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Homogeneous and isotropic turbulence can be generated by many different mechanisms, from
classical passive grids to jet arrays. By using high-speed jets, a jet array becomes a promising
way to produce intense turbulence with large energy dissipation rates in water and wind tunnels.
In this paper, a systematic experimental investigation was conducted to understand how the tur-
bulence decay scales with the jet velocity, nozzle size, and nozzle spacings. 3D particle tracking
was performed to quantify the spatial distribution of different turbulent characteristics. Combined
with several previous experiments focusing on near-field measurements, our results provide a clear
picture of the decay of the kinetic energy and the energy dissipation rate as well as the development
of the inhomogeneity and anisotropy of turbulence generated by a jet array. Suggestions and design
considerations for future wind and water tunnels are also provided.

I. INTRODUCTION

Turbulent dispersed multiphase flows are ubiquitous in
many engineering and environmental applications, such
as mineral separation by bubbles in flotation[1], catalytic
particles and bubble columns in process technology [2],
pollutants dispersed in the atmosphere[3], and plankton
in the oceans and sediment-laden river flows[4]. For all
these applications, the background flow is turbulent, cov-
ering a wide range of temporal and spatial scales. The
complex interactions between the dispersed phase and
the turbulent carrier phase produce many new phenom-
ena.

To investigate the effect of turbulence, homogeneous
and isotropic turbulence (HIT) is commonly used because
HIT is a canonical turbulence that retains its univer-
sal characteristics without the complications such as the
mean shear. Nevertheless, despite the simplicity of HIT,
it is non-trivial to produce such an ideal flow in a labora-
tory setting in a controlled way. HIT can only be approx-
imately generated in the lab because it is challenging to
produce turbulent energy across the entire flow domain
uniformly. The most common and successful way of gen-
erating HIT is by adding a periodic grid or mesh in wind
or water tunnels, which was first attempted by Simmons
and Salter [5]. In these systems, flows were shown to be
homogeneous in two-dimensional (2D) planes parallel to
the grid[6, 7] with the spatial decay of turbulent kinetic
energy (TKE) in the third direction. In order to reach
a state of satisfactory isotropy, the individual wakes in-
duced by a “passive” grid require at least 30 mesh lengths
to fully mix and merge with each other[8]. At such a dis-
tance, turbulence has weakened, resulting in a moderate
Taylor Reynolds number [9–11], Reλ = u′λ/ν between
50 and 150 ( u′ is the root-mean-squared (RMS) fluctu-

ation velocity, λ is the Taylor microscale λ =
√

15ν/εu′,
ε is the turbulent energy dissipation rate, and ν is the
kinematic viscosity of the fluid). In attempts to increase
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the Reλ, “active” grids with randomly flapped agitator
wings [12] replaced the passive predecessors, and it can
significantly enhance Reλ [13–16].

However, both turbulence and its Reynolds number
will not be kept constant in wind or water tunnels driven
by a grid; they continue to decay as turbulence moves
away from the grid. Such decay is controlled directly
by the energy dissipation rate ε = 2ν〈SijSij〉 (ν is the
kinematic viscosity and Sij represents the rate-of-strain
tensor). If the turbulence attained is homogeneous and
isotropic and Taylor’s frozen flow hypothesis is used, the
decay of the kinetic energy as a function of distance away
from the grid can be converted to the decay in time,
which follows a power law relationship k = u′2/2 ∼ t−n;
the same applies to the growth of the integral length scale
L ∼ tm.[17, 18] At high enough Reynolds numbers, the
exponent n is believed to be a universal constant [9, 19,
20]. Invoking self-similarity, it was shown by Batchelor
[9] that n = 1 and m = 1/2. Assuming invariants related
to the energy spectrum near small wavenumber, different
power law exponents were derived before, which shows
n = 6/5 and m = 2/5 by Birkhoff [19] and Saffman [20].
Furthermore, assuming the growth of the length scale is
limited by the size of the turbulence box L ∼ t0 and the
decay is driven by the mean energy dissipation rate 〈ε〉,
one can also acquire n = 2 and m = 0.[21–23]

Such a wide spread of the exponent for the decaying
turbulence was also reported in experiments, by using
conventional grids [10, 24], fractal grids [7, 25–28], ro-
tating grid rods [29] as well as active grids [11, 12]. The
reported exponent n ranges from 1 to 2 with the majority
of experiments using conventional grids consistent with
Birkhoff-Saffman prediction of n = 6/5.

In addition to grids (active or passive), turbulence can
also be generated by jets. An important work that should
be noted is by Gad-el Hak and Corrsin [8], in which an
array of nozzles were integrated with a conventional pas-
sive grid. Jets from these nozzles can be independently
controlled, and depending on the injection rate from the
nozzle, a systematical change of the decay power law ex-
ponent from n = 1.325 to 1.0 as the jet injection rate
increases was observed. This finding is counter-intuitive
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because jets are shown to improve the energy transfer in
the high wavenumber regions, which is expected to in-
crease, instead of decreasing, the decay rate. This incon-
sistency calls for more studies to understand turbulence
decay driven by a jet array.

Note that, in this previous work, the jet array was
used primarily to assist the passive grid to generate tur-
bulence. The flow rate through the jets was only 8.55%
of the co-flow. In a more recent work by Variano and
Cowen [30], the jet array was employed to drive turbu-
lence without a co-flow, and the results suggested a much
larger exponent of n = 2, which seems to imply that in-
creasing the jet flow rate tends to first reduce and then
increase the decay exponent. A similar exponent rang-
ing from n = 1.89 to 2.13 can also be extracted from
the measured decay of the turbulent kinetic energy for
different jet actuation patterns by Pérez-Alvarado, Myd-
larski, and Gaskin [31]. A slightly lower exponent close
to 1.65 can be roughly estimated from figure 6 reported
by Johnson and Cowen [32]. Note that, in this case, the
turbulence generated was confined in a box so the decay
could be affected.

To cover the range of the jet flow rates between these
two limits, in this paper, the goal is to understand the
turbulence decay driven by a jet array with the jet flow
rate ranging from 18.5% to 87.2% of the total flow rates.
In particular, the paper focuses on how different turbu-
lent characteristics scale with the jet nozzle diameter and
jet velocity. The detail of the experiments is introduced
in Section II. In Section III, we first derive the location
where HIT starts to form based on previous experiments
and present the results on the decay of fluctuation veloc-
ity and the dissipation rate. Based on the measurements,
a simple empirical equation is proposed to quantify the
decay. Finally, some practical design considerations are
shared for future experimental studies.

II. EXPERIMENTAL SETUP

All the experiments were performed in a closed-loop
vertical water tunnel, V-ONSET (Vertical Octagonal
Noncorrosive Stirred Energetic Turbulence), as shown in
Fig. 1. In this tunnel, turbulence was powered by a 3D-
printed jet array facing downward at the top of a trans-
parent octagonal test section (for details, see Masuk et al.
[33]).

For the jet array, there are four important parameters,
including the number of nozzles (N), nozzle size (d), the
nozzle spacing (M), the co-flow velocity (Uc), and the jet
velocity at the nozzle exit (Vjet). Note that, for a given
jet array, the jet spacing is fixed, but M can vary by
turning on more or fewer jets in experiments. As shown
in Fig. 1, two different arrays were printed: (Array 1)
N =88, d = 5 mm, M =2.1 cm, (Array 2) N =21, d =8
mm, M =5 cm. Here, the values of M are referred to the
case when all the jets are on.

As shown in Fig. 2(a), each nozzle was connected

through internal channels to their individual side open-
ings, which can be controlled separately by solenoid
valves. Although jets can be turned on and off randomly
in space and time, the experiments reported in this work
were conducted by keeping the designated jets running
continuously in order to keep a constant spacing between
neighboring jets. In addition, squared-through holes be-
tween these nozzles allow co-flow to merge co-axially with
the firing jets. To drive the flow, a single centrifugal
pump with a variable frequency controller was used. The
split of the flow coming out of the pump between the co-
flow and jet array can be controlled by a regulating valve.
This method allows for independent control of the co-flow
(Uc) and the jet exit velocity Vjet, which were precisely
measured by two flow meters installed in the system.

To measure turbulence and acquire its statistics, three
high-speed cameras were used to capture the tracer mo-
tion inside the tunnel. The shadows of the seeded
polyamide tracer particles with 60 µm in diameter and
density close to 1.03 g/cm3 were cast by a dedicated LED
panel onto the imaging plane of each camera. These im-
ages were then reconstructed into 3D trajectories via our
in-house open-source Lagrangian particle tracking algo-
rithm, OpenLPT[34, 35]. The entire optical diagnostic
system was mounted on a frame that can be slid to dif-
ferent positions away from the jet array.

To investigate turbulence decay driven by a jet array,
we conducted experiments by changing Vjet, M , and the
measurement location x from the jet array. Each experi-
mental condition was repeated to cover at least four times
the integral time scale TL. The view volume is around 6
cm in width and 3 cm in height, which covers at least one
integral length scale L to ensure that the inertial range
statistics are fully resolved. For all the data presented,
Vjet was varied between 2.4 m/s to 12.1 m/s; the jet spac-
ing ranges from M = 2.8 to 5.4 cm. The jet spacing was
controlled by changing the number of jets that are on
since individual nozzles can be independently controlled
by the solenoid valves. The statistics were acquired up
to 100 times the nozzle diameter away from the jet array.
Details of the experimental conditions are summarized in
Table I.

TABLE I. Control parameters for experiments

Experiment Array Vjet (m/s) Uc (m/s) M (cm) x/d
I.1 Array 1 5.5 0.27 2.8 [53,165]
I.2 Array 1 5.5 0.27 3.2 [53,165]
I.3 Array 1 5.5 0.27 4.0 [53,165]
I.4 Array 1 5.5 0.27 5.4 [53,165]
II.1 Array 1 2.5 0.22 5.9 76
II.2 Array 1 5.33 0.22 5.9 76
II.3 Array 1 5.46 0.22 5.9 76
II.4 Array 1 7.2 0.22 5.9 76
II.5 Array 1 7.75 0.22 5.9 76
II.6 Array 1 10.3 0.22 5.9 76
II.7 Array 1 11.8 0.22 5.9 76
II.8 Array 1 12.1 0.22 5.9 76
III Array 2 7 0 6.9 37.5
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FIG. 1. Pictures of (a) the V-ONSET with an optical diagnostic system and (b-c) two different jet arrays: (b) Array 1 and (c)
Array 2.

III. RESULTS

A. Homogeneity

FIG. 2. (a) Section view of a jet array to show the internal
channels and key geometric parameters; (b) Schematic of the
mean velocity profile at two different axial locations.

Previous works have shown that a jet array can pro-

duce turbulence close to a homogeneous and isotropic
condition [30, 33, 36–39]. However, in most cases, the
measurements were limited to regions that are sufficiently
far from the jet array. Since turbulence continues to de-
cay as it moves away from the jet array, for studies that
aim at reaching intense turbulence, it is beneficial to stay
close to the jet array. It is therefore important to know
the minimum distance away from the jet array so that
one can assume homogeneity and isotropy.

Although such near-field data is not available from the
turbulence community, many experiments and simula-
tions were conducted before to understand interacting
jets, including those aligned in a row [40], an array [41–
45], or just between two [46–49]. These studies focused
exclusively on the near-field jet dynamics so they pro-
vided a detailed description of the flow velocity profile,
jet interaction, and the decay of the centerline velocity.

Figure 2(b) shows the mean flow profile developed in
the near field of a jet array. In this case, three boxes
represent the three nozzle exits. Close to the array, the
signature of each individual jet is visible; as the flow con-
tinues to move downstream, the jets start to merge. To
fully capture this evolution, a dataset from Ghahrema-
nian et al. [45] is used. In this work, the jet array was not
connected to a water tunnel but exposed to a large am-
bient environment. As a result, jets near the edges were
affected by the pressure gradient so only the velocity pro-
files from the two center jets are used. The time-averaged
axial velocity 〈Vi〉 normalized by Vjet is shown in Fig. 3
as a function of the transverse direction (y-axis) normal-
ized by the jet diameter d. Different colors represent the
velocity profiles at different axial locations away from the
nozzle exits, and it is evident that the mean flow is al-
most uniform along the transverse direction at around
5.5M away from the jet array.

For a single statistically axisymmetric, stationary
non-swirling jet, the problem can be solved by using
the boundary-layer momentum equation [51] with the
Reynolds stress modeled by the eddy viscosity method.
However, the problem becomes much more complicated
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FIG. 3. The profile of (a) the mean and (b) the fluctuation
velocity for two adjacent jets, located at y = 0 and y = 2.9d,
in a jet array along the transverse direction y. In both figures,
the symbols represent the experimental measurements [45]
at different downstream locations. The solid lines in (a) are
obtained from Eq. (3), and the ones in (b) are calculated by
multiplying the mean velocity with a coefficient C0=0.28. The
dashed lines in (b) show the results of superposing the velocity
fluctuations of two single jets based on the measurements by
Hussein, Capp, and George [50].

when multiple jets are considered. Since such a solution
is not readily available, we can simplify the problem by
assuming that, in the near field close to the jet array,
individual jets still follow the self-similar velocity profile,
which can be expressed as

f(η) =
〈V1(x, y)〉
Vc(x)

=
1

(1 + aη2)2
(1)

where the mean axial jet velocity 〈V1(x, y)〉 normalized
by the jet centerline velocity Vc(x) is a function of η =
y/ (x− x0) (x0 is the virtual origin). The coefficient a =

(
√

2 − 1)/S2 is related to the spreading rate S = 0.094
in a single jet [51]. The centerline velocity Vc(x) at a
particular axial location follows

Vc(x)

Vjet
=

Bd

(x− x0)
(2)

where B is an empirical constant that depends only on
the jet configuration, e.g. whether the jet is surrounded
by a non-zero co-flow in the background.

As shown in Fig. 2, the simplest way to estimate the
mean velocity profile is by assuming a linear superpo-
sition of the individual jet profile between two adjacent
jets located at y1 = 0 and y2 = M with a spacing of M ,
which yields

〈V1(x, y)〉
Vc(x)

=
1

(1 + a(y/x)2)2
+

1

(1 + a((y −M)/x)2)2

(3)
The results are shown as solid lines in Fig. 3(a), which
are in good agreement with the experiment data and im-
plies that the estimation based on the linear superposi-
tion works well for predicting the mean flow profile pro-
duced by a jet array. In particular, at around x/M = 5.5,
the profile is close to being flat, indicating that the mean
flow is uniform along the lateral direction.

Apart from the mean flow, the homogeneity of tur-
bulence has to be quantified by the fluctuation velocity
vi = Vi−〈Vi〉 (i = 1, 2, 3 for three directions), particularly
the variance of its axial component, i.e. v′1 = 〈v21〉1/2.
From the same experiment, the profile of v′1 downstream
of a jet array is also available, which is shown in Fig. 3(b)
at three different axial locations. It is evident that the
flow inhomogeneity decays with x. Close to x/M = 5.5,
the profile of v′1 is almost flat. To predict where the ho-
mogeneous condition is reached, the linear superposition,
but using the profile of v′1 from a single jet obtained from
a previous work [50], is attempted (dashed lines in Fig.
3(b)). Although the data agrees well with the superposed
result at x/M = 1.8, the difference grows as x increases.
In particular, for x/M > 1.8, the superposed results indi-
cate that the peak of v′1 is not located at the centerline as
the data suggests, but about 0.3d away from each noz-
zle. This deviation clearly shows the limitation of this
method.

The alternative way to estimate the fluctuation veloc-
ity profile is via the mean velocity profile. For a single jet,
the ratio between v′1 and 〈V1〉 is consistent at different x
locations. The fluctuation velocity profile for the jet ar-
ray can therefore be estimated by multiplying 〈V1〉 (Eq.
(3)) with a coefficient of C0 = 0.28. Such a coefficient
should vary in a large range and depend on the radial
direction away from the jet centerline. Nevertheless, for
simplicity, it is assumed to be a constant, independent of
the y axis. This assumption should only overestimate the
inhomogeneity of the turbulence because v′1/〈V1〉 grows
as it moves away from the jet centerline, which will only
serve to smooth the profile of v′1. The prediction is plot-
ted in Fig. 3(b) as the solid lines. This estimation cannot
capture the profile at x/M = 1.8 as expected because,
unlike v1 that peaks at the jet edges due to the growing



5

shear layer, the mean flow doe not. But as it moves down-
stream and flow becomes fully developed, e.g. x/M = 3.7
and x/M = 5.5, the prediction based on the mean flow
works much better, capturing the evolution of the veloc-
ity profile. The only problem with this method is that
it overestimates the overall magnitude of the fluctuation
velocity because C0 was assumed to be a constant. But
this deviation does not affect the estimation of the flow
inhomogeneity.

To quantitatively define the inhomogeneity level, the
maximum and minimum fluctuation velocity between two
adjacent jets can be expressed as:

v′1,max(x)

Vc(x)
= C0+

C0

(1 + aM2/x2)2
,
v′1,min(x)

Vc(x)
=

2C0

(1 + a(M/2x)2)2

(4)
From these two fluctuation velocities, the turbulence

inhomogeneity factor can be defined as IH(x) = (v′1,max−
v′1,min)/v′1,max = 1− v′1,min/v

′
1,max, which varies between

0 and 1 and can be expressed explicitly as a function of
x:

IH(x) = 1− 2(1 + aM2/x2)2

(1 + aM2/4x2)2((1 + aM2/x2)2 + 1)
(5)

IH = 0.1 is set as the threshold for inhomogeneity, and
flows with IH lower this threshold can be assumed to be
homogeneous. This model clearly suggests that the flow
reaches the homogeneous condition for x > 5.5M , match-
ing exactly to what was acquired from the experimental
results.

This solution suggests that the minimum distance
away from an array of jets to reach fully homogeneous
turbulence is around six times the jet spacing and is in-
dependent of the jet velocity Vjet and the nozzle diameter
d as long as d is small enough (d � x) to meet the con-
dition for the self-similar jet velocity profile expressed in
Eq. (1). This conclusion is consistent with a previous
work [37], which suggested that the flow becomes homo-
geneous at 6M .

Note that the condition discussed here assumes a weak
co-flow, and the turbulence is driven solely by the jet
momentum. The other limit can be reached if the co-
flow is as strong as the jet, in which case turbulence will
not be generated. Between these two limits, we anticipate
that adding co-flow will result in weaker turbulence, lower
spreading rate [52], and possibly a longer distance before
the homogeneity condition can be reached. The exact
number can be roughly estimated based on Eq. (1) by
updating the spreading rate S used in a.

B. Turbulence in V-ONSET

In the previous section, we focused on the profile of
the jet velocity, including 〈Vi〉 and vi, as two neighbor-
ing jets mix. In this section, we shift our attention to
the fully-developed turbulence generated by a jet array.
In particular, the statistics was taken at x = 5.7M away

from a jet array (Array 1) with the jet spacing of M = 5.4
cm in V-ONSET (Experiment I.4 in Table I). Accord-
ing to the prediction in Section III A, turbulence at this
location should be homogeneous. To distinguish the tur-
bulence statistics in this system from the discussion of
jets, the mean velocity and the variance of the fluctua-
tion velocity in the test section are denoted as 〈Ui〉 and
ui (i = 1, 2, 3 represents three directions), respectively.

-5 0 5

0.1

0.2

0.3

0.4

0.5

FIG. 4. The PDF of the fluctuation velocity normalized by
their standard deviation from Experiment I.4 at x = 5.7M .
The dashed line indicates the standard normal distribution.

Figure 4 shows the probability density function (PDF)
of ui in three directions plotted against the standard nor-
mal distribution. As seen in Fig. 4, all components of
velocity fluctuation are nearly identical and match the
Gaussian distribution. Figure 5 (a) and (b) show the
spatial variation of both 〈Ui〉 and u′i along the x and y
axes respectively, where u′i is the mean-square fluctua-
tion. In Fig. 5, each data point is shown with error bars
indicating the 95% confidence intervals (CI) of the esti-
mations. But the error bar is too small to discern from
the markers because of the large number of tracer tra-
jectories acquired in each experiment. As seen in both
Fig. 5 (a) and (b), the profile for all velocities, including
both the mean and the fluctuation components, remains
almost constant along both the axial and transverse di-
rections, suggesting that the flow is nearly homogeneous.

From the data shown in Fig. 5, one can also calculate
the ratio u′2/u

′
3 ≈ 0.9887, with 95% CI of [0.9874 0.9898],

and u′1/u
′
2 ≈ 1.163, with 95% CI of [1.160 1.167], both

of which are close to 1, indicating that the turbulence
is also nearly isotropic, although the vertical component
is slightly larger than the horizontal components since it
gains the energy directly from the jet flow.

Another way to investigate the isotropy of turbulence
is by using the Reynolds stress tensor τij = 〈uiuj〉,
which can be decomposed into the isotropic (i = j) and
anisotropic part (i 6= j). The anisotropic part should
be zero in isotropic turbulence. One component, nor-
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FIG. 5. The profile of both the mean and fluctuation velocities
along the axial and transverse directions from Experiment I.4
at x = 5.7M .

malized by the TKE, k = 〈uiui〉/2, is shown in Fig. 6,
which covers a range of x/d from 5.0 to 51.8. Two dashed
lines represent ±10% about zero. Close to the nozzle, the
Reynolds stress shows a significant variation, and such a
variation decays rapidly. To ensure all the anisotropic
components of τij are close to zero in all directions in the
far field, Fig. 7 shows the remaining components along
all three directions at x/d = 61.6 using Array 1. It is
evident that all symbols are well within the two dashed
lines, suggesting that the flow is nearly isotropic.

The decay of the anisotropic component of τij along
the x axis can be more quantitatively shown by taking
the spatial standard deviation along the y direction, i.e.

ξij(x) =
√
〈τ2ij(x, y)〉

y
, for each x position. The results

obtained from the experiments using Array 1 at different
jet spacings are shown in Fig. 8. The measured Reynolds
stress is plotted against x/d instead of x/M because the
data only collapses when x is normalized by the nozzle

0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 6. One component of the Reynolds stress at four dif-
ferent axial locations downstream of a jet array. The three
near-field measurements (x/d ≤ 15) were from the work by
Ghahremanian et al. [45] (GSTM 2014) and the remaining
far-field result (x/d� 15) was acquired from Experiment I.4
using Array 1 at x = 5.7M .
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FIG. 7. The spatial profile of the three components of the
Reynolds stress tensor normalized by the local TKE from Ex-
periment I.4 at x = 5.7M . The dashed lines show the 10%
variation.

diameter. Consistent with Fig. 6, the variation of τij
decays continuously as a function of x/d. And it falls
below 10% at around x = 20d.

As a result, the criteria for reaching homogeneous ver-
sus isotropic conditions are not the same. The homo-
geneous condition relies more on the mixing between
neighboring jets with a spacing of M , while the isotropic
condition is driven primarily by the turbulence trans-
ported from the shear layer within the individual jets
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FIG. 8. The decay of the spatial variation of the Reynolds
stress as a function of the normalized axial location. Pur-
ple diamonds represent the near-field data from the work by
Ghahremanian et al. [45] (GSTM 2014), and other markers
represent our data from Experiment I.1∼I.4 using different
jet spacings M .

along the x axis to the other two directions. The two
criteria (x > 6M and x > 20d) may not coincide for a
given jet configuration, and the axial location should be
selected to meet both requirements for reaching nearly
homogeneous and isotropic turbulence.

C. Turbulence decay

After reaching nearly homogeneous and isotropic con-
ditions, turbulence continues to decay as it moves away
from the jet array. In order to investigate the turbulence
decay along the axial direction, u′ ≡

√
u′1

2 + u′2
2 + u′3

2

was measured at multiple x away from the jet array, as
described in Section II. In addition to our datasets, the
near-field measurements [45] at two smaller x locations
along with a result from another jet array experiment
[37] are also included. Together, the data covers over a
decade of the axial distance for understanding the decay
of turbulence produced by a jet array.
u′/Vjet is plotted against x normalized by the jet di-

ameter d or by the jet spacing M (inset) in Fig. 9 . It
is evident that the only way to collapse all the datasets
is by using the jet diameter as the characteristic length
scale, not the jet spacing M , even though M was used to
determine where the homogeneous condition is reached.
Therefore, the roles played by these two length scales
are different: M controls the lateral mixing to deter-
mine where the jet is fully mixed with each other, but
turbulence is driven by the shear layer instability from
individual nozzles. The nozzle diameter imprints on the
statistics much further downstream even after the neigh-
boring jets are fully mixed.

10
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10
-2

10
-1

5 10
10

-2

10
-1

FIG. 9. The decay of turbulent velocity fluctuations as a
function of the axial location normalized by d or M (inset).
Data presented in this figure is the same as those described
in Fig. 8. The black solid line is obtained from Eq. (6).

The compiled data suggests that u′ seems to scale with
x−1, which is consistent with the finding by Variano and
Cowen [30]. But the scaling exponent of the decaying
kinetic energy n = 2 is larger than those reported by
most experiments studying decaying-turbulence [7, 10–
12, 24–29] and also by an earlier work conducted in the
Johns Hopkins University Stanley Corrsin wind tunnel
[8]. In this wind tunnel, jets were integrated with the
classical passive grid, and n is found to range between 1
and 1.325.

An important distinction between the two setups needs
to be drawn. In our experiments, the goal is to increase
turbulence in a configuration with a relatively weak co-
flow. The injection rate J , defined as the ratio between
the mass flow rate by the jets to the co-flow, ranges from
18.5% to 87.2%. For the wind tunnel experiments [8],
the momentum of jets was maintained to be below 10%
of that of the co-flow, the turbulence production method
is still dominated by the co-flow passing through a grid.

Furthermore, Gad-el Hak and Corrsin [8] found out
that n decreases from 1.325 to 1 as J increases from 4.7 %
to 8%, which implies that stronger jets yield slower turbu-
lence decay. This finding was originally hypothesized to
be linked to the possible more energy in small wavenum-
bers in power spectra. But the authors realize later in
their paper that this hypothesis is opposite to their mea-
sured results, in which the jets actually introduced more
energy in high wavenumbers. This inconsistency led to
the conclusion that the jets may have dynamic interac-
tion with the turbulent wake after the passive grid that
changes the decaying rate.

One way to model the decay of u′ driven by a jet array
is to assume that the memory of the jet configuration
survives far downstream, and the decay follows a similar
way as that for a single jet. Following the same argu-
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ment about the relationship between the mean and the
fluctuation, the decay of u′ can be modeled based on Eq.
2 following

u′(x)

Vjet
=
C0Bd

x
(6)

where the virtual origin x0 is neglected for the far-field
statistics. The parameter B will be discussed later. The
result is shown in Fig. 9 as the solid line, which agrees
well with not only our data but the previous near-field
measurements [45]. This finding confirms our conjecture
that the decay of turbulence driven by a jet array shares
similarities with that driven by a single jet even at a
distance far away from the array, where the neighboring
jets have already fully merged.

D. Decay of turbulent energy dissipation rate

The key advantage of employing a jet array, instead of
a grid (passive or active), to drive turbulence is the large
range of turbulence characteristics that can be acquired
with a simple control system. Other than the fluctua-
tion velocity that pertains to the large-scale flows, the
small-scale dynamics is determined by the energy dis-
sipation rate ε, which is another key quantity of inter-
est. In our study, ε is estimated from the calculation
of the second-order velocity structure function Dij(r) =
〈ui(x)uj(x + r)〉, where x and r are the position of fluid
particles and the separation between a pair. Based on
the well-known Kolmogorov theory [53], it is known that
DLL = C2(εr)2/3 and DNN = 4C2(εr)2/3/3, where DLL

and DNN are the longitudinal and transverse compo-
nents of Dij(r) respectively. The Kolmogorov constant
C2, although depending on Reλ[54], can be assumed to
be about 2.1. In addition, the third-order structure func-
tion in the inertial range follows DLLL = −4εr/5. Fig.
10 shows a plot of the three structure functions compen-
sated by their respective scaling laws from Experiment
I.4 at x = 15.9 cm downstream. The plateau, albeit nar-
row, in Fig. 10 suggests that ε ≈ 0.19 m2/s3.

In order to establish the relationship between ε with
the axial position x away from the jet array, we can lever-
age a well-known relation, ε ≈ Cεu

′3/L where Cε is an
order-unity constant [55], i.e. Cε ≈ 0.73 for Reλ > 100.
For decaying isotropic turbulence, the integral scale fol-
lows L ∼ x−1/2 based on the work by George [56]. To
confirm this scaling, in Fig. 11, the measured dissipa-
tion rate is shown as a function of u′3/x1/2, and the solid
line indicates a linear relationship. If L does scale with
x−1/2, the data should agree with the solid line. The
evident overall agreement between the two in the figure
indeed confirms that the growth of the integral scale in
decaying turbulence driven by a jet array is similar to
those driven by a passive grid.

In addition, since the data containing different jet spac-
ings (M) collapses together, it implies that ε may be in-
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FIG. 10. The compensated velocity structure functions versus
the separation between the two velocity vectors from Experi-
ment I.4 at x = 2.9M .

sensitive to M , and the nozzle diameter is the only length
scale that matters to ε. So the integral scale L(x) can be
expressed as

L(x) = K(dx)1/2 (7)

where K is a coefficient that can be obtained by fitting
Eq. (7) with the experimental data shown in Fig. 11,
yielding K ≈ 3.31.
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FIG. 11. The correlation between the turbulent energy dissi-
pation rate ε and u′3/x1/2 for all the datasets collected from
Experiment I.1–I.4 .

By using Eq. (6) and (7), we arrive at the equation for
ε as follows:

ε

V 3
jet/d

=
CεC

3
0B

3

K(x/d)7/2
(8)
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FIG. 12. The decay of the normalized energy dissipation rate
versus the normalized axial location. The purple diamond
represents the data from experiments by Variano, Boden-
schatz, and Cowen [37] (VBC 2004). The brown hexagram
is acquired from Experiment III and other markers from Ex-
periment I.1–I.4. The black solid and dash lines are obtained
from Eq. (8).
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FIG. 13. The turbulence energy dissipation rate as a function
of the jet velocity collected from Experiment II.1–II.8 . The
black solid line is obtained by Eq. (8).

This formulation suggests that the energy dissipation
rate is only a function of the jet velocity and the jet
diameter, independent of the jet spacing.

Fig. 12 shows the normalized energy dissipation rate
at different normalized axial locations for Array 1. In
addition, the solid line shows the model prediction. The
only parameter that has not been discussed before in the
model is B, which comes from Eq. (2). B depends on
whether the jet is surrounded by a co-flow. Its value has
been independently obtained before in a different experi-

ment that systematically studied the jet profile with and
without a co-flow [57]. Based on the velocity ratio for all
the experiments with Array 1, the velocity ratio is close
to 20.4, with Vjet = 5.5 m/s and the co-flow velocity near
the nozzle being 0.27 m/s. For the closest velocity ratio
R = 20 reported by Or, Lam, and Liu [57], the parameter
B is roughly 5.47, which is used for plotting the solid line
in Fig. 12. Despite the scatter in the data, it seems to
agree with our data within the measurement uncertainty.

In addition to Array 1, Array 2 was tested without a
co-flow, and the turbulent energy dissipation rate gener-
ated is found to be larger than the data taken using Array
1. Furthermore, the result from Variano and Cowen [30]
using d =21.9 mm and Vjet= 0.6 m/s without a co-flow is
also added, which also seems to be larger. To account for
this difference, the parameter B in Eq. (8) is modified
by using the value from the work by Hussein, Capp, and
George [50], i.e. B = 5.8. The prediction is shown as the
dashed line, which agrees perfectly with the two datasets
mentioned before in a configuration without a co-flow.

E. Design suggestions

From a practical standpoint, Eq. (2), (7) and (8) pro-
vide a way to estimate u′, L, ε, in a water tunnel driven
by a jet array, by controlling the jet velocity, nozzle size,
and jet spacing. Although these equations are simple
to use, there are several important design considerations
that need to be discussed for future experiments. First
of all, in Eq. (8), it is shown that ε scales with V 3

jet.
Most datasets reported in previous figures used the same
jet velocity. To confirm the scaling of the energy dissi-
pation with the jet velocity, experiments were conducted
to measure ε at a constant x/d =76 away from the jet
array (Array 1) for different jet velocities, the results of
which are shown in Fig. 13. The jet velocity spans al-
most a decade and it is clear that the data follows the
cubic scaling, i.e. ε ∝ V 3

jet.
The jet velocity here was varied by using the variable

frequency controller of the pump. The maximum jet ve-
locity is determined both by the pump capacity as well
as the nozzle size and number. To further increase ε,
one may attempt reducing the nozzle size; with the same
flow rate, Vjet can be increased further. This only works
if x/d is maintained the same, which means the measure-
ment window needs to move closer to the jet array with
a small nozzle size. The price that one has to pay is to
have more jets and smaller spacing M to ensure the flow
is homogeneous and isotropic.

Another key aspect is related to the pump and the
piping systems that drive the jet array. Each jet needs
to be connected to the pressure vessel through at least
one solenoid valve. A pressure manifold is also needed
to distribute an even pressure head to all jets. All these
systems will add to the pressure drop of the system. It is
important to select the nozzle and pipe size to balance the
flow rate and pressure drop of the system so the pump
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operates at its highest efficiency. Deviating from this
point too much could result in pump cavitation and other
undesired effects.

IV. CONCLUSION

We have shown the decay of turbulence powered by a
jet array in a vertical water tunnel. Two arrays with dif-
ferent nozzle sizes and spacings were printed to systemat-
ically investigate how different turbulent characteristics
scale with the control parameters. In addition to the
experimental results, a simple model relying on the su-
perposition of two jets was designed to explain the flow
development. It is found that, for the multi-jet flow to
develop into homogeneous turbulence, a distance of at
least 5.5 times the jet spacing downstream from the ar-
ray is required. The isotropy condition can be met at
around 20 times the nozzle diameter, which was exam-
ined both by the velocity profile along different directions
and also by whether the Reynolds stress is close to zero.

After homogeneous and isotropic turbulence is
reached, turbulence continues to decay downstream with
the magnitude of RMS velocity decreasing as x−1. Such
decay is mainly determined by the nozzle diameter and
insensitive to the jet spacing M because turbulence is
driven by the shear layer instability originating from in-

dividual nozzles. Furthermore, the decay exponent of
the kinetic energy is roughly n = 2, which is higher than
those reported by most experiments using a classical pas-
sive grid. This higher exponent is attributed to the mem-
ory of the jet, which is different from the one caused by
the wake after a grid.

Based on the evolution of the velocity fluctuation and
the integral length scale downstream, a formulation of the
energy dissipation rate ε is derived, which matches well
with not only our experimental data with a co-flow but
also with a previous work without a co-flow. Finally, de-
sign considerations were provided to help future wind or
water tunnels use this method to drive turbulence, which
can potentially reach much more intense turbulence with
a higher energy dissipation rate than that produced by
classical passive or active grids.
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