
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics of asymmetric stratified shear instabilities
Jason Olsthoorn, Alexis K. Kaminski, and Daniel M. Robb

Phys. Rev. Fluids 8, 024501 — Published  3 February 2023
DOI: 10.1103/PhysRevFluids.8.024501

https://dx.doi.org/10.1103/PhysRevFluids.8.024501


The Dynamics of Asymmetric Stratified Shear Instabilities1

Jason Olsthoorn2

Department of Civil Engineering, Queen’s University, Kingston, Ontario, Canada, K7L 3N63

Alexis K. Kaminski4

Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, United States, 947205

Daniel M. Robb6

Department of Civil Engineering, University of British Columbia,7

Vancouver, British Columbia, Canada, V6T 1Z48

Most idealized studies of stratified shear instabilities assume that the shear interface and the
buoyancy interface are coincident. We discuss the role of asymmetry on the evolution of shear
instabilities. Using linear stability theory and direct numerical simulations, we show that asymmetric
shear instabilities exhibit features of both Holmboe and Kelvin-Helmholtz (KH) instabilities, and
develop a framework to determine whether the instabilities are more Holmboe-like or more KH-like.
Further, the asymmetric instabilities produce asymmetric mixing that exhibits features of both
overturning and scouring flows and that tends to realign the shear and buoyancy interfaces. In all
but the symmetric KH simulations, we observe a collapse in the distribution of gradient Richardson
number (Rig), suggesting that asymmetry reduces the parameter dependence of KH-driven mixing
events. The observed dependence of the turbulent dynamics on small-scale details of the shear and
stratification has important implications for the interpretation of oceanographic data.

I. INTRODUCTION9

Stratified turbulent mixing is a key physical process driving vertical transport in oceanic flows, setting the distri-10

bution of heat, salt, momentum, and other biogeochemical tracers. Because this mixing occurs on the smallest scales11

of fluid motion, it needs to be parameterized in large-scale circulation models. Furthermore, directly measuring the12

characteristics of oceanic turbulence is challenging, both due to the scales of the relevant motion and the sparseness13

of observations; parameterizations are thus also necessary for the interpretation of observational data.14

Stratified mixing events are frequently modelled in terms of idealized shear instabilities. While commonly discussed15

in the context of internal wave breaking in the stably-stratified ocean interior [14, 55], such instabilities have been16

observed in a wide variety of ocean contexts, including nonlinear internal waves near the continental shelf [32], shear17

at the base of the mixed layer [22], in the equatorial undercurrent [33], and flow over sills [57], as well as in estuaries18

[18, 54, 56]. As a result, there is a need to understand the dynamics of stratified shear instabilities in terms of resolved19

or measurable variables in order to accurately parameterize their effects [16].20

One of the simplest examples of a stratified shear flow is that of a single sheared buoyancy interface. In this21

configuration, there are two limiting instabilities that may arise. When the shear is sufficiently strong relative to the22

stratification (typical of cases in which the velocity and buoyancy profile vary over a similar vertical scale), the flow23

is susceptible to Kelvin-Helmholtz (KH) instability. Conversely, where the stratification is sufficiently strong relative24

to the shear and the buoyancy varies over a smaller scale than the velocity (i.e. the stratification is sharper than the25

shear), an alternate instability known as the Holmboe wave instability may arise [17, 19].26

Mixing events driven by KH instability are typically characterized by the formation of large overturns or “billows”,27

which themselves become susceptible to secondary instabilities, the precise details of which depend on the flow28

parameters [10, 23, 27, 28, 39], the background flow [26, 58], and the initial conditions [2, 11, 21]. These secondary29

instabilities in turn trigger a transition to turbulence, leading to a brief period of vigorous mixing, which acts to smear30

out the initial velocity and buoyancy gradients (i.e. “overturning” turbulence as described by Caulfield [6], Woods31

et al. [60]). After this period of intense mixing, the turbulent motions decay and the flow eventually relaminarizes.32

In contrast, Holmboe-driven mixing events (associated with sharp buoyancy interfaces) follow a different flow33

evolution. At finite amplitude, the initial linear instability leads to the formation of a pair of counterpropagating34

vortices on either side of the buoyancy interface (unlike the single large billow associated with KH). These vortices also35

support secondary instabilities [40, 47, 48], which trigger a breakdown into turbulence. However, the turbulence is36

highest on either side of the interface, rather than in the centre of the shear layer. As a result, the turbulence “scours”37

the interface, preserving a sharp buoyancy gradient. While the initial instability growth is typically much slower than38

KH flows, the associated turbulence is longer-lived: this type of mixing event “burns”, rather than “flares” [6]. The39

evolution can depend on the underlying flow parameters, particularly the Reynolds number [40]; however, Salehipour40

et al. [42] shows evidence of self-organized criticality for these flows, in which Holmboe instabilities with different41
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initial stratifications evolve towards turbulent states with a common distribution of the gradient Richardson number42

(i.e. the ratio of stratification and squared shear) featuring a peak near 1/4. Overall, Holmboe-driven (scouring)43

mixing events can differ from the KH (overturning) paradigm, even for the same bulk flow parameters.44

Complicating the picture further, most previous studies of shear instabilities have only considered the configuration45

with symmetric shear and stratification about the buoyancy interface. However, asymmetric profiles frequently arise46

in many geophysical flows, whether due to flow geometry, flow history, or the forcing (e.g. 56, 57). For example,47

the freshwater outflow in some estuaries is sufficiently strong to compete with the salt water intrusion of the ocean48

waters. In these cases, a stratified shear interface will form between the top freshwater outflow and the bottom salt49

water inflow. Both laboratory and field studies have shown that these stratified shear interfaces can have asymmetry50

[54, 61]. It is therefore natural to ask how asymmetry affects the resulting nonlinear evolution and mixing in stratified51

shear flows.52

One simple way to introduce asymmetry into the background flow profile is to consider a sheared buoyancy interface53

where the shear and buoyancy profiles are vertically offset. Lawrence et al. [24], and later Carpenter et al. [4] and54

Carpenter et al. [5], show that for asymmetric Holmboe-like profiles, the resulting linear normal-mode instability55

shares characteristics of both KH and Holmboe instability. In contrast to the symmetric case, they found a smooth56

transition between the different flow behaviours as characterized by the relative contributions of the kinematic and57

baroclinic fields.58

Asymmetric shear instabilities of this form have been observed both experimentally and numerically. In a series59

of laboratory experiments of shear layers offset from a thinner buoyancy stratification, Lawrence et al. [24] showed60

that an offset shear layer led to the formation of a one-sided flow characterized by cusped waves (with stronger61

stratification) and asymmetric billows (with weaker stratification) that entrained wisps of fluid across the buoyancy62

interface. Similar features have been observed in subsequent experimental studies in which shear is driven above a63

buoyancy interface [51], in spatially-accelerating shear layers [35, 61], and in sheared multilayer flows [8].64

Similarly, in a direct numerical simulation study, Carpenter et al. [3] showed that the nonlinear evolution of asymmet-65

ric Holmboe instabilities share characteristics of both KH- and Holmboe-like flow evolution: “billow-like” structures66

are observed to form that “scour” the interface. That is, the nonlinear evolution shows a mixture of behaviours,67

depending on the degree of asymmetry in the background flow profiles. Similar to the laboratory studies described68

above, the flows exhibited one-sided overturning features and cusped structures, and the asymmetric flows in general69

kept the initial interfaces intact. Further, Carpenter et al. [3] showed that more asymmetry led to instabilities that70

were increasingly dominated by shear-layer vorticity (consistent with KH-like behaviour). The corresponding mixing71

depended non-monotonically on the degree of asymmetry, influenced by stronger three-dimensional motions as well72

as distance from the buoyancy interface.73

While the study by Carpenter et al. [3] gave valuable insight into the impacts of asymmetry on a given mixing event,74

the simulations were limited to a single set of Reynolds, Richardson, and Prandtl numbers (defined in section 2), and75

the asymmetric cases were all Holmboe-like (with sharper buoyancy interfaces). Perhaps most significantly, due to76

the relatively low Reynolds number used, the resulting flow evolution was not necessarily turbulent; as the authors77

state, ‘the term ‘turbulence’ is being used loosely [. . . ] to indicate a region of complex or chaotic flow structure, and78

the low Re used may preclude this flow from fitting descriptions of turbulent mixing in other studies.’ Consequently,79

there remain many open questions about turbulent mixing events in asymmetric stratified shear flows, motivating the80

present study. We build upon the previous work on asymmetric shear instabilities by considering additional values of81

the Reynolds and Richardson numbers (and, crucially, a higher Reynolds number to explore turbulent effects), and82

by investigating symmetric and asymmetric profiles corresponding to both KH- and Holmboe-like setups.83

The remainder of the paper will proceed as follows. In section II, we introduce the linear instability problem and84

quantify the resulting normal-mode instabilities using the pseudomomentum approach described recently by Eaves and85

Balmforth [12]. Then, in section III, we present the results of a series of direct numerical simulations corresponding to86

several symmetric and asymmetric cases. Consistent with the linear predictions, we find that the nonlinear evolution87

of the asymmetric cases exhibits a mixture of both KH and Holmboe behaviours, including both large billow-like88

overturning structures and regions of scouring. This combination of behaviours is both qualitative and quantitative:89

not only are the large-scale structures reminiscent of both pure KH and Holmboe instabilities, but the energetics and90

turbulent mixing parameters also exhibit both behaviours. As a result, even small amounts of asymmetry can lead to91

very different final velocity and buoyancy profiles when compared with the symmetric cases. For the same large-scale92

buoyancy and velocity jumps, a given mixing event can therefore smear out gradients, maintain sharp gradients, or93

some combination of these behaviours. That is, the turbulent dynamics depend sensitively on the small-scale details94

of the initial flow. Finally, in section IV we conclude and put our results into context with recent work on stratified95

shear instabilities.96
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FIG. 1. Representative profiles of the background horizontal velocity and buoyancy fields. The associated gradient Richardson
number Rig (22) for these profiles is also included. These profiles are similar to the asymmetric Holmboe case.

II. LINEAR STABILITY ANALYSIS97

We consider a vertically-asymmetric hyperbolic tangent stratified shear layer,

U∗(z∗) = U∗0 tanh

(
z∗ − a∗0
h∗0

)
, and B∗(z∗) = B∗0 tanh

(
z∗

δ∗0

)
, (1)

which has the same form as Carpenter et al. [3] and are shown schematically in figure 1. The quantities U∗0 and B∗098

are half the horizontal velocity and buoyancy difference across the layers, respectively, where buoyancy is defined as99

B∗ = −g∗(ρ∗ − ρ∗0)/ρ∗0, with ρ∗0 a reference density and g∗ the gravitational acceleration. The shear and buoyancy100

interfaces have initial half-widths of h∗0 and δ∗0 , respectively, and the centres of the two interfaces are vertically offset101

by a∗0. Asterisks denote dimensional quantities. Nondimensionalizing velocity by U∗0 , buoyancy by B∗0 , and depth by102

h∗0 gives103

U(z) = tanh (z − a0) and B(z) = tanh (R0z) , (2)

where R0 ≡ h∗0/δ∗0 is the ratio of the initial interface thicknesses, and a0 ≡ a∗0/h∗0 is the initial profile offset.104

The behaviour of two-dimensional linear perturbations to the background state U(z), B(z) is governed by the105

linearized Navier-Stokes equations under the Boussinesq approximation, written as106

∂u

∂t
+ u · ∇U + U · ∇u = −∇p+ Ribbk̂ +

1

Re
∇2u , (3)

∂b

∂t
+ u · ∇B + U · ∇b =

1

Re Pr
∇2b , (4)

∇ · u = 0 . (5)

Here, boldfaced variables denote vector quantities and lowercase u, b, and p denote perturbations to the velocity,107

buoyancy, and pressure, respectively. In the above, time has been nondimensionalized by the advective timescale108

h∗0/U
∗
0 . In addition to R0 and a0, the perturbation dynamics are governed by the Reynolds, Prandtl, and bulk109

Richardson numbers110

Re =
U∗0h

∗
0

ν∗
, Pr =

ν∗

κ∗
, Rib =

B∗0h
∗
0

U∗20

, (6)

where ν∗ is the kinematic viscosity and κ∗ is the diffusivity of the buoyancy field. We note here that Re is defined111
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based on the shear layer half-width and half-velocity difference, rather than the full shear layer thickness and velocity112

jump as in some parts of the literature, including Carpenter et al. [3].113

To assess the linear stability of the shear layer (2), we take the standard approach of assuming a normal-mode114

structure for the perturbations,115

[ψ(x, z, t), b(x, z, t), p(x, z, t)] =
[
ψ̂(z), b̂(z), p̂(z)

]
eikx(x−ct) , (7)

where ψ is the velocity streamfunction, kx the horizontal wavenumber and c = cr +ici the complex phase speed of the116

perturbations. Substituting the normal-mode expressions into the governing equations (3)-(5) and rearranging gives117

the Taylor-Goldstein equation including viscous and diffusive effects (implemented by Smyth et al. [49]). Prescribing118

kx, we solve for the corresponding eigenvalue c and the associated eigenfunctions
[
ψ̂(z), b̂(z), p̂(z)

]
; regions of linear119

instability correspond to modes with ci ≥ 0, indicated by the contours in figure 2.120

Solutions of the Taylor-Goldstein equation predict which modes are unstable, their associated growth rate and121

phase speed, and the vertical structure of the eigenmodes. For the background flow (2), we also want to predict the122

nature of the linear instability: are the growing modes more like a KH instability or a Holmboe instability?123

To answer this question, we recall that stratified shear instabilities can be described in terms of interacting waves.124

Stratified parallel shear flows can support two different types of waves (namely vorticity waves, associated with changes125

in the shear, and internal gravity waves, associated with the stratification). The different linear growth mechanisms126

can be described in terms of interactions between different combinations of these waves [5]. Within this framework,127

the KH instability arises from a resonant interaction between two vorticity waves, while the Holmboe instability arises128

from the interaction between a vorticity wave and an internal gravity wave. In this sense, the Holmboe instability129

is an inherently stratified instability [1, 5, 6]. (A third named linear instability, the Taylor-Caulfield instability, can130

be thought of as the result of two internal waves interacting [5, 8, 12]. As the stratification considered here has131

only a single buoyancy interface and therefore only supports a single internal gravity wave, it does not support the132

Taylor-Caulfield instability.)133

Using the wave-interaction description of the different instability mechanisms, the qualitative nature of a given134

unstable mode can be predicted using the vertical structure of the eigenfunction. For example, Carpenter et al.135

[4] used a method of “partial growth rates” to quantify the contribution to the overall growth rate from buoyancy136

and vorticity interfaces, allowing for the description of modes in terms of KH- and Holmboe-like behaviour. More137

recently, Eaves and Balmforth [12] used a pseudomomentum-based approach to classify linear modes, again in terms138

of contributions from the vorticity and the stratification, allowing for a description of modes as being more or less139

like KH, Holmboe, or Taylor-Caulfield instabilities.140

Here, we apply the pseudomomentum-based approach of Eaves and Balmforth [12] to classify the linear modes141

arising in the asymmetric stratified shear layer (2). In our notation, Eaves and Balmforth defined142

Mv =
1

2

U ′′ψ̂2

|U − c|2
and Mb =

−Rib(U − cr)B′ψ̂2

|U − c|4
(8)

as the contributions to the pseudomomentum from the background vorticity and stratification, respectively, where143

the primes denote derivatives with respect to z. It can be shown that a requirement for exponentially-growing modes144

is that M = 〈Mv +Mb〉 = 0, where angle brackets denote the integral over the spatial domain [12].145

This requirement that M = 0 can be used to characterize different modes in terms of the different canonical146

instabilities. To do so, we define the ratio147

RM =
〈MvH(Mv)〉
〈−MvH(−Mv)〉

=
M+

v

M−v
, (9)

where H is the Heaviside function and M+
v and M−v are defined as the magnitudes of the contributions of positive148

and negative Mv, respectively, to M (i.e. 〈Mv〉 = M+
v −M−v ). This ratio can be used to describe the character of149

the asymmetric instabilities considered here. In particular, we find two limiting cases of interest for flows described150

by (2). In the first case, if a given unstable mode is associated purely with interactions from vorticity with no buoyancy151

contribution (Mb = 0 as is expected for a pure KH mode), then the requirement that M = 0 for a growing mode152

implies 〈Mv〉 = 0, and so RM = 1 in the KH limit. In the second case, if the positive contributions from vorticity are153

balanced entirely by negative contributions from the stratification, then M−v = 〈Mb〉 and M+
v = 0, giving RM = 0154

(as expected for a pure Holmboe mode). We note that the definition of RM in (9) reflects our choice to introduce155

asymmetry in the mean profiles by shifting the shear interface above the buoyancy interface. As a result, the leftward-156

propagating Holmboe wave above the buoyancy interface is amplified relative to the rightward-propagating wave below157
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the interface, i.e. the upper Holmboe wave is the fastest-growing mode for these asymmetric profiles. For a flow in158

which the shear interface is offset below the buoyancy interface, or one in which the lower Holmboe wave is isolated,159

1/RM would give the same classification results as described below. For the profiles considered in (2) with a0 > 0,160

0 ≤ RM ≤ 1.161

We illustrate these limiting cases in the top row of figure 2. For a case in which the shear layer is significantly offset162

from the stratified layer (figure 2a), for which the most unstable mode is very similar to an unstratified KH mode,163

the positive (purple) and negative (yellow) vorticity contributions cancel almost perfectly, with only a small buoyancy164

contribution. On the other hand, for a near-symmetric Holmboe mode (figure 2c), the negative contributions from165

vorticity are almost entirely cancelled out by the net positive buoyancy contribution, with only a very small positive166

vorticity contribution. Finally, for some modes the negative contribution from vorticity is balanced by both a positive167

vorticity contribution and a buoyancy contribution (figure 2b), suggesting that the instability shares characteristics168

of both a KH and a Holmboe mode.169

We then use the pseudomomentum ratio RM to classify the predicted unstable modes of (2) across a range of170

wavenumbers kx and vertical offsets a0 for different Rib and R0, as shown in figure 2(d-g). For R0 = 3, we find171

consistent results to those described in Carpenter et al. [3]: increasing asymmetry shifts the linear instability from172

a Holmboe-like behaviour at small a0 to a KH-like behaviour at large a0, and a mixture of the two instabilities at173

intermediate a0. For R0 = 1, as expected we find KH-like modes for a0 = 0 and for large a0 (when the shear layer is far174

enough removed from the initial stratification to behave essentially like an unstratified shear layer). However, between175

these limits asymmetry in the background flow leads to modes with both KH-like and Holmboe-like behaviour, with176

RM < 1 and nonzero phase speed (not shown); this effect is stronger for higher Rib (figure 2f). That is, mixed modes177

are possible even when the background shear and stratification vary over similar vertical scales.178

III. NONLINEAR SIMULATIONS179

A. Implementation180

Linear theory predicts that the shear instabilities associated with an asymmetric shear layer exhibit behaviours181

similar to both KH and Holmboe instabilities. What is the associated nonlinear behaviour of these instabilities? To182

answer this question, we perform a series of direct numerical simulations of the fully nonlinear Navier-Stokes equations183

under the Boussinesq approximation,184

∂u

∂t
+ u · ∇u = −∇p+ Ribbk̂ +

1

Re
∇2u , (10)

∂b

∂t
+ u · ∇b =

1

Re Pr
∇2b , (11)

∇ · u = 0 . (12)

The Reynolds number (Re), Prandtl number (Pr) and Richardson number (Rib) are identical to those defined above.185

Unlike equations (3-5) in the previous section, u and b are the total (nonlinear) velocity and buoyancy fields.186

The simulations were performed using the Spectral Parallel Incompressible Navier-Stokes Solver (SPINS) [52].187

SPINS implements pseudospectral spatial derivatives in all three directions and an explicit third-order time stepping188

scheme. The horizontal domain is periodic, and the vertical gradient-free boundaries are imposed using a cosine-189

transformation. The streamwise extent (Lx) of the computational domain is selected to fit one wavelength of the190

fastest growing linear instability (see §II), and the vertical and spanwise extents are chosen to match those from191

Carpenter et al. [3].192

The initial conditions consist of the velocity and buoyancy profiles (2) perturbed with the eigenfunction of the193

fastest growing linear mode predicted from the Taylor-Goldstein equation (ue, be) and a random velocity perturbation194

in the form of normally-distributed random noise. The amplitude of the eigenfunctions and the random noise are195

εe = 0.01 and εN = 0.001, respectively. These initial amplitudes are comparable to several previous shear instability196

studies (e.g. 11, 40, 58).197

Our simulations have four flow configurations, determined by the relative width R0 and offset a0 of the initial198

velocity and buoyancy profiles:199

1. SKH – “symmetric Kelvin-Helmholtz” flow with R0 = 1 and a0 = 0;200

2. SHI – “symmetric Holmboe” with R0 = 3 and a0 = 0;201

3. AKH – “asymmetric Kelvin-Helmholtz” flow with R0 = 1 and a0 = 0.5;202
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FIG. 2. (Top row) Example profiles of Mv and Mb for the fastest-growing modes of (a) a KH-type instability far from from
the interface (R0 = 3, a0 = 3), (b) an asymmetric KH instability (R0 = 1, a0 = 0.5), and (c) a near-symmetric Holmboe
instability (R0 = 3, a0 = 0.001). The horizontal dotted lines indicate the height of maximum shear and stratification, and the
yellow and purple shaded regions represent contributions toM−v andM+

v , respectively. Rib = 0.15 for all three cases. (Middle
and bottom rows) Growth rates (contours) and pseudomomentum ratios (colours) for the base flow (2) for the symmetric and
asymmetric KH and Holmboe configurations with Re = 1200 and Pr = 9. (d) R0 = 1, Rib = 0.15. (e) R0 = 3, Rib = 0.15. (f)
R0 = 1, Rib = 0.20. (g) R0 = 3, Rib = 0.20. The contour interval is 0.01 and the stars denote parameters for the nonlinear
simulations described in table I.

4. AHI – “asymmetric Holmboe” flow with R0 = 3 and a0 = 0.5.203

For each configuration, we consider three sets of Reynolds and Richardson numbers, for a total of twelve simulations
as summarized in table I. These cases span values of RM from 0 to 1, i.e. Holmboe-like to KH-like linear instabilities.
We note that the SKH, SHI, and AHI simulations with Re = 300 and Rib = 0.15 use the same parameters considered
by Carpenter et al. [3]. All simulations were continued until the flow relaminarized and there was no significant
overturning of the buoyancy field. Consistent with previous DNS studies of shear instability (e.g. 21, 40, 45), the grid
spacing (∆x) was selected to be less than three times the minimum Batchelor scale (LB,min), defined by the maximum
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Case Instability Domain Size Resolution Re Rib Pr R0 a0
∆x
LB
RM

(Lx × Ly × Lz) (Nx ×Ny ×Nz)

1 SKH 14.02× 9× 18 256× 192× 384 300 0.15 9 1 0.0 2.8 1.00

2 AKH 13.45× 9× 18 256× 192× 384 300 0.15 9 1 0.5 2.7 0.66

3 AHI 11.47× 9× 18 256× 192× 384 300 0.15 9 3 0.5 2.4 0.37

4 SHI 16.52× 9× 18 384× 192× 384 300 0.15 9 3 0.0 2.4 0.09

5 SKH 13.94× 9× 18 768× 512× 1024 1200 0.15 9 1 0.0 2.5 1.00

6 AKH 13.30× 9× 18 768× 512× 1024 1200 0.15 9 1 0.5 2.4 0.68

7 AHI 11.32× 9× 18 768× 512× 1024 1200 0.15 9 3 0.5 2.8 0.39

8 SHI 15.50× 9× 18 768× 512× 1024 1200 0.15 9 3 0.0 2.9 0.11

9 SKH 13.35× 9× 18 512× 384× 768 1200 0.20 9 1 0.0 2.9 1.00

10 AKH 12.96× 9× 18 768× 512× 1024 1200 0.20 9 1 0.5 2.4 0.56

11 AHI 10.58× 9× 18 768× 512× 1024 1200 0.20 9 3 0.5 2.5 0.30

12 SHI 13.42× 9× 18 768× 512× 1024 1200 0.20 9 3 0.0 2.5 0.07

TABLE I. Summary of parameters for the suite of direct numerical simulations. We use the following naming convention: (i)
SKH – symmetric Kelvin-Helmholtz instability, (ii) AKH – asymmetric Kelvin-Helmholtz instability, (iii) AHI – asymmetric
Holmboe instability, (iv) SHI – symmetric Holmboe instability, corresponding to the definitions in the main text.

horizontally averaged dissipation rate ε,

LB,min =

(
1

Re3 max ε

) 1
4
(

1

Pr

) 1
2

, (13)

where the overbar · denotes the horizontal mean.204

Our computational setup and flow parameters have been chosen to prioritize setting Pr = 9 (a realistic value for205

heat in water). To do so has required some compromise in both the streamwise extent of the domain and the choice206

of Reynolds number. We revisit this point in the conclusions.207

B. Flow evolution208

We have highlighted in § II that the linear instabilities of the offset profiles (2) exhibit a continuum in structure209

between the pure KH and the pure Holmboe instabilities. Here, we will show that the mixed features of the linear210

instabilities result in nonlinear flow features that are reminiscent of both KH and Holmboe mixing events.211

Illustrating the flow evolution for each of the four cases (SKH, AKH, AHI, and SHI), figure 3 shows vertical (x− z)212

slices of the buoyancy field at representative times. We focus on the simulations with Re = 1200 and Rib = 0.15,213

and will note significant differences for the other Re and Rib cases. We complement these two-dimensional slices with214

plots of the three-dimensional structures of the buoyancy field (figure 4) at the same times as in figure 3(b,f,j,n),215

illustrating the onset of secondary instabilities in each case. We discuss the key features of each case below:216

(i) SKH: The nonlinear evolution of the symmetric Kelvin-Helmholtz instability (SKH) is illustrated in figure 3(a-217

d). The flow follows the typical evolution of a KH-driven mixing event [7]. The initial linear instability leads218

to the formation of the classic billow structure at finite amplitude, overturning the entire stratified interface219

(figure 3a). This billow is stationary with respect to the mean flow and approximately vertically symmetric.220

The billow then becomes unstable to three-dimensional secondary instabilities (figure 3b and 4a), which trigger221

a transition to turbulence that fills the entire shear layer (figure 3c,d). The buoyancy profile is more diffuse222

at the end of the simulation, with nearly equal mixing of the top and bottom fluid layers. While the same223

sequence is observed in our SKH simulations at Re = 300 and Rib = 0.20, the turbulent mixing in those cases is224

significantly weaker due to the stronger effects of viscosity and stratification, respectively. That is, the turbulent225

SKH dynamics are sensitive to the flow parameters for the simulations presented here.226

(ii) SHI: The evolution of the symmetric Holmboe instability (SHI) is shown in figure 3m-p. SHI is characterized227

by waves propagating along the buoyancy interface, leading to the formation of counterpropagating vortices at228

finite amplitude (figure 3m). For the background flow considered here, these vortices are symmetric about the229

buoyancy interface. Like the SKH billow, the vortices are themselves susceptible to three-dimensional secondary230
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FIG. 3. Snapshots of buoyancy field at representative times throughout the flow evolution. Vertical (x− z) slices are provided
for (a)-(d) Case 4 – R0 = 1, a0 = 0, t = {55, 85, 115, 145}, (e)-(h) Case 5 – R0 = 1, a0 = 0, t = {55, 85, 115, 145}, (i)-(l) Case
6 – R0 = 1

3
, a0 = 0, t = {70, 105, 140, 175}, and (m)-(p) Case 6 – R0 = 1

3
, a0 = 0, t = {120, 170, 220, 270}. In all included

cases Re = 1200, Rib = 0.15, Pr = 9.

instabilities (figure 3n and 4c), which trigger a transition to a fully-turbulent flow (figure 3o). Unlike SKH,231

however, the resulting mixing is longer-lived and acts to scour the initial stratification, maintaining a sharp232

interface (figure 3p). We will return to this point in section III D. In addition, the SHI is more consistent across233

Re and Rib, suggesting that the overall turbulent dynamics may be less sensitive to the initial flow parameters.234

(iii) AHI: When the buoyancy profile is thinner than the shear profile, and a vertical offset is introduced (i.e. R0 = 3235

and a0 = 0.5), the asymmetric Holmboe instability (AHI) may arise (figure 3i-l). As seen previously by Carpenter236

et al. [3], at finite amplitude the AHI leads to the formation of a large propagating vortex above the buoyancy237

interface that entrains part of the buoyancy interface to form a billow-like structure. At Re = 300, this primary238

vortex produces a series of ejection events before decaying. However, at larger Re = 1200, these ejections are239

interrupted by the rapid formation of secondary instabilities (figure 4d). In either case, the resultant mixing240

is primarily above the buoyancy interface, leading to an asymmetric final buoyancy profile. Consequently, the241
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FIG. 4. Three-dimensional visualizations of the buoyancy field as the secondary instabilities develop. The output times are
t = 85 (SKH), t = 85 (AKH), t = 105 (AHI), and t = 170 (SHI), i.e. the same times as in figure 3(b,f,j,n). These plots were
constructed using VisIt’s [9] Volume plot, which sets the opacity of the buoyancy field based on its value.

turbulent flow only overturns part of the initial interface, maintaining a strong buoyancy gradient on the lower242

side.243

(iv) AKH: Finally, we consider the situation where the shear and stratification have the same initial thickness but244

are vertically offset (i.e. R0 = 1 and a0 = 0.5), giving rise to the asymmetric Kelvin-Helmholtz instability (AKH),245

depicted in figure 3(e-h). This instability results in the formation of a large billow, similar to that of the SKH.246

However, there are two key differences: the billow is centred above the buoyancy interface, and is no longer247

stationary with respect to the mean flow (as demonstrated by the different horizontal locations between panels248

in figure 3). The billow is then susceptible to secondary instabilities which are qualitatively similar to those249

observed for the SKH (figure 4b) and likewise trigger a transition to turbulence. However, similar to the AHI250

flow, the mixing in the AKH case is vertically asymmetric: while the turbulent mixing acts to smear out the251

buoyancy gradient above the initial stratified interface, the lower part of the interface remains relatively sharp252

(figure 3h).253

Consistent with the linear predictions in section II, the nonlinear evolution and mixing associated with the asym-254

metric cases (AKH and AHI) share qualitative features of both KH- and Holmboe-driven mixing events. For example,255

they exhibit both a billow structure and a non-zero phase speed. This trend is consistent across the different param-256

eter (Re, Rib) scenarios presented in table I, with the most notable difference being that at lower Re and higher Rib,257

the SKH is much less energetic. We explore this comparison more quantitatively in the following sections.258

C. TKE budget259

As we have seen, shear instabilities mix the stratification such that the final mean buoyancy and shear profiles are
more diffuse than they were initially. The evolution of the mean flow can be distinguished from that of the shear
instabilities through a Reynolds decomposition. That is,

u = u + u′, b = b+ b′, (14)
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FIG. 5. TKE budgets for the cases listed in table I. Note that the time axes were trimmed (e.g. panel d) to have all of the
TKE budgets on a consistent and legible horizontal scale.

where · denotes the horizontal average. We will use the fact that u ≈ (u1(z, t), 0, 0)T below. Under this decomposi-
tion, the volume-integrated turbulent kinetic energy (TKE =< 1

2 |u
′
i|2 >) evolves as

d

dt
TKE = < −u′iu′j

∂ui
∂xj

>︸ ︷︷ ︸
Production

+ Rib < u′3b >︸ ︷︷ ︸
Buoyancy Flux

− < ε′ >︸ ︷︷ ︸
Dissipation

, (15)

where ui is the ith component of u, and the turbulent dissipation ε′ = 1

2 Re

(
∂u′

j

∂xi
+

∂u′
i

∂xj

)(
∂u′

j

∂xi
+

∂u′
i

∂xj

)
. We are260

implicitly summing over repeated indices.261

A physical interpretation of (15) is that TKE is produced by extracting energy from the mean flow, and will decay262

via viscous dissipation and mixing (a negative buoyancy flux). Equation (15) enables us to make a quantitative263

comparison between the cases listed in table I (see figure 5 as well as the time-integrated flux, production, and264
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dissipation values in table II), and provides another measure of how asymmetry frustrates the traditional distinction265

between the SKH and the SHI.266

We first focus on Case 5 from table I, i.e. SKH with Re = 1200 and Rib = 0.15 (figure 5e). The growth of the initial267

billow is associated with a large shear production and negative buoyancy flux, as dense fluid is transported upwards.268

The billow quickly becomes unstable to secondary instabilities and the flow becomes turbulent, enhancing viscous269

dissipation. Eventually, the dissipation dampens the TKE, and the flow relaminarizes. The duration of the turbulent270

event is relatively short, with few oscillations between the TKE production and the buoyancy flux. We note that the271

SKH flows with lower Re (figure 5a) and higher Rib (figure 5i) are much less energetic, owing to the stronger effects272

of viscosity and stratification, respectively.273

On the other hand, for Case 8 (SHI at the same parameter values; figure 5h), the buoyancy flux, shear production,274

and the rate of change of TKE exhibit a sequence of oscillations associated with periodic conversions between kinetic275

and potential energy in the propagating Holmboe waves. These oscillations continue until the onset of secondary276

instabilities and the subsequent transition to turbulence with increased ε. Finally, the flow relaminarizes with all277

terms decaying. In contrast to the SKH case, the SHI event is long-lived, lasting many wave periods. A similar278

behaviour is observed for the other parameter values (figure 5d,l), though we note that the oscillations persist for a279

longer time at lower Re as the flow remains laminar for a longer time.280

Consistent with the linear predictions in § II and the qualitative descriptions in § III B, asymmetry in the base flow281

results in a hybrid of the pure KH (SKH) and pure Holmboe (SHI) behaviours. Figures 5(f,g) demonstrate that as the282

instability mechanism transitions from KH-like to Holmboe-like, the duration of the turbulent mixing event increases.283

Both an initial period of positive shear production and negative buoyancy flux as well as regularly-spaced oscillations284

in the budget terms are observed, similar to the initial billow development in the SKH flow and the periodic waves285

in the SHI flow. While viscosity and stratification still impact the resulting flow evolution for the asymmetric cases286

(particularly for the AKH flows), we note that in contrast to the SKH flows, the asymmetric cases remain more287

energetic at lower Re (figure 5b,c) and higher Rib (figure 5j,k).288

Once again, asymmetry in the base flow results in a hybrid flow between the pure KH (SKH) and the pure289

Holmboe-wave instability (SHI). Figure 5 demonstrates that as the instability mechanism transitions from KH-like to290

Holmboe-like, the duration of the turbulent event increases (e.g. figure 5f) and regularly-spaced oscillations appear291

between the rate of change of TKE and buoyancy flux (e.g. figure 5g). Thus, as discussed in §II, asymmetry introduces292

an apparent transition between the SKH and the SHI.293

The volume-averaged quantities provide an overview of the energetics of these symmetric and asymmetric flows.294

Further insight can be gleaned from considering where buoyancy flux or dissipation are occurring within the flow,295

which we consider in the next section.296

D. Horizontally-averaged quantities297

The TKE budgets above show that the turbulent flow field extracts energy from the mean flow, which is subsequently
dissipated. We now discuss how that energy transfer changes the vertical structure of the horizontally-averaged mean
flow. In particular, we characterize the structure of the mean velocity and buoyancy profiles through the buoyancy
frequency (N2) and shear rate (S2), defined

N2 =
∂b

∂z
, S2 =

(
∂u1

∂z

)2

. (16)

Similarly, we will present the mean viscous dissipation (ε) and scalar variance dissipation (χ), computed as

ε =
1

2Re

(
∂uj
∂xi

+
∂ui
∂xj

)(
∂uj
∂xi

+
∂ui
∂xj

)
≈ 1

Re
S2 + ε′, (17)

χ =
1

N2

1

Re Pr

∂b

∂xi

∂b

∂xi
≈ N2

Re Pr
+ χ′. (18)

High ε and χ indicate regions of strong turbulent motions acting on the velocity and buoyancy fields, respectively.298

The timeseries of horizontally-averaged buoyancy (b̄), buoyancy frequency (N2), shear rate (S2), viscous dissipation299

(ε), and scalar variance dissipation (χ) for Re = 1200 and Rib = 0.15 are presented in figure 6. Superimposed on each300

plot are the (-0.9, 0, 0.9) contours of u1 (green) and b (yellow), to approximate the bottom, middle and top of the301

buoyancy and velocity interfaces.302

As described above, the SKH is characterized by an initial billow structure that breaks down into turbulence, which303

subsequently decays. There is a corresponding “burst” of intense turbulence, which produces an associated increase304
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FIG. 6. Contour plots of the horizontally-averaged (a)-(d) buoyancy, (e)-(h) N2, (i)-(l) S2, (m)-(p) log ε, (q)-(t) logχ, and
(u)-(x) ReB as a function of time. The base of the logarithms is e (natural logarithm). Data is plotted for Case 4 (left), Case
5 (middle left), and Case 6 (middle right) and Case 7 (right) – Re = 1200,Rib = 0.15. Superimposed on each plot are the
(-0.9,0,0.9) contours of u (green) and b (yellow). Anomalous values of large χ and ReB associated with N2 → 0 have been
masked our as described in § III F.
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in viscous and scalar dissipation (figure 6m,q). This turbulence rapidly mixes (thickens) the initial buoyancy and305

velocity interfaces, decreasing the overall stratification and shear (figure 6a,e,i). Consistent with previous studies of306

KH instability, the overall thicknesses of the buoyancy and velocity interfaces (as shown by the green and yellow307

contours) evolve similarly to one another throughout the flow evolution [45].308

In contrast, the wavelike nature of the SHI results in oscillations in the horizontally-averaged fields at the buoyancy309

interface (figure 6d). The maximum gradient of the buoyancy and velocity interfaces remains relatively large after the310

mixing event (figure 6h,l), and the buoyancy interface remains thinner than the velocity interface. We also observe that311

the viscous and scalar dissipation rates remain high for an extended period throughout the mixing event, consistent312

with the “burning” behaviour described in Caulfield [6].313

To recap, KH-driven mixing is associated with overturning turbulence, acting to smear out the initial interface.314

In contrast, Holmboe-driven mixing is associated with scouring turbulence, keeping interfaces sharp [6, 60]; these315

behaviours are well demonstrated by the evolution of N2 and S2 for the SKH and SHI simulations (figure 6e,h,i,l).316

However, asymmetry breaks this dichotomy. We find that the asymmetric instabilities both mix the buoyancy interface317

(identified by the yellow contours), while preserving a sharp buoyancy gradient that is offset from its initial position.318

This hybrid behaviour is a result of the asymmetric mixing of the AKH and AHI.319

The locations of the viscous dissipation and mixing are identified through ε and χ. For both the SKH (figure 6m,q)320

and SHI (figure 6q,t), ε and χ are roughly symmetric with respect to the buoyancy interface. Conversely, AKH321

(figure 6n,r) and AHI (figure 6o,s) show more mixing above the buoyancy interface, associated with the breakdown322

of the initial billow structure. We find that the u1 = [-0.9,0.9] contours provide reasonable vertical bounds for the323

location of the mixing and dissipation. Thus, the initial asymmetry of both AHI and AKH results in asymmetric324

mixing of the buoyancy and velocity fields, while preserving the buoyancy and velocity interfaces. As such, asymmetric325

shear instabilities combine the intense mixing of a KH instability with the interface-preserving property of a Holmboe326

instability.327

We have argued that, in contrast to SKH, the AKH, AHI, and SHI exhibit scouring behaviour, which preserves the328

buoyancy interface. To illustrate this, we define the buoyancy Reynolds number (ReB = ε/
(
νN2

)
) as a measure of329

the regions where the turbulence is most intense relative to the background stratification. As describe qualitatively330

above, while the SKH has elevated values of ReB throughout the buoyancy interface (figure 6u), we find high values of331

ReB ≈ 100 for the AKH, AHI, and SHI away from the buoyancy interface (figure 6v-x). That is, the SKH overturns332

and diffuses the buoyancy interface, while the other cases scour but do not eliminate a strong buoyancy gradient.333

E. Interface position and width334

The initial velocity and buoyancy profiles of the SKH, AKH, AHI, and SHI differ in the value of the initial interface335

thickness ratio R0 and the initial interface offset a0. Throughout the mixing event, the mean value of the relative336

interface thickness and offset evolve in time. To demonstrate this evolution, we have included a comparison of the initial337

and final − ∂b
∂z and ∂u1

∂z profiles (taken at the end of each simulation t = tf ) in figure 7(a-d). The initially symmetric338

profiles (SKH, SHI) retain their symmetry. Conversely, initially asymmetric profiles (AKH, AHI) preferentially mix339

one side of the buoyancy interface more than the other. This asymmetric mixing will displace the position of the340

buoyancy (z0,b) and velocity (z0,u) interface over the course of the simulation. This is evident by looking at the341

interface heights at the final time (that is, the heights of the peak gradients in buoyancy and velocity), marked with342

a ∇ on the corresponding panels of figure 7a-d. Note that the asymmetric mixing results in final profiles in which the343

peak gradients are approximately aligned, nearly eliminating the initial offset.344

In addition to the interface position, we quantify the evolving interface widths as the standard deviation of b or u1

about the peak gradient. That is, we define the buoyancy (σb) and velocity (σu) interface thicknesses as

σb =

√∫
(z − z0,b)

2
∂zb dz∫

∂zb dz
, (19)

σu =

√∫
(z − z0,u)

2
∂zu1 dz∫

∂zu1 dz
. (20)

Having estimated the interface position and width with time, the evolving interface thickness ratio (R) and interface
offset (a) are

R(t) =
σu
σb
, a(t) = z0,u − z0,b. (21)
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FIG. 7. Plot of the initial and final profiles of − ∂b
∂z

and ∂u1
∂z

of the (a) SKH, (b) AKH, (c) AHI, and (d) SHI for Re = 1200, Rib =
0.15. The evolution of the (e) interface thicknesses R and (f) offset a are included as a function of time.

Note that R(t = 0) ≈ R0, a(t = 0) ≈ a0.345

We plot the evolution of R in time in figure 7(e) for all Re = 1200 cases, and include the initial and final values of346

R and a for all cases in table II. We do not include the data from the Re = 300 cases in figure 7, as the low Reynolds347

number results in significant interface diffusion that obfuscates the present results. However, even at Re = 300, we348

find similar conclusions to those presented here (see table II).349

Several features can be seen in the plot of R (figure 7e). First, the formation of the large billow in the SKH,350

AKH, and AHI cases is associated with a transient decrease in R. On the other hand, a clear oscillatory behaviour351

is apparent in the SHI flows, consistent with the wavelike character of the flow described above. As the billow or352

vortices break down into turbulence and the flow mixes, R increases and then nearly plateaus.353
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Case Instability t2D,max t3D,max R0 R(t = tf ) a0 a(t = tf ) P B D ηM η η3D

1 SKH 223.4 309.3 1.0 1.8 0.0 0.0 0.11 -0.03 -0.09 0.13 0.22 0.13

2 AKH 175.4 235.6 1.0 1.6 0.5 0.2 0.28 -0.07 -0.21 0.16 0.60 0.20

3 AHI 198.5 239.2 3.0 2.2 0.5 0.0 0.39 -0.08 -0.31 0.17 0.48 0.28

4 SHI 324.4 379.5 3.0 2.2 0.0 0.0 0.36 -0.08 -0.27 0.17 0.62 0.23

5 SKH 92.4 131.3 1.0 1.3 0.0 0.0 0.50 -0.10 -0.40 0.21 0.36 0.23

6 AKH 60.0 134.4 1.0 1.3 0.5 0.0 0.45 -0.10 -0.35 0.19 0.21 0.21

7 AHI 89.6 147.9 3.0 2.0 0.5 0.0 0.42 -0.07 -0.35 0.17 0.23 0.22

8 SHI 183.0 232.2 3.0 2.3 0.0 0.0 0.25 -0.04 -0.21 0.20 0.23 0.20

9 SKH 159.3 191.6 1.0 1.2 0.0 0.0 0.04 -0.01 -0.03 0.13 0.14 0.11

10 AKH 69.0 134.4 1.0 1.4 0.5 0.1 0.25 -0.05 -0.20 0.19 0.30 0.29

11 AHI 128.4 160.1 3.0 2.4 0.5 -0.1 0.29 -0.05 -0.23 0.17 0.37 0.15

12 SHI 208.0 247.4 3.0 2.5 0.0 0.0 0.17 -0.03 -0.14 0.20 0.31 0.20

TABLE II. Table of case parameters for the twelve numerical simulations. Time of maximum 2D and 3D TKE are given as
t2D,max and t3D,max. The initial and final interface ratios (R0, R(t = tf ) ) and interface offsets (a0 , a(t = tf )) are also included.
The time integral of production (P), buoyancy flux (B), and dissipation (D) are included. The median mixing efficiency (ηM ),
mean mixing efficiency (η), and mean mixing efficiency within the turbulent region (η3D, as described in § III F) are given for
each case.

The SKH and AKH cases (R(t = 0) = 1) tend towards increased thickness ratios of R ≈ 1.3 by the end of the354

simulation, consistent with the velocity diffusing faster than the buoyancy for Pr = 9. For the instabilities with355

initially thin buoyancy interfaces (R(t = 0) = 3, i.e. SHI and AHI), the flows tend towards reduced values of R ≈ 2356

by the end of the simulations, indicating that the turbulent event has thickened the buoyancy gradient more than357

the velocity gradient. However, the buoyancy interface remains thinner than the velocity interface, even with the358

signature of the initial billow for the AHI case.359

Recall that the initial offset between the shear and buoyancy interfaces for the AKH and AHI is nearly eliminated360

by the end of the mixing events (see figure 7f). The flow asymmetry for these cases results in preferential mixing361

above the buoyancy interface, leading to a downwards shift of both interfaces. As the shear interface is located above362

the buoyancy interface, it is mixed at a faster rate, such that the final position of the two interfaces are co-located.363

The asymmetric mixing reduces the interface offset in the final state.364

F. Self-organized criticality365

The gradient Richardson number,

Rig =
N2

S2
, (22)

is an important parameter in studies of stratified shear flows, relating the stabilizing effect of stratification with the366

destabilizing effect of shear. In particular, the “critical” value Rig ∼ 1/4 is commonly associated with stratified367

turbulent mixing: Rig < 1/4 is a necessary condition for instability in steady parallel inviscid stratified shear flows368

[20, 31], and oceanic observations suggest that a critical Richardson number close to 1/4 is a useful criterion in practice369

for the onset of turbulent mixing (e.g. 13). Oceanic and estuarine observations suggest that stratified shear flows often370

exhibit a peak in the distribution of Rig around this critical value [e.g. 15, 38, 46].371

Motivated by these observations, recent studies have focused on the idea of “self-organized criticality” in stratified372

turbulent flows, that is, the tendency of flows to evolve to a state with Rig near the critical value. One commonly-373

invoked argument suggests that this is associated with a balance between external energy input to the background374

flow (forcing) driving the flow towards a state with Rig < 1/4, allowing for the possibility of shear instability, and375

overturning turbulent mixing acting to increase Rig to values above 1/4; the balance between these two processes is376

thought to result in a state of “marginal stability” [44, 50].377

The above explanation relies on the presence of external forcing to drive the system back to an unstable state.378

Salehipour et al. [42] discovered an alternative mechanism for this self-organizing behaviour, namely that symmetric379

Holmboe instabilities evolve to a state where the average gradient Richardson number is approximately 1/4, regardless380

of initial flow parameters. Furthermore, they argue self-organized criticality is not present for KH instability, which381
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FIG. 8. (a-d) Timeseries plots of the gradient Richardson number of the horizontally-averaged flow, N2/S2. (e-h) Local
mixing efficiency, η, as defined in equation (23). The opaque regions in (a-h) indicate the portions of the flow for which
ε′ < 2Rib/(Re Lz). (i-l) Profiles of Rig and η of the horizontally-averaged flow at t = t3D,max (dark) and averaged from
t3D,max (light) to the end of the simulation. The thin dashed lines indicate Rig = 1/4 and η = 1/6. All cases shown have
Re = 1200 and Rib = 0.15.

can exhibit average gradient Richardson numbers above or below 0.25, depending on the initial parameters. It should382

be emphasized that this description is for freely-evolving shear layers like those we consider here, rather than the383

forced system of Smyth et al. [50].384

To what extent do asymmetric shear instabilities share this tendency to self-organize? We have shown that the385

initial offset in the location of peak buoyancy and shear is essentially removed by the end of the simulation, and that386

the ratio of interface thicknesses converges to approximately the same values regardless of initial asymmetry. Thus,387
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we may wonder whether there is some “attractive” state to which the system is evolving, depending on how Holmboe-388

or KH-like the initial instability is. To explore this question, we investigate the statistics of the gradient Richardson389

number (Rig) and the mixing efficiency (η), defined by equation (23), for both the symmetric and asymmetric initial390

conditions.391

We first consider Rig in the region where the flow is sufficiently turbulent. As in Salehipour et al. [42], we focus on392

regions where ε′ > 2
Lz

Rib
Re , as this avoids regions where both N2, S2 → 0 (see figure 6). Similarly, we restrict t > t3D,393

where t3D is the time of maximum kinetic energy, removing the initial laminar period. We note that the results in394

this paper are relatively robust to variations in the precise values of these two filtering criteria.395

As shown in figure 8(a,b), the SKH and AKH cases start from an initial state in which Rig has a minimum at the396

centre of the shear layer. After the instability grows and triggers a transition to turbulence, the flow rapidly mixes to397

a state in which Rig & 1/4, though slightly lower values of Rig persist for longer in the AKH case than its symmetric398

counterpart. On the other hand, the AHI and SHI cases, start with a local maximum in Rig at the centre of the shear399

layer (figure 8c,d). The onset of turbulence in both cases does not lead to the same rapid increase of Rig. Instead,400

as a consequence of the turbulence being strongest in the weakly-stratified regions away from the buoyancy interface,401

the turbulent shear layer shows a range of gradient Richardson numbers for these two cases.402

To quantify these distributions further, within the turbulent region after t3D, we compute the probability density403

function (PDF) of Rig (figure 9a,c,e,g). Consistent with Salehipour et al. [42], the different SKH cases (figure 9a) have404

different peaks in Rig, and the PDFs of the SHI cases (figure 9g) appear to show a consistent peak near Rig = 0.25.405

Of more interest is the behaviour of the AKH and AHI cases (figure 9c,e). In contrast to the SKH cases, both406

asymmetric configurations show a collapse of the PDFs across the parameter values considered here. That is, these407

PDFs of Rig are not very sensitive to the particular values of Re and Rib. However, the value of the peaks in Rig408

differs between the AKH and AHI flows: for AHI, the peak is close to the value of 1/4 seen in the SHI cases, while409

AKH show a consistent peak around Rig ≈ 0.4 (similar to the larger Rig values seen for some of the SKH flows).410

Again, the stark dependence on Re and Rib associated with SKH appears to be reduced for AKH. However, the details411

of the turbulent flows still depend on the specific case in question (and the degree to which it is more or less “KH-like”412

versus “Holmboe-like”).413

We next turn to the corresponding distributions of the mixing efficiency, η, for the different symmetric and asym-
metric cases considered here. The mixing efficiency is the fraction of the total energy loss that increases the potential
energy of the system (as opposed to the energy lost to viscous dissipation). Following the approach of Smith et al.
[43], we define the local mixing efficiency as

η =
Ribχ

′

Ribχ′ + ε′
, (23)

which indicates the height where the mixing is most efficient. To avoid regions in which N2 → 0, we apply the same414

filter as with Rig.415

We show the spatial distribution of η in figure 8(e-h). There is an early peak in η in all cases, associated with the416

initially laminar formation of the billows or counter-propagating vortices. As the flow breaks down into turbulence, the417

efficiency drops off. For the SKH case, the efficiency is approximately uniform across the turbulent region. Conversely,418

the AKH, AHI, and SHI cases show a range of values of η, with lower efficiencies near the interface and larger values419

away (particularly in the AHI and SHI cases), as a consequence of the larger values of χ′ in those regions.420

The predicted value of η for a given flow has been a matter of some debate, as reviewed by Gregg et al. [16]. In421

particular, Osborn [34] suggested an upper bound of 1/6 for the average mixing efficiency of steady homogeneous422

stratified shear flows. This value, corresponding to a flux coefficient of Γ = η/(1 − η) = 0.2, has been applied in a423

wide variety of numerical, experimental, and oceanic contexts.424

Even for stratified shear layers such as those considered here, the peak value of η has been shown to be case specific.425

For KH instability, η has been shown to depend on the flow parameters, the route by which the flow transitions to426

turbulence, and the details of the initial conditions [7, 21, 29]. On the other hand, studies of scouring-type flows,427

including Holmboe-driven turbulent mixing [42] and forced stratified shear layers [43] have shown peaks in the PDF of428

mixing efficiency near the canonical 1/6 value, consistent with the flows experiencing a period of steady homogeneous429

mixing (as assumed by Osborn [34]). For the simulations presented here, we observe a similar behaviour for the AKH,430

AHI, and SHI cases, as shown in figure 9(d,f,h): the PDFs of η, defined over the same spatial and temporal region as431

in the PDFs of Rig, show peaks around 1/6 across different flow parameters. On the other hand, the PDFs of η for432

the SKH simulations (figure 9b) show peaks at different values depending on the flow parameters, consistent with the433

results of Salehipour et al. [42].434

These typical values of Rig and η can also be seen in the profiles at t3D,max and time-averaged from t3D,max to435

the end of the simulation in figure 8(i-l). The SKH and AKH profiles show gradient Richardson numbers above the436

marginal value of 1/4, while the AHI and SHI flows show Rig ∼ 1/4 over the region surrounding the shear layer.437



18

FIG. 9. PDFs of Rig and η where the flow is turbulent for (a,b) SKH, (c,d) AKH, (e,f) AHI, and (g,h) SHI. Vertical dashed
lines are included at Rig = 1

4
and η = 1

6
, respectively.

Similarly, local values of η are close to 1/6 during the turbulent phases of the mixing events.438

Taken together, the distributions of Rig and η, along with the evolution of the mean quantities described in § III D,439

suggest that as the underlying instabilities shift from being more KH-like to more Holmboe-like, the corresponding440

turbulence and mixing likewise transition from one limiting behaviour to the other.441
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IV. DISCUSSION AND CONCLUSIONS442

A substantial fraction of the literature on stratified shear instabilities has focused on the idealized case of a vertically-443

symmetric background flow, with the centre of the background shear layer coincident with the corresponding buoyancy444

interface. However, in many geophysical contexts, the shear and stratification are asymmetric. Even in idealized445

laboratory experiments, the interfaces may be offset [24, 25, 61]. We have shown that this asymmetry modifies both446

the linear stability of the underlying shear instability and its subsequent nonlinear evolution.447

By considering the linear stability of asymmetric flows given by (2), we have observed that the eigenfunctions of the448

unstable modes share characteristics of both pure KH and Holmboe instabilities. Moreover, using an appropriately-449

defined pseudomomentum [see 12], we have quantified how KH-like or Holmboe-like these asymmetric instabilities are450

for background flows with different Rib, Re, R0, and a0.451

Then, we selected several representative cases ranging from pure KH to pure Holmboe behaviour to demonstrate452

the effect of asymmetry on the nonlinear evolution of the system. We performed a set of twelve direct numerical453

simulations with different Re, Rib, a0 and R0. These cases included symmetric KH [SKH], asymmetric KH [AKH],454

asymmetric Holmboe [AHI], and symmetric Holmboe [SHI] configurations. These simulations build on the work455

of Carpenter et al. [3], with a higher Reynolds number and the inclusion of the asymmetric KH setup which was456

not previously considered. From these simulations, and consistent with the linear predictions, we showed that the457

asymmetric shear instabilities resulted in a flow that had both the propagating wave feature of Holmboe instabilities458

and the finite-amplitude billow structure of KH instabilities. These hybrid features can be seen in both the TKE459

budget and the horizontally averaged quantities. As predicted by the pseudomomentum, the nonlinear simulations460

suggest that there exists a continuous spectrum of KH-like and Holmboe-like behaviour.461

As mentioned in the introduction, turbulence caused by stratified shear instabilities is frequently categorized as462

“overturning”, in which KH-driven mixing smears out the buoyancy profile, or “scouring”, where Holmboe-driven463

mixing preserves the sharp buoyancy interface [6, 40, 48]. The mixing driven by the asymmetric shear instabilities464

described here differs from most previous numerical studies in two important ways. First, the asymmetric shear465

instabilities lead to asymmetric mixing of the background buoyancy and momentum – both the velocity and buoyancy466

profiles preferentially diffuse on one side of the buoyancy interface. This mixing roughly preserves the relative thickness467

of the buoyancy and velocity interfaces. Interestingly, in the cases considered, the asymmetric mixing nearly eliminated468

the initial offset in peak gradients by the end of the simulations. In this sense, the asymmetric mixing produces a more469

symmetric final state than was present initially. This may have important implications in contexts where the degree470

of asymmetry changes with time [61]. Similarly, in a continuously forced system [43], it is unclear how the offset would471

evolve. Second, the mixing appears to share characteristics of both overturning and scouring flows, with part of the472

initial interface maintained throughout the flow evolution. That is, not only is the mixing vertically asymmetric, but473

the character of the mixing itself can change depending on the initial offset of the background flow.474

We note that while the simulations presented in this manuscript consider multiple values of Re and Rib, further475

exploration of the parameter space would be of great value in understanding the role of asymmetry in stratified shear476

flows. In particular, we have kept the Prandtl number fixed at a value of Pr = 9 in this study, characteristic of heat in477

water. The Prandtl number has been shown to play an important role in other studies of shear-driven mixing (e.g. 39)478

and layer formation (e.g. 53); understanding how the Prandtl number may impact the interplay between scouring479

and overturning discussed in this manuscript may be important to consider for other environmental and geophysical480

flows. In addition to the Prandtl number, future studies should consider how this spectrum of behaviours changes at481

higher Re more characteristic of environmental flows. Simulations in domains with longer streamwise extent would482

also be of interest in order to ascertain the importance of upscale cascades of energy in such asymmetric shear flows483

[see, e.g. 11, 27, 47].484

In addition to extending the parameter space for flows described by (2), other forms of asymmetric stratified shear485

layers could be considered. For example, Pham et al. [37] and Pham and Sarkar [36] studied asymmetric flows where486

shear and stratification varied between the upper and lower layers, and found similar transitions between KH- and487

Holmboe-like behaviours. For example, the DNS of Pham et al. [37], which modelled an idealized stratified shear flow488

inspired by observations of the upper equatorial undercurrent, resulted in a “Holmboe-like shear instability near the489

base of the mixed layer” that later developed into a KH-like billow with strong associated turbulence, similar to the490

asymmetric results presented here. We note that their choice of shear and stratification led to a Rig profile with a491

local minimum, more akin to our AKH case, rather than a local maximum as seen in our AHI and SHI configurations492

(figure 1). However, the overall flow evolution is more similar to our AHI flow, suggesting that the background profiles493

alone do not necessarily tell the whole story in terms of characterizing the flow, and so the pseudomomentum-based494

approach employed here may help in such comparisons between studies. In general, future work could consider a495

variety of different types of asymmetry, analyzing both the linear modes using the pseudomomentum framework496

described here as well as the nonlinear evolution and turbulent mixing.497

It has been suggested that the longer-lived scouring behaviour associated with scouring events could lead to larger498
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overall mixing of the background flow during the turbulent phase compared to the intense burst of mixing associated499

with KH instability [6, 41, 48]. It is unclear how this may extend to asymmetric flows: while asymmetry may lead500

to longer-lived turbulence, the strongest mixing is also offset from the strongest stratification. While it is difficult to501

draw conclusions at the parameter values studied here, future work with a broader parameter space could explore this502

question in more detail.503

Histograms of Oceanographic observations of Rig frequently show a peak value of approximately 0.25 [e.g. 18, 46].504

(This value should not be thought of as a result of the Miles-Howard theorem, the underlying assumptions of which505

do not apply to fully turbulent flows.) One possible explanation for these observations is that forcing and turbulent506

diffusion act together to drive the mean flow to a state of marginal stability [50]. An alternate scenario is that stratified507

turbulence driven by Holmboe instability may self-organize into a state with Rig ∼ 1/4 and a flux coefficient ∼ 0.2,508

behaviour which is not seen for KH-driven mixing [42]. Our results are consistent with that conclusion: the SHI509

cases demonstrate a consistent peak in the PDF of Rig near 0.25 that is absent in the SKH cases. Indeed, our SKH510

simulations include the subcritical, critical, and supercritical cases illustrated in figure 13 of Salehipour et al. [42]. Of511

greater interest are the asymmetric cases, which also demonstrate a collapse in the distributions of Rig, consistent with512

our interpretation that asymmetry results in mixing events with characteristics of both KH and Holmboe instabilities.513

The AHI has a peak in Rig ≈ 0.3, roughly at the same location as that of the SHI. There is a similar collapse of514

the AKH curves around Rig ≈ 0.4. As the SKH cases appear to be highly dependant on the initial flow parameters,515

this work suggests that even small amounts of asymmetry reduce the dependence of the PDF of Rig on the external516

parameters. Future work aimed at clarifying the role of asymmetry on the resulting distribution of Rig, particularly517

at even higher Re more typical of geophysical flows and considering a broader range of RM to include more instability518

behaviours, will help to clarify the degree to which the turbulence may self-organize in AKH- and AHI-driven flows.519

Forced simulations, in which the mechanism described by Smyth et al. [50] may also be active, would further allow520

for the exploration of these self-organizing behaviours in asymmetric stratified shear flows.521

We emphasize that the SKH/AKH/AHI/SHI simulations shown in figure 3 all have the same Re, Pr, and Rib; the522

qualitatively different flow evolution arises from small-scale details in the initial shear and stratification profiles. We523

found a similar range of behaviours in each of the three sets of SKH/AKH/AHI/SHI simulations with fixed Re, Pr,524

and Rib. That is, significantly different behaviours can arise for the same bulk parameters. Because of this small-scale525

dependence, methods to identify the type of instability are of great interest, especially in the analysis of observational526

data. Given the success of the pseudomomentum approach in classifying the linear dynamics, it is natural to ask527

whether a similar metric could be found for fully nonlinear flows, either by extending the nonlinear metrics described528

by Eaves and Balmforth [12] to less idealized flows or by exploiting newer data-driven analyses for flow classification.529

Stratified turbulent flows may be quantified in terms of a variety of key lengthscales describing, for example, the530

size of individual overturns or the scales at which stratification becomes important. Understanding the relationships531

between such lengthscales can be essential for interpreting field measurements in which certain variables are not easily532

measured. However, most of these relationships for stratified shear instabilities have typically focused on symmetric533

KH instabilities (e.g. 30, 45). Future work will consider how these relationships are modified by asymmetry and how534

they can be related to the specifics of the irreversible mixing [59], thereby allowing for improved interpretation of field535

measurements.536

Geophysical flows are rarely perfectly aligned. Our results have highlighted that even a relatively small amount of537

asymmetry may produce a different flow evolution than classic shear instability theory would suggest. This asymmetry538

is below the resolvable scales of large-scale circulation models, and as such must be parameterized. In the future, we539

hope to compare our work with field studies, quantify the importance of asymmetry, and find a practicable solution540

to incorporate this effect into regional models.541
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