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Abstract

The Pi Chamber generates moist turbulent Rayleigh-Bénard flow in order to replicate steady-state cloud

conditions. We take inspiration from this setup and consider a particle-laden, convectively-driven turbulent

flow using direct numerical simulation (DNS). The aim of our study is to develop a simple stochastic model

that can accurately describe the residence times of the particles in the flow, this time being determined by the

complex competition between the gravitational settling of the particles, and the interaction of the particles

with the turbulent structures in the flow. A simple conceptual picture underlies the stochastic model, namely

that the particles take repeated trips between the top and bottom boundaries, driven by the convective cells

that occur in Rayleigh-Bénard turbulence, and that their residence times are determined by the time it takes

to complete one of these trips, which varies from one trip to another, and the probability of falling out to

the bottom boundary after each trip. Despite the simplicity of the model, it yields quantitatively accurate

predictions of the distribution of the particle residence times in the flow. We independently vary the Stokes

numbers and settling velocities in order to shed light on the independent roles that gravity and inertia play

in governing these residence times.

I. INTRODUCTION

The settling of inertial particles in turbulent flows is relevant to a wide array of engineered

and natural systems, including the dispersion of pollutants [1], the settling of organic materials in

the ocean [2], and the cooling of Earth’s magma [3]. In this study we are particularly motivated

by experiments conducted in the so-called “Pi Chamber”, a cloud chamber facility located at

Michigan Technological University which uses two temperature-controlled, saturated plates in order

to replicate cloud conditions via moist turbulent Rayleigh-Bénard (RB) flow. The chamber itself

has been described extensively elsewhere [4], including efforts to characterize unladen RB flow

in moist conditions [5], and for this work it serves as a broad motivation for understanding the

Lagrangian dynamics of particles, especially their gravitational sedimentation. To this end, the

Pi Chamber will serve as the starting point, although our exploration will extend beyond the

properties of the particles seen in the experimental facility itself; i.e., our analysis spans ranges

of non-dimensional parameters that cannot be replicated experimentally in order to gain further

insight into the separate roles of gravity and inertia on the particle residence times in the flow.

Existing studies on particle laden RB turbulence have largely focused on how thermal and

dynamic coupling affects turbulence and particle motion, primarily via two-way coupled simulations

that attempt to take into account all of the physics relevant to the onset of turbulence and the

transfer of heat and momentum [6–8]. In a somewhat similar setup to the Pi Chamber, Oresta

and Prosperetti [9] simulated RB flow and allowed solid, isothermal particles to settle from the
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top boundary. Over a wide range of particle diameters, they found that mechanical and thermal

coupling were able to change the mean particle settling velocities. The results also suggested a

tendency towards “reverse one-way coupling” where varying fluid parameters had a small effect

on the behavior of the particles. In light of this, we are interested in particle residence times

as a function of particle properties and will only consider one set of flow parameters, with the

understanding that for a sufficiently turbulent environment, all of the relevant mechanisms will be

present.

The study of isothermal, inertial particles was furthered in Yang et al. [10], which considered

particles with three different Stokes numbers (St). They found that both heat and momentum

transfer were significantly enhanced for the medium Stokes number due to strong coupling of the

two phases, while the coupling for the lowest and highest St was weak. This non-monotonic

relationship between particle dispersion and St has been frequently observed in other particle-

laden turbulent flows [11]. In an effort to isolate the effects of inertia from gravitational forces in

turbulent, two-way coupled RB flow, Park et al. [12] looked at non-isothermal particles and varied

St and a scaled settling velocity (Sv) independently, allowing for a more detailed exploration of

momentum coupling. Although this study [12] was more focused on how thermal and mechanical

coupling changed the turbulent kinetic energy (TKE) and Nusselt number (Nu) of the flow, the

approach of independently varying St and Sv is an essential component of the current work.

The discussion of settling rates and residence times of small heavy particles is a well-studied

aspect of turbulent flows in general. Historically, these efforts have been focused on isotropic,

homogeneous turbulence with zero mean velocity. It has been demonstrated that the settling of

these particles is dependent on the particle inertia and the free-fall terminal velocity. When there

is no inertia, the particles on average settle at the same rate as in still fluid. However, inertia

can create a bias for particles to move towards downwards-sweeping regions of the flow [13]. The

resulting mechanics have since been studied extensively [14–16], showing that inertial clustering and

gravitational settling lead to preferential sweeping and ultimately increased settling velocities when

compared to the velocity predicted by Stokes drag in a quiescent medium. In Rosa et al. [17], where

it was shown that preferential sweeping was the dominant means of increasing average settling

velocity, the inertial and gravitational settling parameters were separated by varying the ratio of

particle to fluid density and the energy dissipation rate. Furthermore, another mechanism proposed

in [17] is called loitering, which refers to falling particles spending more time in regions with upward

flow, ultimately reducing average settling velocities. In numerical simulations of homogeneous

isotropic turbulence, this mechanism only plays a role when non-linear drag is considered [18],
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which is not used in the present simulations.

In the present setup, we also must account for the effects of boundary layers near the wall. The

settling velocities of inertial particles through wall-bounded turbulence was studied in Bragg et al.

[19, 20], which explored theoretically the physical mechanisms governing the particle transport,

and used DNS to explore how the various mechanisms contribute as Sv and St are varied. While

it was evident that the well-known effects of preferential sweeping were present in the bulk of

the flow, the contribution of this mechanism decreased near the wall. In the near-wall region

where the gradients in the turbulence statistics are strong, the turbophoretic drift mechanism

[21] takes over and becomes the dominant mechanism responsible for the enhanced settling speed

of the particles. This is in fact the same mechanism that is also responsible for a build up of

the particle concentration near the wall even in the absence of settling [21]. These additional

considerations complicate the problem and have led to the implementation of stochastic models of

varying complexity [22–24].

Understanding and modeling particle settling rates and residence times are relevant to under-

standing the formation of cloud droplets in the Pi Chamber. Works such as Chandrakar and

Yang [25] have studied the droplet size distributions (DSD) in experimental clouds by deriving

analytical solutions to the Fokker-Planck equations given various turbulence and droplet removal

assumptions. Similarly, in Saito et al. [23], the focus was on the development of a Fokker-Planck

equation and its prediction of the broadening of DSD. In order to facilitate the comparison with

statistical theory, they took the simplest approach by assuming that the removal process (and

therefore droplet lifetime) was independent of particle size. In a similar exploration of an evolving

Pi Chamber DSD, Krueger [22] assumed that when a droplet becomes sufficiently close to the

lower boundary, the probability of falling out per unit time is determined by the terminal velocity,

which is assumed to follow Stokes law and is therefore proportional to the square of the radius. In

this study, we show that these assumptions [22, 23] are valid, but only within certain regimes of

St and Sv. Our proposed model accounts for the relevance of the Bénard cells and allows us to

separate the effects of inertia and gravitational forces. This is achieved through a small number of

parameters relevant to RB flow that are dependent on St and Sv. We will demonstrate how these

parameters vary with particle properties, and how these variations ultimately determine residence

times.
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II. METHODS

A. Numerical Setup

To generate statistical data for the development of our stochastic model, we employ a direct

numerical simulation (DNS) of the turbulent Rayleigh-Bénard flow. The resulting flow is then one-

way coupled with Lagrangian particles, meaning that while the fluid is able to impart momentum to

the particles, the particles do not modify the background flow. As noted above, the setup is broadly

motivated by the conditions found in the Pi Chamber, and therefore is similar to the methods used

by MacMillan et al. [26], except that in the present case the particles are non-evaporating and

one-way coupled to the surrounding flow. While we will provide a brief overview of the DNS model

as it pertains to this study, further details can be found in Richter et al. [27], Park et al. [12], and

Helgans and Richter [28].

The Navier-Stokes equations with the Boussinesq approximation are solved for mass, momen-

tum, and energy conservation of the carrier phase:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇π + k̂

g

T0
T + ν∇2u, (2)

∂T

∂t
+ u · ∇T = α∇2T, (3)

where u is the fluid velocity, T is the temperature, and π is a pressure variable which enforces

the divergence-free condition of Eq. 1. In Eq. 2, the buoyancy term in the vertical direction is

dependent on the acceleration due to gravity g = gk̂, and the reference temperature T0 = 300K.

The terms ν and α refer to the kinematic viscosity and heat diffusivity of the fluid. Since we are

considering solid, one-way coupled particles, there is no need for the additional source terms from

particle coupling that are found in MacMillan et al. [26] and Park et al. [12]; this will allow us

to vary the gravity felt by each particle in later analysis without concern for the effects that the

particles may have on one-another or the flow.

Along the upper and lower boundaries, the fluid velocity is governed by a no slip condition. The

aspect ratio of the domain is Lx/Lz = Ly/Lz = 2, and the number of grid points is [Nx, Ny, Nz] =

[128, 128, 128]. The 2:1 aspect ratio is similar to that found in the Pi Chamber. However, unlike

the Pi Chamber, the domain is horizontally periodic owing to the pseudospectral discretization in

the x and y directions. Second order finite differences are employed for derivatives in the vertical
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z direction. The temperature of the upper and lower boundaries of the rectangular domain are

set to Ttop = 280 K and Tbot = 299 K, resulting in a temperature difference ∆T = 19 K. This

corresponds to a Rayleigh number of Ra ≡ (g∆TL3
z)/(T0να) = 107. This value is used for all

simulations in this study, along with a Prandtl number Pr ≡ ν/α = 0.715.

The particles evolve in a Lagrangian frame of reference according to the following set of equa-

tions:

dxi
p

dt
= vi

p, (4)

dvi
p

dt
=

1

τp

(
uf − vi

p

)
− gpk̂, (5)

where the evolution of the ith particle’s position xi
p and velocity vi

p depend solely on τp, gp, and

the local fluid velocity uf interpolated to the droplet location using trilinear interpolation. All

particles begin their lifetime at the midplane with zero initial velocity and are taken out of the

flow when they reach the bottom boundary. It is worth noting that, for simplicity, Eq. 5 neglects

terms from the full Maxey-Riley equations [29]. As will be evident in later sections, the model

uses statistics taken directly from the DNS. Therefore, while these additional terms may result in

some quantitative changes to the PDFs, any additional physics captured in the simulation could

straightforwardly be accounted for without any changes to the model.

The timescale τp = ρad
2/18νρf is the Stokes timescale, which governs the time taken by a

particle of diameter d to reach equilibrium with the local velocity of a fluid that has density

ρf and kinematic viscosity ν. The gravitational acceleration experienced by the particle, gp, is

separate from that experienced by the fluid g, thus allowing us to specify the particle settling

rate independent of the buoyancy forcing of the fluid. Using Kolmogorov microscales to non-

dimensionalize the velocities in Eq. 5, we obtain the following:

St
dṽi

p

dt̃k
=
(
ũf − ṽi

p

)
− Sv k̂. (6)

As a result, it is evident that particle motion is solely dependent on two non-dimensional param-

eters: Stokes number (St) and settling velocity (Sv). For the purposes of this study, they will be

defined as St = τp/τk, and Sv = τpgp/vk where τk and vk are the vertically averaged Kolmogorov

time and velocity microscales, respectively. Note that the non-dimensional time, t̃k = t/τK is used

in Equation 6 to define St and Sv. A separate time scale that will be used extensively in this

work is a convective time scale defined as t̃c = t/τe. The parameter τe is the eddy turnover time

given by τe = 2Lz/
√
〈u2z〉V,t, where 〈〉V,t indicates a volumetric and temporal mean of the vertical
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velocity (uz) squared; a turnover time definition used in multiple works by Sakievich [30, 31]. For

this simulation, τe = 3.95 minutes; how this relates to predicting particle residence times will be

explored in a later section.

Unladen RB flow has been studied extensively in the literature [32], and therefore will not be

a focus of discussion in this study. More details on the specific setup used to inspire/generate the

flow in this application can be found in Chang et al. [4] and MacMillan et al. [26]. The focus for

the remainder of this paper will be on understanding and modeling the lifetime behavior of solid,

one-way coupled particles as a function of St and Sv.

B. Model Description

The processes and mechanisms that govern particle transport in turbulent Rayleigh-Bénard

flow are very complicated. However, the conceptual framework behind our model assumes that a

relatively small number of flow quantities and simple processes determine the probability distri-

bution of the particle residence times. This conceptual framework is inspired by the observation

that particles are circulated globally by the convection cells in the flow, causing them to take a

number of ‘elevator trips’ before eventually falling out; the number of these trips largely influences

the total residence time.

Concerning the dependence of the particle dynamics on St and Sv, a couple of limiting cases have

straightforward interpretations. In the limit of zero inertia and terminal velocity, i.e,. Sv → 0 and

St→ 0, the particles will act as fluid tracers. These are continuously circulated by the convection

with no chance of falling out in finite time because we do not consider diffusive processes. In

contrast, as Sv →∞ and St→∞ the infinite inertia eliminates the effect of the flow and prevents

the particle from ever accelerating to its terminal velocity. Another frequently made simplification

assumes that Sv ∼ finite and St → 0. In this case, for particles that are initially distributed

homogeneously, the mean velocity of the particles would be the Stokes settling velocity because

their lack of inertia means that the particles sample the flow uniformly for all times. This is

the assumption behind the well-known Rouse profile of suspended particulate matter [33]. In the

majority of applications, however, including the droplets found in the Pi Chamber, the presence

of a finite non-zero St introduces the complicating role of inertia.

The elevator trips that inspire this model are highlighted in Figure 1, which shows a sample

probability distribution of particle residence times from the DNS non-dimensionalized by τe (Figure

1(e)), and identifies with color shading representative trajectories that correspond to its most
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FIG. 1. Sample distribution of the non-dimensional residence times (T ) as defined in Eq. 7, resulting from

the DNS (e). To emphasize the importance of elevator trips on the qualitative nature of the distribution,

see the trajectories from the first (a), second (b), and third (c) peaks, as well as the tail of the distribution

(d).

obvious features. If the trajectories were approximated to be sinusoidal, we could consider one of

these ‘elevator trips’ to be one period that begins and ends at the midplane. The first two peaks in

the distribution are a result of those that either had an initial downward velocity and only traversed

the distance from midplane to bottom boundary, or those that had an initial upward velocity and

completed one-half period before traversing the same final distance. The remaining particles then

complete an unspecified number of elevator trips before ultimately traversing the distance from the

midplane to the bottom boundary. It is then evident that, in order to approximate the residence

time of a particle, we need four pieces of information:

1. (λd) How likely the particle is to have an initial downward velocity

2. (ρe) The amount of time it takes the particle to complete one elevator trip

3. (λf ) How likely the particle is to fall out of the flow after each trip

4. (ρb) How much time it takes the particle to traverse from the midplane to the bottom

boundary before falling out

These are the four parameters that the stochastic model takes into account to predict the full
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distribution of residence times, and are expected to be a function of both St and Sv. Our goal is

to demonstrate this dependence in the formulation of this model. For the remainder of this work,

the reported values of ρe and ρb will be non-dimensionalized by the eddy turnover time τe.

In order to construct a stochastic model based on this conceptual framework, two steps are

required to determine the residence time of the ith particle, Ti. Step 1: determine whether the

particle has an initial upward or downward velocity based on λd. While no additional considerations

must be taken for an initial downward velocity, if it is upward, add the time associated with half

of an elevator trip (ρe/2). Step 2: determine if the particle will fall out of the flow based on λf .

If it does, add the time required to pass from the midplane to bottom boundary ρb and consider

the particle dead. If the particle does not fall out, add the time required for an elevator trip ρe,

and repeat step 2 until the particle does fall out of the flow. How this simple process replicates

the trajectories shown in Figure 1 is demonstrated visually in Figure 2. In Figure 2(a,b), we

see particles that complete zero elevator trips and have initial downward and upwards velocities

respectively. Figure 2(c) shows a particle completing one elevator trip before falling out, while

Figure 2(d) shows a particle completing multiple elevator trips.

The procedure described above may be summarized mathematically as follows. Let ξ denote a

random variable living in a discrete sample-space that takes values −1 and +1, with probability

P(ξ = −1) = λd, and hence P(ξ = +1) = 1 − λd. The configuration ξ = −1 is used to denote

that the initial particle velocity is down, while ξ = +1 denotes that it is up. The non-dimensional

residence time for the ith particle, Ti, is then specified by the model to be

Ti =

Nt∑
j=0

β(j, ξ)ρ(j)e + ρb (7)

where β(j = 0, ξ = −1) = 0, β(j = 0, ξ = +1) = 1/2, and β(j, ξ) = 1 ∀j > 0, ξ, with Nt being the

total number of elevator trips taken by the particle before it falls out. The quantity ρ
(j)
e simply

denotes the value of ρe at the jth step of the iteration. It is worth emphasizing that the values of

ρe and ρb are drawn from the full distribution obtained in the DNS. While the use of mean values

would be simpler, it would prevent us from replicating the full residence PDF, as there would only

be residence times at integer multiples of ρe.

In order for this new model to be fully closed and predictive, the statistical quantities summa-

rized above would have to be modeled. However, as a first step we simply specify them using the

DNS data. The advantage of doing this is that it allows the simple conceptual idea underlying the

stochastic model to be tested. We intend to show that, given full knowledge of these few essen-

tial parameters, the framework is sufficient to replicate the DNS results. Given the complexity of
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FIG. 2. Demonstration of the stochastic model for four trajectories given particles of the same size, where

{ξ = −1, Nt = 0} (a), {ξ = 1, Nt = 0} (b), {ξ = −1, Nt = 1} (c), and {ξ = −1, Nt = 6} (d). The

residence time predictions take into account the chance of falling out after each elevator trip, λf (e), the

likelihood of having an initial downward velocity, λd (f), the time required to complete an elevator trip (as

defined in the Model Description), ρe, denoted by solid lines (g), and the time to traverse from the midplane

to the bottom boundary, ρb, denoted by dashed lines (h).

particle motion in turbulent Rayleigh-Bénard flow, it is not at all obvious a priori that our simple

conceptual framework is sufficiently detailed to quantitatively capture the particle residence times

in the flow. Once the accuracy of this conceptual modeling framework has been established, it will

then make sense to try to model the input statistics and so derive a fully closed, fully predictive

model. While there is some discussion of potential simplifying assumptions in the conclusion, the

development of a fully closed model is left to future work.
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III. RESULTS

Here we discuss the particle residence time behavior observed in the DNS, as well as the per-

formance of the model as St and Sv are varied. The varying of St and Sv follows two different

strategies. In the first, Sv and St are inherently coupled, as they would be in a physical experi-

ment where the acceleration of gravity felt by the particles gp would equal that responsible for the

buoyancy forcing g. While this is consistent with physical experiments, it does not allow for the

effects of gravity and inertia to be untangled, which can hinder an understanding of the problem.

To explore this, we therefore also consider cases where Sv is held constant (by varying gp) while

varying St, allowing us to distinguish the effects of gravitational settling from particle inertia on

the particle residence times.

A. Coupled St and Sv

For the coupled case, we consider particles with a range of Stokes numbers St = [10−6, 10−1],

which, since the flow and particles experience the same gravitational acceleration, implies the range

Sv = [10−3, 102]. For reference, a 0.5 micron salt aerosol in the Pi Chamber has St ∼ O(10−6) and

Sv ∼ O(10−3), and a 20 micron cloud water droplet has St ∼ O(10−3) and Sv ∼ O(100). While

our range encompasses realistic values, we are also intentionally considering a wider range in order

to more comprehensively understand the problem and test the model.

The four statistical quantities required for the model are shown in Figure 3, as measured by

the DNS and used in the model results of Figures 4 and 5. For both distributions, a discrete

PDF is generated directly from the DNS data and then fit with cubic splines in order to create

a continuous CDF. The model then uses inverse transform sampling by pulling from this CDF to

generate pseudo-random numbers that adhere to the probability distribution of our choice. The

PDF of period residence times, P (ρe), seen in Figure 3(a), clearly shows that for this range of

properties, the majority of particles complete an elevator trip in accordance with the convective

time (tc). Note that there is no data for the largest St, as at this size no particles completed an

elevator trip. The distribution of times for a particle to traverse from the midplane to the bottom

boundary, P (ρb), seen in Figure 3(b), however, is strongly correlated with St, with smaller times

being associated with larger particles. This is because the increased settling velocity and inertia

of the particles leads to a larger terminal velocity and increasingly negligible effects of the flow.

The chance of having an initial downward velocity, λd, is approximately 50% for the smaller St,
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FIG. 3. The four input parameters from the coupled St and Sv case: the distribution of elevator trips as

defined in the model description, ρe (a): the distribution of the time to pass from the midplane to bottom

boundary, ρb (b), as well as the chance of an initial downward velocity, λd and the chance of falling out after

an elevator trip, λf (c) expressed as probabilities

but rises to 100% for the largest. Since there is no mean vertical fluid velocity at the midplane,

we would expect minimally-inertial particles initialized there (with no initial velocity) to have an

equal chance of being carried up or down. Similarly, the percent chance of falling out during an

elevator trip, λf , starts below 10% but rises to 100% for the larger St, meaning all particles of that

size are unable to complete a full elevator trip due to their inertia and gravitational settling..

With these four inputs, Figure 4 compares the probability density functions (PDFs) of residence

times as measured in the DNS to those generated by the model. Figure 5 compares the mean

residence times predicted by DNS and the model as a function of St. We see that the model captures

nearly all relevant features of the DNS PDF, including the peaks at low tc, and is quantitatively

accurate for all ranges of St. Unsurprisingly, we see that the larger particles, those with both high

St and Sv values, on average fall out faster than their smaller counterparts. Recalling that the

residence times in Figures 4 and 5(a) have been normalized by the convective time scale of the flow,

we see the two expected peaks around 1/4 and 3/4 periods. Beyond those peaks, the linear nature

of the log-scale PDFs suggest qualitative agreement with the results of Patočka et al. [3], who

demonstrated that the number of suspended particles in a system could be robustly modeled with

an exponential decay relationship dependent on the settling velocity and flow properties. In Figure

5, we see that for St < 10−4, the particles all take an average of 10 elevator trips before falling

out. In this regime, the assumption made in Saito et al. [23] that lifetime is independent of particle

properties may be sufficient. It appears that the trajectory is dominated by convection, and the

slight non-zero slope is only caused by the different distributions of ρb (as ρe, λd, and λf remain

largely unchanged). These results are qualitatively similar to what was seen by Patočka et al. [3],
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FIG. 4. For each order of magnitude considered in the coupled St and Sv case (a-e), the model has been

tested by comparing the full distributions of non-dimensional residence times (T ) to the DNS results

which also identified a regime of slow sedimentation dominated by large-scale circulation. The

number of trips continues to decrease, until beyond St = 10−3 we see that the residence time is on

average less than one convective time scale. This decrease in residence times is a result of the higher

chance of falling out after each elevator trip, and the decreased time to pass from the midplane

to the bottom boundary. It is also in this regime that we see agreement with the simplification

made in Krueger [22], which assumed that settling rate follows Stokes Law and that the mean

lifetime is therefore proportional to 1/St (shown by the reference slope in Figure 5(a)). This trend

is perhaps more obvious in Figure 5(b). It shows the mean residence time non-dimensionalized by

τw, which is the amount of time a given particle will take to settle in quiescent flow, defined as

τw = 0.5Lz/(τpgp). In this context, it is evident that particles with St > 10−2 fall out at the rate

predicted by Stokes Law. Considering these results, it is evident that the transition that occurs

around St = 10−4 in Figure 5 is a result of the relative importance of the convective and settling

time scales. For particles with St < 10−4, the vast majority of the residence time is a result of the

elevator trips, which are a function of flow properties, and not their settling through the viscous

boundary layer. When St > 10−4, the elevator trips make up an increasingly smaller percentage

of the residence time, as reflected in the sharp increase in λf that also occurs around St = 10−4

(see Figure 3(c)). Once St > 10−2, particle residence times are almost entirely determined by the

particle’s Stokes drag (see Figure 5(b)). However, since St and Sv are still linked, it is still unclear

whether this transition is associated with inertia (via St) or gravity (via Sv). In the next section,

we will attempt to clarify those effects.
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FIG. 5. The results of the coupled St and Sv case as shown by the comparison of mean non-dimensional

residence times (Ti), with a reference slope included for comparison to the power law relationship predicted

by Stokes drag (a). The same results are also plotted where the mean residence time is instead non-

dimensionalized by the settling time of a given particle in quiescent flow (τw,i) (b).

B. Fixed Sv, Varying St

FIG. 6. DNS results from the constant Sv cases, for all particles over the range St = [10−3, 102]: residence

PDFs (a) and representative trajectories (b-d)

For this portion of the analysis, we choose three constant values of Sv = [0.1, 1.0, 10]. In the

previous case, we were limited in how high of an St value we could consider because a corresponding

Sv greater than 102 results in the particle falling out almost immediately. Here, however, we shift

the range of values to St = [10−3, 102] to encompass the transition between low to substantial

inertial effects. Figure 6 shows the resulting residence PDFs for the full range of St along with

some representative trajectories measured in the DNS.
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FIG. 7. Summary of the mean non-dimensional residence times (T ) over the range St = [10−3, 102] for each

constant Sv

As expected, it can be seen that for the same range of Stokes numbers, increasing the settling

velocity decreases the residence time on average. Also of note is that by Sv = 10, none of the

particles are able to complete an elevator trip as the flow is unable to carry them above the

midplane due to their large settling velocity. It seems that in this regime, residence time is better

parameterized by the particle’s inertia and terminal speed as opposed to a convective scale. Of

more interest, however, is how the residence times vary as a function of St given a constant Sv.

These results are presented in Figure 7, which shows that for low Stokes numbers (< 10−1), the

residence time remains solely a function of Sv. As St increases, particle residence times initially

decrease, but past St ≈ 10 they begin to increase again.

Figure 8 compares the PDFs for both the DNS and the model given the sample case of Sv = 1.0.

We see that the model is again able to quantitatively replicate the PDF for the entire range of

St, especially for the lower orders of magnitude. We believe that the discrepancy for the highest

orders are a result of obtaining fewer data points for ρe due to the differences in the elevator trips

that will be highlighted momentarily. In contrast to the case where St and Sv are linked, Figure

9 shows that at a fixed settling velocity, St can change the distributions of ρe and ρb. For the

largest particles (St > 10), we see an increase in the mean residence time in Figure 7. The two

main causes for this can be found in Figure 9. First, we see that the time to complete an elevator

trip (ρe) increases substantially, due to their delayed response to turbulence combined with the

tendency to filter out small-scale motions. Secondly, the higher inertia also implies that they take

a longer to approach their terminal velocity, as evidenced by the increased time to travel from the
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FIG. 8. The results of the fixed Sv, varying St cases as shown by the comparison of residence time distribu-

tions for the DNS and the model. For clarity, each order of magnitude of St is compared individually (a-e)

FIG. 9. For the sample case of Sv = 1.0, distributions for the time to complete and elevator trip, ρe (a) and

the time to travel from the midplane to the bottom boundary, ρb (b)

midplane to the bottom boundary (ρb).

The other two model input parameters can be found in Figure 10 for all three constant Sv values

over the entire considered range of St. We can clearly see that λd is solely a function of Sv. We

also notice that λf begins to increase once St is greater than 10−1. This happens when particles

are beginning to depart from streamlines, and are therefore flung towards the bottom boundary

where they fall out. This would account for the initial dip in residence times that is seen in Figure

7. At even higher St, the chance of falling out continues to approach 100% as St increases. This

is because, as St continues to increase, the drag force on the particle becomes negligible compared

with that produced by gravity, which pulls it towards the bottom boundary.

Figures 9 and 10 can be summarized in the following way. For small St (< 10−1), all particles
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FIG. 10. For all three constant Sv cases, the percent chance of the particle initially having a downward

velocity, λd (a), and the percent chance of falling out after each elevator trip, λf (b)

are subject to the same, turbulence-based convective time scale during their elevator trips, and the

percent chance of falling out remains constant, leading to little change in their overall residence

times. As St begins to increase (10−1 < St < 101), elevator trips are still governed by the

flow convective time scale, but the percent chance of falling out begins to increase due to the

particles departing from streamlines, leading to a decrease in residence times. Once St becomes

very large (> 101), the particles have enough inertia to strongly resist the effects of the flow, and

the elevator trips themselves become longer since they are experiencing a low-pass-filtered version

of the surrounding turbulence. Even in the Sv = 10 case where particles rarely complete elevator

trips, their high inertia prevents them from reaching their Stokes terminal velocity. This results

in an increase in residence times, and we would expect the residence times to continue to increase

along with St. Figure 11 shows how the model is able to match this behavior that was already

demonstrated in the DNS results.
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FIG. 11. Validation of the model results, shown by the mean non-dimensional residence times (T ) across

the entire range of St for each constant Sv value
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IV. DISCUSSION AND CONCLUSION

In this work, we have proposed a stochastic model that reduces the complexities of particle-

laden turbulent Rayleigh-Bénard flow to a simple conceptual picture. Motivated by the Pi Chamber

experimental facility [4], we used one-way coupled DNS with Lagrangian particles to model their

behavior and record statistics associated with their residence times. We focused in particular on

the independent roles of St and Sv in dictating particle residence times in the flow.

In order to simplify the complex motion of the particles in the flow, we introduced the idea

of an ‘elevator trip’ which is the approximately sinusoidal motion generated by the convective

Bénard cells. The four important statistics to describe this motion are: the chance of a particle

having an initial downward velocity, the time it takes to complete an elevator trip, the chance of

falling out after an elevator trip, and the time it took to fall from the midplane to the bottom

boundary. We have demonstrated that when these input statistics for the model are prescribed

using DNS data, then the model predictions for the residence times accurately replicate the DNS

results. That it should do so is not at all trivial given the complexity of particle motion in turbulent

Rayleigh-Bénard flow, and the simplicity of the approximations underlying the model. This test

accomplishes two things. First, it demonstrates that with perfect knowledge of the inputs, the

stochastic model provides a very good approximation of both the mean and full distribution of

residence times. Secondly, it shows that this simple conceptual framework provides insight into

the physical phenomena governing the particle residence times in this system.

When St and Sv are coupled, as they would in experimental conditions, we saw that the amount

of time to complete an elevator trip remained constant, but as St increased more particles had an

initial downward velocity, and they were more likely to fall out after a given elevator trip. This

unsurprisingly results in larger particles having shorter residence times. To clarify the independent

roles of St and Sv, we chose three constant, representative values of Sv and varied St for each to

isolate the effects of inertia. In these runs, we saw that for small St, residence times are solely

a function of Sv since the lifetime is ultimately dictated by the particles settling through the

boundary layer, which is not aided by particle inertia when St is small. However as St begins to

increase, so does the chance of falling out after each elevator trip, leading to an initial decrease in

residence times. This corresponds to particles departing from streamlines and being flung out of

the turbulent core of the domain. For the largest St, the increased inertia leads to longer elevator

trips and slow relaxation to their Stokes terminal velocity, resulting in a reversion towards longer

residence times. Using this knowledge, we can look at our coupled St and Sv results in a new
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FIG. 12. Summary of the potential simplifying assumptions in various regimes of St and Sv for both the

coupled (a) and uncoupled (b) case

light. For particles with St < 10−4, motion is dominated by the flow properties that determine the

number of elevator trips. In contrast, the residence time of particles with St < 10−4 is increasingly

more dependent on the particle’s settling rate in quiescent flow.

In the end, we demonstrated that the simple conceptual framework underlying the stochastic

model provides a helpful way to understand the behavior of the particles in the flow, and if the

input statistics are perfectly described, then it also provides accurate approximations for both the

mean residence times and their complete probability distributions. At the moment, the model relies

on DNS data to prescribe the input statistics. In future work, a key point will be to develop models

for the four statistical inputs themselves, so that the stochastic model for the particle residence

times is fully closed. From the results we can already see that the convective time scale (tc) is

helpful in predicting the average time it takes to complete an elevator trip. While it is beyond the

scope of this paper, there is promise in finding similar relationships for the other inputs.

To support this effort, Figure 12 provides a summary of the simplifying assumptions that can

be made in various regimes. Figure 12(a) summarizes the coupled results, in which the limit

cases are apparent. For very small particles (St . 10−6) that nearly behave like fluid tracers, the

average elevator trip is approximately the eddy turnover time (ρe ≈ τe), the particles are carried

to the bottom boundary by the flow (ρb ≈ τe/4), there is an equal chance of an initial upward

or downward velocity when initialized at the midplane (λd ≈ 0.5), and the chance of falling out

after each elevator trip tends towards zero (λf → 0). For the largest particles (St & 10−1), the

particles are driven to the bottom boundary by their settling velocity (ρb ≈ τw), and particles

nearly always have an initial downward velocity (λd ≈ 1.0) and fall out of the flow at the first
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opportunity (λf ≈ 1.0).

Figure 12(b) shows the simplifying assumptions that can be made in light of the uncoupled case.

Over the entire range of St, when Sv ≤ 0.1 the mean vertical fluid velocity determines the chance

of an initial downward velocity (λd ≈ 0.5), and when Sv ≥ 10, the particles nearly always have an

initial downward velocity (λd ≈ 1.0) and fall out of the flow at the first opportunity (λf ≈ 1.0).

We also observed that the chance of falling out after each elevator trip was solely a function of the

settling velocity (λf = f(Sv)) until St & 10−1, at which point inertia begins to play a role. The

assumption that the mean time to complete an elevator trip is approximately equal to the eddy

turnover time (τe) holds as long as St . 1 and Sv . 1, beyond which the inertia and gravitational

settling become a contributing factor.

This demonstrates that, in certain regimes, many of the components of the model proposed here

can be simplified, reducing the dependence on the DNS. For instance, the salt aerosols often injected

into the Pi Chamber are on the order of St ∼ O(10−6), which allows us to make assumptions about

all four input parameters. It is also worth noting that since the length of each elevator trip is decided

independently of the others, we are free to vary particle properties after each trip. If the particle

size were to be updated based on the relative humidity encountered, this model could potentially

be extended to evaporating particles. In conjunction with a number of the potential simplifying

assumptions, this could provide a model with even more direct applications to the Pi Chamber.
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[2] J. Ruiz, D. Maćıas, and F. Peters, Turbulence increases the average settling velocity of phytoplankton

cells, Proceedings of the National Academy of Sciences 101 (2004).
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