it can be shown explicitly that,

F β
j =

∮
Sβ

fjdS =

∮
Sβ

(
F β
j

4πa2

)
dS (30a)

T β
j =

∮
Sβ

εjmnX
β
mfndS =

∮
Sβ

εjmnX
β
m

(
3

8πa3
εnklT

β
k nl

)
dS (30b)

Sβ
jk =

∮
Sβ

1

2

[
fjX

β
k + fkX

β
j

]
dS =

∮
Sβ

1

2

[(
3

4πa3
Sβ
jmnm

)
Xβ

k +

(
3

4πa3
Sβ
kmnm

)
Xβ

j

]
dS

(30c)

Such a uniform force density approximation is closely related to the idea of the Rotne-

Prager-Yamakawa (RPY) approximation[52–54] commonly used in conventional Stokesian

Dynamics for obtaining regularized near-field interactions. It ignores many aspects of reality,

such as the many-body effects in a dense suspension, where particles can be nearly-touching

with each other. In such a case, the force density at the particle surface are no longer ex-

pected to be uniform and more rigorous lubrication theory must be consulted. During the

revision of this manuscript, the authors are aware that there is new development to account

for many-body hydrodynamic interactions in dense active suspension[55]. Nevertheless, this

simple approximation provides a convenient venue for deriving the hydrodynamic interac-

tions in the dilute limit.

Based on above assumptions, the integral forms of response functions F
[
Jo
ij(x− y)

]
,

T
[
Jo
ij(x− y)

]
and S

[
Jo
ij(x− y)

]
can be simply extracted from Eqn. 29 as

F
[
Jo
ij(x− y);S

]
=

1

4πa2

∮
S

J̃o
ij(x− y)dS(y) (31a)

T
[
Jo
ij(x− y);S

]
=

3

8πa3

∮
S

R̃o
ij(x− y)dS(y) (31b)

S
[
Jo
ij(x− y);S

]
=

3

4πa3

∮
S

K̃o
ijk(x− y)dS(y) (31c)
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where integrals are evaluated at the particle surface S and integrands inside surface integrals

of each force moments are defined as

J̃o
ij(x− y) = Jo

ij(x− y) (32a)

R̃o
ij(x− y) = Jo

ik(x− y)εkjlnl (32b)

K̃o
ijk(x− y) =

1

2

[
Jo
ij(x− y)nk + Jo

ik(x− y)nj

]
(32c)

For spherical rigid particles, the single spherical surface integrals of response functions can

be evaluated analytically, which yield

M o
F ij(x) =

1

8πµ
F
[
Jo
ij(x− y);Sβ

]
=

1

8πµ

1

4πa2

∮
Sβ

Jo
ij(x− y)dS(y)

=


(
1 + a2

6
∇2
)

Jo
ij(x−xβ)

8πµ

∣∣x− xβ
∣∣ > a

1
12πµa

εij3
∣∣x− xβ

∣∣ ≤ a

(33a)

M o
T ij(x) =

1

8πµ
T
[
Jo
ij(x− y);Sβ

]
=

1

8πµ

3

8πa3

∮
Sβ

Jo
ik(x− y)εkjlnldS(y)

=

−
(
1 + a2

10
∇2
)

Ro
ij(x−xβ)

8πµ

∣∣x− xβ
∣∣ > a

1
8πµa3

[
−3

5

(
xl − xβ

l

)
δlij3 − 1

2
δij
(
z − zβ

)
+ 1

2
δi3(xj − xβ

j )
] ∣∣x− xβ

∣∣ ≤ a

(33b)

M o
Sijk(x) =

1

8πµ
S
[
Jo
ij(x− y);Sβ

]
=

1

8πµ

3

4πa3

∮
Sβ

1

2

[
Jo
ij(x− y)nk + Jo

ik(x− y)nj

]
dS(y)

=


−
(
1 + a2

10
∇2
)

Ko
ijk(x−xβ)

8πµ

∣∣x− xβ
∣∣ > a

1
40πµa3

{[
εij3

(
xk − xβ

k

)
+ εik3

(
xj − xβ

j

)]
+(εijmδk3 + εikmδj3)

(
xm − xβ

m

)} ∣∣x− xβ
∣∣ ≤ a

(33c)

A detailed example for the calculation of above surface integrals can be found at Appx.

D 1. Physically, the above functions M o
F ij(x), M

o
T ij(x) and M o

Sijk(x) are just the respective

propagators of spherical rigid particles in response to forces, torques and stresslets such that

uo′
i (x)− uo∞

i (x) ≈ −χ
N∑

β=1,β ̸=α

[
M o

F ij(x− xβ)F β
j +M o

T ij(x− xβ)T β
j +M o

Sijk(x− xβ)Sβ
jk

]
(34)
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Please be aware the above evaluations are analytical under the assumption of uniform dis-

tribution of force density, which is apparently not satisfied as two particles approaching each

other. However, it serves as a convenient way for regularizing the near-field singularities and

also enables the derivation of corresponding far-field interactions, where such uniform force

density assumption is valid.

2. The Faxén laws in integral form

In the derivation of a traditional Stokesian Dynamics formalism, the Faxén laws[47, 51]

provide a bridge for connecting the kinetic motions (Uα,Ωα,Eα) with corresponding me-

chanical quantities (Fβ,Tβ,Sβ) of each particles, where Uα is the translational velocity,

Ωα is the angular velocity and Eα is the straining velocity of α-th particle. However, the

validity of the Faxén laws with even viscosity[47] relies on the Lorentz reciprocal theorem

and symmetry properties of the Oseen tensor. Due to the existence of odd viscosity, a

generalized Lorentz reciprocal theorem is derived in Appx. B based on the respective sym-

metry properties of even and odd viscosity. With the generalized Lorentz reciprocal theorem

and symmetry properties of the odd Oseen tensor, a generalized version of the Faxén laws

including both even and odd viscosity is also derived in Appx. C. Comparing with the

conventional Faxén laws, the odd viscosity related Faxén laws (Eqn. C14) are essentially

the same as its even viscosity counterparts.

With the integral forms of response functions (Eqn. 31) and the generalized Faxén laws

for odd viscosity (Eqn. C14), the integral form of Faxén laws with odd viscosity can be

written explicitly as

Uα
i − U∞

i (xα) = F [uo′
i (x);S

α] =
1

4πa2

∮
Sα

uo′
i (x)dS

α(x)

Ωα
i −Ω∞

i (xα) = T [uo′
i (x);S

α] =
3

8πa3

∮
Sα

εijknju
o′
k (x)dS

α(x)

Eα
ij − E∞

ij (x
α) = S[uo′

i (x);S
α] =

3

4πa3

∮
Sα

1

2

[
uo′
i (x)nj + uo′

j (x)ni

]
dSα(x)

(35)

where F [uo′
i (x);S

α], T [uo′
i (x);S

α] and S [uo′
i (x);S

α] are the same linear functions defined

by Eqn. 31 but applied to the ambient odd flow uo′(x) given by Eqn. 29 and evaluated at

the surface of α-th particle Sα instead. Please be aware that the straining motions are kept

in the above formulation for completeness. The rigid particle should have zero straining

14



motions as it is not deformable, which usually should serve as a constraint for rigid particles

to solve for proper stresslets if needed.

3. Near-field mobility tensors

Due to the linearity of odd Stokes’ equations, the relations between kinetic motions

(Uα,Ωα,Eα) and force moments (Fα,Tα,Sα) are also linear and can be written in a matrix

form as:


Uα −U∞

Ωα −Ω∞

Eα − E∞

 = Mo


Fα

Tα

Sα

 (36)

where Mo denotes the grand mobility tensor contributed by odd viscosity. In the above

expression, only quantities of α-th particle are explicitly written inside the parentheses for

compactness, which actually represents quantities of every particles all stacked together

into a single column vector. Based on couplings between different components, the grand

mobility tensor Mo can be decomposed into a block-wise form:

Mo =


Mo

UF M
o
UT M

o
US

Mo
ΩF M

o
ΩT M

o
ΩS

Mo
EF M

o
ET E

o
ES

 (37)

where Mo
XY denotes the odd-viscosity related mobility tensor connecting the kinetic motion

X (X = U,Ω or E) resulted from the force moment Y (Y = F, T or S) between N particles.

For the mobility tensors between two different particles (α ̸= β), the integral form near-field

pair mobility tensors can be obtained by plugging the expression of ambient flow (Eqn. 29)
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into the Faxén laws in integral form (Eqn. 35), which yields

Mαβ
UF =

(
M o αβ

UF ij

)
= − χ

8πµ

1

(4πa2)2

∮
Sα

∮
Sβ

J̃o
ij(x− y)dSαdSβ (38a)

Mαβ
UT =

(
M o αβ

UT ij

)
= − χ

8πµ

1

4πa2
3

8πa3

∮
Sα

∮
Sβ

R̃o
ij(x− y)dSαdSβ (38b)

Mαβ
US =

(
M o αβ

US ijk

)
= − χ

8πµ

1

4πa2
3

4πa3

∮
Sα

∮
Sβ

K̃o
ijk(x− y)dSαdSβ (38c)

Mαβ
ΩT =

(
M o αβ

ΩT ij

)
= − χ

8πµ

(
3

8πa3

)2 ∮
Sα

∮
Sβ

εiklnkR̃
o
lj(x− y)dSαdSβ (38d)

Mαβ
ΩS =

(
M o αβ

ΩS ijk

)
= − χ

8πµ

3

8πa3
3

4πa3

∮
Sα

∮
Sβ

εilmnlK̃
o
mjk(x− y)dSαdSβ (38e)

Mαβ
ES =

(
M o αβ

ES ijkl

)
= − χ

8πµ

(
3

4πa3

)2 ∮
Sα

∮
Sβ

1

2

[
K̃o

ikl(x− y)nj + K̃o
jkl(x− y)ni

]
dSαdSβ

(38f)

The subscript XY indicates the mobility tensor describes the coupling between kinetic

motions X (X = U , Ω or E) and force moments Y (Y = F , T or S); The superscript

αβ specifies the mobility tensor describes the interaction between α-th and β-th particles

(α, β = 1 · · ·N); The subscript ijkl indicates the Cartesian components of the mobility

tensor (i, j, k, l = 1, 2, 3). The superscript o used in Eqn. 37 is dropped for brevity. The

evaluation of the double surface integrals in the above expressions are tedious and a detailed

example for carrying out the calculation is provided in Appx. D 2. And the final explicit

expressions of near-field odd mobility tensors are documented in Appx. E 3.

4. Symmetry properties of mobility tensors

There are actually many symmetry relations of mobility tensors of odd viscosity con-

strained by symmetry properties of systems under consideration. Due to the existence of

odd viscosity, some symmetry properties of system are changed comparing even viscosity

mobility tensors, which yields different sets of symmetry relations comparing with those of

even viscosity. There are symmetry relations of component indices (i, j, k, l) (Appx. E 4 a)

and particle indices (α, β) (Appx. E 4 b), which reflects the space symmetry and the par-

ity symmetry of system, respectively. There are also symmetry relations constrained by

the generalized Lorentz reciprocal theorem (Appx. E 4 c), which reflects the time reversal

symmetry of system. For a complete list of symmetry relations, please refer to Appx. E 4.
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With all these symmetry relations of the mobility tensors, it can be shown that the grand

mobility tensor of odd viscosity Mo is “symmetric” and only the upper (or lower) half of

the matrix (Eqn. 37) needs to be computed as (Appx. E 4 d)

M o αβ
ΩF ij = M o αβ

UT ij , M o αβ
EF ijk = −M o αβ

US kij , M o αβ
ET ijk = −M o αβ

ΩS kij (39)

5. Self-mobility tensors

Traditionally, the self-mobility tensors are derived from the analytical solutions of each

mode of motion for an isolated particle. However, starting from only Green’s functions,

the RPY approach provides a way to derive the self-mobility tensors without solving each

boundary-value problems as the near-field mobility tensors (Appx. E 3) should continuously

reduce to the self-mobility tensors as the separation distance goes to zero. Below, the self-

mobility tensors (Appx. E 1) are calculated by taking the limits of zero separation distance

of the near-field pair mobility tensors

Mαα
UF =

(
M o αα

UF ij

)
= lim

r→0

(
M o αβ

UF ij

)
= − χ

12πµa
εij3 (40a)

Mαα
UT =

(
M o αα

UT ij

)
= lim

r→0

(
M o αβ

UT ij

)
= 0 (40b)

Mαα
US =

(
M o αα

US ijk

)
= lim

r→0

(
M o αβ

US ijk

)
= 0 (40c)

Mαα
ΩT =

(
M o αα

ΩT ij

)
= lim

r→0

(
M o αβ

ΩT ij

)
= − χ

16πµa3
εij3 (40d)

Mαα
ΩS =

(
M o αα

ΩS ijk

)
= lim

r→0

(
M o αβ

ΩS ijk

)
= − 3χ

40πµa3
δ3ijk (40e)

Mαα
ES =

(
M o αα

ES ijkl

)
= lim

r→0

(
M o αβ

ES ijkl

)
= − χ

80πµa3
[(εik3δlj + εil3δkj) + (εjk3δli + εjl3δki)]

(40f)

C. Far-field mobility tensors

1. Ambient flows in differential form

With the integral form of ambient flow (Eqn. 29) and the far-field results of the single

surface integrals of propagators (Eqn. 33,
∣∣x− xβ

∣∣ > a), we can show that the far-field
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expression of the near-field ambient flow is

uo′
i (x)− uo∞

i (x) ≈− χ

8πµ

N∑
β=1,β ̸=α

[(
1 +

1

6
a2∇2

)
Jo
ij(x− xβ)F β

j −
(
1 +

1

10
a2∇2

)
Ro

ij(x− xβ)T β
j

−
(
1 +

1

10
a2∇2

)
Ko

ijk(x− xβ)Sβ
jk

]
,
∣∣x− xβ

∣∣ > a

= − χ

8πµ

N∑
β=1,β ̸=α

{
F
[
Jo
ij(x− xβ)

]
F β
j − T

[
Jo
ij(x− xβ)

]
T β
j − S

[
Jo
ij(x− xβ)

]
Sβ
jk

}
(41)

where the approximation sign is due to the possibly of many-body effects, and that the above

results are exact only for an infinitely dilute system. The differential form of linear response

functions F
[
Jo
ij(x− y)

]
, T
[
Jo
ij(x− y)

]
and S

[
Jo
ij(x− y)

]
can therefore be extracted from

Eqn. 41 as:

F
[
Jo
ij(x− y)

]
=

(
1 +

a2

6
∇2

)
Jo
ij(x− y), |x− y| > 2a (42a)

T
[
Jo
ij(x− y)

]
=

(
1 +

a2

10
∇2

)
Ro

ij(x− y), |x− y| > 2a (42b)

S
[
Jo
ij(x− y)

]
=

(
1 +

a2

10
∇2

)
Ko

ijk(x− y), |x− y| > 2a (42c)

2. The Faxén laws in differential form

Similarly, with the differential forms of the response functions (Eqn. 42) and the gener-

alized Faxén laws for odd viscosity (Eqn. C14), the differential form of Faxén laws with odd

viscosity can be written explicitly as

Uα
i − U∞

i (xα) = F [uo′
i (x);x

α] =

(
1 +

a2

6
∇2

)
uo′
i (x

α)

Ωα
i −Ω∞

i (xα) = T [uo′
i (x);x

α] =

(
1 +

a2

10
∇2

)
1

2
εijk∇ju

o′
k (x

α)

Eα
ij − E∞

ij (x
α) = S[uo′

i (x);x
α] =

(
1 +

a2

10
∇2

)
1

2

[
∇ju

o′
i (x

α) +∇iu
o′
j (x

α)
]

(43)

where F [uo′
i (x);S

α], T [uo′
i (x);S

α] and S [uo′
i (x);S

α] are the same linear functions defined

by Eqn. 42 but applied to the ambient odd flow uo′(x) given by Eqn. 41 and evaluated at

the surface of α-th particle Sα instead.
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3. Far-field mobility tensors

Similarly, with the differential form of Faxén laws (Eqn. 43) and the expression of ambient

flow (Eqn. 41), the far-field pair mobility tensors (α ̸= β) can be derived as:

Mαβ
UF =

(
M o αβ

UF ij

)
=

−χ

8πµ

(
1 +

a2

6
∇2

)(
1 +

a2

6
∇2

)
Jo
ij(x

α − xβ) (44a)

Mαβ
UT =

(
M o αβ

UT ij

)
=

χ

8πµ

(
1 +

a2

6
∇2

)(
1 +

a2

10
∇2

)
Ro

ij(x
α − xβ) (44b)

Mαβ
US =

(
M o αβ

US ijk

)
=

χ

8πµ

(
1 +

a2

6
∇2

)(
1 +

a2

10
∇2

)
Ko

ijk(x
α − xβ) (44c)

Mαβ
ΩT =

(
M o αβ

ΩT ij

)
=

χ

8πµ

(
1 +

a2

10
∇2

)(
1 +

a2

10
∇2

)
1

2
εikl∇kR

o
lj(x

α − xβ) (44d)

Mαβ
ΩS =

(
M o αβ

ΩS ijk

)
=

χ

8πµ

(
1 +

a2

10
∇2

)(
1 +

a2

10
∇2

)
1

2
εilm∇lK

o
mjk(x

α − xβ) (44e)

Mαβ
ES =

(
M o αβ

ES ijkl

)
=

χ

8πµ

(
1 +

a2

10
∇2

)(
1 +

a2

10
∇2

)
1

2

[
∇jK

o
ikl(x

α − xβ) +∇iK
o
jkl(x

α − xβ)
]

(44f)

Note that the odd Oseen tensor is also biharmonic, that is, ∇4Jo
ij(r) = 0, which enables

further simplification of above mobility tensors. The explicit expressions of all far-field odd

mobility tensors can be found at Appx. E 2. And similar to the near-field mobility tensors,

the same set of symmetry relations hold for the far-field mobility tensors as documented in

Appx. E 4. Thus, only the upper (or lower) half of the far-field grand mobility tensor needs

to be computed (Eqn. 39).

By construction, the near-field mobility tensors (Appx. E 3) should match with the far-

field mobility tensors (Appx. E 2) continuously at the particle surface. Such a continuity

requirement can be checked explicitly by taking limits of both near-field and far-field ex-

pressions to the particle surface.

D. Stokesian Dynamics with odd viscosity

Finally, with both the near-field (Eqn. 38) and far-field (Eqn. 44) odd mobility tensors

constructed, the traditional Stokesian Dynamics formalism can be modified to incorporate

the leading order effects due to odd viscosity. Mathematically, the hydrodynamic interac-

tions in Stokesian Dynamics with both even and odd viscosity can be written as

M = Me +Mo (45)
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where M is the full grand mobility tensor, which contains hydrodynamic interactions from

both even and odd viscosity; Me is the grand mobility tensor due to even viscosity, which

includes both near-field and far-field even mobility tensors; Mo is the grand mobility tensor

due to odd viscosity, which includes both near-field (Eqn. 38 and Appx. E 3) and far-field

(Eqn. 44 and Appx. E 2) odd mobility tensors derived in this work. The explicit expressions

of even grand mobility tensors can be found in Ref. [9, 10], which can be directly compared

with the explicit expressions of odd grand mobility tensors documented in Appx. E 2 and

E3.

Due to the lack of lubrication theory with odd viscosity, it is important to be aware

that the current near-field mobility tensors are not solved exactly like in the traditional

Stokesian Dynamics framework[56–58]. It primarily serves as a convenient regularized near-

field mobility tensors for numeric implementations. When the systems of interests are not

very dense, the far-field mobility tensors should be able to capture dominant hydrodynamic

interactions in the systems. Lubrication effects should be of more importance for dense

suspensions, and current near-field mobility tensors should be avoided in such scenarios.

With the explicit expressions of odd mobility tensors, the extra mobility tensors due to

odd viscosity can be readily incorporated into any numeric implementation of traditional

Stokesian Dynamics, which enables large-scale simulations (but only practical when inte-

grated into a highly-optimized parallel implementation) of collective motions of particles

suspended in a fluid medium with both even and odd viscosity.

IV. DISCUSSION AND FUTURE WORKS

In this work, we have extended the traditional Stokesian Dynamics simulation framework

to further expand its capability to active fluids exhibiting odd viscosity effects. This en-

ables simulations of the collective behaviors of many particles suspended in a fluid medium

with both even and odd viscosity, which may help understanding and interpreting recent

experimental advances in active systems.

Furthermore, there are still many open questions that need to be addressed in these

non-equilibrium active fluid systems. First of all, we only consider a rather simple form

of odd viscosity(Eqn. 5) under restrictive assumptions. A more general expression of odd

viscosity with multiple coefficients do and should exist[34]. Other coefficients may need
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to be included depending on the system setup. Besides, for the continual development of

the Stokesian Dynamics with odd viscosity, the corresponding wall corrections[59, 60] and

lubrication theory[56–58] are still missing and worth investigating. Finally, for describing

Brownian motions of particles, it is also very interesting to check whether the fluctuation-

dissipation theorem[61–67] still holds in such active systems.

Experimentally, it is important to stress that the constitutive relation (Eqn. 2 and 4)

considered in this work is under an idealized situation, which is envisioned to be the active

fluid consisting of self-rotating spherically symmetric particles[39]. For common systems

reputed to have odd viscosity, such as chiral rods, additional non-vanishing even/odd vis-

cosity coefficients[34] may appear and even richer phenomena such as non-reciprocity and

exceptional points[68, 69] can occur in those scenarios. Moreover, it is worth noting that

most experiments are conducted on top of a rigid substrate[41, 70], where both linear and

angular momentum can be absorbed by the substrate and additional dissipative couplings

can happen due to the existence of boundaries. For a systematic investigation of the effects

of odd viscosity, it is also worth designing active systems[71, 72] that isolate hydrodynamic

interactions from other interactions. With an active control of odd viscosity, such experi-

mental measurements will enable the exploration and quantification of additional collective

behaviors of particles in the presence of odd viscosity.

In terms of the development of numeric techniques, it is helpful to automate the numeric

implementation process for the Stokesian Dynamics community. Since Stokesian Dynamics

relies on the analytic expressions of mobility tensors, which are ultimately derived from the

underlying Green’s function of the system, the whole theoretical derivations of Stokesian Dy-

namics formalism can be automated by a Symbolic Algebra System, such as SymPy. Then,

the corresponding analytic expressions of mobility tensors can be generated automatically by

simply changing the fundamental Green’s function, such as replacing the Oseen tensor with

the odd Oseen tensor encountered in this work. Similar to some existing libraries such as

lbmpy[73], those symbolic expressions can be used for the generation of kernels on targeted

devices (such as the CUDA code for GPU devices), where automatic code optimization can

be applied to have highly-efficient device-specific implementations.
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Appendix A: Green’s function of odd Stokes’ equations

1. Green’s function in k-space

In order to obtain the Green’s function of odd Stokes’ equations (Eqn. 9), we need to

find its solution in response to a point force (Eqn. 10),
µs µo 0

−µo µs 0

0 0 µs

∇2u = ∇p− Fδ(r)

The above equations can be transformed into the k-space by applying the Fourier transfor-

mation to both pressure field and flow fields defined as

u(r) = F−1 [û(k)] =
1

(2π)3

∫
R3

dkû(k)eik·r, p(r) = F−1 [p̂(k)] =
1

(2π)3

∫
R3

dkp̂(k)eik·r

(A1)

where F−1 denotes the inverse Fourier transformation, k is the wave vector and p̂(k) and û(k)

are the corresponding pressure and flow fields in the k-space. Plugging above expressions

back into the Stokes’ equations (Eqn. 10) yields

−µijk
2ûj(k) = ikip̂(k)− Fi

where µij = µsδij+µoϵij. Due to the linearity of odd Stokes’ equations, both induced pressure

and flow fields should be proportional to external forces (Eqn. 11), whose corresponding

k-space expressions are

p̂(k) = P̂j(k)Fj, û(k) = Ĝij(k)Fj
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where P̂j(k) and Ĝij(k) denote the Green’s functions of pressure field and flow fields in

the k-space, respectively. Such linear relations enable the elimination of external forces Fi,

which simplify Eqn. 12 to

−k2µikĜkj(k) = ikiP̂j(k)− δij (A2)

For simplicity, we will restrict our consideration to incompressible fluids. The incompress-

ibility condition (∇ · u = 0) in the k-space reads

Ĝij(k)ki = 0 (A3)

Taking the inner product of Eqn. A2 with ki yields

−k2µikkiĜkj(k) = −k2µ0εikkiĜkj(k) = ik2P̂j(k)− kj

It gives the Green’s function of the pressure field in the k-space as

P̂j(k) = −ikj
k2

+ iµ0εikkiĜkj(k) (A4)

where µij = µsδij + µoεij by definition (Eqn. 13) and the second term is the additional

pressure contribution due to the odd viscosity. Plugging the above expression back into

Eqn. A2 gives that
µs + µo

kxky
k2

µo

(
1− k2x

k2

)
0

µo

(
−1 +

k2y
k2

)
µs − µo

kykx
k2

0

µo
kykz
k2

−µo
kxkz
k2

µs

 Ĝkj(k) = −kikj
k4

+
δij
k2

(A5)

The right-hand side is exactly the k-space expression of the Oseen tensor[74] and the matrix

on the left-hand side can be directly inverted, which gives the k-space expression of the

Green’s function of the flow field as

Ĝij(k) =
1

µs

1

Σ2(k)


k2y+k2z
k4

−kxky
k4

− χk2z
k4

−kxkz
k4

+ χkykz
k4

−kxky
k4

+ χk2z
k4

k2x+k2z
k4

−kykz
k4

− χkxkz
k4

−kxkz
k4

− χkykz
k4

−kykz
k4

+ χkxkz
k4

k2x+k2y
k4

 (A6)

where two auxiliary variables are introduced as

Σ2(k) = 1 + χ2k
2
z

k2
, χ =

µo

µs

(A7)
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As any second order tensor can be decomposed into symmetric and anti-symmetric parts,

the above k-space Green’s function can be split as

Ĝij(k) = Ĝ(ij)(k) + Ĝ[ij](k) (A8a)

Ĝ(ij)(k) =
1

µs

1

Σ2(k)

(
−kikj

k4
+

δij
k2

)
(A8b)

Ĝ[ij](k) = − 1

µs

χ

Σ2(k)
εijkkk

kz
k4

(A8c)

where indices in parentheses and brackets indicate symmetrizing and anti-symmetrizing the

orginal tensor, respectively.

2. Green’s function in real-space

In principle, the corresponding real-space expressions of Green’s functions can be obtained

via the inverse Fourier transformation, that is,

Gij(r) = F−1
[
Ĝij(k)

]
, Pi(r) = F−1

[
P̂i(k)

]
(A9)

However, analytical calculation of above inverse Fourier transformations is not straight-

forward due to the additional k-dependence introduced by Σ2(k) for non-vanishing odd

viscosity. For simplicity, we focus on the fluid with a small odd viscosity[22], i.e. µo ≪ µs.

Then, the dimensionless viscosity ratio χ ≪ 1 serves as a natural expansion parameter,

which physically characterizes the activity level of the system. For the weak activity limit,

that is, χ → 0, the inverse of Σ2(k) can be expanded as

1

Σ2(k)
=

1

1 + χ2 k
2
z

k2

=
∞∑
n=0

(−1)n
(
k2
z

k2
χ2

)n

= 1− k2
z

k2
χ2 +O(χ4) (A10)

Then, the expansions of the symmetric and anti-symmetric parts of the k-space Green’s

function (Eqn. A8) can be written as

Ĝ(ij)(k) =
1

µs

∞∑
n=0

(−1)n
(
k2
z

k2
χ2

)n(
−kikj

k4
+

δij
k2

)
=
[
Ĝ

(0)
(ij) + Ĝ

(2)
(ij)

]
+O(χ4) (A11a)

Ĝ[ij](k) = − χ

µs

∞∑
n=0

(−1)n
(
k2
z

k2
χ2

)n(
εijkkk

kz
k4

)
=
[
Ĝ

(1)
[ij] + Ĝ

(3)
[ij]

]
+O(χ5) (A11b)

where n-th order expansion of the symmetric and anti-symmetric parts are defined as

Ĝ
(2n)
(ij) (k) =

(−1)n

µs

(
k2
z

k2
χ2

)n(
−kikj

k4
+

δij
k2

)
, n ∈ N (A12a)
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Ĝ
(2n+1)
[ij] (k) = −χ

(−1)n

µs

(
k2
z

k2
χ2

)n(
εijk

kkkz
k4

)
, n ∈ N (A12b)

where the number inside the superscript parenthesis indicates the powers of the viscosity

ratio χ and N is the set of natural numbers. The inverse Fourier transformation of the lowest

order expressions is easy to compute,

G
(0)
(ij)(r) = F−1

[
Ĝ

(0)
(ij)(k)

]
=

1

µs

F−1

[
−kikj

k4
+

δij
k2

]
=

1

8πµs

(
δij
r

+
rirj
r3

)
(A13a)

G
(1)
[ij](r) = F−1

[
Ĝ

(1)
[ij](k)

]
= − χ

µs

F−1

[
εijk

kkkz
k4

]
= − χ

8πµs

εijk

(
δk3
r

− rkr3
r3

)
(A13b)

Note the expression of the conventional Oseen tensor is

Jij(r) =
δij
r

+
rirj
r3

(A14)

which enables rewriting the above equations as

G
(0)
(ij)(r) =

1

8πµs

Jij(r) (A15a)

G
(1)
[ij](r) = − χ

8πµs

εijkδl3

(
δkl
r

− rkrl
r3

)
= − χ

8πµs

εijkδl3J
s
kl(r) = − χ

8πµs

Jo
ij(r) (A15b)

where an odd Oseen tensor is analogously defined as

Jo
ij(r) = εijkδl3J

s
kl(r) = εijkδl3

(
δkl
r

− rkrl
r3

)
(A16)

For convenience, an auxiliary symmetric tensor Js
ij(r) is also introduced, which only differs

with the symmetric Oseen tensor Jij(r) by a minus sign of the anisotropic term

Js
ij(r) =

δij
r

− rirj
r3

(A17)

As for the higher order terms, it can be constructed from the lower order solutions by

noting the following properties of the Fourier transformation,

∂2

∂z2
f(r) =

1

(2π)3

∫
dk(−k2

z)f̂(k)e
ik·r, ∇2f(r) =

1

(2π)3

∫
dk(−k2)f̂(k)eik·r (A18)

Therefore, the next order solutions can be constructed as

G
(2)
(ij)(r) = −χ2F−1

[
k2
z

k2
Ĝ

(0)
(ij)(k)

]
= −χ2 ∂2

∂z2
∇−2

[
F−1

[
Ĝ

(0)
(ij)(k)

]]
(A19a)

G
(3)
[ij](r) = −χ2F−1

[
k2
z

k2
Ĝ

(1)
[ij](k)

]
= −χ2 ∂2

∂z2
∇−2

[
F−1

[
Ĝ

(1)
[ij])(k)

]]
(A19b)
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where ∇−2 is the inverse Laplace operator defined as

∇−2 =

∫
R3

dr′G(r− r′), G(r) = − 1

4πr
(A20)

Here, G(r) is the Green’s function of the 3D Laplace’s equation. Also please be aware that

the inverse Laplace operator ∇−2 is spherically symmetric but the double derivative in z-

direction ∂2

∂z2
is not. Thus, it’s important to choose a proper order between two operators

to maintain the desired symmetry for intermediate steps.

In the next, both symmetric parts
(
G

(2)
(ij)(r)

)
and anti-symmetric parts

(
G

(3)
[ij](r)

)
will be

calculated as an illustration and higher order terms can be computed in a similar manner.

• the symmetric part G
(2)
(ij)(r)

For the symmetric part, the inverse Laplace operator can be computed as:

∇−2
[
F−1

[
G

(0)
(ij)

]]
=

1

8πµs

∇−2

[
δij
r

+
rirj
r3

]
=

1

8πµs

∫
R3

dr′G(r− r′)Jij(r
′) (A21)

The inverse Laplace operator of the Oseen tensor can be evaluated in spherical coor-

dinates, which gives

∇−2 [Jij(r)] =
3

4
rδij −

1

4

rirj
r

(A22)

Then, the double derivative in z-direction is straightforward to calculate, which gives

the real-space expression of the symmetric part as

G
(2)
(ij)(r) = − χ2

8πµs

∂2

∂z2

(
3

4
rδij −

1

4

rirj
r

)
= − χ2

8πµs

[
3

4

(
1− r23

r2

)
1

r
δij +

1

4

(
1− 3

z2

r2

)
rirj
r3

+
1

2

r3
r3

(δi3rj + riδj3)−
1

2

1

r
δi3δj3

] (A23)

• the anti-symmetric part G
(3)
[ij](r)

For the anti-symmetric part, the inverse Laplace operator can be calculated as

∇−2
[
F−1

[
G

(1)
[ij]

]]
= − χ

8πµs

εijkδl3∇−2

[
δkl
r

− rkrl
r3

]
= − χ

8πµs

εijkδl3∇−2

∫
R3

dr′G(r− r′)Js
ij(r

′)

(A24)

The inverse Laplace operator of Js
ij(r) can be similarly evaluated in the spherical

coordinates, which gives

∇−2
[
Js
ij(r)

]
=

1

4
rδij +

1

4

rirj
r

(A25)
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Then, plugging it back and evaluate the double derivative in z-direction yields the

real-space expression of the anti-symmetric part as

G
(3)
[ij](r) =

χ3

8πµs

εijkδl3
∂2

∂z2

(
1

4
rδkl +

1

4

rkrl
r

)
=

χ3

8πµs

εijkδl3

[
1

4

(
1− r23

r2

)
1

r
δkl −

1

4

(
1− 3

z2

r2

)
rkrl
r3

−1

2

r3
r3

(δk3rl + rkδl3) +
1

2

1

r
δk3δl3

]
=

χ3

8πµs

[
3

4

(
1− r23

r2

)
1

r
εij3 −

3

4

(
1− r23

r2

)
r3
r3
εijkrk

]
(A26)

Finally, the Green’s function in the real-space can be expressed as

Gij(r) = G(ij)(r) +G[ij](r) (A27a)

G(ij)(r) = G
(0)
(ij)(r) +G

(2)
(ij)(r) +O(χ4) (A27b)

G[ij](r) = G
(1)
[ij](r) +G

(3)
[ij](r) +O(χ5) (A27c)

where the explicit expressions of the symmetric Green’s functions are given by Eqn. A15a

and A23; the explicit expressions of the anti-symmetric Green’s functions are given by Eqn.

A15b and A26.

Appendix B: Generalized Lorentz reciprocal theorem

Suppose that (u(1),σ(1)) and (u(2),σ(2)) are two different solutions of the odd Stokes’

equations (Eqn. 9) with the same fluid domain V but subjected to different boundary

conditions at its bounding surface S. Due to the linear superposition of the even and odd

viscosity tensor (Eqn. 6), the overall stress tensor can be separated into stresses contributed

by even and odd viscosity, that is, σ = σe + σo, where the subscripts e and o indicate

contributions due to even and odd viscosity, respectively. Then, the generalized Lorentz

reciprocal theorem states that∮
S

u(1) ·
[(
σ(2)

e + σ(2)
o

)
· n̂
]
dS −

∫
V

u(1) ·
[
∇ ·

(
σ(2)

e + σ(2)
o

)]
dV

=

∮
S

u(2) ·
[(
σ(1)

e − σ(1)
o

)
· n̂
]
dS −

∫
V

u(2) ·
[
∇ ·

(
σ(1)

e − σ(1)
o

)]
dV

(B1)
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The proof of the above generalized Lorentz reciprocal theorem is analogous to the proof

of the conventional Lorentz reciprocal theorem with only even viscosity[47, 48, 51]. By

applying the divergence theorem, it is equivalent to prove that

∇i

[
u
(1)
j σ

(2)
e ij + u

(1)
j σ

(2)
o ij

]
− u

(1)
i ∇j

[
σ
(2)
e ij + σ

(2)
o ij

]
= ∇i

[
u
(2)
j σ

(1)
e ij − u

(2)
j σ

(1)
o ij

]
− u

(2)
i ∇j

[
σ
(1)
e ij − σ

(1)
o ij

] (B2)

Note the following useful identities

σ
(2)
ij ∇ju

(1)
i = ∇j

(
σ
(2)
ij u

(1)
i

)
− u

(1)
i ∇jσ

(2)
ij = ∇i

(
u
(1)
j σ

(2)
ij

)
− u

(1)
i ∇jσ

(2)
ij (B3a)

σ
(1)
ij ∇ju

(2)
i = ∇j

(
σ
(1)
ij u

(2)
i

)
− u

(2)
i ∇jσ

(1)
ij = ∇i

(
u
(2)
j σ

(1)
ij

)
− u

(2)
i ∇jσ

(1)
ij (B3b)

where stress tensors are assumed to be symmetric, i.e. σ
(1)
ij = σ

(1)
ji and σ

(2)
ij = σ

(2)
ji . This

assumption holds for both even and odd viscous stress tensors as long as there is no external

local angular momentum in the system. Therefore, it further reduces to prove that

σ
(2)
e ij∇ju

(1)
i + σ

(2)
o ij∇ju

(1)
i = σ

(1)
e ij∇ju

(2)
i − σ

(1)
o ij∇ju

(2)
i (B4)

For a general linear constitutive relation of Newtonian liquids, the relation between the

stress tensor and the velocity gradient tensor can be written as

σ
(1)
ij = σ

(1)
e ij+σ

(1)
o ij =

(
µe
ijkl + µo

ijkl

)
∇lu

(1)
k , σ

(2)
ij = σ

(2)
e ij+σ

(2)
o ij =

(
µe
ijkl + µo

ijkl

)
∇lu

(2)
k (B5)

Plugging above linear constitutive relations back into Eqn. B4, it yields that

µe
ijkl∇lu

(2)
k ∇ju

(1)
i + µo

ijkl∇lu
(2)
k ∇ju

(1)
i = µe

ijkl∇lu
(1)
k ∇ju

(2)
i − µo

ijkl∇lu
(1)
k ∇ju

(2)
i (B6)

The dummy indices can be renamed to make it easier to compare both sides,

µe
ijkl∇lu

(2)
k ∇ju

(1)
i + µo

ijkl∇lu
(2)
k ∇ju

(1)
i = µe

klij∇lu
(2)
k ∇ju

(1)
i − µo

klij∇lu
(2)
k ∇ju

(1)
i (B7)

For the above equation to hold everywhere in the fluid domain, it requires that

µe
ijkl = µe

klij, µo
ijkl = −µo

klij (B8)

These symmetry relations correspond to the time reversal symmetry of the system and are

fulfilled by even and odd viscosity tensors respectively (Eqn. 2 and 4), which completes the

proof of the generalized Lorentz reciprocal theorem.
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Appendix C: Generalized Faxén laws

The Faxén laws connect the kinetic motions (Uα,Ωα,Eα) with corresponding mechanical

quantities (Fβ,Tβ,Sβ) of each particle. However, the validity of the Faxén laws with even

viscosity relies on the Lorentz reciprocal theorem and symmetry properties of the Oseen

tensor[47]. With the generalized Lorentz reciprocal theorem derived in Appx. B, the con-

ventional Faxén laws will also be generalized here to include additional effects due to odd

viscosity.

Following the proof of conventional Faxén laws described in [47], let us consider a particle

that translates in the fluid with velocity U1, which has a corresponding flow field u1, and

another particle that is stationary but that there is a point-force F applied at location y

outside the particle. Using the notations defined in Appx. B, this corresponds to a setup

such that u(1) = U1, ∇ · σ(1)
e = ∇ · σ(1)

o = 0 and u(2) = 0, ∇ ·
(
σ

(2)
e + σ

(2)
o

)
= Fδ(x − y).

Then, applying the generalized Lorentz theorem (Eqn. B1) gives

U1 · F2 − u1(y) · F = 0 (C1)

where F2 is the force acting on the stationary particle due to the corresponding flow field

u2(x) induced by the point force F. Because of the linearity of the odd Stokes’ equations

(Eqn. 9), the ambient flow for the translating particle can be expressed as

u1
i (x) = Fe

[
Jij(x− ξ)

8πµ

]
Re

jkU
1
k + Fo

[−χJo
ij(x− ξ)

8πµ

]
Ro

jkU
1
k (C2)

where Fe and Fo represent linear response functions to external forces due to even and odd

viscosity, respectively; Re
jk and Ro

jk are the respective self-resistance tensors due to even and

odd viscosity. Here, ξ denotes the region where the source force densities are distributed.

Plugging it back enables the elimination of U1, which yields

F 2
i = Re

jiFe

[
Jkj(x− ξ)

8πµ

]
Fk +Ro

jiFo

[−χJo
kj(x− ξ)

8πµ

]
Fk (C3)

The self-resistance tensors have the following symmetry properties,

Re
ji = Re

ij, Ro
ji = −Ro

ij (C4)

Thus, it can be rewritten as

F 2
i = Re

ijFe

[
Jkj(x− ξ)

8πµ

]
Fk −Ro

ijFo

[−χJo
kj(x− ξ)

8πµ

]
Fk (C5)
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The above equation allows extracting the translational velocity due to even and odd viscosity

as

U e
i = Fe

[
Jji(x− ξ)

8πµ

]
Fj, U o

i = −Fo

[−χJo
ji(x− ξ)

8πµ

]
Fj (C6)

Note the symmetry properties of both even and odd Oseen tensors

Jji(x− ξ) = Jij(x− ξ), Jo
ji(x− ξ) = −Jo

ij(x− ξ) (C7a)

Jij(x− ξ) = Jij(ξ − x), Jo
ij(x− ξ) = Jo

ij(ξ − x) (C7b)

Applying those symmetry properties gives

U e
i = Fe

[
Jij(ξ − x)

8πµ
Fj

]
, U o

i = Fo

[
−χ

Jo
ij(ξ − x)

8πµ
Fj

]
(C8)

On the other hand, the flow fields contributed by even and odd viscosity induced by a point

force F (up to first order, see Eqn. 21) are:

ue(ξ) =
Jij(ξ − x)

8πµ
Fj, uo(ξ) = −χ

Jo
ij(ξ − x)

8πµ
Fj (C9)

where ue(ξ) and uo(ξ) denote the flows in response to a point force F contributed by the

even and odd viscosity, respectively. Thus, the terms inside the brackets are identified as

just the induced ambient flow, which gives

Ue = Fe [u
e(ξ)] , Uo = Fo [u

o(ξ)] (C10)

It shows that the conventional Faxén laws similarly apply for the odd viscosity case, where

the response function and flow fields are replaced by its corresponding odd viscosity related

counterparts(Fe ↔ Fo and ue ↔ uo).

Following the above construction, one can prove similar relations for rotations and strain-

ings, that is,

Ωe = Te [u
e(ξ)] , Ωo = To [u

o(ξ)] (C11)

Ee = Se [u
e(ξ)] , Eo = So [u

o(ξ)] (C12)

As demonstrated above, the Faxén laws basically allow a direction computation of kinetic

motions from a prescribed flow fields instead of solving detailed viscous stress tensors at

the particle surface and mechanical balance equations. In this work, we will only focus on

additional new contributions due to the odd viscosity in the Faxén laws. The Faxén laws
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for even viscosity can be easily found in most micro-hydrodynamics books[47, 48, 51]. For a

collection of particles, the ambient odd flow fields uo′ induced by all other particles excluding

the α-th particle itself can be written as

uo′
i (x)− uo∞

i (x) ≈ − χ

8πµ

N∑
β=1,β ̸=α

{
F
[
Jo
ij(x− xβ)

]
F β
j + T

[
Jo
ij(x− xβ)

]
T β
j + S

[
Jo
ij(x− xβ)

]
Sβ
jk

}
(C13)

where F
[
Jo
ij(x− y)

]
, T

[
Jo
ij(x− y)

]
and S

[
Jo
ij(x− y)

]
denote linear functions which de-

scribe the odd viscosity related responses to external forces, torques, stresslets respectively.

Based on the results derived in Eqn. C10, C11 and C12, the kinetic motions of α-th particle

due to the ambient odd flow uo′ induced by other particles (β ̸= α) can be therefore written

as 
Uα
i − U∞

i (xα) = F [uo′
i (x);x

α]

Ωα
i −Ω∞

i (xα) = T [uo′
i (x);x

α]

Eα
ij − E∞

ij (x
α) = S[uo′

i (x);x
α]

(C14)

The above relations are the Faxén laws for the odd viscosity, which is essentially the same

as its even viscosity counterparts.

Appendix D: Surface integrals of the odd Oseen tensor

This section documents the explicit calculation of single (Eqn. 33) and double (Eqn.

38) surface integrals of the odd Oseen tensors, which are repeatedly used for deriving the

near-field mobility tensors by the Rotne-Prager-Yamakawa (RPY) approximation.

1. Single surface integrals of the odd Oseen tensor

As shown in Fig. 1, the center of β-th (β = 1 · · ·N) particle is set as the origin of

the Cartesian coordinate system (x, y, z) and also the origin of the spherical coordinate

system (r, θ, ϕ). Then, any arbitrary position at the spherical surface can be written as

y = an̂, where a is the particle radius and n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) is the outer

unit surface normal vector. Without loss of generality, the observation point is assumed to

be along the z-axis, i.e. x = (0, 0, ρ). Therefore, the relative position vector r = x − y =

(−a sin θ cosϕ,−a sin θ sinϕ, ρ−a cos θ) and relative distance r = |r| =
√
a2 + ρ2 − 2aρ cos θ.
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x

y

z

FIG. 1. A schematic drawing defines the coordinate system and notations for single spherical

surface integral evaluations.

For simplicity, following results are evaluated for x along z-axis only but the general results

can be easily obtained by permutation (denoted as
sym
= below) as long as each axis is equiv-

alent. Note that corresponding propagators used in the surface integral evaluations are:

J̃o
ij(r) = εijkδl3J

s
kl(r), Js

ij(r) =
δij
r

− rirj
r3

(D1a)

R̃o
ij(r) = Jo

ikεkjlnl = R̃s
ijk(r)δk3, R̃s

ijk(r) = niJ
s
jk(r)− δijJ

s
lk(r)nl (D1b)

K̃o
ijk(r) =

1

2

[
Jo
ij(r)nk + Jo

ik(r)nj

]
= K̃s

ijkl(r)δl3, K̃s
ijkl(r) =

1

2
[εijmJ

s
ml(r)nk + εikmJ

s
ml(r)nj]

(D1c)

where the auxiliary symmetric tensors Js
ij, R

s
ijk and Ks

ijkl are indicated with a superscript s,

which are introduced for maintaining spherical symmetry during intermediate steps of the

calculation.

For the demonstration purpose, only the single spherical surface integral of the stokeslet

is shown below and the results for rotlet and stresslet can be computed in a similar manner.

M̂ s
F ij(ρẑ) =

a

4πa2

∮
Sβ

J̃s
ij(ρẑ− y)dS(y) =


(

1
ρ
− 1

3
1
ρ3

)
δij −

(
1
ρ
− 1

ρ3

)
δi3δj3 ρ > a

2
3
δij ρ ≤ a

(D2a)
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M̂ s
F ij(ρẑ)

sym
= M̂ s

F ij(x) =


(
1
r
− 1

3
1
r3

)
δij −

(
1
r
− 1

r3

) rirj
r2

∣∣x− xβ
∣∣ > a

2
3
δij

∣∣x− xβ
∣∣ ≤ a

(D2b)

M̂ o
F ij(x) = εijkδl3M̂

s
Fkl(x)

=


(
1
r
− 1

3
1
r3

)
εij3 −

(
1
r
− 1

r3

)
εijk

rkr3
r2

∣∣x− xβ
∣∣ > a

2
3
εij3

∣∣x− xβ
∣∣ ≤ a

=


(
1 + 1

6
∇2
)
Jo
ij(x− xβ)

∣∣x− xβ
∣∣ > a

2
3
εij3

∣∣x− xβ
∣∣ ≤ a

(D2c)

2. Double surface integrals of the odd Oseen tensor

x

y

z

FIG. 2. A schematic drawing defines the coordinate system and notations for double spherical

surface integral evaluations.

As shown in Fig. 2, the center of β-th (β = 1 · · ·N) particle xβ is set as the origin

of the Cartesian coordinate system (x, y, z) and also the origin of the spherical coordinate

system (r, θ, ϕ). Then, any arbitrary position at the β-th spherical particle’s surface can be
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written as y = an̂, where a is the particle radius and n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

is the outer unit surface normal vector. Without loss of generality, the position of α-

th particle is assumed to be along the z-axis, i.e. xα = (0, 0, ρ). Therefore, arbitrary

position at α-th particle surface relative to the center of β-th particle is r = x − xβ =

(a sin θ cosϕ, a sin θ sinϕ, ρ+ a cos θ) and relative distance is r = |r| =
√

a2 + ρ2 + 2aρ cos θ.

The critical polar angle used for distinguishing non-overlapping (θ < θ0) and overlapping

(θ > θ0) regions is defined as θ0 = arccos
(
− ρ

2a

)
. For simplicity, following results are evalu-

ated for xα along z-axis only but the general results can be easily obtained by permutation

(denoted as
sym
= below) as long as each axis is equivalent.

Note that the first surface integrals of the odd Oseen tensor on the β-th particle surface

have already been evaluated in Appx. D 1, the following calculations will only focus on the

second surface integral on the α-th particle surface. Again, for the demonstration purpose,

only the velocity-force mobility tensor Mo
UF is explicitly computed below and all other

mobility tensors can be calculated in a similar manner.

M̂ s αβ
UF ij (ρẑ) = − a

(4πa2)2

∮
Sα

∮
Sβ

J̃s
ij(x− y)dSαdSβ = − 1

4πa2

∮
Sα

M̂ s
F ij(x− xβ)dSα

= −
(
2

3
− 1

8
ρ

)
δij +

1

8
δi3δj3, ρ < 2a

(D3)

M̂ s αβ
UF ij (ρẑ)

sym
= M̂ s αβ

UF ij (x) = −
(
2

3
− 1

8
r

)
δij +

1

8
r
rirj
r2

,
∣∣xα − xβ

∣∣ ≤ 2a (D4)

M̂ o αβ
UF ij (x) = εijkδl3M̂

s αβ
UF kl (x) = −

(
2

3
− 1

8
r

)
εij3+

1

8
rεijk

rkr3
r2

,
∣∣xα − xβ

∣∣ ≤ 2a (D5)

M̂ o αβ
UF ij (x) = − 1

4πa2

∮
Sα

M̂ o
F ij(x− xβ)dSα = − a

4πa2

∮
Sα

(
1 +

1

6
∇2

)
Jo
ij(x− xβ)dSα

= −
(
1 +

1

6
∇2

)
a

4πa2

∮
Sα

J̃o
ij(x− xβ)dSα

= −
(
1 +

1

6
∇2

)
a

4πa2

∮
Sα

J̃o
ij(x

β − x)dSα

= −
(
1 +

1

6
∇2

)(
1 +

1

6
∇2

)
Jo
ij(x

α − xβ),
∣∣xα − xβ

∣∣ > 2a

(D6)

Appendix E: Explicit expressions of the odd mobility tensors

In this section, the explicit expressions of odd mobility tensors are documented for ref-

erence. All N particles are assumed to be equal size of radius a, i.e. aα = aβ = a. All
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distance quantities are normalized by the particle radius, such as r =
∣∣xα − xβ

∣∣ /a. All

mobility expressions are normalized by 8πµan, where the exponent n is chosen to make the

corresponding mobility tensor dimensionless, i.e. M̂ o αβ
XY ij = 8πµanM o αβ

XY ij . The hat

symbol ˆ indicates the quantity is dimensionless and the additional superscript o means it’s

an odd viscosity related quantity; The subscript XY means the mobility tensor describes the

coupling between kinetic motions X (X = U , Ω or E) and force moments Y (Y = F , T or

S); The superscript αβ specifies the mobility tensor describes the interaction between α-th

and β-th particles (α, β = 1 · · ·N); The subscript ijkl indicates the Cartesian components

of the mobility tensor (i, j, k, l = 1, 2, 3). δij is the Kronecker delta and εijk is the right-

handed Levi-Civita symbol. δijkl is the fourth-rank deviatoric traceless unit tensor defined

as δijkl =
1
2
(δikδjl + δilδjk) − 1

3
δijδkl. Only six out of nine mobility tensors are given and

the rest can be obtained by the symmetry relations of mobility tensors. Only odd mobility

tensors in the first order of the dimensionless viscosity ratio χ (odd viscosity µo over even

viscosity µs) are derived. If necessary, higher order corrections can be computed in a similar

manner.

1. Self-mobility tensors

The dimensionless expressions of mobility tensors for a single isolated particle (α = β)

are shown below

M̂ o αα
UF ij = −2χ

3
εij3 (E1a)

M̂ o αα
UT ij = 0 (E1b)

M̂ o αα
US ijk = 0 (E1c)

M̂ o αα
ΩT ij = −χ

2
εij3 (E1d)

M̂ o αα
ΩS ijk = −3χ

5
δ3ijk (E1e)

M̂ o αα
ES ijkl = − χ

10
[(εik3δlj + εil3δkj) + (εjk3δli + εjl3δki)] (E1f)

2. Pair-mobility tensors (r > 2a)

The definitions of far-field mobility tensors between two different non-overlapping parti-

cles (α ̸= β and r > 2a) are given at Eqn. 44 and its corresponding dimensionless explicit
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expressions are shown below

M̂ o αβ
UF ij = −χ

r

[(
1− 2

3r2

)
εij3 −

(
1− 2

r2

)
εijkrkr3

r2

]
(E2a)

M̂ o αβ
UT ij =

χ

2r2

[(
1 +

8

5

1

r2

)
δij

r3
r
−
(
1− 8

5

1

r2

)(
δi3

rj
r
+ δj3

ri
r

)]
(E2b)

+
3χ

2r2

(
1− 8

3

1

r2

)
rirjr3
r3

M̂ o αβ
US ijk = − χ

2r2

(
1− 8

5

1

r2

)[(
εij3

rk
r
+ εik3

rj
r

)
+ (εijmδk3 + εikmδj3)

rm
r

]
(E2c)

+
3χ

2r2

(
1− 8

3

1

r2

)(
εijm

rk
r
+ εikm

rj
r

) rmr3
r2

M̂ o αβ
ΩT ij = − χ

2r3
εij3 +

3χ

2r3
εijl

rlr3
r2

(E2d)

M̂ o αβ
ΩS ijk =

χ

2r3

(
1− 6

5

1

r2

)
δi3δjk −

3χ

5r5
(δijδk3 + δikδj3) (E2e)

+
χ

2r3

(
15− 42

r2

)
rirjrkr3

r4
+

3χ

r5

(
δik

rj
r
+ δij

rk
r

) r3
r

− 3χ

2r3

(
1− 2

r2

)(
δi3

rjrk
r2

+ δj3
rirk
r2

+ δk3
rirj
r2

+ δjk
rir3
r2

)
M̂ o αβ

ES ijkl = − χ

4r3

(
1− 6

5

1

r2

)
[(εik3δlj + εil3δkj) + (εjk3δli + εjl3δki)] (E2f)

− 15χ

4r3

(
1− 14

5r2

)[(
εikn

rl
r
+ εiln

rk
r

) rj
r
+
(
εjkn

rl
r
+ εjln

rk
r

) ri
r

] rnr3
r2

+
3χ

4r3

(
1− 2

r2

)[(
εik3

rl
r
+ εil3

rk
r

) rj
r
+
(
εjk3

rl
r
+ εjl3

rk
r

) ri
r

+ εikn
rn
r

(
δl3

rj
r
+ δlj

r3
r
+ δj3

rl
r

)
+ εiln

rn
r

(
δk3

rj
r
+ δkj

r3
r
+ δj3

rk
r

)
+ εjkn

rn
r

(
δl3

ri
r
+ δli

r3
r
+ δi3

rl
r

)
+ εjln

rn
r

(
δk3

ri
r
+ δki

r3
r
+ δi3

rk
r

)]

3. Pair-mobility tensors (r ≤ 2a)

The definitions of near-field mobility tensors between two different overlapping particles

(α ̸= β and r ≤ 2a) are given at Eqn. 38 and its corresponding dimensionless explicit

expressions are shown below
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M̂ o αβ
UF ij = −χ

(
2

3
− 1

8
r

)
εij3 +

χ

8
rεijk

rkr3
r2

(E3a)

M̂ o αβ
UT ij = χ
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5
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32
r
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δijr3 − χ

(
1
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32r
rirjr3 (E3b)

M̂ o αβ
US ijk = −χ
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32
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[(εij3rk + εik3rj) + (εijmδk3 + εikmδj3) rm] (E3c)
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εijl
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(E3d)

M̂ o αβ
ΩS ijk = χ

(
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32
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256
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4. Symmetry relations

A complete list of symmetry relations of odd mobility tensors between component indices

(i, j, k, l), pairs indices (α, β) and coupling indices (X, Y ) (X = U , Ω or E and Y = F , T

or S) is compiled below.
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a. Components indices

M̂ o αβ
UF ij = −M̂ o αβ

UF ji (E4a)

M̂ o αβ
UT ij = M̂ o αβ

UT ji (E4b)

M̂ o αβ
US ijk = −M̂ o αβ

US ikj (E4c)

M̂ o αβ
ΩT ij = −M̂ o αβ

ΩT ji (E4d)

M̂ o αβ
ΩS ijk = M̂ o αβ

ΩS ikj (E4e)

M̂ o αβ
ES ijkl = M̂ o αβ

ES ijlk = M̂ o αβ
ES jikl (E4f)

b. Pairs indices

M̂ o αβ
UF ij = M̂ o βα

UF ij (E5a)

M̂ o αβ
UT ij = −M̂ o βα

UT ij (E5b)

M̂ o αβ
US ijk = −M̂ o βα

US ijk (E5c)

M̂ o αβ
ΩT ij = M̂ o βα

ΩT ij (E5d)

M̂ o αβ
ΩS ijk = M̂ o βα

ΩS ijk (E5e)

M̂ o αβ
ES ijkl = M̂ o βα

ES ijkl (E5f)

c. Generalized Lorentz reciprocal theorem

Based on the generalized Lorentz reciprocal theorem, six symmetry relations can be

derived by applying it to different modes of motion.
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M̂ o αβ
UF ij = −M̂ o βα

UF ji (E6a)

M̂ o αβ
ΩT ij = −M̂ o βα

ΩT ji (E6b)

M̂ o αβ
ES ijkl = −M̂ o βα

ES klij (E6c)

M̂ o αβ
ΩF ij = −M̂ o βα

UT ji (E6d)

M̂ o αβ
EF ijk = −M̂ o βα

US kij (E6e)

M̂ o αβ
ET ijk = −M̂ o βα

ΩS kij (E6f)

d. Definition of the Faxén laws

M̂ o αβ
ΩF ij = M̂ o αβ

UT ij (E7a)

M̂ o αβ
EF ijk = −M̂ o αβ

US kij (E7b)

M̂ o αβ
ET ijk = −M̂ o αβ

ΩS kij (E7c)
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