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Flow through Pore-Size Graded Membrane Pore Network

Binan Guf[] Lou Kondic, and Linda J. Cummings

Pore-size gradients are often used in the design of membrane filters to increase filter lifetime and
ensure fuller use of the initial membrane pore volume. In this work, we impose pore-size gradients
in the setting of a membrane filter with an internal network of interconnected tube-like pores.
We model the flow and foulant transport through the filter using the Hagen-Poiseuille framework
coupled with advection equations via conservation of fluid and particle flux, with adsorption as
the sole fouling mechanism. We study the influence of pore-size gradient on performance measures
such as total filtrate throughput and accumulated contaminant concentration at the membrane
downstream pore outlets. Within the limitations of our modeling assumptions we find that there
is an optimal pore-radius gradient that maximizes filter efficiency independent of maximum pore
length (an input parameter that influences the structure of the pore network), and that filters with
longer characteristic pore length perform better.

I. INTRODUCTION

Membrane filtration is an industrial process that uses porous material to separate contaminants from a feed so-
lution. It is crucial to commercial processes such as waste water treatment [I], radioactive sludge removal [2], beer
clarification [3] and membrane bioreactors [4], among many others. Filtration also underpins many daily household
appliances including water purifiers [5], air filters [6H9], and grease filters [10]. To design an ideal filter, one aims to
tailor the geometric features of the filter (specifically, the pores’ size, shape and connectivity) so that impurities are
removed efficiently, while producing a required amount of filtrate up to a certain standard of purity.

Membrane filtration employs a wide variety of pressure-driven separation methods, distinguished by the scales of
pore sizes at which they operate. For example, microfiltration is effective in sieving solids and bacteria; ultrafil-
tration is often employed in virus and toxin removal; nanofiltration is a popular step for water hardness treatment
that removes major divalent ions such as magnesium and calcium [I1]; and reverse osmosis separates all ions by
applying mechanical pressure to overcome osmotic pressure [12]. A wide range of materials may be used in mem-
brane manufacture, but membrane materials in common use are roughly divided into two categories: polymeric and
ceramic [I3]. Most polymeric membranes are made with low-cost organic materials and are popular in industrial
applications; however, they tolerate large thermal fluctuations or harsh chemical environments poorly. The more
expensive ceramic membranes overcome these drawbacks via their chemical composition (e.g., metal oxides), while
producing higher fluxes due to their greater hydrophilicity. Designing layered or composite filters that incorporate the
merits and disadvantages of both materials has become an active area of research [I4]. Furthermore, membrane filters
are manufactured with many different spatial configurations of membrane materials (leading to differently-structured
pores) such as node-fibril [15], flat-sheet [16] and multitube [I7], either mimicking natural filters found in plants and
animal organs, or resulting from careful design considerations.

It is clear from the studies cited above (and many others too numerous to cite) that membrane filter design, using
a combination of materials and pore layouts, has profound implications for filter performance. A well-designed mem-
brane filter not only maintains particle retention capability but also provides sufficient output (filtrate) to serve the
immediate needs of the application. Common membrane designs incorporate structural variations at the microscale
(connectivity of interior pores, pore branching, etc.) as well as the macroscale; e.g. pleated filters [I8] and multi-
layered membrane filters [19]. This last class of membranes has garnered particular attention from industrialists and
practitioners for their versatility in applications. In multilayered membrane filters, single-layer membrane filters, each
with a different characteristic pore size, may be laminated to form a composite membrane with a distribution of pore
sizes in its depth (in addition to any intra-layer pore-size variations, which are assumed to be less important; but see
Gu et al. [20] for more discussion of this feature). Common practice is to place the layers with larger pores upstream,
allowing more fluid to pass through and providing more surface area to capture particles; and layers with smaller
pores downstream to capture any particles that may escape from upstream layers.

We emphasize that the notions of porosity gradient and pore-size gradient are inherently different, though they
are sometimes related; and the terms are often used interchangeably in various contexts within current literature.
To illustrate, consider first a simple membrane structure where the membrane upstream and downstream surfaces
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are connected by single continuous pores (a “track-etched” type structure [21I]). Suppose such pores have circular
cross-section (but with depth-varying radius) and a straight axis perpendicular to the membrane, then if one identifies
local pore radius with pore size, a direct relation may be made between pore-size gradient and porosity gradient: a
pore-size (radius) gradient does induce a porosity gradient of the same sign (or vice versa). However, for a more
general network of pores, one can easily design a network that has decreasing pore size in the depth but no porosity
gradient (or even a porosity gradient of opposite sign), by appropriately increasing the number density of pores with
depth. The schematic in illustrates the difference between porosity-graded and pore-size graded filters. With
this distinction in mind, we briefly review current relevant literature that considers either type of gradient (often both
are present), noting the key findings and motivating the work of the current paper.

Many experimental studies have shown that improved performance can be achieved with porosity-graded mul-
tilayered membrane filters. For example, in terms of membrane performance, the ability of porosity-graded ceramic
filters to delay internal fouling when compared to common homogeneous ceramic filters has been discussed [22]; and
the improved throughput production and foulant removal capability of a photocatalytic membrane with hierarchical
porosity was investigated [23]. Progress has also been made on the manufacturing side. Improved tunability of the
physical membrane characteristics in porosity-graded membrane filter assembly has been demonstrated by Amin et
al. [24]; a novel fabrication strategy of porosity-graded porous foams via 3D printing has been discussed by Cappaso et
al. [25]; and recent advances in additive manufacturing techniques for porous materials with controllable structure
have been reviewed by Guddati et al. [26]. On the other hand, much attention has also been given to manufacturing
pore-size-graded filters with desired characteristics, such as the work of Dong et al. [27] on fabricating air filters
represented as pore-size-graded networks (mimicking bryophyte leafs), and of Harley et al., who present a novel strat-
egy to build porous tubular scaffolds with prescribed pore-size gradient [28]. Kosiol et al. use gold nanoparticles as a
probe to estimate the pore-size gradient in commercial and non-commercial parvovirus retentive membranes, as these
gradient values were found to correlate strongly with virus retention [29]. The advantages of pore-size-graded filters
in applications such as tissue engineering [30H32] and fuel cells [33] have also been discussed.

Several theoretical groups have also contributed to the breadth of the study on multilayered membrane filters with
porosity and/or pore size gradients via mathematical modeling and numerical studies; for example studying filter
performance optimization as a function of pore-size gradient within a simply-structured membrane [34H37]; carrying
out numerical simulation and analysis of performance of simple multilayered filter structures [38], and investigating
geometric and topological properties of membrane networks [39]. There is also significant work on techniques to
probe the microstructure of membrane filters, including imaging techniques used to recover network representations
of membranes structures in 3D [40], 41] that motivate and inform our modeling work using pore networks.

To further motivate the current work, we summarize our previous efforts on the modeling of membrane filtration, all
of which assumed that membrane pores are circularly-cylindrical connected tubes. Ref. [42] studied layered membrane
filters with three different (very simple) internal pore structures, having varying degrees of connectivity. A pore-size
gradient was introduced using a geometric parameter that prescribes the initial pore radius in each layer. In subsequent
work [39], the authors generalized those simple pore configurations to membranes with a random network of pores
and formulated the mathematical equations for flow, transport and fouling on such networks, on which the current
work is based. Lastly, pore-size (radius) variations were imposed on these membrane pore networks, and their effect
studied [20]. Initial pore radii follow a uniform distribution, centered about a fixed average, independent of the pore’s
depth in the membrane. However, pore-size gradient was not considered in the last two works since the focus was to
draw out basic geometric factors of the network structure that influence membrane filter performance.

Building on this previous work, the current paper focuses on network models of pore-size-graded filters with
constant porosity across the filter (see for a simple example of pore-size-graded filter). We specifically
exclude porosity variations so that the impact of pore-size gradient alone can be elucidated; and also because, even in
homogeneous membranes, porosity has been shown to influence filtration performance rather strongly, to the extent
that no benefit would be anticipated by having porosity decrease in the membrane depth (see [20 B9], for example).
We note that fixing porosities inevitably gives rise to surface area variations, whose influence is left for future work.
Our goals are to model a membrane filter with a pore-size gradient and then to probe and explain the influence of this
gradient on membrane performance metrics such as total filtrate throughput and particle retention (only adsorptive
particle fouling is considered in this work). For the first goal, we model the membrane filter as a network of circularly-
cylindrical pores. We introduce the pore-size gradient by dividing the membrane into bands of equal thickness (within
each of which initial pore radius is constant), and designating a linearly decreasing sequence of radius values for pores
from upstream to downstream bands. We generate membrane pore networks with such a banded structure following
a random network generation procedure, adapted from that proposed by Gu et al. [39]. We further impose that the
porosity of each band, an influential geometric feature of membrane pore networks, is approximately equal across all
bands, so that we reveal the sole influence of pore size (radius) gradient on membrane filter performance. In addition
to studying pore-size gradient variations, we also consider variations in maximum pore length, another model input
parameter that controls the geometric structure of the pore network.
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(a) Porosity gradient but no radius gradient (b) Radius gradient but no porosity gradient

Fig. 1: 2D illustration of membrane filters with (a) zero radius gradient (radius preservation between layers) but
nonzero porosity gradient; and (b) zero porosity gradient (area preservation between layers; volume in 3D) but
nonzero radius gradient.

The paper is outlined as follows: in we describe the details of the mathematical model, first introducing how
the banded pore networks are constructed with specified pore-size gradient in[§ IT A]and then presenting the governing
equations for fluid flow and foulant particle transport in in we define the performance metrics we use to
compare our membrane pore networks; in § IV] we streamline the pore-size-graded network generation procedures
into an algorithm; in we provide the appropriate physical scales of the problem and then summarize the model
in nondimensional form; in we present and explain our observations; and in we conclude our findings.

II. MATHEMATICAL MODELING

In this section, we introduce a mathematical model that captures the multilayered membrane structure using a
pore network representation. We first describe the general network generation protocol and how this creates pore
junctions and cylindrical pores, and define our computational domain. After introducing our notions of pore-size
gradient, band radius and band porosity, we provide details of the methodology by which we generate radius-graded
banded networks under specific physical constraints. Lastly, we briefly present the governing equations for flow of a
feed solution through the membrane filter driven by a constant transmembrane pressure (constant pressure filtration),
for transport of the foulant particles carried by the feed, and for the pore-radius evolution under fouling, as well as
the solution techniques for these equations when they are posed on a network of interconnected pores.

A. Pore Size-Graded Networks

We model a representative unit of a membrane filter as a block of porous material that occupies a cube with
side length W (see [39] for a similar setup) and contains a network of pores. Each pore is assumed to be circularly
cylindrical and thus fully characterized by its length and radius. We use the terms “pore size” and “pore radius”
interchangeably from hereon. The unit consists of a membrane top surface with pore inlets, interior pore junctions
(vertices of the network), pores (edges of the network), and a bottom membrane surface with pore outlets. The
membrane unit is generated as follows: interior junctions are points represented by Euclidean coordinates in R3,
uniformly randomly placed in a rectangular box with height 2W and square cross section of side length W. Pores
are constructed as slender circular cylinders, with axes along straight lines that connect the junctions according to
a periodic connection metric (see . More specifically, we connect junctions (possibly through the side
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boundaries) when they lie within a distance of Ly,ax and at least Ly, away from each other. These two parameters
are referred to as the maximum and minimum pore lengths, respectively. Inlets and outlets are the intersection points
between the pores thus generated and two horizontal planes at heights Z = 0.5W and Z = 1.5W respectively (thus
Z is the coordinate perpendicular to the membrane surfaces). The space created between these planes forms our
computational domain — a cube with side length W (referred to as the domain in the following), while the parts
exterior to this cube are discarded.

In the following sections, we first introduce the notion of pore-size (radius) gradients, as studied in this paper, and
define band porosity. In addition, in order to tune membrane porosity, we devise a rule to determine the number of
pore junctions to be placed (randomly) in the domain to complete the banded network generation protocol.

1. Bands and Radius Gradient

We introduce a pore-radius gradient by first dividing the domain in the Z-direction (the coordinate direction
perpendicular to the membrane upstream and downstream surfaces) into m bands, each of thickness W/m.
shows a 2D representation of a 3D schematic. Let V; and & be the set of junctions and pores in the k" band
(numbered from the upstream surface; see the detailed definitions in [Egs. (A4)| and [(A6)|in [Appendix A]). Each pore
in & is assigned an initial radius

Ry =R, +(m—k)sW, 1<k<m, (1)

where s > 0 is the radius gradient and R,, is the radius of pores in the bottom band (k = m). This consideration
assumes that the initial pore radius in each band is a constant, and that pore size always decreases in the depth of
the membrane. We say that a pore belongs to the k** band when the largest proportion of its total length lies inside
the k" band, and we then assign R}, as its initial radius (see the different thicknesses and color coding of pores across
the bands in the schematic of [Fig. 2). We refer to Ry, as the k** band radius from hereon. We also call networks
with s = 0 uniform networks and those with nonzero s values graded networks.

In this work, to reduce the number of degrees of freedom and to make our comparisons of different composite
membranes as “fair” as possible, we impose the constraint that the average pore radius across all bands is equal to
some value Ry, for any R, and s values. More precisely, for each graded network, we find a range of (R,,, s) pairs
corresponding to an average pore radius Ry across the bands, and compare the performance of these networks versus
their uniform counterparts with radius Ry (s = 0). The average radius Ry across the m bands satisfies (using [Eq. (1))

m
sW

. 1
(Constraint 1a) Ry = - ,; Ry =R, + - (m—1). (2)

Thus, once Ry is prescribed, we can choose s and then uniquely determine R,,.

We here point out that to generate a banded network, in addition to declaring band radii using we must
also specify an initial number of randomly-placed junctions in each band. This in general leads to different band
porosities (void volume in the band divided by volume of the containing slab, discussed in detail later). As the goal of
our work is to isolate the influence of pore-size (radius) gradients, we choose to enforce that each band has the same
porosity. To achieve this, we devise a guess-and-correct procedure detailed in the following sections.

2. Band and Membrane Porosity

Before we introduce the banded network generation procedures, we clarify the crucial definition of band porosity.
The band porosity of the k" band of a graded network with m bands is given by

s 2 .
2 Zeijes Riij,m

b, =
k W3/m )

3)

where e;; is the pore connecting junctions 7 and j with radius R;;, and Ly, ;; measures the length of e;; that lies within
the k™ band (by which definition Ly,i; = 0 if e;; has no component within layer k; see |Appendix Affor a rigorous

definition of Ly ;;), and £ is the set of all edges (per. The sum in[Eq. (3)|is over all pores since Ly, ;; includes
the contributions from pores that cross multiple bands. The numerator is the void volume of the k** band (volume of
empty space), while the denominator is the volume of the rectangular slab with a square cross section of side length
W and height W/m.
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Fig. 2: Schematic of a 3D banded network represented in 2D. Colored junctions and pores correspond to each band
as follows: red 1% band; : magenta 3'4 band and indigo 4'" band. Blue dots are inlets. White dots

are outlets. Dashed lines are pores created by the periodic boundary conditions (see [Eq. (A3)|in |Appendix A)).

The membrane porosity is given by

1m

that is, the average band porosity across the bands. This definition is equivalent to the sum of total void volume
divided by the volume of the cube with side length W.

In general, the band porosities and overall membrane porosity are functions of time, since pore radii evolve due to
foulant particle deposition and adsorption; and hold pointwise in time. In the following however,
we are concerned only with describing the initial membrane structure, hence we adopt a simpler notation by dropping
the time dependence as we work only with initial porosities.

3. Constant Radius in Each Band

Here we present the methodology of generating radius-graded membrane networks. In this section only, for nota-
tional simplicity, ®; and ® denote the initial porosity in the £*" band and initial membrane porosity, respectively.
We assign an initial porosity value ¢ for the membrane pore structure, which, in all simulations presented here, is set
as ® = 0.6, a value typical for commercial filters. The principal aim of this section is to estimate the number of points
(pore junctions) needed in each band to generate networks that satisfy prescribed constraints, including and
more to be detailed below.

To isolate the effect of pore-radius gradients on membrane performance, we enforce that every band has approxi-
mately the same initial porosity (we cannot insist that band porosities be exactly equal due to the random nature of
the network generation protocol). This (soft) constraint is given by

(Constraint 2a) O, =0, nk=1,...,m, (5)



where the “a~” is to be made precise in the algorithm introduced below. Since the initial pore radius is constant

within each band, [Eq. (3)|simplifies to

T P2 L.
§Rk} Zeij €& Lkvlj

(Pk = W3/m . (6)
Using [Egs. (5)] and [(6)} for arbitrary bands n and k, we have
w3 ™ T w3
O = 53121 > Lnij~ gRi > Liij = et = Ry D Luij~ Ry Y Ly (7)
€ij cE Ei]’GS Ei]’GS Ei]‘GS

We now relate Ny, the number of pore junctions randomly placed in the k** band, to the sum in [Eq. (7) and use
the result to provide an estimate for Nj, to generate pore networks that satisfy the constraints given in [Eqgs. (2)]
and We use basic probabilistic arguments to deduce that Zeije & Lk,ij, total edge length in the k' band, scales

with Ny (N — 1) and other terms common to all other bands (so that they cancel from each side of [Eq. (7))). Details
of this derivation are in [Appendix B| [Eq. (7)| then reduces to

RZN, (N, — 1)~ RiN,(Ny — 1), Vn,k=1,....m, n#k. (8)

Since we consider only situations where pore size decreases in the membrane depth, a nonzero pore-size gradient
s > 0 implies that R,,, the radius in the m'" band, is the smallest (per . Thus, the m'* band requires more
points than other bands to satisfy and motivates our initializing our algorithm with this band (it is more
computationally efficient, since this choice minimizes the errors incurred in the sequential process outlined next). To
estimate the Vi sequentially, we first prescribe s, the radius gradient. This fixes each band radius Ry via Constraint
1, We then make several guesses for N, and stop when we find a value such that ®,, ~ ®. With N,,

determined, we employ and to obtain the relationship
R2 Ny (Nyy — 1) & (R + (m — k) 8)> Ny (N}, — 1), (9)

which we solve to estimate the number of junctions, N, for all other bandsﬂ

The relationship [Eq. : is by no means exact, and can fail by some margin to guarantee equal porosity for each
band when the gradient s becomes too large, but it provides a useful starting point. After estimating the N values as
described, we compute the corresponding ®;, and check their proximity to the prescribed value ®. We correct ®;, to ®
by adding or removing nodes randomly. This correction procedure starts with the m™ band and proceeds upstream.
We iterate this procedure until the network achieves band porosities close to ® within a prescribed relative tolerance
€ = 0.005. Variations in porosity as such are sufficiently small that they have a negligible effect on our results for
performance metrics (see [20] for details on the effect of porosity variations).

B. Governing Equations

In this section, we briefly describe the dimensional governing equations for flow of the foulant-laden feed solution
and transport and deposition of foulant in a single pore, then extend the description to a network of such pores using
conservation laws at pore junctions. For more details of the derivation, we refer the reader to Gu et al. [39].

1. Fluid Flow

The feed is assumed to be a Newtonian fluid with viscosity pu, driven through a cylindrical pore with small aspect
ratio via a pressure difference Fy. The flux @);; between junctions ¢ and j is characterized by the Hagen-Poiseuille
equation [43],

Qij =Kij (P = Pj), e €E, (10)

I We recall that the initial domain is a rectangular prism of height 2W with square cross-sections of side length W. The regions,
0 < Z < 05W and 1.5W < Z < 2W, outside the central cube (see |[Fig. 2|) before cutting, have the same point density as the 15* band
and the m'® band, respectively.



where K;; is the conductance of the pore e;;, given by

waj
KZj = 8NL'ij7 61] € 5’ (11)
0, otherwise,

where R;; and L;; are the radius and length of e;;. Enforcing conservation of flux at pore junctions leads to a system
of equations for the pressure at each interior junction, subject to the boundary conditions

P ) ins
po= 0t eV (12)
07 (S Voutv

where Vi, and Vout are the set of membrane pore inlets and outlets, respectively (see [Eq. (Al)| for their precise
definitions). Once the pressures are known, we use [Eq. (10)[to find the flux in each individual pore. The scales for
these equations are defined in

2. Foulant Transport

In this work only adsorptive fouling is considered, in which foulant particles much smaller than the pore radius are
transported by the flow and adhere to the pore wall due to a variety of chemical or physical effects that depend on
the affinity between the particles and the membrane material. C;;, the concentration of foulant particles in pore e;;,
satisfies the steady state advection equation,

Q”% = —ARZ‘J‘C'Z‘J‘7 0<Y < Lija (13)

where A is an affinity parameter that describes the interaction between foulant particles and the membrane material;
and Y is a local coordinate along the pore in the direction of flux @;;. [Eq. (13)|is paired with a boundary condition

CO; 1€ Vinv

14
C; (T), otherwise, (14)

Cy; (0,T) = {

where C; (T') is the (unknown) concentration at junction 4, determined by enforcing conservation of foulant particle
flux, Q;;C;;, at each junction ¢ (for all adjacent j).

8. Pore Radius Evolution

Once we obtain the foulant concentration at each junction, we model pore-size evolution with a decay rate directly
proportional to the concentration at the upstream inlet, i.e., the pore junction with higher pressure. More precisely,
we assume that R;;, the radius of pore e;;, satisfies

dR;;
T

Vi
=—-AaC;, a= ﬁ, €ij € £, (15)

where V,, is the effective volume of each foulant particle. This ODE is solved subject to the initial condition
Ri; (0) =Ry, ej;€&, k=1,...,m, (16)

that is, we assign an initial pore radius R}, to each pore that lies in the k" band.

Note that will yield spatially uniform radius evolution, so that pores remain cylindrical throughout their
evolution. Though not strictly consistent with the model for the foulant concentration, which varies along the pore
length, this cylindrical pore approximation is acceptable, and is motivated by the resulting significant computational
savings. We refer the reader to Appendix A in [39] for a detailed justification, and for a sufficient condition (based
on pore radius and pore length) that ensures the validity of the approximation.



III. PERFORMANCE METRICS

We now define the performance metrics used in this work.

1. Membrane Lifetime, Tgna. Two possible criteria defining membrane filter lifetime are considered:

(a) (Flux extinction) Thna) is the earliest time at which there exists no path from the top surface to the bottom.
This corresponds to the time when flux is zero.

(b) (Flux threshold) Thya is the time at which flux level reaches a prescribed lower threshold.
2. Filtrate Throughput H (T),

T):/ Qout (T") dT’, (17)
Qout Z Z sz (18)

vV EVout 1:€i5 EE

where Qout (T) is the total flux exiting the filter and Vou is the set of pore outlets at the membrane bottom
surface (see its detailed definition in [Eq. (Al)). In particular, we are interested in Hgnal := H (Thnal), the total
volume of filtrate processed by the filter over its lifetime.

3. Initial Flux Qout (T = 0).

4. Accumulated Concentration of Foulant at Membrane Outlet Chco (T'),

out T/ Qout (T/) dT/ fO out T/ Qout( /) dT’

Caco (T) fO

b) 19
Jo Quoue (1)1 H(T) (19)
where
Z Z C; (T) Qi (T)
COut (T) — v EVout 1:€5EE (20)

Qout (T)

is the instantaneous foulant concentration at the membrane outlet. Of particular interest is Canal := Caco (Thinal)s
which provides a measure of the purity of the total volume of filtrate collected over the filter lifetime (assuming
a batch process).

5. Band porosity ®; and membrane porosity ® as functions of time per and respectively, and their
changes over the filter lifetime, referred to as band and membrane porosity usage respectively,

A‘bk = @k (0) — q)k (Tﬁnal) , k= 1, o.My (218,)
Ad =19 (0) - (Tﬁnal) . (21b)

Per [Eq. (5)] % (0) &~ ® (0) = 0.6 where = is up to some tolerance e.

IV. ALGORITHM

We summarize the procedures described in [§ ITT A 3] in [Algorithm 1}




Algorithm 1: Filtration on Pore-Size-Graded Networks
1. Choose maximum and minimum pore lengths Lmax, Lmin, average pore radius Ry and porosity .
2. Initialise radius gradient s > 0. Find Ry as constrained by Ro via
3. Generate Ng banded networks parametrized by Lmax and Rg:
(a) Guess Ny, such that ®,, ~ ®.
(b) Determine Nj, for k=1,...,m — 1 via|Eq. (9)]
(c) Generate networks using Ny random junctions in the k** band, connected according to the metric defined in
(d) Correct membrane porosity by adding or deleting junctions until it is within relative tolerance € = 0.005 of ®.
More precisely, we perform this procedure until }1 — % < € where ®,r is the porosity during this iterative
procedure.

4. Compute the performance metrics (defined in [§ III)).

5. Go back to by varying s.
6. Go back to by varying Lmax-

V. SCALES

We nondimensionalize the model and key quantities introduced in and the performance metrics defined in
with the following scales,
P = Pyp, (Lij, Liiz) = W (Lij, lk,ij)
(Lmirn Amax) =W (lmin7 amax) ) (Rij7 RO) =W (rij7 TO) )

TW3P, TW3 r

)

8[1, lij
W Py w
Ci';caco =C 175 Caco) » Z:Wa A= )\a = t
(G ) 0 (€ Caco) : 8u AaCy
These scales yield a set of dimensionless equations for each pore,
a5 = Kij (pi — pj) (23a)
Oc:s
qij Cz] = —)\Tijcij, O S Yy S li]’, (23b)
Ay
dri;
;tj = —q, (23c¢)
with boundary conditions for pressure and concentration, respectively,
1, 1€V
pi = ! (24a)
07 1€ Vout
1 = Vina
ci; (0,t) =<7 . 24b
5 (0. {ci (t), otherwise, (24b)
and initial condition for pore radius
Tij (0) =Tk, €ij ng, k=1,...,m, (25)
where 7, the initial pore radius in layer k, now reads
T =7Tm + (m—k)s, (26)

per [Eq. (1)l [Egs. (23a)| and |(23b)| are solved with the conservation of fluid and particle flux at each pore junction
(see [39] for details on a systematic approach that captures the conservation laws using the graph Laplacian of a
network).
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TABLE I: Key nondimensional parameters.

Parameter Symbol Values/Range
Maximum pore length Imax 0.1,0.15,0.2
Minimum pore length lmin 0.06

Radius in k" band T [2.5 x 107°,0.016]
Uniform Radius (also average initial radius across the bands) To 0.01

Radius (pore size) gradient s [0,4 x 107?]
Total number of bands m 4

Deposition coefficient A 5x 1077

Initial membrane porosity  (0) 0.6

Initial band porosity D4 (0) 0.6

Relative error for porosity correction (see|Algorithm 1)) € 0.005

TABLE II: Key nondimensional quantities.

Quantity Symbol Formula/Range of Values
Pore Length lz] [lmilu lmax}
Pore Radius rij (t) [2.5 x 107%,0.016]
Pore length in the k™ band lk,ij see
Porosity of the k" band Dy (t) mr EEI_J_ ce T (t) Lk
Membrane Porosity (1) LN P (1)
Total Throughput h(t) 3 fg Gout (') dt’
t Cou ’ ou 4 4
ACO (see|Eq. (19)| for nomenclature) Caco (1) %
The porosity in the " band expressed in terms of these scalings becomes
z Z ) 7’2' (t) Zk 7
(I)k (t) — 2 ei; €EE 1] ,U’ (27)

1/m

while the performance metrics in dimensionless form become (with upper-case dimensional quantities replaced by
their lower-case dimensionless equivalents)

h (t) = %/O qout (t/) dtlv Gout (t) = Z Z qij (t) s (283)

v; €Vout v3:(vi,v;)EE

Z Z Cj (t) qij (t)
v €Vout vi:(v;,v;)EE
. Cout (1) = D) : (28b)

c (t) _ fot Cout (t/) Qout (t/) dtl
- fot Gout (t,) dt’

Tables I and [lI| summarize the key nondimensional parameters and quantities, their symbols/definitions, and their
range of values.

VI. RESULTS AND DISCUSSIONS

In this section, we present results on the performance metrics of banded networks as the pore-radius gradient s
and maximum pore length [, are varied. For each chosen value of s, we generate 1000 networks independently
using the banded network generation protocol described in and collect the mean and standard deviation of each
performance metric defined in In the following subsections we investigate the trends of these mean performance
metrics against s and l,x. The system of ODEs is solved using a simple forward Euler method with a time
step size of 2.5 x 10™%. In all simulations, we fix A = 5 x 10~7. This represents an intermediate value, chosen such
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that we observe sufficient foulant penetration into the membrane network, while still removing most of the impurities
(if X is chosen too small insufficient foulant will be removed; if it is too large then fouling takes place predominantly
in the top layer and there is inefficient usage of lower layers).

A. Filter Performance until Flux Extinction

0.05 w 7 \
—F—lnax =01 —F—tnax = 0.1
0048 r _I_lmax =0.15] | —I—amax =0.15
L ] lmax =02 6F Apax = 0.2 |4

0.046 .
S 3
~ 5
= 0.044 -
e =
= O
< 0.042 =) A
©
} o
0.04 —
3
0.038
0.036 2
0 1 2 3 4 0 1 2 3 4
S x107 S x1073
(a) Total throughput (b) Initial flux
0.14 | \
—F—lnex =0.1
0.12 —F—lax = 0.15| |
lmax = 0.2

x1073

(¢) Final accumulated foulant concentration

Fig. 3: Performance metrics against radius gradient.

presents how performance metrics vary with s in banded networks with m = 4 bands, within each of which
the initial pore radius is constant (specified by [Eq. (26)]). Results are shown for three different values of lpax.
shows total filtrate throughput against s. We observe that for each Iy, value considered, we have a non-monotone
trend with a clear maximum in total throughput at s = 2 x 1073 (independent of l,.x, though the total filtrate
throughput achieved in all cases is monotone increasing in lyax)- plots results for initial flux through the
membrane, showing it to be a monotone decreasing function in s, and monotone increasing in Il ax. plots
final accumulated foulant concentration at the membrane outlet against pore-size gradient s. The trend is monotone
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decreasing in s for all l;,,x values considered (that is, more strongly graded networks provide better foulant control);
and monotone increasing in Iy ax.

Before presenting further results, we first discuss the trends observed in We rationalize the existence of a
throughput-maximizing value for s by comparing networks with extreme values of s. Banded networks with a large
pore-size gradient tend to have low flux due to the high-resistance small outlets in the bottom band (evident in
for all l;ax values considered). At the same time, uniform networks (s = 0) have the shortest lifetime due to their
small pore inlets upstream (we hypothesize that pores always close first at the upstream side of the membrane, a claim
supported by an analytical result presented in . Therefore, pore-size graded networks admit a trade-off
between initial flux and filter lifetime as the gradient value varies, suggesting that an intermediate value should exist
that maximizes total throughput. This maximizing value is found at s = 2 x 10~2 for the present choice of parameters,
a value that yields throughput about 15% larger than the throughput of the corresponding uniform networks for all
cases of [, shown here.

The trend of particle concentration in the filtrate with s observed in [Fig. 3c| is monotone decreasing, however.
This is not unexpected; the smaller pores in the bottom band of strongly graded networks are much more effective
at removing foulant particles. A key reason for this improved foulant control in strongly graded filters is that they
have larger downstream pore surface area (thus larger pore surface available for particle deposition). This larger
pore surface area may be inferred from the increasing node/edge density through the bands that results from the
requirement that porosity is fixed across layers, while pore radius decreases. From another perspective, this result
may also be anticipated from the fact that higher node density in a band increases its tortuosityE which is known to
improve foulant control (a primary result of our prior work [39]).

We also comment briefly on the trend of the performance metrics as I,y varies in First, each metric (total
throughput, initial flux and concentration) is monotonically increasing with l,.x. With the prescribed membrane
porosity level ® = 0.6, these observed trends are consistent with the findings of Gu et al. [39], work that focused
exclusively on networks with uniform pore radius (gradient s = 0). Second, the reason for the higher foulant con-
centration resulting from networks with larger [,.x is that networks with longer pores tend to be less tortuousﬂ than
those with shorter pores (smaller l.x).

1. Total Porosity Evolution

Porosity inevitably decreases over time as fouling occurs. In this subsection, we present how overall membrane
porosity evolves in time as [« and s are varied. Our discussion focuses on the changes in membrane porosity and
the final values achieved when filtration ceases, in particular the difference A® between the initial ® (0) = 0.6 and
the final porosity, which we refer to as porosity usage (see [Eq. (21b))). This quantity provides some insight into
how efficiently the filter is used over its lifetime, since porosity changes are due entirely to foulant deposits in the
membrane.

In each of to [d we show, for each l.x, the evolution of membrane porosity in time, for all s-values
considered. Filter lifetime may be inferred from the various curves by noting the time at which they stop (due to flux
reaching zero). To showcase the porosity usages A® of networks with different values of s, we condense them into
which clearly shows that A® is a non-monotone function of s. In particular, for each l,.x, we find an optimal
value of s that incurs the largest porosity change. We defer the explanation of this optimal value to a later discussion
on the porosity usages in each band. Lastly, the figure also shows that networks with longer pores (the largest lyax
value, incur the largest porosity changes over the filter lifetime.

2.  Band Porosity Fvolution

While overall membrane porosity evolution shines light on the behavior of pore-radius-graded networks, individual
band porosity evolution helps us identify the depth of foulant penetration in the membrane, for each pore-radius
gradient value s considered. In this subsection, we explore how band porosities change as s varies and aim to draw
further insight from this evolution into indicators of good pore-size-graded filters. The following discussion again
focuses on the quantitative changes of band porosities, and the final porosity values when filtration stops.

shows the evolution of band porosities @y, for the smallest l,,x-value considered (shortest pores, l.x = 0.1),
and for all radius gradient values s; the inset subfigure plots band porosity usage (the total change in band porosity,

I The membrane tortuosity is defined as the average (normalized) distance traveled by a fluid element from membrane top surface to
bottom. See [39] for its detailed definition and discussion of the negative exponential relationship between concentration and tortuosity.
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Fig. 4: (a-c) Total porosity evolution for different values of lax. In (d), membrane porosity usage, [Eq. (21b)} is
plotted against radius gradient s for each lpax. @ (0) = 0.6 is the initial porosity.

Ady, see [Eq. (21a)) as a function of s. In the evolution of the first band porosity (the upstream band)

shows that, the larger the value of s, the larger the porosity decline over the filter lifetime (see inset). This is because
the largest s-value yields the largest first band pore radius and thereby the longest filter lifetime, allowing more
particles to adsorb and thus using more empty space in the interior. We note in passing that, though the lifetimes
of the networks (evidenced by the times at which each porosity curve stops) are quite different for different s-values,
the final values of first band porosity are quite similar (exemplified by the small range of vertical axis in the inset),
which implies that the first band processes foulants similarly regardless of the pore-size gradient s. plots the
evolution of the second band porosity against time for each s. Here, the final porosity values are clearly separated
according to their s-values, in contrast to In particular, the uniform networks (in red) clearly undergo the
smallest band 2 porosity change over the filter lifetime, and thus retain the smallest mass of particles within this 279
layer. The porosity usage of this band increases with s until some value in the range s € [3 x 1073,3.5 x 1073], for
which the largest total change in band porosity is observed (see inset of [Fig. 5bf). In|Fig. 5c|where we show third band
porosity evolution, the largest porosity change occurs in networks with s = 3 x 107°, implying that foulant particles
penetrate deeper into membrane pore networks with this gradient value. Lastly, we see in that networks with
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Fig. 5: Band porosity evolution with l;,,x = 0.1. Inset subfigures plot band porosity usage (the total change in band
porosity over the filter lifetime) as a function of radius gradient s.

radius gradient s = 2.5 x 1072 (solid black) experience the largest change in fourth band porosity (corresponding to
the maximum in the inset), indicating that such networks allow the deepest penetration of foulants, at least for the
present choice of parameters.

Meanwhile, membrane networks with s = 0 (uniform pore size) and s = 4 x 1073 (the steepest pore-size gradient)
each perform relatively poorly in terms of porosity usage in the 4" band (their 4" band porosity does not change
as appreciably as that of networks with other s-values). To explain this, note that in the case of uniform networks,
their upstream pores close earlier than those of the graded counterparts (which have larger inlets due to the radius
constraint via and , thus prohibiting flow at an early stage by fouling upstream pores too quickly; while in
the case of s = 4 x 1072 (the largest pore-size gradient used), the smaller downstream pores with their high resistance
slow down the overall flow, causing the majority of fouling to take place upstream. Therefore, by considering the
performance of the extreme gradient values, we expect that porosity usage in the 4th band (and, by similar arguments,
that in the 3rd band) achieves an optimum at an intermediate gradient value. Noting that membrane porosity is
merely an average of band porosities (see|[Eq. (4)), we return to explain the existence of an optimal gradient in
by combining the embedded figures from [Fig. 5| as an average — the optima in porosity usage from the downstream
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Fig. 6: Same setup as with lax = 0.15.

bands contribute to the existence of an optimum in the overall porosity usage.

In and [7], following we plot the band porosity evolution, for l,.x = 0.15 and ;. = 0.2 respectively.
We discover very similar correlations, between porosity usage and the fouling of downstream bands, to those just
discussed for (Imax = 0.1). The 1% band porosity change, A®;, is always monotone increasing in pore-radius
gradient s, and uniform networks incur the least porosity usage in their 4" band, indicating less deep penetration of
foulants into the membrane and inefficient membrane usage (those with s-values that are too large also exhibit poor
foulant penetration). Altogether, when taking total throughput, accumulated concentration of foulants and porosity
usage all into account, we emphasize that an optimal value of radius gradient, largely independent of maximal pore
length [y, exists. With the parameter values of Table I, we find that membrane pore networks with s = 2.5 x 1073
make the most favourable filters under the filtration strategy of flux exhaustion.
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Fig. 7: Same setup as with lmax = 0.2.

B. Filter Performance with A Flux Threshold

The results discussed so far are based on performance metrics evaluated at the end of the filter’s lifetime, when
there is no feasible flow path and flux falls to zero. In practice, when users observe a low flux level in the filtration
process, they tend to discard the fouled filters and replace with fresh ones. In this section we mimic this procedure by
imposing a minimal threshold for the flux level at which we halt the process and collect statistics of the performance
metrics up to this critical time. The symbols for each performance metric F' evaluated with an imposed flux threshold
are labelled with a subscript, Fipns.

shows the performance metrics of radius-graded membrane networks where filtration is halted after the flux
level drops below 2 x 1076. This threshold level is approximately 30% of the initial flux for uniform networks, and
roughly 80% of that for the steepest-graded network with gradient value s = 4 x 102 (see the vertical scale of [Fig. 3b)).
From this observation on the flux threshold level alone, we anticipate that filters with smaller initial fluxes, namely,
networks with large pore-size gradients, are more prone to halt filtration prematurely and are thereby disadvantageous
under this filtration mode.
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Fig. 8: Performance metrics under flux threshold versus radius gradient. Flux Threshold is set at 2 x 1076,

shows total filtrate throughput against radius gradient s for pore-size-graded networks that operate until
they reach the imposed flux level. With the chosen parameters and stopping criterion, we again observe a maximizing
gradient value at s = 1.5 x 1073, a value smaller than that in (s = 2x1073), where networks operate until flux
extinction. Thus, under the new threshold-based stopping criterion, filters with smaller gradient (and hence larger
initial flux) are more favored in terms of throughput production, yielding around 10-12% more than the equivalent
ungraded filters (s = 0). In fact, networks with s > 3 x 1072 underperform quite significantly, even relative to uniform
networks, because their total filtering time is greatly shortened under the imposed flux threshold. shows final
accumulated concentration of foulant (measured at the membrane outlet) against s. Here, we observe a monotone
trend in both s and in l,.x. These trends maintain qualitatively the same features as in though we observe
that here the concentration is pointwise (for every s) larger than that in This is expected because filtration is
stopped prematurely (in our simple model the particle capture capability of the membrane improves continuously as
fouling occurs and pores shrink). In we show the relationship between the membrane porosity usage A®ypg
and radius gradient s under the imposed flux threshold. We observe a clear maximum in A® s at s = 1.5 x 1073,

The results in imply that with the imposed lower threshold on fluid flux, membrane networks with a radius
gradient of s = 1.5 x 1073 should be preferred over others due to their combined score of filtrate production, particle
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retention capabilities, and porosity usage. Once again, we note that this optimal value is almost independent of the
value of [« considered. We would, however, anticipate that the optimal radius gradient will decrease if the imposed
lower flux threshold is increased (and it would, of course, change if model parameters were changed).

VII. CONCLUSION

In conclusion, we have devised a general procedure to generate pore-size-graded banded membrane pore networks,
representing multilayered membrane filters. We have studied the influence of the pore-size (radius) gradient s, and
maximum pore length [,.x, on selected performance metrics of these networks, under two setups of relevance to
applications — filtration until flux extinction, or until a flux lower threshold is reached. All filters considered in our
study have uniform porosity across all layers. For the chosen model parameters, we have also determined optimizing
pore-size gradient values for some of the performance metrics considered (compiled in .

When filters run to extinction, we find that total filtrate throughput exhibits a non-monotone trend against pore-
radius gradient, exhibiting a clear maximum. More precisely, for the parameters we considered, membrane networks
with a pore-radius gradient value of s = 2 x 10™3 achieve maximal total filtrate throughput. However, accumulated
foulant concentration at the membrane outlet is monotonically decreasing in s, suggesting that, for foulant control
purposes only, one should prefer membrane networks with a pore-radius gradient as large as possible. To examine the
extent of membrane fouling, we also study the porosity change of the entire membrane over its lifetime (per
this provides a measure of the overall capacity of the filter). This quantity is found to be non-monotone in s, with a
pronounced maximum achieved at a pore-radius-gradient value of s = 3 x 10~3 (for the chosen parameter values). To
determine the extent of foulant penetration, we also investigate the change in porosity of each band (per [Eq. (21a)]).
We find that the porosity change in the first band is monotone increasing in s, while that in other bands has a clear
(but different) maximizing pore-size gradient value. In particular, the gradient values that maximize porosity changes
for downstream (3'4 and 4*") bands are very close to the gradient value that maximizes total throughput, suggesting
a strong correlation between these performance measures.

However, when we stop the filtration at a prescribed minimum flux level, we observe that the optimal pore-radius
gradient for each performance metric is smaller than when filters are run until flux extinction. For the chosen model
parameters, total filtrate throughput and porosity usage are all maximized at a gradient value of s = 1.5 x 1073
under the flux threshold criterion (final accumulated foulant concentration at the membrane pore outlets remains a
monotone decreasing function in gradient s). The fact that we observe a smaller optimal gradient here than with the
flux-exhaustion stopping criterion is mainly because of the advantage given by the flux threshold to filters with large
initial flux. Uniform networks “benefit” from this practice and rise up the ranks into the better performing filters.
At the same time, graded networks with large pore-radius gradients perform poorly because filtration tends to halt
at an early stage due to the small initial fluxes inflicted by the high-resistance downstream pores. We also anticipate
that the optimal gradient value(s) for performance metrics considered in this work will depend on the flux threshold
we impose (indeed, on the basis of we expect that s = 0 may become the optimal value when the imposed
flux threshold is high enough).

We also found that the observed trends in pore-radius gradient persist for all values of maximal pore length l;,ax

TABLE III: Optimal Radius Gradient Value for Each Performance Metric.

Performance Metric m ‘ Metric Symbol Optimal Radius Gradient
Until flux extinction

Total throughput Rfinal 2x1073
Initial flux Gous (0) 0
Accumulated concentration of foulant at membrane out- Chinal 0

let

Membrane porosity usage AP 3x1073
Until flux threshold

Total throughput Rins 1.5x 1073
Accumulated concentration of foulant at membrane out- Cths 0

let

Membrane porosity usage Adypg 1.5 x 1073
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considered. This suggests that our findings of how performance metrics depend on pore-radius gradient are largely
independent of variations in membrane interior microstructure as characterized by liyax-

We did not study the dependence of our results on the model parameter A (a band-independent parameter that
captures particle-membrane affinity). Mathematically, varying A changes the time scale of the problem (Eq. (22)). In
fact, the larger the A\ value, the faster the filtration ends, deeming pores in downstream bands (and thus the pore-size
gradient) largely ineffectual. We will include a detailed study of variations in A in future work. Another relevant
future avenue to investigate would be to introduce band-specific Ax’s, which represent multilayered membrane filters
consisting of different materials.

Though the porosity is fixed and uniform in our study, our network generation protocol inevitably incurs gradients
in pore surface area and pore connectivity (measured via the average number of neighbors for each node), which
are opposite in sign to the radius gradient. The influence of these two important geometric features on performance
should be studied in future, in this context of pore-size graded membrane networks (there are existing results for
uniform pore networks [39]) .

Future work should also include a study of intra-layer pore-size variations in pore-radius graded banded networks.
A preliminary analytical result (per based on the model of this paper suggests that membrane pore
networks with constant band radius always close first upstream; that is, the membrane will never stop functioning
due to critical pore closures in the interior of the network, but only when the radii of all inlets on the top surface are
zero. With intra-layer pore-size variations, adsorptive behaviors at the global scale may become more complicated
and more interesting than the constant band radius case. Additionally, other fouling mechanisms such as sieving
and erosion (detachment of foulant particles) could be modeled to provide a more complete picture of the membrane
filtration process.
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Appendix A: Junctions and Pores in a Band

In this appendix, we define the set of junctions (vertices) and pores (edges), and their respective band-specific
counterparts. We work exclusively with the dimensionless variables defined in Our work treats junctions and
pores as points and straight lines respectively, which lie in our dimensionless domain — the unit cube (though the
notions of vertices and edges are generally more abstract in classical graph theory). Each junction v of the junction
set V has a Euclidean coordinate v = (vg, vy, v.) € [0, 1%, with z measured from the membrane top (z = 0) to bottom
surface (z = 1), with z = (Z —0.5)/W. The junction coordinates are generated randomly as described in We
further define the set of membrane pore inlets and outlets,

Vin={veV:v, =0}, (Ala)
Vous ={v eV v, =1}. (A1b)

The set of edges £ is formed by connecting the junctions via

1
£ = {evw EVxV: lmin < X(an) < lmax}7 lmax < E, (AQ)

where iy and [y are the dimensionless minimum and maximum distance allowed between two junctions respectively;
and x (-, ) is a periodic metric, defined by

X (v,w) = min |Jv — (wy, wy,0) | we, w, € {£1,0},, (A3)

W, Wy

that is, junctions close to the four sides parallel to the z-direction may be connected through the boundary. We
constrain [y, so that it does not exceed the thickness of a band, otherwise edges may cross more than two bands
and reduce or defeat the purpose of having a gradient of pore radii.

Next, we define precisely junctions and edges within a given band. Denoting the &*" band as the set of coordinates

gl k—1 k
Vk:{ue[0,1]3’m<vz<m}, (A4)
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we say a junction w lies in the k*® band if w € V). We treat each edge as a straight line in the unit cube,
cow={uc 0,1 lu=Co+(1-Quw, 0<¢<1},

Let L (eyw) be the one-dimensional Lebesgue measure of e, such that L (e,,) = x (v, w). Define a band-specific
length measure Ly such that

Ly, (evw) =L (evw N Vk) , (A5)

which computes the length of the edge strictly inside the k*® band (known in general as an intersection measure).
We say that a pore belongs to the k" band when the largest proportion of its length lies strictly inside the k" band.
More precisely, we define the set of the pores in the k*" band as

gk = {evw ¥ | Lk (emu) = mT?X Ln (evw)} . (AG)

In this definition, we see that if v, w € Vy, then ey, N Vi = €4y While ey, NV, = 0 for all n # k, that is, the edge ey
lies strictly in the k' band.

The formula also facilitates the computation of ®;, the band porosity of the k" band (Eq. (3)), in the
sense that we consider the lengths of edges that strictly lie in V; edges reaching two bands will contribute to the
band porosities of each band separately. We simplify the notation as

Lk,vw =Ly, (61)w) .

Appendix B: Number of Random Points in Each Band

With prescribed ® and m, we provide an estimate of how many random points, Ny, should be used in the k" band.
We write total pore length as x;; := x (4, ) per [Eq. (A3)| More precisely, we use basic arguments to deduce, via the
sequence of approximations and equalities below, that total edge length in the &*" band scales with N. 2

(A) B) _ (©) _dip N, @) X
Z Iy =~ Z Xij = X & =X k2 k= = [(Ny, — 1) p] Ng, (B1)

2
eues euesk

where ¥, D}, and p are the average edge length, average number of neighbors in the k* band and the probability of
two random points being connected, respectively.

The first approximation (A) relies on the estimate that I ;; ~ xi;, given e;; € &. The first equality (B) is trivial.
The second equality (C) expresses the number of edges in the k*® band, ||, as the average number of neighbors, d,,
times the number of junctions, Ny, divided by 2 (to account for double counting). The third equality (D) expresses
dy,, as the total number of neighbors a junction could have, Nj, — 1, times the probability of obtaining a neighbor, p.

We now briefly discuss the terms to the right of the last equality (D) in and the dependence of these
quantities on band number k. First, since Y is a sample mean of edge length with || as the sample size, it can be
approximated by the expected edge length (based on hypercube line-picking [44]), which is a constant independent
of k (but dependent on apin and amax). The probability of connecting two uniformly random points in the cube, p,
depends on apyi, and apax but not on band number k. These simple estimates provide the basis that justifies the step

from [Eq. (7)| to [Eq. (8)|7 that is, one can cancel ¥ and p from both sides of after re-expressing Zeij ce lk,ij
using

We note that X does depend on k since each band is expected to have different node density. Nonetheless, using
the expected value of average edge length as an approximation is a reasonable starting point to help estimate the
number of nodes needed in each band. The procedure of edge addition/removal performed in [Step 3d|of [Algorithm 1
is considerably sped up with the guided initial guesses.

Appendix C: Analytical Results on Pore Closure Time

In this section, we show that the lifetime of a simple subclass of pore networks is governed by the radius of the
inlets (pores in the upstream surface). More precisely, for such simple networks, the radii of the inlets will always
go to zero earlier than those of downstream pores, independent of the initial upstream and downstream pore radii
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Flow and Advection

7'1(0) = €1

pjunc(t), Cjunc(t) unknown

Flow and Advection
T 2(0) = €9

p=0

Fig. 9: Schematic of a simplified setup for Colored junctions and pores correspond to each band as
follows: red upstream pores and indigo downstream pores. Blue dots are inlets. The red dot is an interior junction.
White dots are outlets. Here ny, = 4 and nqown = 5.

and model parameters. This result forms the basis for the conjecture that the more general networks considered in
this work will also only clog at the membrane inlet. It also serves as an instructive worked example for the general
network solver (see Gu et al. [39] for another such example).

A membrane pore network ceases to function as a filter when there no longer exists a feasible path connecting any
inlet on the top surface to any outlet on the bottom surface. The critical event leading to filtration arrest is when the
radius of a pore vanishes as the “last straw”, breaking the main network into at least two disconnected subnetworks,
such that each subnetwork contains only a subset of the inlets or outlets, but not both. We here consider the subclass
of networks (depicted in |[Fig. 9) consisting of a single arbitrary pore junction connecting n., upstream inlets and
Ngown downstream outlets.

The upstream and downstream pores are assumed all to have unit length (though they appear to have different
lengths in the choice of a common length simplifies the presentation but does not affect our result). We solve the
dimensionless governing equations (per scales presented in for the unknown pressure pjunc (t) and concentration
Cjunc (t) at the interior junction. Since the pore lengths are assumed the same, and the upstream (resp. downstream)
pores obey the same boundary conditions for pressure and concentration, the radius and concentration evolution in
these pores are therefore also the same. As a result, we simply monitor the evolution of quantities for one upstream
and one downstream pore. Let r1 (t) and rq (¢) be the radius of each upstream and downstream pore respectively.

Fluxes through each upstream and downstream pore, labelled ¢; (¢) and ¢ (¢) respectively, satisfy the dimensionless
Hagen-Poiseuille equations according to the pressure drop across them,

a1 (1) = (1 = pjunc (1)) 71 (2) ,
g2 (1) = pjunc (t) 73 (1) ,
where pjunc (t) is the (unknown) pressure at the interior junction. Conservation of flux yields
Nupq1 (£) = Ndown@z (t) (C1)
and therefore

ndownr‘ll (t) T% (t)

nurﬂ'il (t) + ndownr% (t)

nupr‘f ()
"upr% (t) + ndownr% (t)

Pjunc (t) = — q1 (t> =
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Foulant concentration in the upstream pore, ¢ (y,t), satisfies the dimensionless advection equation [Eq. (13)

0
QIaiyl = —A'I"lcl, C1 (Oat) = 1a

which has an analytical solution

e1 (5, ) = e1 (0, ) exp <_A;’f1(t()t)) e 1 cxp (—/\y{ Pup!1 %(t) + ; D

The evolution of the pore radii satisfies

d?"l

E:—l, 7’1(0)261 — Tl(t)zﬁl—t,
dr
an = —Cjunc (1), 72(0) = €.

By conservation of particle flux at the junction, we have ngowng2 (t) Cjunc (£) = nupqi () ¢1 (1,t). Conservation of flux

(per [Eq. (C1)]) reduces this to ¢junc (t) = ¢1 (1,¢). Hence,

drg — . — ex - nup(el_t) 1 " —¢
Fa ep(A<ndownr§<t>+<el—t>3>>’ = )

Theorem 1. The solution ro (t) to satisfies ro (t) > 0 for all t € T := [0,€¢1], for all €1,e2,A > 0 and
arbitrary positive integers nyp, and Ndown-

Proof. We note first that o (t) > 0 for all t € T since the initial condition is positive (e2 > 0), and the right hand side
of is a nonpositive function, which goes to zero as ro — 0, i.e., % — 07 as 7o — 0. Thus, the radius of the
downstream pore will decrease to zero until it reaches zero and will never attain a negative value. To prove the claim
that ro (t) > 0 for all t € T, we suppose that there exists t* € T such that r5 (¢*) = 0 and arrive at a contradiction
as follows.

The above shows that r5 () is a monotone decreasing function, and in fact, is equal to 0 for all ¢ > ¢*. While
7o (t) >0, for 0 <t < t*, we divide both sides of [Eq. (C3)| by 75 () and integrate to obtain

log (r2 (t)) = log (€2) — I (t) (C4)

where

- tLeX _y | Mup (e1—1) 1 -
10= [ e ( 4 lndownré R )D dr (C5)

Note that under the assumption that ro (¢*) = 0, [Eq. (C4)| requires I (t) — +oc as t ' t*. It therefore suffices to
check that the integrand defining I(t) in [Eq. (C5)|is a bounded function for all £ € 7 to obtain our contradiction.

The term ﬁ is unimportant in the exponential of since the integral without it bounds I () from
above. We focus on checking the boundedness of the following part

1= e (-9,

T2 (7) 75 (T)

Away from ry = 0, the integrand is clearly bounded. As ro — 0 (or as 7 — t*), by L’Hopital’s rule, f (1) — 0.
The integrand is thus void of singularities and does not blow up on [0,¢]. This implies that the RHS of is
bounded for all ¢t € T, while the LHS gives —oo as t — t*. This contradiction shows that there is no t* € 7 such that
T2 (t*) =0. O

shows that when initial upstream (resp. downstream) pore sizes are the same, pore closure always occurs
upstream. This result is useful for the majority of the pore junctions considered in this work, i.e., those that connect
upstream and downstream pores with the same initial radius respectively.

However, did not consider the possibility for a junction to have downstream pores with different initial
radii, as may occur when a junction connects to downstream pores that belong to different bands. In this case, we
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show via a numerical example that the radius of a downstream pore can go to zero before the upstream ones. Consider
an inverted-Y shaped network with one upstream pore and two downstream pores (corresponding to ny,, = 1 and
Nphot = 2 1IN , with initial radii €1, €5 and €3 respectively. Without loss of generality, we assume e; > €3. Note
that this situation is not included in the premise of [Theorem 1]

Using calculations similar to those used for [Theorem 1| above, we find that the outlet radii ro (t) and 73 (t) satisfy
the set of coupled ODEs,

d?”g d'f‘3 €1 —t 1
@ a T (‘A (@* OENEIG R t)3>> e nEe o

Note that ry and r3 simply differ by a constant, es — €3. Thus, we can further deduce that

dT‘g__eX _ 61—t 1
dt p( A((7~3,(t)+ez—eg,)4+r§(t)Jr(el—t)3>>' (©7)

From this, we observe that one can make e; — €3 sufficiently large so that regardless of how small r3 becomes, 73
decreases at a nontrivial rate. This is a scenario different than that in An explicit condition involving
€1, €9, €3 and A for this to happen may be derived. We have confirmed this conclusion numerically with ¢; = e5 = 0.01,
€3 =3x 1073, A =5 x 1077 (the same value used in , finding that 75 (t) goes to zero earlier than ry (¢).

We conclude that the difference in initial conditions for pore radii does play a role in driving the dynamics of each
pore. Downstream pore closure can be earlier than the upstream one. However, we stress that even if one downstream
pore closes earlier, the local structure at the junction always reduces to the case where we have multiple upstream
pores and one single downstream one, which is the setup used in with nyp arbitrary and ngown = 1. In
other words, the moment any junction has one downstream pore, its upstream pores will always close first. With
this heuristic argument (that can be argued inductively upstream), we believe that a general membrane network with
varied initial conditions on the pore radii will only close on the top surface under adsorptive fouling.
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