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Abstract6

Turbulent signals are known to exhibit burst-like activities, which affect the turbulence statistics7

at both large and small scales of the flow. In our study, we pursue this problem from the perspective8

of an event-based framework, where bursting events are studied across multiple scales in terms of9

both their size and duration. To illustrate our method and assess any dependence on the Reynolds10

number (Re), we use two datasets - from the Melbourne wind tunnel (Re ≈ 14750) and from11

SLTEST - an atmospheric surface layer experiment (Re ≈ 106). We show that an index, namely12

the burstiness index, can be used successfully to describe the multi-scale nature of turbulent burst-13

ing while accounting for the small-scale intermittency effects. Through this index, we demonstrate14

that irrespective of Re, the presence of large amplitude fluctuations in the instantaneous velocity15

variance and momentum flux signals are governed by the coherent structures in the flow. Con-16

cerning small-scale turbulence, a Re-dependence is noted while studying the scale-wise evolution17

of the burstiness features of second-order streamwise velocity increments ((∆u)2). Specific to the18

wind-tunnel dataset, the burstiness index of (∆u)2 signal displays a strong dependence on height19

and also decreases as the scales increase with the maximum being obtained at scales comparable20

to the dissipative structures. However, such features are nearly absent in the atmospheric flows.21

To conclude, this research paves a novel way to evaluate the effect of bursts on the turbulence22

statistics at any specified scale of the flow.23

I. INTRODUCTION24

In any stochastic signal, bursts are typically characterized by the presence of strong25

amplitude fluctuations, exceeding the standard deviation of the signal by multiple orders26

[1]. Understanding the origin of these bursts are important, since these are often known to27

occur in a plethora of physical systems. Some of their examples include (but not limited to):28

(1) extreme dissipation and flux events in turbulent flows [2, 3]; (2) rogue waves appearing on29

sea surfaces [4]; (3) large solar flare events in astrophysical systems [5]; (4) extreme rainfall30

events in weather and climate systems [6], and so on.31

In the context of turbulence research, perhaps the first documentation of bursts was32

carried out by Kline et al. [7] while observing the occasional break-up of the near-wall33
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streaks in wall-bounded turbulent flows. Typically, such bursting activities lead to large34

amplitude fluctuations in velocity variance and momentum flux signals, and therefore, they35

are considered to be an integral part of turbulence dynamics [8]. Given their importance,36

since the study of Kline et al. [7], numerous experimental and theoretical studies have been37

undertaken to understand the role of these bursts in turbulence production [9].38

It is generally recognized that the presence of coherent structures, such as hairpin vor-39

tices, is primarily responsible for such bursting phenomenon [10, 11]. Moreover, the re-40

searchers have shown that nearly 80% of the Reynolds stress production happens through41

these bursts [12, 13]. On the one hand, on the theoretical side, Jiménez [14] has shown42

how the origin of these bursts can be explained through the solutions of OrrSommerfeld43

equations. On the other hand, in experimental research, the detection of bursts has mostly44

been achieved through variable interval time averaging (VITA) and quadrant-hole methods45

[15–17]. Through such experimental schemes, one typically studies the dynamical features46

of extreme events in the instantaneous velocity variances and streamwise momentum flux47

signals, thereby connecting them with the coherent structures in the flow. In recent times,48

using direct numerical simulations, a few studies have been conducted to explore the three-49

dimensional topology of the coherent structures associated with these extreme events [18, 19].50

From the above discussion, it is apparent that the bursts described so far are connected51

to the energy-containing structures (comparable to the integral scales) in the flow, and52

therefore, could be aptly characterized as large-scale bursts. However, in fully developed53

turbulent flows, there exist another type of bursts associated with smaller scales of the flow,54

comparable to the inertial subrange and dissipative range scales [20, 21]. These small-scale55

bursts are typically identified through the extreme events in velocity increments, such as in,56

∆u(τ) = u′(t + τ)− u′(t), where u′ is the streamwise velocity fluctuations, t is time, and τ57

is the time-lag.58

In particular, the probability density functions of velocity increments become increasingly59

non-Gaussian as the eddy time scales decrease, a phenomenon associated with small-scale60

intermittency [21]. The presence of such extreme events in the velocity increments disrupts61

the self-similarity of the small-scale eddy structures as predicted by Kolmogorov [21]. This62

causes anomalous scalings in the higher-order structure functions (|∆u(τ)|m 6= m/3, where63

m is the moment order), which are often studied through multifractal analysis. The multi-64

fractal framework was introduced by Parisi and Frisch [22] by assuming that there exists a65
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continuous range of scaling exponents and for any fixed scale of the flow, the scale invari-66

ance holds with some prescribed probability function. By doing so, one recovers a non-linear67

relationship between the order of the structure functions and their scaling exponents [23].68

Subsequently, to better understand the phenomenology of small-scale turbulence, further69

developments have taken place by proposing different variants of multifractal models, such70

as the ones by Meneveau and Sreenivasan [24] and She and Leveque [25].71

Despite these developments, there lacks a unifying framework through which one can72

connect the small- and large-scale bursts. This is because as opposed to the non-Gaussianity73

associated with small-scale bursts, the fluctuating velocity signals through which the large-74

scale bursts are detected typically display near-Gaussian behavior [16]. Therefore, it remains75

largely unexplored how the burstiness features of a turbulent signal evolve as the scales of76

the eddies increase or decrease systematically. This issue is even more pertinent for high77

Reynolds number (Re) flows, which are characterized by a wide spectrum of eddy sizes.78

The recent reviews by Graham and Floryan [9] and Sapsis [8] show that the state-of-79

the-art theoretical models, mostly borrowed from non-linear dynamical systems, do not80

specifically account for the multi-scale nature of turbulent bursts in high-Re flows. In81

addition to these studies, Yeung et al. [2] also mention the challenging aspects associated with82

these bursts when the Reynolds number of the flow is increased. Particularly, Yeung et al.83

[2] show that the topology of the structures associated with extreme events in small-scale84

turbulence does not necessarily scale with the increasing Re. In fact, their results highlight a85

non-trivial relationship between the large-amplitude fluctuations and the Reynolds number86

of a turbulent flow. Given the resurgence of interest in the topic of extreme events, it is87

timely to revisit this problem in high-Re flows by treating the impact of multi-scale bursts88

on turbulence statistics through a novel framework.89

Before we describe the objectives of this study, it is prudent to explain how the presence90

of bursts affects the turbulence statistics at different scales of the flow. To illustrate this91

concept, in Fig. 1 we show a schematic of a near-neutral atmospheric surface layer flow (or92

equivalently, a high Re wall-bounded turbulent flow). Such flows are characterized by large93

Re values and typically occur in the lowest 10% of the atmospheric boundary layer with a94

negligible effect of buoyancy on turbulence production [26]. Moreover, in these flows, the95

vertical profile of the mean velocity is logarithmic (u ∝ ln(z), where z is the height) and96

the presence of attached eddies dominates the flow statistics [27, 28]. However, there is also97
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Figure 1. Schematic diagram of a near-neutral atmospheric flow is shown to indicate the presence

of burst activities in various turbulence statistics. In this diagram, the x axis is in the direction

of the mean wind (u) and the z axis represents the vertical. Conceptually, the logarithmic layers

(where u ∝ ln z) of such flows are populated with coherent structures such as the attached eddies

(shown in red) and small-scale detached eddies (shown in blue). These small-scale eddies are

comparable to the inertial-subrange scales, while the scales of the coherent structures are of the

order of the energetic-scale motions. This is highlighted through the premultiplied energy spectrum,

which is more representative of the vertical velocity. While conducting measurements on a micro-

meteorological tower, the impact of these eddy motions is registered on the instantaneous evolution

of Reynolds stress components (u′2, u′w′) and small-scale quantities such as the second-order

velocity increments (∆u2). To illustrate this through an example, on the right-hand-side three

30-min time series of (u′/σu)2 (pink), (∆u/σ∆u)2 (light blue), and |u′w′/u′w′| (red) are shown

from an experimental dataset (see Sec. II A 2).
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the presence of small-scale detached isotropic eddies, whose contribution is negligible to the98

overall flow statistics as they are sampled from the inertial subrange of the energy spectrum.99

This is shown through a cartoon of premultiplied spectrum in Fig. 1 where the inertial100

subrange can be identified by a +2/3 power-law. Nevertheless, at a given measurement101

level (typically on a mast), the small-scale eddies are responsible for the strong amplitude102

fluctuations in the velocity increments (e.g., ∆u(τ)). On the other hand, the energetic-scale103

eddies mainly give rise to strong amplitude variations in the bulk quantities such as the104

streamwise or vertical velocity fluctuations (u′ or w′) and instantaneous momentum flux105

signals (u′w′).106

Due to these differences, an interesting outcome emerges when one considers the time107

series of the following signals: u′2, [∆u(τ)]2, and u′w′. The first and last of such signals108

represent the time evolution of the streamwise velocity variances and momentum fluxes109

(Reynolds stress components), which are supposedly governed by the large-scale eddy struc-110

tures. Contrarily, the middle one [∆u(τ)]2, represents the instantaneous variations in the111

energy content at a time scale τ of the flow ([∆u(τ)]2). To demonstrate this point, we112

show an example of (u′/σu)
2, (∆u/σ∆u)

2, and |u′w′/u′w′| time series from a near-neutral113

atmospheric flow (see Fig. 1). Since the momentum flux signal is a sign-definite quantity,114

absolute values are undertaken to better highlight their burst features. For comparison pur-115

poses, these quantities have been suitably normalized by their mean values, i.e., by variances116

(σ2
u, σ

2
∆u) and covariance (u′w′). Notwithstanding their different origins, these three time117

series display qualitatively similar behavior, i.e., they all appear to be bursty (characterized118

by several ‘spikes’ in the signal). However, through visual inspection, it remains a challeng-119

ing task to quantify whether the turbulence generation at smaller scales of the flow is more120

bursty than at larger scales. In other words, answering this question requires an interlink to121

be established between the small- and large-scale bursts, which broadly speaking, motivates122

the present study.123

Conventionally, strong amplitude variations or bursts in a signal are studied through the124

tails of a probability density function (PDF) by employing a statistic known as kurtosis125

[29, 30]. The kurtosis is a fourth-order moment of any stochastic fluctuating signal x′,126

defined as (x′/σx)
4, where σx is the standard deviation. However, since the PDF of a signal127

is insensitive to its temporal structure, randomly ordering the values does not have any effect128

on the kurtosis estimation. In this study, we revisit a quantity named “burstiness index”129
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that can successfully account for the strong amplitude variations in a signal, while being130

sensitive to the signal structure. Unlike VITA or the quadrant-hole method, no arbitrary131

thresholds are needed for evaluating the burstiness index. Although this index had earlier132

been proposed by Narasimha et al. [31], we reinterpret its physical meaning and extend its133

usage beyond just studying the momentum-flux signals. For instance, in contrast to previous134

studies, where different tools are used to investigate the small- and large-scale bursts (e.g.,135

multifractal analysis or VITA), we adopt a novel scale-aware event-based framework to136

seamlessly synthesize the characteristics of small- and large-scale bursts.137

By employing this framework, we ask, (1) Do the bursts have similar physical properties138

when the instantaneous variations in velocity variances and momentum flux signals are139

considered? (2) How exactly do the burst features of such Reynolds stress components140

evolve as the eddy time scales in the flow increase or decrease systematically? (3) What is141

the role of the Reynolds number on the signal’s burstiness characteristics? For assessing the142

Reynolds number effects, we employ datasets from two different experiments conducted in a143

wind tunnel and in a near-neutral atmosphere whose Re values are different by almost two144

orders of magnitude. We restrict ourselves to near-neutral stability since at such conditions145

the atmospheric surface layer is known to behave analogously to a flat-plate boundary layer146

flow [32]. The present study is organized into three different sections. In Sec. II, we provide147

the descriptions of the experimental datasets and methodology used in this study, in Sec.148

III we present and discuss the results, and lastly in Sec. IV we conclude and provide future149

research direction.150

II. DATASET AND METHODOLOGY151

A. Dataset152

1. Wind tunnel experiment153

One of the datasets we use is from a fully-developed turbulent boundary layer flow over an154

aerodynamically smooth flat plate, as obtained in the wind-tunnel facility of the University155

of Melbourne [33]. The friction Reynolds number of this flow is Re = δu∗/ν ≈ 14750, where156

δ is the boundary-layer thickness (0.361 m), u∗ is the friction velocity (0.626 m s−1), and ν157

is the kinematic viscosity of air (1.532× 10−5 m2 s−1). In this wind tunnel experiment, hot-158
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wire anemometers were deployed to measure the time series of the streamwise velocity, u.159

The turbulent fluctuations in the streamwise velocity (u′) were computed by subtracting the160

time-averaged mean velocity (u) from u. These measurements were recorded at a sampling161

frequency (fs) of 20 kHz for up to 120-s at 41 wall-normal coordinates z, spanning between162

0.1 mm to 526 mm. Moreover, the time series of u were collected for three acquisition cycles,163

and therefore, the results reported in Sec. III are averaged over these three cycles. Further164

details of the experiment can be found in Baars et al. [34]. Throughout this study, the wall-165

unit normalization is indicated by the + superscript such that u+ = u/u∗ and z+ = zu∗/ν.166

Note that from the wind-tunnel experiment, only the u′ signal is available and we restrict167

its vertical extent up to z+ ≤ 104. This is because beyond that height one encounters an168

intermittent region where turbulent-non-turbulent patches dominate the flow behavior [35].169

2. Atmospheric experiment170

To compare the turbulent features with an even higher Reynolds number flow, we use an171

atmospheric field-experimental dataset from the Surface Layer Turbulence and Environmen-172

tal Science Test (SLTEST) experiment [36, 37]. The SLTEST experiment ran continuously173

for nine days from 26 May 2005 to 03 June 2005, over a flat and homogeneous terrain at174

the Great Salt Lake desert in Utah, USA (40.14◦ N, 113.5◦ W). The aerodynamic roughness175

length (z0) at the SLTEST site was z0 ≈ 5 mm [38], thereby indicating the smoothness of176

the surface. Although the measurement of atmospheric boundary layer depth δ was not177

directly available at the SLTEST site, but by assuming it around 500 m with a typical u∗178

value of 0.2, the friction Reynolds number of the SLTEST experiment could be estimated179

as Re = (u∗δ)/ν ≈ 106. Note that we consider ν = 1.8 × 10−5 m2 s−1, following Marusic180

et al. [39].181

During this experiment, nine North-facing time-synchronized CSAT3 sonic anemometers182

were mounted on a 30-m mast, spaced logarithmically over an 18-fold range of heights, from183

1.42 m to 25.7 m, with the sampling frequency (fs) being set at 20 Hz. The continuous184

sonic anemometer data were divided into half-hour runs with each run containing the time-185

synchronized data from all nine sonic anemometers. In order to select the runs for our186

analysis, the data were subjected to various quality checks, such as stationarity, meteorolog-187

ical conditions at the experimental site, thresholds on the kinematic heat flux and friction188
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velocity, satisfying the constant flux layer assumption and inertial-subrange scalings, etc.189

These details are outlined in Chowdhuri and Deb Burman [40].190

In this study, we use a subset of 20 near-neutral runs having −L > 200 m (L is the191

Obukhov length), so that all the nine sonic anemometers lay deep within the log-layer. The192

friction velocity u∗ is computed as,193

u∗ = (u′w′
2

+ v′w′
2
)
1
4 , (1)

where u′w′ and v′w′ are the streamwise and cross-stream momentum fluxes respectively,194

at z = 1.4 m. For all our selected runs, u∗ varied between 0.26 to 0.2. This range of195

u∗ values is in agreement with previous studies conducted in the near-neutral atmospheric196

surface layer [41]. Unless otherwise mentioned, the presented turbulence statistics in Sec.197

III are ensemble-averaged over this set of near-neutral runs. While conducting the analysis198

on the atmospheric dataset, we focus our attention on the following signals, such as the199

streamwise (u′) and vertical velocity fluctuations (w′), and their product (u′w′), which is200

the instantaneous momentum flux. The turbulent fluctuations (u′ and w′) are computed201

by subtracting the 30-min linear trend from the respective variables. Henceforth, the wind202

tunnel and atmospheric experiments are referred to as the TBL and SLTEST experiments,203

respectively. In the next sub-section, we discuss the methodology to compute the burstiness204

index.205

B. Methodology206

1. Burstiness index207

In Fig. 2a, we show a section of a u′ time-series from the TBL experiment at z+ = 67.208

It is evident that the time-series u′ undergoes transitions from positive to negative states as209

time evolves. Such transitions are associated with the passage of eddy structures over the210

measurement location [42, 43]. We denote the length of any positive or negative events by211

Np, which can also be transformed to a time scale tp after multiplying with the sampling212

period 1/fs. It is obvious that the sum over the length of all the events should be equal to213

the length of the time series (N). Corresponding to any event of length Np, the area under214

the time series represents the contribution of that event to any desired turbulent statistic.215
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Figure 2. (a) A flowchart is shown to explain the computation of the burstiness index (Bmx ) for

any measured turbulent signal x′ corresponding to its moment order m. For illustration purposes,

we use the u′ signal at z+ = 67 from the TBL experiment. The gray-shaded region is used to

highlight the area under the burstiness curve, corresponding to m = 1. (b) For the same u′ signal,

the contours of the logarithms of joint probability density function (JPDF) between Np/〈Np〉 and

S2
p/〈S2

p〉 are shown. The quantities 〈Np〉 and 〈S2
p〉 denote the averaged event length and size,

respectively. The pink line with markers indicates a power-law relationship between the two. (c)

The variations in B2
u are shown when the u′ signal is randomly shuffled (RS) in a gradual manner

or when its Fourier phases are altered by changing the parameter (k) of a von-Mises distribution.

To quantify the variations, on the left- and right-hand-side of the y axis, the ratios B2
u/B2

u(RS) and

B2
u/B2

u(k) are plotted, respectively.

For instance, if one considers the m-order moment of a stochastic signal, then the fractional216

contribution from an event (also described as event size) of length Np can be expressed as,217

Sm,np =
1

T × |u′(t)|m

∫ t+(Np/fs)

t

|u′(t)|m dt, (2)
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where T is the total duration of the time-series (T = N/fs) and |u′(t)|m is the time-averaged218

m-order moment, which for m = 2 is simply the variance. Note that the superscript n in Sm,np219

is exclusively used to indicate the normalization with |u′(t)|m. Moreover, we use the absolute220

values of the signal while defining this quantity, such that the fractional contribution from221

the events to any order of the moment remains sign-indefinite and bounded between 0 to 1.222

It is clear that when summed over all the possible Sm,np values it returns unity. One can also223

follow the same procedure for the vertical velocity signal by replacing u′ with w′. However,224

only the first-order moment is relevant for the momentum flux signal, since that represents225

the total time-averaged flux. In the parlance of complex systems approach, these localized226

event lengths and their contributions can be compared to size-duration relationships for227

systems exhibiting self-organized critical (SOC) behavior, such as the sandpile model for228

avalanche dynamics [44, 45].229

After defining Sm,np and Np, one can sort the Sm,np values from the largest to smallest and230

then cumulatively sum them together. This cumulative sum converges to unity, since Sm,np231

values are divided by |u′(t)|m. Let us denote this cumulative sum as F (Sm,np ). Similarly,232

corresponding to the sorted values of Sm,np , one can cumulatively sum the event lengths233

by normalizing them with respect to the length of the time series (N). We denote this as,234

F (Np). As a next step, F (Sm,np ) and F (Np) are plotted against one another, which one refers235

to as a burstiness curve. An example of such a curve is shown in Fig. 2a, where different236

moment orders are plotted (m = 1 to 9).237

We next explain how such a plot between F (Sm,np ) and F (Np) can be used to infer the238

strength of the amplitude variations, thereby capturing the effect of the turbulent bursts. If239

one considers a signal without any amplitude variation but only the lengths of the positive240

and negative events are preserved (otherwise known as a telegraphic approximation (TA)),241

then for such a signal the burstiness curve would be a straight line with a slope of 45◦. This242

is because the fractional contributions of the events will be identical to the length up to243

which the events persist. We illustrate this by creating a synthetic signal of u′(t) whose all244

values are replaced with ±σu, where the sign depends on the original signal. Thereafter, if245

we plot FTA(Sm,np ) against FTA(Np), then, as expected, the points fall exactly on the 45◦ line246

(shown as green circles on the burstiness curve in Fig. 2a).247

Therefore, the further the plot between F (Sm,np ) and F (Np) differ from the straight line248

(representing FTA(Sm,np ) vs. FTA(Np)), stronger amplitude variations are present in the249
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signal, and hence, they appear more bursty. This is reflected in Fig. 2a, where one observes250

if the moment orders are increased (thereby enhancing the importance of the extreme events),251

the curves significantly deviate from the straight line. One can thus use the area under the252

curve between F (Sm,np ) and F (Np) and subtract it from 0.5 (which is the area under the 45◦253

straight line) to quantify the peaked nature of a signal. For illustration purposes, in Fig. 2a,254

we shade this area in grey for the burstiness curve corresponding to m = 1. To numerically255

compute the area under the burstiness curve, we use a trapezoidal approximation. This area256

with 0.5 subtracted is referred to as a burstiness index and denoted by Bmx , where m is the257

moment order and x is the signal under investigation.258

This whole procedure behind the computation of the burstiness index is graphically il-259

lustrated through a flow chart in Fig. 2a. The burstiness index will be 0 if no amplitude260

variation is present in the signal. On the other hand, the maximum value of a burstiness261

index will be 0.5, because both F (Sm,np ) and F (Np) are bounded between 0 to 1, and there-262

fore, the burstiness curve cannot cross the upper half of the triangle. Further utilities of the263

burstiness index are explained below.264

Out of all the moment orders, one particular quantity of interest is the u′2(t) signal, since265

it represents the instantaneous variations in the streamwise velocity variance. To explore266

the temporal evolution of u′2(t), one can investigate the joint probability density function267

(JPDF) between S2
p and Np. Note that S2

p is the unscaled version of S2,n
p that encapsulates268

the amplitude information, and hence, would depend on the signal PDF. A similar approach269

was taken by Planet et al. [45] while analyzing the complex interfacial dynamics of the270

imbibition fronts. They mentioned the quantities Sp and Np as avalanche sizes and lengths,271

respectively, and normalized them by their mean values 〈Sp〉 and 〈Np〉. Mathematically,272

these mean quantities are defined as,273

〈xp〉 =
1

Z

Z∑
i=1

xp,i, x = {N,S}, (3)

where Z is the number of zero-crossings in the signal. Planet et al. [45] found the JPDF274

between Sp/〈Sp〉 and Np/〈Np〉 followed a power-law variation with a slope of 1.31, which they275

attributed to the presence of burst-like activities in the interfacial dynamics. In agreement276

with Planet et al. [45], we observe the JPDFs between S2
p/〈S2

p〉 and Np/〈Np〉 follow a power-277

law scaling for the u′2(t) signal at z+ = 67 (Fig. 2b). For comparison purposes, we show278

the same power-law of Planet et al. [45] as a pink line with markers in Fig. 2b. Therefore,279

12



the temporal evolution of the instantaneous streamwise velocity variance exhibits a complex280

structure, and through Fig. 2c, we show the burstiness index of u′2(t) can indeed capture281

such features.282

Since the event contributions to variance and their lengths are strongly interlinked (as283

seen through their JPDFs in Fig. 2b), the burst-like features of a signal should depend on284

both PDFs of the signal and event duration. To disentangle these aspects, we employed285

two different surrogate signals. One of the surrogate signals was generated through gradual286

random shuffling. In this method, the signal PDFs are preserved but the PDFs of event287

lengths approach a Poisson distribution as the strength of the random shuffling (RS) is288

increased. The second surrogate signal exploits the Fourier phase-alteration technique (see289

Appendix A), through which we preserve the PDFs of event lengths but introduce more290

extreme events in the signal, thereby affecting its PDF. The alteration of the Fourier phases is291

achieved through a von-Mises parameter k. As demonstrated in the appendix (see Appendix292

A), further the parameter k deviates from zero more large-amplitude spikes appear in the293

signal. Notice that for both such surrogate signals, the variance remains the same as the294

original one. More details on these surrogate data generation techniques can be found in295

Appendix A.296

In Fig. 2c, we plot the ratios of the burstiness indices between the original and randomly-297

shuffled (B2
u/B

2
u(RS)) or phase-altered (B2

u/B
2
u(k)) signals. One can see that as the strength298

of the randomization increases (i.e., the temporal coherence is gradually destroyed), B2
u(RS)299

decreases which implies the burstiness index is dependent on the temporal structure of the300

signal. On the contrary, as the extreme events in the signal increase (by increasing k) but301

maintain the temporal coherence through event length PDFs, B2
u(k) attain larger values.302

By combining the two, one can infer the burstiness index explains the strong amplitude303

fluctuations in a signal by taking into account both the signal’s complex structure and its304

PDF. In the next section, we show how a similar approach can be adopted to evaluate the305

scale dependence of the burstiness index.306

2. Scale-dependence of the burstiness index307

One of the intriguing results in fully-developed turbulent flows is the velocity increments308

(for example, ∆u(τ)) are increasingly non-Gaussian as the time-lags (τ) are reduced [21].309
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Figure 3. (a) The probability density functions (PDF) of normalized velocity increments (∆u/σ∆u)

are plotted for various time lags (see the legend), corresponding to the u′ signal at z+ = 67. The

time lags are normalized by the inner-scaling (τ+) and the black line indicates the PDF of u′/σu.

The green dash-dotted line represents the Gaussian distribution. (b) The PDFs of event lengths

(Np) are shown for the velocity increment (∆u(τ+)) signals at prescribed τ+ values. The black

line indicates the PDF of Np computed for the u′ signal. A −1.6 power law is shown by the green

dash-dotted line. (c) For the same τ+ values, the PDFs of event sizes normalized by the variances

of the velocity increments (∆u2) are shown. The black line indicates the event size PDFs of the u′

signal. In (d) we illustrate the scale-dependence of the burstiness index (Bm∆u(τ+)), as evaluated

for the velocity increments (∆u) and their moment order m. The moment orders increase as one

progresses from the light-blue color (m = 1) to the pink one (m = 9). The two vertical lines in

(d) denote the inner- and outer-spectral peak positions from the TBL experiment. The horizontal

lines indicate the values of Bmu .
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Therefore, with decreasing τ , the importance of extreme amplitude variations becomes more310

evident. Instead of studying this phenomenon through just the PDFs of ∆u(τ), one can ex-311

tend the event framework to the velocity increments at any prescribed time lag and compute312

its burstiness index. For instance, at a time-lag τ , one can define event sizes and lengths313

analogous to Fig. 2a by considering ∆u(τ) as the relevant signal. We illustrate this through314

an example in Fig. 3. Henceforth, the normalized time-lags with respect to the wall-unit315

scaling are denoted as τ+.316

From Fig. 3a, one can clearly see as τ+ decreases (see the legend for different colors) the317

normalized PDFs of velocity increments (P (∆u/σ∆u), where σ∆u is the standard deviation of318

∆u at any given lag) become significantly non-Gaussian. If one compares the distributions of319

event lengths for those lags, it can be noticed that at the smallest τ+ value P (Np) decreases320

quite rapidly (Fig. 3b). However, as τ+ increases, P (Np) gradually approach the event-321

length PDFs as obtained from the u′ signal (solid black line) — having a distinct power-law322

section with an exponent −1.6 (Fig. 3b). This implies the event-length PDFs of the u′ signal323

encompass the cumulative effects of all the flow structures passing over the measurement324

location. On the other hand, if the PDFs of event contributions P (S2
p) (or event sizes) to325

the variances for the velocity increment ∆u signals are considered at any τ+ values and326

compared with the result obtained from the u′ signal, no such clear dependence on τ+ can327

be noted (Fig. 3c). Therefore, the event features of the ∆u signal evolve in a non-trivial328

fashion as τ+ increases.329

To explore this further, one can study the burstiness curves at any prescribed time-lag. In330

Fig. 3d, we show the scale-dependent burstiness indices (Bm∆u(τ+)) of the signal |∆um(τ+)|,331

corresponding to its moments (m) of the order 1 to 9. We consider the absolute values of332

velocity increments, which is regarded as a standard practice in turbulence literature while333

conducting structure-function analysis [46]. In Fig. 3d, m progressively increases from the334

light-blue (m = 1) to pink (m = 9) color. The dash-dotted horizontal lines of the same335

color as the curves indicate the Bmu values. One can notice that, except for m = 1, the336

burstiness indices vary similarly for any other m values. For instance, B2
∆u(τ

+) attains a337

maximum at the smallest possible τ+ and then decreases with increasing lags. Eventually,338

they saturate to the values (Bmu ) as obtained from the full-signal [u′(t)]m. More importantly,339

such saturation typically occurs at scales commensurate with the outer spectral peak at340

τ+ = 1000 [34]. Therefore, this outcome points towards a seamless transition from small-341
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to large-scale bursts as the eddy time scales increase. Note that the inner- (τ+ = 100) and342

outer-spectral (τ+ = 1000) peak positions are estimated from the premultiplied u spectra343

presented in Baars et al. [34].344

The saturation to the full-signal values (Bmu ) indicate that the large-scale structures345

mainly govern the burst features observed in the [u′(t)]m signals. On the other hand, strong346

amplitude variations in velocity increments are mainly confined to the small-scale motions.347

Although not shown here, but through synthetic turbulence data one can ascertain that the348

behavior of Bm∆u(τ+) with increasing lags is sensitive to the multifractal nature of small-scale349

turbulence [47].350

Hereafter, we will focus on the second- and mixed-order velocity increments, such as,351

∆u2(τ+), ∆w2(τ+), and ∆u∆w(τ+). As an alternative to Fourier spectrum or cospectrum,352

the averages of these quantities (e.g., ∆u2(τ+)) physically represent the contribution to353

Reynolds stress components (e.g., σ2
u) at any specified scale of the flow [48]. Hence, the354

variations in B2
∆x(τ

+) (x = u,w) and B1
∆u∆w(τ+) with increasing time-lags would quantify355

the role of bursts on the scale-wise evolution of Reynolds stress components. Since ∆u∆w is356

a sign-definite quantity, we use their absolute values (|∆u∆w|) while computing B1
∆u∆w(τ+).357

3. Randomly-shuffled and IAAFT signals358

To underpin what flow features are responsible behind the turbulent bursts, we use two359

different surrogate signals. One of them is generated through a random-shuffling procedure.360

In this method, a random permutation is operated on a time-series to disrupt the underly-361

ing temporal arrangement, thereby creating a surrogate dataset that does not possess any362

relationship among the signal data points. Therefore, in randomly-shuffled surrogates, the363

signal’s PDF remains precisely conserved albeit the data points appear random.364

The second type of surrogate is generated from a procedure named as iteratively adjusted365

amplitude Fourier transform (IAAFT). The IAAFT surrogates do not contain non-linear366

effects but preserve the linear effects described by the auto-correlation or Fourier spectrum367

of the time series [49]. This is accomplished by keeping the Fourier amplitudes of the time368

series intact, but replacing the associated Fourier phases with a random uniform distribution369

between 0 to 2π. The randomness in the Fourier phases destroys any non-linear structure370

of the time series. However, due to the randomisation of the Fourier phases the PDF of371
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the time series becomes Gaussian. Hence, to preserve both PDF and amplitude spectrum,372

the Fourier amplitudes and the signal’s PDFs are adjusted iteratively at each stage of phase373

randomisation until the resultant signal has the same power spectrum and the PDF as the374

original one.375

In the context of turbulent signals, if the results from an IAAFT surrogate signal are376

compared with a randomly-shuffled one, then the difference between the two can be directly377

associated with the energy spectrum. Therefore, this comparison enables one to ascertain378

the effect of coherent structures (which contribute the most to the turbulence kinetic energy)379

on the desired turbulent statistic.380

III. RESULTS AND DISCUSSION381

We begin with comparing the turbulence statistics between the TBL and SLTEST382

datasets. Such comparisons enable us to infer the type of coherent structures present in383

both flows. Thereafter, we focus on the scaling properties of the event time scales and their384

magnitudes to probe the effects of the flow structures on the peaked nature of velocity and385

momentum flux signals. To the best of our knowledge, this is the first time event-based386

features are compared between the laboratory and atmospheric flow settings. Furthermore,387

we introduce a novel scale-dependent event framework through which we establish a statis-388

tical correspondence between the event and eddy time scales. We conclude our study by389

applying this framework to quantify the effect of turbulent bursts on velocity variances and390

momentum transport at each scale of the flow.391

A. Comparison between the laboratory and atmospheric flows392

1. Turbulence statistics393

Figure 4a–c show the vertical profiles of the mean velocity (u/u∗), velocity variances394

(σ2
u/u

2
∗ and σ2

w/u
2
∗), and streamwise and cross-stream momentum fluxes (u′w′/u2

∗ and395

v′w′/u2
∗). These quantities and the height (z) are normalized with the wall-unit scal-396

ing, such as by u∗ and ν. The error bars denote the spread from the ensemble mean for the397

SLTEST dataset.398
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Figure 4. (a) The vertical profiles of the normalized mean velocity (u/u∗) and variances (σ2
u/u

2
∗)

are compared between the TBL and SLTEST datasets (see the legend). The blue dotted line in

(a) is digitized from Fig. 1a of Yang and Bo [50]. The red lines denote the logarithmic fits of

Marusic et al. [39] to the mean velocity profile. The profiles of (b) normalized vertical velocity

variances (σ2
w/u

2
∗) and (c) streamwise and cross-stream momentum fluxes (x′w′/u2

∗, where x can

be u or v) are presented from the SLTEST dataset. In (d)–(f), normalized second-order structure

functions Duu/u
2
∗, Dww/u

2
∗, and mixed-order structure function −Duw/u

2
∗ are plotted against r/z,

where r is the spatial lag and z is the height. The green dash-dotted lines in (d)–(f) indicate

the inertial-subrange slopes of +2/3 and +4/3, respectively. The cyan-colored line in (d) denotes

the logarithmic scaling of Duu/u
2
∗ at larger scales of the flow. The legend at the extreme left end

represents the color codes corresponding to the heights from the TBL and SLTEST experiments.

From Fig. 4a, one can notice that in the TBL experiment, the mean velocity profile399

stays logarithmic up to a certain height range (red dotted line). Accordingly, the SLTEST400

dataset too maintains a logarithmic mean velocity profile (red dash-dotted line). The curves401

to fit the logarithmic variations are adopted from Marusic et al. [39]. As per Townsend’s402

attached eddy hypothesis [51], the streamwise velocity variances are supposed to follow a403
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logarithmic scaling in the inertial layer of a wall-bounded turbulent flow [27]. However, such404

scaling involves the outer-layer variables (boundary-layer height, δ), and therefore, cannot405

be directly compared between the two experiments. Despite this limitation, vertical profiles406

of streamwise velocity variances are characteristically similar between the TBL and SLTEST407

experiments. This is illustrated through the blue dotted line in Fig. 4a. The blue dotted line408

is digitized from Fig. 1a of Yang and Bo [50]. In that figure, Yang and Bo [50] adopt a semi-409

empirical formulation of σ2
u/u

2
∗-profile from Kunkel and Marusic [52] to fit their near-neutral410

atmospheric dataset. Our observations indicate that the streamwise velocity variances of411

the SLTEST experiment match nicely with this prediction.412

In contrast to the streamwise velocity variances, σ2
w/u

2
∗ (Fig. 4b) remain constant with413

height, with the constant being equal to the square of 1.25, as empirically observed by Kader414

and Yaglom [53]. On the other hand, the normalized streamwise momentum fluxes (u′w′)415

remain equal to the friction velocity value at the surface, while the cross-stream component416

(v′w′) is nearly 0 (Fig. 4c). This indicates the surface shear stress aligns with the direction417

of the mean wind [54].418

2. Structure function analysis419

All such bulk statistics are in confirmation with Townsend’s attached eddy model, and420

hence, the coherent structures present in both flows are supposedly the attached eddies. It421

is therefore expected that the impact of such attached eddies would reflect in the behavior422

of the energy spectrum or second-order structure functions. Here we focus on the structure423

functions (∆u(τ)2) since these statistics are later used while investigating the scale-wise424

behavior of turbulent bursts (Figs. 6–7). Note that the u spectra from the TBL dataset425

are presented in Baars et al. [34] and regarding the SLTEST dataset, u, w spectra, and426

u-w co-spectra are shown in Appendix B (Fig. 9). In all the following figures (Figs. 4–10),427

two different color schemes are mostly used to demarcate between the TBL and SLTEST428

experiments. For instance, grey-shaded lines with varying intensities represent the TBL429

dataset while the colored lines are from the SLTEST experiment (see the legend of Fig. 4).430

Specific to the TBL dataset, the faintest color indicates the lowest height (z+ = 4.33) and431

the darkest one corresponds to z+ = 9965.70.432

In Fig. 4d, we compare the scaling behavior of the streamwise velocity structure functions433
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(Duu/u
2
∗, where Duu = ∆u(τ)2) between the TBL and SLTEST experiments. As commonly434

done while studying the scaling properties of structure functions, we convert the time-lags435

(τ) to spatial lags (r = τu) by using the Taylor’s hypothesis [55, 56]. Regardless of TBL436

or SLTEST datasets, σu/u was less than 0.5, thereby affirming the validity of the Taylor’s437

hypothesis [57]. For both experiments, one can notice that at scales comparable to the438

inertial-subrange (r < z), Duu/u
2
∗ follow the +2/3 Kolmogorov scaling. On the other hand,439

a log-scaling is observed at the energetic scales (r > z) of motion. The cyan colored line in440

Fig. 4d shows the fitted log-scaling as adopted from Ghannam et al. [58].441

This log-scaling is expressed as, Duu/u
2
∗ = A ln(r/z) +B, where A and B are 2.5 and 1.8,442

respectively [58]. Physically, the presence of log-scaling in the structure functions is a tell-443

tale sign of attached eddies in the flow, reflected as a κ−1 scaling (κ is the wavenumber) in444

the u spectrum [27, 59, 60]. Interestingly, for the SLTEST dataset, the attached-eddy scaling445

is more prominent in Duu/u
2
∗ rather than in its spectral counterpart (Fig. 9). Moreover, in446

accordance with the attached-eddy model, such log-scaling is absent in Dww/u
2
∗, although its447

+2/3 slope remains intact (Fig. 2e). In particular, Dww/u
2
∗ approach 2σw

2/u∗
2 as the scales448

increase (horizontal blue dashed line in Fig. 4e). However, in agreement with Chamecki449

and Dias [61], the structure-function ratio Dww/Duu remains smaller than the isotropic450

prediction of 4/3 in the inertial subrange scales (not shown).451

Regarding u′w′, similar to u-w cospectra, mixed-order structure functions −Duw/u
2
∗452

(Duw = ∆u∆w) describe the scale-dependent features of momentum transport [62, 63]. The453

negative sign in Duw is to ensure that the quantity stays positive. At the inertial-subrange454

scales, −Duw/u
2
∗ are observed to follow the +4/3 scaling as per Wyngaard and Coté [64]455

(Fig. 4f). However, at energy-production scales (r > z), −Duw/u
2
∗ attain a constant value456

of 2 (horizontal blue dashed line in Fig. 4f). This indicates almost all the momentum trans-457

port are accomplished through such scales. More precisely, at energy-production scales, the458

ejection and sweep motions emerge as the major transporters of streamwise momentum flux459

(see Appendix B). Previous studies have shown that these ejection and sweep structures are460

ultimately connected to the attached eddies in the flow [65].461

As a side-note, since the computation of burstiness index of momentum flux signals462

involve absolute values, it is imperative to evaluate how the scaling behavior changes if463

instead of ∆u∆w, |∆u∆w| is used. Due to its absolute nature, we find that the overall scale-464

wise evolution of |∆u∆w|/u2
∗ remains similar but the slope of inertial-subrange empirically465
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changes from +4/3 to +1/2 (see Fig. S1 in [66]). Be that as it may, after establishing the466

fact that both TBL and SLTEST flows are in sync with the attached-eddy picture, we move467

to the next section where we explore how the presence of such eddy structures are reflected468

in the statistics of event sizes and duration.469

B. Event characteristics of laboratory and atmospheric flows470

1. Event time scales471

Figure 5a shows the PDFs of event time scales (tp = Np/fs), corresponding to u′, w′,472

and u′w′ signals. In the parlance of statistical mechanics, these PDFs are also referred to473

as the persistence PDFs [67]. The event time scales are normalized in wall units (t+p ) so474

that the vertical variations can be identified in P (t+p ). The computation procedure of these475

PDFs is similar to as described in Chowdhuri et al. [67]. In general, these PDFs show a476

power-law behaviour whose exponents are non-trivial and difficult to compute analytically477

except for simple systems such as fractional Brownian motions [68]. It can be proven that478

these PDFs encode the effect of the turbulent structures in the flow. For instance, if one479

randomly shuffles the turbulent signal (thereby destroying all the ordered structures) and480

recomputes these PDFs, the result is very different from the original (shown as red triangles481

in Fig. 5a). For comparison purposes, P (tp) of a randomly shuffled signal is an exponential482

distribution and has a kurtosis of 9 [69]. However, the kurtosis of original event time scales483

(K(tp)) exceed 9 considerably and can attain values as large as 100 (see Fig. S2c in [66]).484

For the u′ signals from the TBL experiment, one observes a power-law segment with an485

exponent of −1.6 in P (t+p ). This power-law segment extends almost up to the time scales486

commensurate with the outer-spectral peak position (t+p = 1000). Beyond that, the PDFs487

deviate from the power-law behavior and a clear height variation is observed, implying that488

the larger time-scale events become more probable as the heights increase. On the contrary,489

for the same signals from the SLTEST experiment, one notices hardly any difference among490

different heights. Nevertheless, the same power law is found to be present for the SLTEST491

data too, despite their extent being different. It can be shown that under a different scaling492

(for instance, using δ as a scaling height), P (tp) between the TBL and SLTEST experiments493

compare quite nicely (see Fig. S3a in [66]). For the w′ and u′w′ signals, at larger t+p values,494
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Figure 5. (a) The PDFs of normalized event time scales (P (t+p )) are shown corresponding to

the u′, w′, and u′w′ signals. The time scale PDFs of w′, and u′w′ signals are shifted vertically

upwards. The green dash-dotted lines show a power-law scaling with an exponent of −1.6. (b) The

vertical profiles of normalized entropy of event lengths (Hxn(Np)) are shown. For the TBL flow,

Hxn(Np) is compared with an IAAFT surrogate signal (pink dashed line), and with u′ > 0 (cyan

solid line) and u′ < 0 events (light-blue solid line). The dash-dotted blue horizontal line indicates

z+ = 70. (c) The contours of event contribution curves are plotted against the normalized event

length scales (tpu/δ) and z+, corresponding to the TBL experiment. The green markers show

those tpu/δ which contribute the most to the velocity variance. The grey dashed line and pink line

with circles denote +1 and +1.6 power-laws, respectively. (d) The vertical profiles of the maxima

of event-contribution curves are shown from the TBL experiment. These maxima are compared

with the normalized integral scales of u′ ((γuu)/δ) and velocity variances (σ2
u/u

2
∗). In (e) and (f),

the contours of event contribution curves towards the velocity variances and momentum fluxes are

shown from the SLTEST experiment. (g) The vertical profiles of burstiness index (B2
u,w, B1

u′w′)

are shown for the SLTEST and TBL experiments. This index is compared with randomly-shuffled

(RS) and IAAFT surrogate signals shown as light- and dark-pink lines, respectively.
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a height dependence is observed in the PDFs. These PDFs can be successfully collapsed if z495

is used as a scaling parameter, thereby affirming the existence of the locally attached eddies496

(not shown).497

To quantify these different behaviors of P (t+p ), one can compute its Shannon entropy.498

Moreover, to relate this quantity to the organization of the flow structures, the Shannon499

entropy (H) is normalized with respect to a randomly shuffled (RS) signal. However, for500

accuracy purposes, it is recommended to use the event lengths (Np) instead of their time501

scales (tp = Np/fs). We do this because the set of event lengths are natural numbers (e.g.,502

{1, 2, 3, . . . }) rather than a continuous variable. Therefore, their PDFs (P (Np)) transform503

to probability mass functions (PMFs) whose computation does not suffer from any arbitrary504

binning [70]. As a result, normalized Shannon entropy of the event lengths (Np) are defined505

as,506

Hx
n(Np) =

∑
i P (Nx,r

p,i ) ln[P (Nx,r
p,i )]∑

i P (Nx
p,i) ln[P (Nx

p,i)]
, (4)

where x is the signal under investigation (x = u′, w′, u′w′), Nx,r
p denotes the event lengths507

from a RS sequence of x, and P (Nx,r
p ) are their associated probabilities. Note that Hx

n(Np)508

is bounded between 0 to 1, as the entropy is maximum for an RS sequence. Since an RS509

sequence is devoid of any order, further the deviation of Hx
n(Np) from 1, more organized the510

flow is. In Fig. 5b, we show the vertical profiles of Hx
n(Np) associated with u′, w′, and u′w′511

signals.512

From Fig. 5b, one notices the profiles of the Shannon entropies are different between513

the two flows. The Hu′
n (Np) of the TBL experiment remains significantly lower than its514

counterpart from the SLTEST experiment, thereby indicating more organization. Specific515

to the SLTEST dataset, Hu′
n (Np) values are nearly constant with height. On the other hand,516

Hw′
n (Np) and Hu′w′

n (Np) increase with height, albeit at different rates. Some recent works517

have indeed pointed out that although a hierarchy of attached eddies supposedly governs the518

flows in a neutral atmospheric surface layer and in a laboratory setting, their organization is519

not similar and depends on the flow configuration [71]. Interestingly, such conclusions in the520

previous studies have been drawn from a spectral perspective, but our results demonstrate521

for the first time that even from an event perspective the same principle holds.522

Moreover, Hu′
n (Np) of the TBL experiment shows a clear inflection in its vertical profile523

at around z+ = 70 (denoted as a blue dash-dotted horizontal line in Fig. 5b). This feature524
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is sensitive to the energetic-scale motions as the entropy of an IAAFT surrogate signal (pink525

dash-dotted line) shows a similar inflection as the original one. Therefore, to investigate this526

phenomenon more carefully, we evaluate the normalized Shannon entropies of Np separately527

for the positive (Hu′>0
n (Np)) and negative (Hu′<0

n (Np)) fluctuations. The computation of528

Hu′>0
n (Np) or Hu′<0

n (Np) is similar to Eq. 4, where the event lengths and their probabilities529

are conditioned on positive or negative fluctuations. Unlike SLTEST, for the TBL experi-530

ment, P (t+p ) displays a distinctly different behavior between u′ > 0 and u′ < 0 signals. For531

instance, heavy tails of the event time scale PDFs (quantified through the kurtosis of tp) are532

governed by the negative events as compared to the positive ones (see Fig. S2 in [66]). Note533

that this difference is not reflected in the mean time scale (tp
+) and is only evident through534

the large-scale events (Fig. S2a–b).535

Coming back to Fig. 5b, we observe the inflection in Hu′
n (Np) is captured in the negative536

events (light-blue line) as opposed to the positive ones (cyan line). More importantly, beyond537

z+ = 70, Hu′>0
n (Np) approaches a near-constant value. This indicates the organizational538

structure of the high-speed streaks (u′ > 0) is height-invariant at z+ > 70. Recent numerical539

experiment results of Bae and Lee [72] show that the low-speed (u′ < 0) streaks in wall-540

bounded flows merge progressively as the heights increase from the viscous sublayer to541

the inertial layer. They conclude that the low-speed streaks change their characteristics542

at approximately z+ = 70, the same location where we observe the inflection point in543

Hu′
n (Np). Therefore, this inflection can be interpreted as a sign of the change in the structural544

properties of turbulence as one transitions from the viscous sublayer to the inertial or log545

layer. We next demonstrate how these coherent structures influence the temporal evolution546

of the signal by investigating the relationship between S2
p and tp.547

2. Event contributions548

In Fig. 5c, we show the contour plot of normalized event contributions to the streamwise549

velocity variance (S2+
p,u) against the event time scales (tp,uu)/δ and heights (z+) from the550

TBL experiment. Note that we convert tp to a length scale using the local mean wind speed551

(u), and subsequently normalize it with δ. Through such scaling, we intend to probe the552

influence of outer-scale structures on event statistics.553

The event contributions are converted to densities by dividing them with the logarithmic554
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bin-width of (tp,uu)/δ so that when integrated over all the (tp,uu)/δ values the result is555

σu
2/u2

∗. We denote these event densities as 〈S2+
p,u|

(tp,uu)

δ
〉 and their logarithms are plotted556

as the contours in Fig. 5c. The individual event contribution curves at each z+ value are557

shown in Fig. S3b of [66], whose maxima are highlighted through green triangle markers.558

The black contour lines in Fig. 5c denote the regions of substantial contributions to σ2
u from559

some specific events. On the individual event contribution curves (Fig. S3b), these specific560

events are demarcated by two black dash-dotted horizontal lines. The blue vertical lines561

in Fig. 5c indicate the locations of inner- and outer-spectral peak positions in outer-layer562

coordinates [34]. On the other hand, the two horizontal lines in Fig. 5c represent those z+
563

locations where the inner- (z+ = 12) and outer-spectral (z+ = 474) peak positions appear564

[34].565

If one locates those (tp,uu)/δ values corresponding to which the event contributions are566

maximum ([(tpu)/δ]max) and plot their vertical profiles (shown as green triangles in Fig. 5c),567

they follow a distinct power-law of +1.6. This is apparently more clear in Fig. 5d, where568

a +1.6 power-law is fitted to the green triangles. Furthermore, [(tpu)/δ]max approach the569

outer-spectral peak position as the height increases and happen to be nearly equal to the570

integral scale of u′ (γu, black dash-dotted line in Fig. 5d). As a standard practice, γu is571

obtained by integrating the auto-correlation function up to its first zero-crossing [73].572

Similar to [(tpu)/δ]max, the black contour lines of S2+
p,u vertically evolve in a power-law573

fashion, i.e., they vary as (z+)
1.6

. Note that the power-law portion of the black contour574

lines is only evident beyond a certain z+, approximately where the logarithm region starts.575

This power law is shown as a pink line with circular markers in Fig. 5c. From Fig. 5d, one576

also notices that the maximum event contributions (red line with triangles) match with the577

vertical profile of σu
2/u2

∗ (light blue line).578

Particularly for the logarithmic layer, the vertical profile of σu
2/u2

∗ is predicted by the579

attached eddy hypothesis [74], and therefore, these results imply that most of the event580

contributions come from such coherent structures. However, in an event-based framework,581

self-similarity of the attached eddies in the vertical direction is imposed as a (z+)
1.6

power-582

law instead of just z+. The expectation of z+ scaling arises from how the frequency spectra of583

streamwise velocity signals scale with height in the logarithmic region of wall-bounded flows584

[75, 76]. In the spectral representation, the attached eddies are assumed to be space-filling585

[74]. Yet, from Fig. 5c, it is evident that the black contour lines deviate significantly from586
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a +1 power law as indicated by the grey dashed line. We hypothesize that this distinction587

arises because in an event framework, the attached eddies need not be space-filling, and588

accordingly, they can be a part of a fractal set with a non-integer dimension. This is at589

present a conjecture, and further pursuance of it is beyond the scope of this study.590

In addition to the TBL experiment, one observes an almost identical behavior if the591

SLTEST dataset is considered. For instance, in Fig. 5e, the vertical evolution of the nor-592

malized event contributions towards σ2
u and σ2

w are shown. These event contributions are593

represented through filled contours for σ2
u while the contour lines represent σ2

w. Although594

δ was not directly available at the SLTEST site, we used the integral scale of u′ at the595

topmost SLTEST height as its proxy. In Fig. 5f, the contours are shown for the momentum596

flux. Here we consider the absolute momentum flux signal |u′w′| while describing the event597

features. From both Fig. 5e–f it is clear that the significant event contributions do vertically598

evolve as a (z+)
1.6

power-law (shown as a pink line with circular markers). Since large event599

contributions are associated with strong amplitude variations it is interesting to see how600

such behavior is encoded in the burstiness index.601

3. Burstiness behavior602

In Fig. 5g, we show the vertical profiles of burstiness indices corresponding to the instan-603

taneous evolution of velocity variances (B2
u and B2

w) and absolute momentum flux (B1
u′w′)604

signals. It is clear that the behavioral features of this index are nearly indistinguishable605

among all the flow quantities with all showing an increase with height. This outcome is very606

different from the perspective of signal PDFs as those are considerably different for the three607

flow quantities (see Fig. 10 in Appendix C). Furthermore, in contrast to the signal PDFs,608

the burstiness index changes for an RS time series (light-pink line) but remains nearly pre-609

served in an IAAFT surrogate (dark-pink line). This is demonstrated through the u′ signal610

from the TBL experiment. For this signal, the vertical profile of B2
u of an RS sequence is611

qualitatively similar to excess kurtosis (Ke) in Fig. 10 (Appendix C). However, as soon as612

the energy spectrum of the signal is considered through an IAAFT surrogate, the burstiness613

index becomes almost equal to the original one. Therefore, this index, unlike kurtosis, takes614

the coherent structures into account while quantifying strong amplitude variations in the615

signal.616
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Hitherto, we have focused on the full-signal behavior while discussing the bursts in the617

generation of velocity variance or momentum flux. As discussed above, these bursts are618

typically related to the presence of attached eddies in the logarithmic layer. However, it is619

not immediately clear how these bursts are different from the small-scale bursts which cause620

large amplitude fluctuations in velocity increments (e.g., ∆u(τ)). Accordingly, one may ask621

if the small-scale bursts are more intense than the ones associated with x′2 (x = u,w) or622

u′w′ signals. To investigate such aspects, we introduce a scale-dependent event framework.623

The associated technical details are illustrated through an example in Sec. II B. Below we624

describe the results obtained from this framework.625

C. A scale-dependent event framework626

Through this scale-dependent event framework, we first demonstrate a statistical corre-627

spondence between the eddy and event time scales (tp). This is often considered to be a628

challenging issue since in event analysis the structures are based in physical space while the629

eddy time scales are generally represented through Fourier modes [77]. However, through the630

Wiener-Khinchin theorem, since the structure functions are equivalent to the Fourier spec-631

tra, the eddy time scales can also be defined in terms of time lags or τ . For our purposes, we632

normalize τ with wall-unit scaling and denote it as τ+. To highlight any height-dependence,633

we prefer to use τ+ instead of converting the same to the spatial lags. Subsequently, for634

each τ+, one computes the event statistics of the velocity increments (e.g., ∆u(τ+)). For635

instance, similar to Fig. 1a, one can define Np (event lengths) values for the ∆u(τ+) signal.636

If with increasing τ+, the event statistics converge towards the values as obtained from the637

full signal (e.g., u′, w′, or u′w′), one can infer the PDFs of event time scales (P (tp
+), Fig.638

5a) is a cumulative effect of all the eddy structures present in the flow. By doing so, one639

establishes an association between the eddy and event time scales.640

1. Correspondence between eddy and event time scales641

To accomplish this objective, we choose the mean and kurtosis of event lengths (Np) as642

the two relevant statistical measures. Physically, mean event length (Np) is inverse of the643

zero-crossing density, a quantity which is often linked to the Taylor microscale [78, 79]. On644
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Figure 6. The scale-dependent (a) mean event lengths (N∆u
p (τ+)), (b) kurtosis of event lengths

(K[N∆u
p (τ+)]), (c) normalized Shannon entropy of event lengths (H∆u

n [Np(τ
+)]) are plotted against

τ+ for the horizontal velocity increments computed from the TBL and SLTEST datasets. The color

codes are similar to Fig. 4d–f. In (a)–(c) and (e), the right-hand-side of the y-axis represents the

vertical profile of the inner-scaled Taylor-microscale (λ+) evaluated from the u′ signal of the TBL

dataset (blue-dotted line). In (d), the normalized Shannon entropy of event lengths is shown for

the vertical velocity (∆w) and mixed-order increments (∆u∆w) from the SLTEST dataset. The

mixed-order increments are represented at the right-hand side of y-axis and grey color shades

are used to denote the nine SLTEST heights (see the legend at the extreme right end). (e) The

scale-dependent burstiness indices are shown for the horizontal velocity increments. (f) Burstiness

indices corresponding to ∆w and ∆u∆w are shown from the SLTEST dataset. Similar to (d), the

mixed-order increments are represented by the right-hand side of the y-axis, albeit the original

values are vertically shifted for clarity purposes.

the other hand, kurtosis of event lengths (K(Np)) is related to how fat the tails of the event645

PDFs are.646

In Figs. 6a–b, we present Np(τ+) and K[Np(τ
+)] for the ∆u(τ+) signals from the TBL647
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and SLTEST experiments. For comparison purposes, we mark the kurtosis of an exponential648

distribution (K = 9) in Fig. 6b, i.e., the distribution of disordered event lengths. One can649

clearly see, N∆u
p (τ+) and K[N∆u

p (τ+)] indeed attain a plateau towards the full signal values650

(evident from the flat regions) as the large-scale structures are considered. To be precise, for651

the TBL dataset, this saturation occurs at time scales nearly equal to the outer spectral peak652

position, which is at τ+ = 1000. Therefore, one can conclusively prove that the heavy tails653

of the event time scale PDFs in Fig. 5a are a result of the large-scale structures (comparable654

to the outer-layer scales) passing over the measurement location.655

Interestingly, N∆u
p (τ+) values increase monotonically with τ+ whereas for K[N∆u

p (τ+)]656

a monotonic increase is observed only beyond the inner spectral peak position, i.e, for657

τ+ > 100. In fact, barring the top four heights of the TBL dataset (z+ = 5610–9965),658

K[N∆u
p (τ+)] undergoes a transformation from sub-exponential (K < 9) to super-exponential659

(K > 9) distribution as one crosses τ+ = 100. Apart from this, the result related to660

N∆u
p (τ+) presents a contradiction with previous studies. For instance, Sreenivasan et al.661

[78] interpreted the mean zero-crossing density of a turbulent signal to be proportional to662

the Taylor microscale by using a formulation proposed by Rice [80]. For a turbulent time663

series (lets say u′), the Taylor microscale (λ) is defined as,664

λ =
σu[(
∂u
∂t

)2
] 1

2

, (5)

which physically represents the time scales of the dissipative structures [81]. Since mean665

event length is an inverse of zero crossing density, one would thus expect N∆u
p (τ+) will666

converge at scales comparable to λ+ (scaled with wall-units). However, such expectation667

does not hold, as one could see from Fig. 6a that N∆u
p (τ+) converge at scales τ+ = 1000,668

which is many orders larger than λ+ (shown as a blue line from the TBL dataset). As a669

consequence, this negates any possibility of associating the mean zero-crossing density to λ.670

Note that we only compute λ+ from the TBL dataset given its fine temporal resolution of671

the order of Kolmogorov scales.672

Moreover, this framework can even be extended to study the organizational features673

of turbulence at each scale of the flow. In fact, similar to using the normalized Shannon674

entropy (with respect to an RS signal) of Np (Hn(Np)), one can also investigate the scale-675

wise evolution of this quantity by extending it to the velocity increments. Namely, one676
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can use the same Eq. 4 to compute Hn(Np) but for the ∆u signal at any time-lag τ+.677

Mathematically, this can be expressed as,678

H∆u
n [Np(τ

+)] =

∑
i P (N∆ur

p,i ) ln[P (N∆ur
p,i )]∑

i P (N∆u
p,i ) ln[P (N∆u

p,i )]
, (6)

where ∆ur is the velocity increments corresponding to an RS sequence of u′ (u′r), i.e.,679

u′r(t+ τ+)− u′r(t). In Fig. 6c, we plot Hn[Np(τ
+)] of ∆u signal from the TBL and SLTEST680

experiments. For the TBL dataset, one can notice that, irrespective of z+, the maximum681

values of H∆u
n [Np(τ

+)] appear at around τ+ ≈ 5. Since this peak time scale of the Shannon682

entropy is comparable to λ+, the dissipative structures (identified through λ+) are more683

disorganized as compared to the rest of the scales. Nevertheless, as the scales increase684

H∆u
n [Np(τ

+)] decreases (thereby indicating more organization) and eventually saturates to-685

wards Hu′
n (Np).686

A similar situation is observed with the SLTEST dataset, i.e., the values of H∆u
n [Np(τ

+)]687

decrease with the increasing time scales. However, the H∆u
n [Np(τ

+)] values of the SLTEST688

dataset remain substantially larger than the TBL one. Therefore, this implies a Re-689

dependence on how the eddy structures organize themselves at each τ+. Although at690

inertial subrange scales the turbulence features are assumed to be Re-independent (owing691

to local isotropy assumption), our results indicate that this does not hold for the present692

datasets at hand. Additionally, H∆u
n [Np(τ

+)] curves display an excellent collapse for all693

the nine heights of the SLTEST data. Previous studies have indicated that the outer-layer694

structures (scale with the boundary-layer depth, δ) govern the organizational features of695

streamwise velocity fluctuations in atmospheric surface layer flows [82, 83]. One plausible696

interpretation of this collapse is these global structures, otherwise known as very-large-scale697

motions (VLSMs), not only determine the large-scale organizational features of u′ but extend698

their footprints down to inertial subrange eddies. Evidently, presence of such large-scale699

structures violates the principle of local isotropy, which by the way is also reflected in the700

Dww/Duu ratios being smaller than 4/3.701

On the contrary to H∆u
n [Np(τ

+)], a different scenario arises for ∆w and ∆u∆w sig-702

nals. Similar to the vertical profiles of Hw′
n (Np) and Hu′w′

n (Np) (Fig. 5b), H∆w
n [Np(τ

+)] and703

H∆u∆w
n [Np(τ

+)] show a clear height dependence across all τ+ values (Fig. 6d). For visualiza-704

tion purposes, H∆u∆w
n [Np(τ

+)] of the SLTEST dataset are shown on the right-hand-side axis705

of Fig. 6d with the heights being identified in grey-shaded colors (see the legend). Given the706
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local attached eddies (scales with z) have height-dependent features, this result indicates707

that they exert their influence at scales comparable to the inertial subrange scales. However,708

at inertial subrange scales, since negligible transport of momentum is accomplished (Fig. 4f709

and 9d), they mostly act as inactive motions [84].710

2. Scale-dependent burstiness index711

The results presented so far illustrate a close association between the eddy and event712

time scales. After establishing such a connection, we next evaluate the scale-wise evolution713

of the burstiness index. We focus on the second- and mixed-order velocity increments714

since these two quantities describe the scale-wise contributions to velocity variances (σ2
x,715

x = u,w) and momentum fluxes (u′w′). In Fig. 6e we show B2
∆u(τ

+) from the TBL and716

SLTEST experiment. For the TBL data, B2
∆u(τ

+) decreases as the scales increase with the717

largest values being typically associated with the dissipative structures. Eventually, at scales718

τ+ = 1000 and beyond, B2
∆u(τ

+) approach towards the full signal value, which is B2
u (shown719

in Fig. 5g).720

Furthermore, much like the vertical profile of B2
u, the shapes of B2

∆u(τ
+) curves change721

with height, thereby implying a connection between the small- and large-scale bursts. Typ-722

ically, the influence of large scales on small-scale statistics is hypothesized to be the reason723

behind the appearance of anomalous scalings in structure function moments [85]. It is there-724

fore encouraging to notice that the scale-dependent burstiness index captures such informa-725

tion quite seamlessly by only considering the ∆u2 signal. Although there is a growing body726

of literature that affirms the existence of large-scale influences on the small-scale statistics727

[21, 86–88],there also exists alternating evidence that the small-scale bursts are supposedly728

independent of large-scale features, established through a concept named decimated turbu-729

lence [89, 90]. We leave this debate to future research endeavors since it is beyond the scope730

of the present study.731

Contrary to the TBL data, a weak scale dependency in B2
∆u(τ

+) is noted for the SLTEST732

data. A similar inference is obtained if one investigates the mixed-order velocity increments.733

For instance, in Fig. 6f, on the right-hand-side axes, B1
∆u∆w(τ+) are plotted from the734

SLTEST data. To better clarify the features, curves are slightly vertically shifted and the735

heights are grey-shaded (see the legend). Identical to B2
∆u(τ

+), no significant scale-wise736
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variations are noted in this quantity for any measurement level. This occurs in spite of737

the presence of a clear inertial subrange in the second- (∆u2) and mixed-order (∆u∆w)738

structure functions (see Fig. 4d and f). Therefore, for the atmospheric flows, the role of739

strong amplitude fluctuations or bursts in the generation of streamwise velocity variances740

or momentum fluxes remains nearly equal across all the eddy time scales. Moreover, an741

identical situation prevails if one considers the cross-stream components, such as B2
∆v(τ

+)742

and B1
∆v∆w(τ+) (see Fig. S4 in [66]). Nevertheless, the same is not true concerning B2

∆w(τ+)743

(Fig. 6f, left-hand-side axes).744

In fact, B2
∆w(τ+) values not only display a scale dependence but also vary with height.745

More importantly, although the scale-wise organizational features of ∆w and ∆u∆w sig-746

nals remain qualitatively similar (see Fig. 6d), their burst characteristics (B2
∆w(τ+) and747

B1
∆u∆w(τ+)) are significantly different. Instead of following B2

∆w(τ+), the scale-wise varia-748

tions in B1
∆u∆w(τ+) follow the same trend as in B2

∆u(τ
+). Unfortunately, due to the unavail-749

ability of w′ data, the conclusions regarding the vertical velocity and mixed-order increments750

cannot be validated for the TBL dataset.751

At a first glance, these burst results seem to paint a counter-intuitive picture. One would752

expect the burstiness activities to increase as the scales decrease due to the presence of large753

non-Gaussian fluctuations which cause small-scale intermittency [21]. One of the aspects of754

non-Gaussianity is a statistical asymmetry between the positive and negative values [91].755

Whether the scale-dependent event framework captures such non-Gaussian aspects, one can756

investigate the burstiness index separately for the positive and negative velocity increments.757

For carrying out this computation, one first conditions the event lengths and sizes based on758

the sign of the velocity increments. Thereafter, the burstiness curves are plotted separately759

for the positive and negative increments with the indices (e.g., B2
∆u>0(τ+), B2

∆u<0(τ+)) being760

calculated as per the procedure described in Fig. 2a.761

To quantify any asymmetry, a ratio between the two is obtained and denoted as,762

R±∆x(τ
+) =

B2
∆x>0(τ+)

B2
∆x<0(τ+)

, x = u,w. (7)

In Fig. 7 we present these ratios and structure-function skewness of u′ and w′ sig-763

nals from both experiments. The non-zero values of the structure-function skewness,764

Dxxx(τ
+)/[Dxx(τ

+)]3/2 with x = u,w, is a measure of non-Gaussianity of small-scale765

turbulence, where the notation Dxxx(τ
+) denotes the third-order structure function, i.e.,766

32



Figure 7. The ratios between the burstiness indices computed for positive and negative values (see

Eq. 7) of (a) ∆u (R±∆u(τ+)) and (b) ∆w (R±∆w(τ+)), are plotted against τ+. The horizontal blue

line indicates unity, i.e. when the positive and negative velocity increments have similar burstiness

features. In (c)–(d), the skewness of the velocity structure functions (Dxxx/(Dxx)3/2, x = u,w)

are shown corresponding to the u′ and w′ signals, respectively. The zero skewness is denoted by

the blue horizontal lines and the color codes are the same as in Fig. 4d–f.

[∆x(τ+)]3. On the other hand, if R±∆x(τ
+) are equal to unity, no asymmetry exists between767

the burstiness features of positive and negative velocity increments. One could observe, re-768

garding ∆u(τ+), R±∆u(τ
+) and Duuu(τ

+)/[Duu(τ
+)]3/2 behave similarly, with both showing769

a significant deviation from unity or zero (depending on the statistic) as the scales decrease770

(Fig. 7a and c). Moreover, as opposed to B2
∆u(τ

+), the variations in R±∆u(τ
+) remain771

remarkably identical between the SLTEST and TBL datasets.772

In fact, for both of these datasets, R±∆u(τ
+) attains a clear peak at some intermediate773
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scales. Specific to the TBL dataset, this peak corresponds to the inner-spectral peak posi-774

tion (τ+ = 100) for the heights within the logarithmic layer. However, as one approaches775

the viscous sublayer, large values of R±∆u(τ
+) are typically associated with scales compara-776

ble to λ+. Eventually, at larger scales (τ+ > 1000 for TBL dataset), both R±∆u(τ
+) and777

Duuu(τ
+)/[Duu(τ

+)]3/2 saturate to unity and zero, respectively. Therefore, R±∆u(τ
+) suc-778

cessfully captures the non-Gaussian features of small-scale turbulence. Additionally, the779

asymmetry between the positive and negative velocity increments at smaller scales of the780

flow is also reflected in their organizational structure as confirmed by the entropy ratios781

H∆u>0
n /H∆u<0

n being greater than 1 (see Fig. S5a in [66]). In contrast, for ∆w signal, no782

such asymmetry is noted in R±∆w(τ+), structure function skewness, or in their entropy ratio783

H∆w>0
n /H∆w<0

n (Fig. 7b and d, Fig. S5b). The vanishing skewness of ∆w signal appears to784

be in agreement with the results of Mestayer [92] from a high-Re boundary layer flow.785

In summary, the scale-dependent event framework provides very useful information about786

the structural properties of turbulence at both small and large scales of the flow. Notwith-787

standing the non-Gaussian features of small-scale turbulence (in terms of skewness) is identi-788

fied through this framework, an interesting result emerges when one considers the scale-wise789

evolution of burstiness indices related to ∆u and ∆u∆w signals. As opposed to the TBL790

dataset, the variations in B2
∆u(τ

+) and B1
∆u∆w(τ+) of the atmospheric flow are found to be791

nearly scale-invariant. Physically this finding implies, at smaller scales of a near-neutral792

atmospheric flow, the connection between burst-like activities and small-scale intermittency793

is not straightforward. On a more fundamental level, the Re-dependence in the behavior794

of the burstiness index at smaller scales of the flow bears a resemblance with the results of795

Yeung et al. [2]. Through direct numerical simulations, Yeung et al. [2] pointed out that796

the features of large-amplitude events of small-scale turbulence do not necessarily scale with797

the Reynolds number of the flow. It is promising to note that our results confirm their798

prediction, although through a time-series analysis with limited spatial information in the799

vertical direction. A consequence of such limitation is, it is at present unclear how exactly800

the three-dimensional flow structures induce a Re-dependence on the small-scale turbulent801

bursts, therefore requiring further research. We present our conclusions in the next section.802
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IV. CONCLUSION803

In this study, we propose a novel scale-dependent event framework that enables us to804

quantify the role of strong amplitude fluctuations (or bursts) in turbulence generation across805

multiple eddy time scales. To be specific, we intend to probe whether the generation of806

turbulence at smaller scales of the flow appears more bursty than at larger scales. To achieve807

this objective, we revisit the “burstiness index” and apply it to the velocity fluctuations808

and their increments. Our approach is in contrast with previous research where the event809

framework had mainly been employed to investigate the strong events in velocity fluctuations810

rather than their increments. In particular, through our approach, we establish a linkage811

between the small- and large-scale bursts in wall-bounded turbulent flows. Moreover, we812

compare our findings between two experiments conducted in a wind tunnel and in a near-813

neutral atmosphere (without buoyancy) with the Reynolds number (Re) being different by814

almost two orders of magnitude.815

Through this framework, we first demonstrate how the organizational structures of the816

two flows vary by exploiting a new metric based on the Shannon entropy of event lengths.817

We find that in both flows, notwithstanding their different organization, burst-like features818

in the instantaneous velocity variances (u′2(t), w′2(t)) and momentum flux (u′w′(t)) signals819

are governed by the coherent structures. Particularly, for heights within the logarithmic820

layer, these coherent structures are best represented by the attached eddies. However,821

unlike the spectral prediction, our evidence suggests that the attached eddies in an event822

framework are identified through a non-integer power-law of height, i.e., z1.6. Besides, when823

the burst characteristics of u′2(t), w′2(t), and u′w′(t) signals are compared with each other,824

they are found to be remarkably similar. On the other hand, a dissimilarity among these825

three variables is observed when one considers the scale-wise evolution of their burstiness826

indices. Therefore, to further illustrate how these bursts associated with coherent structures827

are different from the bursts at smaller scales of the flow (inertial subrange and dissipative828

range), a statistical correspondence is established between the eddy and event time scales.829

While doing so, an intriguing scenario appears by turning one’s attention towards small-scale830

bursts.831

Despite the non-Gaussian aspects (considering only skewness) of small-scale turbulence832

captured through the scale-dependent event framework, a Re-dependence is noted while833
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studying how the burstiness characteristics of the Reynolds stress components evolve across834

different scales of the flow. In this context, the scale-wise generation of the Reynolds stress835

components are described through second-order (∆u2, ∆w2) and mixed-order (∆u∆w) ve-836

locity increments, respectively. Regarding the wind-tunnel dataset at an Re ≈ 14750, we837

find that the generation of streamwise velocity variances become progressively more bursty838

as the eddy time scales decrease. On the other hand, for atmospheric flows at an ultra-high839

Reynolds number (Re ≈ 106), the burstiness features of ∆u2 and ∆u∆w signals are found to840

be approximately scale-invariant. In contrast, ∆w2 signals display strong burst-like features841

as the eddy time scales decrease. Thus, for high-Re flows, as opposed to general perception,842

a non-trivial relationship exists between small-scale intermittency and burst-like activities843

in the turbulent signal.844

Undoubtedly, these results open up new research avenues. For instance, one could ask,845

why in the case of atmospheric flows the burst features of streamwise velocity variances846

and momentum fluxes remain nearly equal across all the eddy time scales? How such a847

phenomenon connects with small-scale intermittency and what is the effect of buoyancy on848

this? Would the effect of bursts be similar if different scalar fluctuations and their fluxes849

are considered? What is the role of the underlying surface, such as a canopy, on burstiness?850

Are the features of small-scale bursts universal? We leave these questions for our future851

research.852
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Appendix A: Random-shuffling and phase-alteration experiments865

We explain the methodologies to create two different surrogate signals, one of which pre-866

serves the signal PDFs but alters the PDFs of event lengths (Np) whereas for the other, the867

PDFs of Np’s are preserved but the signal PDFs are changed. The first of such surrogate sig-868

nals are generated through gradual random-shuffling, while for the latter a phase-alteration869

technique is used.870

In a gradual random-shuffling method, we first choose any signal, for instance the u′871

signal at z+ = 67, and then locate the midpoint of the signal which will be at N/2’th point872

if the signal length is N . Thereafter, to create a randomized dataset at an x% randomization873

strength (RS), x/2% of the time series values are randomly shuffled between the left and874

right halves, i.e., along the midpoint of the time series. By doing so, we progressively destroy875

the temporal coherence in the signal (thereby altering the event lengths) but preserve the876

signal PDF since the time series values remain the same. In Fig. 8a–b, we illustrate this877

by showing the PDFs of Np and u′/σu. One can clearly notice, P (Np) varies greatly for878

different values of RS while P (u′/σu) is unchanged.879

To generate the second type of surrogates, Fourier phase distributions of a signal are880

altered through a phase alteration experiment. To achieve this objective, one first takes the881

Fourier transform of a signal and then computes the amplitudes and phases of the Fourier882

coefficients. As a next step, the Fourier amplitudes are kept the same but its phases are883

sampled from a different distribution than the original one. After altering the phases, one884

eventually takes an inverse Fourier transform to generate a surrogate dataset. By preserving885

the Fourier amplitudes, surrogate datasets from phase alteration experiment share the same886

Fourier spectrum or the auto-correlation function as the original. This ensures the PDFs of887

event lengths remain identical since those are sensitive to the auto-correlation function of the888

time series [68, 93]. On the other hand, the alteration of Fourier phase distribution produces889

a time series which has more extreme values with respect to a Gaussian distribution [94].890

In the context of a turbulent signal, the Fourier phase distributions are almost uniform,891

and therefore, one can replace the phase values from a distribution which differs from a892

uniform one. Note that this procedure is not identical to phase randomization as in that case893
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Figure 8. (a) The PDFs of event lengths (Np) are shown for the u′ signal at z+ = 67, by gradually

increasing the strength of the random-shuffling (RS) from 1 to 100 %. The colored lines correspond

to different RS strengths (see the legend), while the black line represents the original u′ signal. (b)

The PDFs of normalized velocity fluctuations (u′/σu) are shown for the original and randomly-

shuffled u′ signals. Two vertical dash-dotted blue lines represent u′/σu = ±1, and the green

dash-dotted line indicates the Gaussian distribution. Similar to (a), in (c) we show the PDFs of

Np by gradually altering the Fourier phase angle distributions of u′ through sampling them from a

von Mises distribution with a parameter k. The colored lines correspond to different k parameters

(see the legend). (d) The PDFs of u′/σu are shown for the u′ signals with different k parameters

and the original one.
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the Fourier phases are randomly shuffled without changing their distribution. Contrarily, in894

phase alteration experiment, we maintain the rank-wise order of the Fourier phases while895

sampling them from a distribution other than the original one. For our purposes, we chose896

von-Mises distribution to sample the Fourier phases [95]. This distribution is defined by a897

parameter k, whose value when zero indicates a uniform distribution. However, for k > 0,898

the von-Mises distribution becomes increasingly different from a uniform one. Since there899

is no upper bound on k, we restricted the k parameters between 0 to 9.900

We apply this phase alteration technique on the u′ signal at z+ = 67 and the results are901

presented in Fig. 8c–d. From Fig. 8c, no change in P (Np) can be seen as the k parameter902

is varied, but the tails of P (u′/σu) become significantly heavier than a Gaussian one (Fig.903

8d). Therefore, it becomes evident that by increasing k more importance is given to the904

extreme events in the time series.905

Appendix B: u, w spectra and u-w cospectra906

Apart from the second- and mixed-order structure functions (Fig. 4d–f), we also provide907

the spectra of velocity fluctuations and momentum flux cospectra from the SLTEST dataset.908

For instance, in Fig. 9a–b, the premultiplied spectra of horizontal and vertical velocity fluc-909

tuations (κSxx(κ), where x = u,w) and the associated momentum flux cospectra (κSuw(κ))910

are plotted against the streamwise wavenumbers (κ). These results are averaged over all the911

selected near-neutral runs.912

The wavenumbers (κ) are estimated by converting the frequencies to wavelengths through913

Taylor’s hypothesis and subsequently normalized by the height above the surface (z). On the914

other hand, the spectral and cospectral amplitudes are normalized by the friction velocity915

(u∗). Although in the inertial subrange both u and w spectra display −2/3 slope, their916

behaviors are significantly different at larger scales of the flow. For instance, the u spectra917

show a flatter region (thereby representing the κ−1 scaling) while the w spectral slopes are918

nearly equal to +1. Moreover, the w spectral peaks reside at κz = 2.5. Regarding the919

momentum flux cospectra, they collapse nicely under the z and u∗ scaling with a peak at920

around κz = 0.4.921

To connect the scale-dependent momentum flux features with the coherent structures922

(ejections and sweeps), a polar quadrant analysis is undertaken where the phase angles923
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Figure 9. The averaged premultiplied (a) u and w spectra and (b) u-w cospectra are shown from

the near-neutral SLTEST dataset. In (a), the right-hand-side axes representing the u spectra

are vertically shifted for visualization purposes. The green dash-dotted lines indicate the −2/3

spectral slope. For both (a) and (b), spectral (cospectral) amplitudes (κSuu(κ), κSww(κ), κSuw(κ))

are normalized by u2
∗ and the wavenumbers (κ) by height z. In (c) and (d), the contour plots

of the probability density functions of scale-dependent phase angles (P (θ∆u∆w)) and conditional

contributions to the momentum fluxes (〈∆u∆w|θ∆u∆w〉) are shown from the topmost SLTEST

height. The length scales (r) are normalized by z.

and amplitudes are computed at each specific scale of the flow. For such analysis, we use924

the structure function analog of momentum flux (i.e., the mixed-order velocity increments925

∆u∆w) where the time-lags (τ) are connected to the eddy time or length scales (r =926

τ × u). Rather than the conventional joint probability density functions, polar quadrant927

representation is a neat way of investigating the inter-relationships between two variables928
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[96]. To briefly explain this procedure, for each normalized scale r/z, one evaluates the929

phase angles associated with the instantaneous values of ∆u∆w as,930

θ∆u∆w = arctan (∆w/∆u). (B1)

Note that θ∆u∆w varies between −π to π and these ranges are directly related to the counter-931

gradient (∆u > 0,∆w > 0 or ∆u < 0,∆w < 0) and co-gradient motions (∆u > 0,∆w < 0932

or ∆u < 0,∆w > 0) at each scale. For instance, when −π/2 < θ∆u∆w < 0 or π/2 <933

θ∆u∆w < π, they represent the co-gradient motions (ejections and sweeps) while the other934

ranges correspond to the counter-gradient ones (outward- and inward-interactions). As a935

consequence, the PDFs of θ∆u∆w (P (θ∆u∆w)) provide useful information about what type of936

motions statistically dominate the momentum transport at each scale.937

Apart from θ∆u∆w, the momentum fluxes associated with the phase angles can be com-938

puted as,939

〈∆u∆w|{θ∆u∆w(i) < θ∆u∆w < θ∆u∆w(i) + dθ∆u∆w}〉 =

∑
∆u(i)∆w(i)

N × dθ∆u∆w

, (B2)

where i is the bin index, dθ∆u∆w is the bin width, and N is the number of samples at lags r/z.940

The division by N and dθ∆u∆w ensure that when integrated over θ∆u∆w, it would yield ∆u∆w941

which is simply the averaged momentum flux at scale r/z. For our purposes, the variable at942

the left-hand-side of Eq. (B2) is denoted as 〈∆u∆w|θ∆u∆w〉 and further normalized by the943

time-averaged momentum flux u′w′. Therefore, the scale-dependent aspects of momentum944

flux transport can be studied more rigorously by examining this normalized quantity along945

with P (θ∆u∆w).946

In Fig. 9c–d, we show the contour plots of P (θ∆u∆w) and 〈∆u∆w|θ∆u∆w〉/u′w′ from the947

topmost SLTEST height (pink lines in Fig. 9a–b). We obtain identical results if any other948

heights were used from the SLTEST experiment. One can immediately notice, at scales949

r/z > 1, the momentum transport is mainly governed by the co-gradient motions, as the950

contours show their peak values at those ranges of θ∆u∆w. On the contrary, at inertial-951

subrange scales (r/z < 1), no such clear preference towards the co-gradient motions can be952

noticed. Therefore, the bulk of the momentum flux are transported through the ejection953

and sweep motions at scales commensurate with the energy-production scales.954
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Figure 10. (a) The PDFs of u′/σu are shown from the TBL and SLTEST experiments. (b) The

skewness (S) and excess kurtosis (Ke) of the u′ signals are plotted against z+ (see the legend).

The error-bars denote the spread around the mean for the SLTEST dataset. The PDFs of (c)

w′/σw, and (d) u′w′/u2
∗ are displayed from the SLTEST experiments. The green colored lines in

(a) and (c) indicate the Gaussian distribution. The color codes are similar to the legend in Fig. 4.

Two blue dash-dotted lines in (a), (c), and (d) highlight the values ± 1 in order to emphasize the

importance of the large amplitude events in respective signals.

Appendix C: PDFs of velocity fluctuations and momentum flux955

The bursts in a signal are typically characterized through their PDFs. In Fig. 10, we956

describe the PDFs of streamwise and vertical velocity fluctuations (u′ and w′) and instan-957

taneous momentum flux (u′w′) signals. The quantities u′ and w′ are normalized with their958

respective standard deviations (σu and σw). On the other hand, u′w′ signals are normalized959
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with u2
∗. By comparing the PDFs of u′, a difference is noted between the two experiments960

(Fig. 10a). For instance, although the PDFs of u′ from the SLTEST experiment are strictly961

Gaussian at all the levels (a nice collapse is evident), a deviation from Gaussianity is ob-962

served for the TBL experiment. This is highlighted through the vertical profiles of skewness963

(S) and excess kurtosis (Ke) in Fig. 10b. Note that Ke is obtained after subtracting 3 of a964

Gaussian distribution.965

In addition to u′, the normalized PDFs of w′ and u′w′ collapse nicely for the SLTEST966

experiment (Figs. 10c–d). The PDFs of w′ display a heavier tail towards the positive values,967

while the PDFs of u′w′ remain skewed towards the negative side. From Fig. 10d, one can968

notice that P (u′w′/u2
∗) show heavy tails beyond ± 1, thereby indicating the presence of969

extreme flux events (significantly larger than the mean flux values) at all the nine SLTEST970

levels.971
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