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Transport equations for heavy inertial particles in turbulent boundary layers may be derived from
an underlying phase-space probability density function (PDF) equation. These equations, however,
are unclosed, and the standard closure approach is to use a quasi-Normal approximation (QNA)
in which the fourth moments are approximated as behaving as if the velocities were Normally
distributed. Except for particles with weak inertia, the QNA leads to large quantitative errors, and
is not consistent with the known asymptotic predictions of Sikovsky (Flow Turbulence Combust,
vol. 92, 2014, pp. 41-64) for the moments of the PDF in the viscous sublayer. We derive a
new closure approximation based on an asymptotic solution to the transport equations in regions
where the effect of particle inertia is significant. The new closure is consistent with the asymptotic
predictions of Sikovsky, but applies even outside the viscous sublayer. Comparisons with direct
numerical simulations (DNS) show that the new closure gives similar results to the QNA (with
the QNA results in slightly better agreement with the DNS) when the viscous Stokes number is
St < 10, but for St > 10 the new model is in far better agreement with the DNS than the QNA.
While the predictions from the new model leave room for improvement, the results suggest that this
new closure strategy is a very effective alternative to the traditional QNA approach, and the closure
could be refined in future work.

I. INTRODUCTION

The classical model for predicting the concentrations of settling inertial particles in wall-bounded turbulence is that
of Rouse [1]. This model is purely phenomenological, and assumes that the effect of particle inertia is negligible except
for the finite gravitational settling velocity it introduces. While extensions of this model to particles with small but
finite Stokes number have been considered using regular perturbation theory [2], developing a model for moderate
to large Stokes numbers remains a significant challenge. In order to understand in detail the additional physical
mechanisms introduced by finite particle inertia, and therefore the additional terms that an extended Rouse model
must capture, in [3], the settling and concentration profiles of settling inertial particles in wall-bounded turbulence
was explored using theory and direct numerical simulations (DNS). The particles were assumed to be small and heavy,
with their motion governed by a Stokes drag force and gravity. In contrast to the phenomenological approach of [1], a
rigorous, systematic approach for deriving transport equations for inertial particles in turbulent flows is to derive them
as moments of an underlying phase-space PDF equation [4–8]. Therefore, in [3] the exact (but unclosed) transport
equations governing the particle concentration and settling velocities were constructed as moments of a PDF equation
for the particle position and velocity. An analysis of the equations led to new insights into the physical mechanisms
governing these processes, and how they differ from those in homogeneous turbulence that was explored in [9, 10].
Data from DNS was then used to evaluate the various terms appearing in these equations, providing insights into the
role played by the inertial mechanisms that are absent from the classical model of Rouse [1]. These additional terms
were shown in [3] to be of leading order importance in determining the particle settling and concentrations, unless
the particle Stokes number is very small, and these terms must therefore be accounted for if a Rouse-type model is
to be extended to the case of finite Stokes number particles.

While the analysis of [3] led to new physical insights, in order to develop a predictive theoretical model the hierarchy
of moment equations derived from the PDF equation most be closed. The usual closure assumption is to make a quasi-
Normal approximation (QNA) [11] (which can also be derived using a Chapman-Enskog approach [12]), according to
which the hierarchy of moment equations is closed by assuming that the fourth moment behaves as if the particle
velocities were Normally distributed. Aside from being ad-hoc (in general), this closure approach is known to lead
to significant errors in the predictions from the closed moment equations, errors that are both quantitative and
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qualitative in nature (similar issues also arise when the QNA is used in models of inertial particle-pair transport in
isotropic turbulence [13, 14]). These issues will be discussed in detail in §II B.

In this paper we explore an alternative closure approximation that captures the asymptotic behavior of the relation
between the fourth and second moments of the particle velocity in regimes of the flow where locally the effect of particle
inertia is significant. This closure captures the strong non-Gaussianity of the particle velocities in the near-wall region
of the flow, and is consistent with the asymptotic behavior of the moments in the viscous sublayer that was described
in [15, 16]. The predictions of the new closed model are compared with DNS data and we find that while the new
model is not always in full quantitative agreement with the DNS, it does provide far superior predictions compared to
the QNA when the particle inertia is moderate to strong. Moreover, even when there are quantitative discrepancies,
the predictions are qualitatively consistent with the DNS data, unlike the QNA model whose solutions also feature a
spurious bifurcation near the wall as the Stokes number is increased beyond a threshold value[17]. Therefore, while
there is still room for improvement, the results suggest that the new closure approach is promising, and could be
further refined in future work.

II. TRANSPORT EQUATIONS FOR INERTIAL PARTICLES IN A TURBULENT BOUNDARY LAYER

A. Hierarchy of moment equations

In this work, we consider the transport of small, heavy inertial particles subject to the equation of vertical motion
(in what follows, all variables are in wall units, with the usual “+” superscript omitted for notational simplicity)

z̈p(t) ≡ ẇp(t) =
1

St

(
up(t)− wp(t)

)
, (1)

where St ≡ τp/τ∗ is the particle Stokes number, τp is the particle response time, τ∗ ≡ νu−2∗ is the fluid time scale
based on the friction velocity u∗, z

p(t), wp(t) are the vertical particle position and velocity, and up(t) is the vertical
fluid velocity at the particle position. The particle volume and mass loadings are assumed sufficiently small to ignore
particle-particle collisions and two-way coupling. While this is a highly simplified system, the great difficulties in
developing statistical transport equations even for this simple system mean that incorporating additional complexities
are best left for future work. Moreover, while as discussed in the introduction, our ultimate interest is in a model
for settling inertial particles, we are here focusing on developing an improved closure method for the simpler case of
non-settling particles. An extension of the new model proposed in this paper to the case of settling particles will be
the subject of a future study.

The joint probability density function (PDF) for zp(t), wp(t) in a 2D phase-space with time-independent coordinates
z, w is defined as

P(z, w, t) ≡
〈
δ(zp(t)− z)δ(wp(t)− w)

〉
, (2)

where δ(·) is the Dirac delta distribution, and the evolution equation is (see Refs. [3, 16])

∂tP = −∇z
(
Pw
)
−∇w

(
P〈ẇp(t)〉z,w

)
, (3)

where the operator 〈·〉z,w denotes an ensemble average conditioned on zp(t) = z, wp(t) = w, and ∇z and ∇w denote
differentiation with respect to z and w, respectively.

The N th order moment MN (z, t) of the PDF is defined as

MN (z, t) ≡
∫
R
wNP dw = %WN , (4)

where % ≡M0 is the concentration PDF and WN ≡ 〈[wp(t)]N 〉z are the moments of the particle vertical velocity.
The evolution equation for MN (z, t) can be obtained from (3) and is given by [16]

∂tMN = −∇zMN+1 +N%
〈
ẇp(t)[wp(t)]N−1

〉
z
. (5)

Both terms on the rhs of this equation are unclosed. Given (1) we have

〈ẇp(t)〉z,w =
1

St

(
〈up(t)〉z,w − w

)
, (6)
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leading to

%
〈
ẇp(t)[wp(t)]N−1

〉
z

=

∫
R
〈ẇp(t)〉z,wwN−1P dw

= − 1

St
MN +

1

St

∫
R
P〈up(t)〉z,wwN−1 dw,

(7)

and the integral can be evaluated once P〈up(t)〉z,w is closed. Various approximations have been introduced for closing
the conditional average P〈up(t)〉z,w (see [8] for a detailed discussion). The closure approximation that can be proven
to be formally consistent with the fully-mixed condition in the limit St→ 0 is that derived using the Furutsu-Novikov
formula assuming that the fluid velocity field has Gaussian statistics [6, 8], leading to the closure

1

St
P〈up(t)〉z,w ≈ Pκ−∇z

(
Pλ
)
−∇w

(
Pµ
)
, (8)

where κ(z, w, t) is a drift coefficient, and λ(z, w, t), µ(z, w, t) are dispersion coefficients for diffusion in z, w-space,
respectively. The details of these coefficients are not important for the present discussion, and so will be given later,
except to note that under standard approximations, their dependence on w is neglected, and κ = ∇zλ is assumed
[18] (although this is strictly only valid in the steady-state when St→ 0 [8]). These approximations will be assumed
throughout this paper, under which (8) simplifies to

1

St
P〈up(t)〉z,w ≈ −λ∇zP − µ∇wP. (9)

While the focus of this study is on moment equations derived from a kinetic PDF equation, higher dimensional PDF
equations that also include up(t) in the phase-space have been considered extensively. For these, up(t) is usually
modeled via a generalized Langevin model (GLM) [19], which is an approach that was first developed in the context
of single-phase turbulent flows [20]. The kinetic and GLM PDF approaches have their own merits, as discussed in
[7, 21]. Since an ultimate goal of our work is to develop a model that extends that of [1] to the case of finite inertia
particles, the kinetic approach is preferred here, since the use of a GLM based PDF equation ultimately requires one
to construct the solutions to the moment equations via a Monte-Carlo method, rather than simply as the solution
to a set of coupled PDEs (although [22] explores direct numerical solutions of the PDEs defined via the GLM PDF
model).

B. Quasi-Normal approximation

The standard approach for closing the first term on the rhs of (5) is to use a quasi-Normal approximation (QNA) [11]
(also derived using a Chapman-Enskog approach [12]). This approach may be summarized as follows. By specifying
the particle acceleration ẇp(t) that appears in the rhs of (5) using (1), then the steady-state form of the N = 3
equation can be re-arranged to give

M3 = −(St/3)∇zM4 + %
〈
up(t)[wp(t)]2

〉
z
. (10)

Assuming that W4 behaves as if wp(t) were Normally distributed leads to W4 ≈ 3W2
2 and hence M4 ≈ 3M2

2/%.
Inserting this into (10), and using (9) then leads to

M3 ≈ −St∇z(M2
2/%)− Stλ∇zM2. (11)

This equation can then be substituted into the transport equation for M2, and after some manipulation, this leads
to a second-order ODE for W2 [23]

0 = (W2 + λ)∇2
zW2 +∇zλ∇zW2 − 2W2/St

2 + 2µ/St, (12)

whose solution can be be used to obtain % from the steady-state N = 1 equation, namely

0 = −St(λ+W2)∇z%− St%∇zW2. (13)

Since the model assumes that the fluid velocity field is Gaussian when closing 〈up(t)〉z,w, then the QNA is self-consistent
in the regime St� 1. However, for St ≥ O(1), the statistics of wp(t) are expected to be strongly non-Gaussian even
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if the fluid velocity field is Gaussian [15], owing to the non-local nature of the inertial particle dynamics. There are
also known to be two particular errors introduced by the QNA, which we now discuss.

First, the QNA leads to behavior for WN that is inconsistent with the asymptotic behavior for z → 0 when
St ≥ O(1) [15]. In particular, for St→ 0, the scaling of the vertical fluid velocity field for z → 0 implies WN ∝ z2N ,
and the QNA result W4 ≈ 3W2

2 is consistent with this. However, for St ≥ O(1), WN ∝ zγ [15, 16], where γ(St) is the
power-law exponent describing % in the limit z → 0, namely % ∼ z−γ . The QNA is not consistent with this because
it predicts W4 ∝ z2γ rather than the correct behavior W4 ∝ zγ .

The second issue is that the QNA equation forW2 given by (12) predicts a bifurcation in the solution as St exceeds
a threshold value [17], which through (13) also leads to a bifurcation in the solution for %. This predicted bifurcation
is not supported by DNS data and is argued to be unphysical [17], and will be illustrated in §III.

In view of these serious issues with the QNA for St ≥ O(1), an alternative closure approximation forM4 is desirable
that is both consistent with the known asymptotic behavior of the particle velocities in the limit z → 0, and also
avoids the unphysical bifurcations predicted by the QNA model.

C. Asymptotic closure approximation

An alternative closure approximation is motivated by the observation in [16] that the normalized solutions to the
steady-state transport equations for WN can be written as

WN

/
WN/2

2 = CN%N/2−1 exp

(
N − 1

St

∫ z

W−1N (q)
〈(
up(t)− wp(t)

)
[wp(t)]N−2

〉
q
dq

− N

2St

∫ z

W−12

〈
up(t)

〉
q
dq

)
,

(14)

where CN are constants with respect to z, but will in general depend on St. In view of this result, for St � 1 the

quantity WN/WN/2
2 behaves asymptotically as

WN

/
WN/2

2 ∼ CN%N/2−1
(

1 +O(1/St)
)
. (15)

This asymptotic result is valid for arbitrary z, however, it is expected that very large values of St would be needed
in practice in order to observe this behavior across the entire boundary layer (in particular, it would require that the
Stokes number based on the largest timescale in the flow is � 1). The results in [15] also imply that (15) is valid in
the viscous sublayer even for St = O(1) since for z → 0 the result in (15) reduces to the asymptotic results for the
regime St ≥ O(1) predicted by [15].

The result in (15) yields the asymptotic closure approximation (ACA)

M4 ∼ C4M2
2, (16)

whose most important difference compared to the QNA result M4 ≈ 3M2
2/% is the absence of the factor 1/%. It is

precisely because the QNA contains the factor 1/% that it leads to a behavior for W4 that is inconsistent with the
asymptotic behavior predicted by [15] in the limit z → 0. In the near-wall region where % can be very large and
exhibits a power-law dependence on z [15, 16], the QNA and ACA for M4 will be radically different, both in terms
of their qualitative and quantitative behavior.

In order to use (16) to close the moment equations, the constant C4 must be specified. While this will in general
depend upon St, the simplest choice is to use C4 = 3/%(zb), where zb is the upper boundary of the solution domain and
%(zb) is the boundary condition imposed when solving (13). In a flow with friction Reynolds number Reτ → ∞ and
St large but finite, then provided that zb is large enough to correspond to a height at which the effects of the particle
inertia are negligible, M4 ∼ C4M2

2 approaches the QNA result M4 ≈ 3M2
2/% as z → zb. This is a self-consistent

choice given that the closure for 〈up(t)〉z,w assumes that the wall-normal fluid velocities are Normally distributed, and
therefore the PDF of wp(t) should be only weakly perturbed from a Normal distribution in regions where the effect
of particle inertia is weak.

An important point is that although (16) will not be accurate when St� 1, this does not in practice matter. The
reason for this is two-fold. First, since

M3 = −(St/3)∇zM4 + %
〈
up(t)[wp(t)]2

〉
z
, (17)
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then in the regime St� 1 the contribution from the term involvingM4 (whose closure based on (16) is not accurate
for St � 1) will be very small (noting that C4M2

2 and its gradient are finite in the limit St → 0). Therefore,
errors in the closure for M4 will only lead to small errors in the overall model predictions for M2. Second, with the
aforementioned choice C4 = 3/%(zb), then (16) asymptotes to the QNA for small St (for which % is almost uniform),
and this is know to yield reasonable predictions for St� 1.

Using (16) to specify M4 in (17), and substituting the resulting equation for M3 into the equation for M2 leads
to the second-order ODE for M2

0 = A∇2
zM2 +∇zA∇zM2 − 2M2/St

2 + 2µ%/St, (18)

where

A ≡ (2C4/3)M2 + λ. (19)

Since (18) explicitly contains %, then (18) must be solved simultaneously with the equation governing %, namely (13).
However, we have found that the numerical stability of solutions to the coupled equations for % and M2 is improved
if instead a second-order ODE is solved for %. This may be obtained by substituting (13) (which comes from the
equation for M1) into the equation for M0, yielding

0 = −λ∇2
z%−∇zλ∇z%−∇2

zM2. (20)

D. Boundary conditions & numerical solution

For the QNA model, two boundary conditions must be specified for W2. A standard choice is to use ∇zW2|za = 0
and either ∇zW2|zb = 0 [17] or W2|zb = Stµ(zb), where za, zb are the lower and upper boundary points. The
Neumman condition ∇zW2|zb = 0 is suitable if zb lies in the quasi-homogeneous region of the wall-bounded flow, or at
the centerline of, e.g. a channel flow. The Dirichlet conditionW2|zb = Stµ(zb) is less restrictive since it is appropriate
provided that the local equilibrium solution to (12) is accurate, without requiring anything about the gradients of
W2. In the QNA solutions shown later, this Dirichlet boundary condition will be used. The point za can be specified
as za = dp/2, where dp is the particle diameter.

Since % is decoupled from W2 in the QNA model, the solution for % can be obtained after obtaining W2 by solving
(13), for which a Dirichlet boundary condition %(zb) can be used. Given that % is a PDF for zp(t), its integral over
the full flow should be equal to one. Due to the linearity of (13), %(zb) can be chosen arbitrarily, and the solution
can be subsequently re-normalized to satisfy this integral condition. However, if the model is only being solved over
a portion of the flow (e.g. the boundary layer), then the absolute values of % cannot be determined, but only the
concentration profile relative to some reference value. In this case, the choice of %(zb) is arbitrary and may be simply
set to one.

In the new ACA model, the equations for % andM2 are coupled, and the boundary conditions should be chosen to
be consistent with equation (13) which requires

∇zM2|za = −λ∇z%|za . (21)

One choice would be to use ∇zM2|za = −λ∇z%|za = 0, and this is the appropriate choice for St � 1 because
limSt→∞ λ = 0. For moderate values of St, an alternative is to specify ∇z%|za based on the local equilibrium solution
to %. This is obtained by using the local equilibrium solutionW2 = Stµ in (13) yielding %eq. With this, the Neumman
boundary condition for M2 is obtained

∇zM2|za = −λ∇z%eq|za . (22)

This is similar to the approach described in [17] to specify ∇zW2|za as an alternative boundary condition for the QNA
model. However, we found that (22) can lead to numerical instability of the solution of the ACA model, and therefore
we will use ∇zM2|za = 0 for all St values considered. Note that this is consistent with the use of ∇zW2|za = 0 when
solving the QNA model.

For the upper boundary, the local equilibrium solution M2|zb = Stµ(zb)%(zb) may be used. Given the linearity of
the equation for %, we may use %(zb) = 1, and the solution can be subsequently normalized to yield

∫ zb
za
%dz = 1 in the

case where the interval [za, zb] spans the height of the whole flow. Since we are using ∇zM2|za = 0, then consistent
with (21) we use ∇z%|za = 0 to specify the second boundary condition for (20).

The QNA and ACA models involve second order, nonlinear ODEs. To solve them, linearization with Newton-
Raphson iteration was used. The local equilibrium solution W2(z) = Stµ|zb is used as the initial guess (using
W2(z) = Stµ(z) leads to numerical issues for larger St values), and the solutions converged rapidly, usually within 3
or 4 iterations.
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FIG. 1: Comparison of the predictions from the ACA and QNA models for (a) the particle concentration %(z) and
(b) the particle velocity variance W2(z) as a function of St and for z = za and z = 1.

III. COMPARISON BETWEEN MODELS AND DNS

In this section we compare the predictions from the QNA and ACA models for % andW2 with DNS data of particle
transport in an open channel flow. The DNS data is from the same data set as that in [3], except that here there is
no gravitational settling, and elastic particle-wall collisions are used which leads to a steady state withM1(z) = 0∀z.
In the DNS results, the ensemble average 〈·〉 used in defining % andW2 is approximated by a time average in addition
to spatial averages in the streamwise and spanwise directions of the flow.

For the transport equations, the dispersion coefficients λ and µ must be specified, and for these we use the standard
local approximations [18, 24]

λ(z) ≈ τL〈uu〉
St(1 + St/τL)

, (23)

µ(z) ≈ λ

τL
, (24)

where u is the vertical fluid velocity at a fixed position (in contrast to up(t) which is the vertical fluid velocity along
a particle trajectory). In the results that follow, the DNS data for the fluid wall-normal Reynolds stress 〈uu〉 is used,
while the model discussed in [17] for the fluid Lagrangian timescale seen by the particle τL was used.

The model equations were solved on a domain z ∈ [dp, zb] with zb = 200. Regarding this choice of zb, in the DNS
the open channel surface is located at z = 312.5, and the solutions to the model are insensitive to the choice of zb for
the St values considered if it is chosen in the range zb ∈ (150, 250). For zb significantly outside of this range, the model
predictions are compromised because the Dirichlet boundary conditions W2|zb = Stµ(zb) and M2|zb = Stµ(zb)%(zb)
are no longer appropriate, given that they are based on a local equilibrium solution to the equations for W2 andM2.

We begin by comparing the QNA and ACA model predictions with each other, in order to highlight their key
differences. In §II B it was discussed that the QNA model leads to a bifurcation in the solution as St exceeds a
threshold value, as also discussed in [17]. In figure 1 we compare the model predictions for % and W2 as a function
of St and for z = za and z = 1. The results in figure 1(a) show that the QNA model predicts that %(za) gradually
increases with increasing St until St ≈ 35, at which point %(za) suddenly reduces. The results for z = 1 show similar
behavior, except the drop in % is more gradual. Figure 1(b) shows the associated behavior of W2(za), for which the
QNA model predicts thatW2(za) slowly decreases with increasing St until St ≈ 35, and thenW2(za) rapidly increases,
before slowly increasing with increasing St. This is the bifurcation behavior discussed in [17], which appears to be
spurious, and is not predicted by the asymptotic analysis of [15]. Once this bifurcation occurs, the solutions for W2

in the viscous sublayer dramatically switch from exhibiting a power-law dependence on z to becoming independent of
z, which in turn causes a corresponding switch in the behavior of %, due to their coupling according to (13). This can
be observed in figure 1 by noting that for St > 35, the solutions for % and W2 from the QNA model are the same for
z = za and z = 1.
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By contrast, the predictions from the ACA model do not show such abrupt changes in the behavior of either %
or W2, nor does this model predict that these become independent of z. The results do indicate, however, that the
ACA model predicts that %(z) as a function of St peaks too early, noting that DNS data suggests the near-wall
concentration is strongest somewhere around St ≈ 30 [16, 25]. This is not surprising, however, given that the ACA is
effectively derived for St� 1 as the leading order approximation of an asymptotic series.

We now compare the model predictions with DNS for % andW2 and for Stokes numbers St = 2.8, 4.6, 9.3, 46.5, 128, 512,
spanning particles with relatively weak to strong inertia. Figure 2 shows the results for %, and for St = 2.8, 4.6, 9.3,
the QNA and ACA models give similar predictions that are in quite good agreement with the DNS data, with the
ACA performing slightly better for St = 2.8, 4.6, and the QNA performing slightly better for St = 9.3. Both models
slightly underpredict % in the range 7 . z . 70. While there are various possible explanations for this, one is that the
underpredictions are due to errors introduced by the local approximation for λ, which can lead to errors for particle
transport in turbulent boundary layers [18].

Another possibility is that the underpredictions are due to errors in the closure approximation (1/St)%〈up(t)〉z ≈
−λ∇z% that appears in the transport equation governing %. In general, the exact expression for (1/St)%〈up(t)〉z would
involve contributions from infinitely many other terms involving diffusion coefficients and derivatives of % of all orders
[3]. That the closure (1/St)%〈up(t)〉z ≈ −λ∇z% only involves a gradient term is a consequence of the assumption
that the fluid velocity fluctuations have Gaussian statistics [18]. In [15] it was demonstrated that a gradient diffusion
closure is asymptotically exact in the viscous sublayer. It might also be expected to be reasonable in and beyond the
log-region of a boundary layer where deviations of the fluid velocity statistics from being Gaussian are not expected
to be strong. However, in the buffer region where the turbulent production term peaks and where there are intense
gradients, the higher-order contributions to (1/St)%〈up(t)〉z arising from non-Gaussian fluid velocity fluctuations could
be important. This then could explain some of the descrepancies between the model and DNS results for % observed
in the region 7 . z . 70.

For St = 46.5, 128, 512 the QNA has gone past the bifurcation St value discussed earlier, and its predictions for
% are in serious error. Not only does it drastically underpredict the values of % in the viscous sublayer, but it also
erroneously predicts that % is independent of z in this region. For St = 46.5, the ACA model underpredicts the DNS
data for %.

However, its predictions are closer to the DNS than the QNA, and most importantly, the ACA predicts that for this
St, % exhibits a power-law dependence on z, in agreement with the DNS and asymptotic analysis of [15], but which
the QNA fails to reproduce. For St = 128, the ACA predictions for % are in very good agreement with the DNS down
to z ≈ 4, below which the ACA underpredicts the DNS data. For St = 512, the ACA is in excellent agreement with
the DNS across the range of z considered. The improvement of the ACA predictions as St is increased is of course
consistent with the asymptotic nature of its closure approximation.
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FIG. 2: Comparison of DNS data for the particle concentration % with the predictions from the QNA and ACA for
different St.
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FIG. 3: Comparison of DNS data for the particle velocity variance W2(z) with the predictions from the QNA and
ACA.
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Taken together, these results show that the ACA model provides good predictions for % for small and large St, but
leads to some underpredictions for intermediate St. For both intermediate and large St, however, the new ACA model
provides a significant improvement compared with the traditional QNA, being not only in much better quantitative
agreement with the DNS, but also correctly capturing the power-law asymptotic behavior of % in the viscous sublayer,
which the QNA does not correctly predict for intermediate and large St.

Figure 3 compares the QNA and ACA model predictions with the DNS data forW2(z). The DNS data for the fluid
vertical Reynolds stress is also shown for comparison, in order to highlight the extent to which the models capture
the effect of the particle inertia on the velocities. For St = 2.8, 4.6 the QNA and ACA models are both in very good
agreement with the DNS, with the ACA model predictions in almost exact agreement with the DNS for St = 4.6,
while the QNA model slightly underpredicts W2(z) for z . 3 when St = 4.6. For St = 9.3 the QNA and ACA models
are both in very good agreement with the DNS down to z ≈ 3, but below this the QNA model underpredicts the DNS,
while the ACA model overpredicts the DNS. For St = 46.5 the QNA and ACA models are in good agreement with the
DNS down to around z = 10, with both models capturing the strong effects of particle inertia in this regime. However,
this St value exceeds the bifurcation St value for the QNA model, and related to this is that the QNA predicts that
W2(z) becomes constant with values that far exceed those of the DNS at small z. The ACA model also significantly
overpredicts the DNS at small z, but the values are much closer to the DNS than those of the QNA model. Most
importantly, while the QNA model predicts that W2(z) becomes constant for small z, the ACA model preserves the
power-law like behavior observed in the DNS. This demonstrates then that despite the quantiative shortcomings of
the ACA model at St = 46.5, it significantly improves upon the QNA model in terms of preserving the right kind of
qualitative behavior. For St = 128, the QNA model is accurate down to around z = 30, but below this its predictions
are in enormous error compared with the DNS, both quantitatively and qualitatively. By contrast, the ACA model
is accurate down to around z = 5. Below this it overpredicts the DNS data, but again preserves a power-like type
behavior in this region, which is in much better qualitative agreement with the DNS than the QNA model. Finally,
for St = 512, the QNA model is only accurate down to around z = 100, and significantly over predicts the DNS data
below this, while again predicting that W2(z) becomes constant at small z, in stark contrast to the DNS.
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FIG. 4: Comparison of DNS data for the particle velocity variance W2(z) with the predictions from the QNA and
ACA.
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The ACA model slightly overpredicts the DNS for z > 20, but is in excellent qualitative and quantiative agreement
with the DNS below this. Again, the improvement of the ACA predictions compared with the DNS as St is increased
is consistent with the asymptotic nature of its closure approximation.

In figure 4 we again compare the QNA and ACA model predictions with the DNS data for W2(z), but this time in
a linear scale in order to highlight the behavior at larger values of z. At larger z, the QNA and ACA predictions are
almost identical, and this is because in these regions % does not differ strongly from one, and if % were identically equal
to one, then the QNA and ACA closures would be identical. The results show that at greater distances from the wall,
e.g. z & 50, the QNA and ACA models are in general in good agreement with the DNS, with some underpredictions
for smaller St that become smaller as St is increased. Comparing the DNS data for W2(z) with the fluid Reynolds
stress shows that for the range of St considered there is a strong effect of St on W2(z), and the models do a very
good job of capturing this effect of the particle inertia.

IV. CONCLUSIONS

We have developed a new closure approximation for the moment equations describing inertial particle transport
in turbulent boundary layers that are derived from an underlying phase-space PDF equation. Traditionally, a quasi-
Normal approximation (QNA) has been used to close the equations, but while this yields good results when the particle
Stokes number St is sufficiently small, it leads to significant errors for larger St, errors that are both quantitative
and qualitative in nature. We derive a new closure approximation based on an asymptotic solution to the transport
equations in regions where the effect of particle inertia is significant. This new closure approximation (referred
to as the asymptotoc closure approximation, ACA) differs strongly from the QNA closure in regions where the
particle concentration % deviates strongly from being uniform, but asymptotes to the QNA approximation when the
concentration is uniform.

Comparisons of the model predictions for % and the variance of the vertical particle velocity W2 with DNS data
show that while the QNA and ACA model make similar predictions at smaller St that are in good agreement with the
DNS, their predictions differ dramatically at larger St. The ACA model predictions are in good agreement with the
DNS over a much wider range of the boundary layer. At smaller distances from the wall, even when the ACA model
predictions are not in quantitative agreement with the DNS, they correctly preserve the power-law like behavior of
% and W2, unlike the QNA model that erroneously predicts that these functions become independent of z. For very
large St, the ACA model is in excellent quantitative agreement with the DNS data. The new ACA model therefore
dramatically improves on the traditional QNA model.

In order to address the remaining quantitative deficiencies of the ACA model, two possibilities should be explore
in future work. First, the coefficient C4 that appears in equation (16) was obtained by enforcing that in regions of
the boundary layer where the particle inertia is weak that the ACA closure asymptotes to the QNA closure. This
yields a value for C4 that is independent of St, whereas in reality it probably should depend on St. Improving the
specification of C4 to include an appropriate St dependence could improve the accuracy of the ACA model. Second,
the ACA closure is formally obtained as the leading order term in an asymptotic series for the regime St � 1. It
may be possible to improve upon this by either incorporating the next term in the expansion, or perhaps by using a
renormalization approach to perform a partial summation of some of the terms in the series. This will be explored in
future work, together with extensions of the model to include the effect of gravitational settling.

A final point is that to further improve the predictions from the model, the closure approximation for (1/St)%〈up(t)〉z
should be improved. In the current model, a closure for this is used that assumes that the velocity field has Gaussian
statistics, leading to a gradient diffusion closure for (1/St)%〈up(t)〉z [6, 8]. As discussed in the paper, this result
is asymptotically correct in the viscous sublayer and is also likely a reasonable approximation in the log-layer and
beyond. However, in the buffer layer this approximation is not well justified, and this may explain some of the errors
in the model predictions for % in the buffer layer. Future work should consider the closure of (1/St)%〈up(t)〉z and its
accuracy in detail, especially strategies for incorporating some of the non-Gaussian contributions to this term.
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