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We derive self-similar continuum equations that govern the rupture of liquid threads at scales
within the influence of interfacial dynamical effects. This regime and the obtained power-law solution
for the evolution of the minimum neck radius, hmin = 0.00107(tb− t)2.34, fill a void in the literature
in between the classical inertial-viscous regime and the stochastic formulation, and reconciles flow
features such as asymptotic slow boundary conditions far away from the singularity and symmetric
profiles, respectively. Due to its inherent ties to the production of monosized droplets from jetting,
this work can be utilized to approach, for example, the study of electrosprays or flow focusing at
these critical scales for aerospace nano-thruster technology or single biomolecule imaging with x-ray
free-electron lasers.

The ubiquity of liquid jets in nature, and their gen-
eration, stability and controlled rupture have motivated
not only fundamental research [1] but also their use in
multidisciplinary endeavors in analytical chemistry [2],
structural biology [3], and aerospace nano-propulsion [4]
among others. Eggers [5] established the self-similar
equations for the pinching process where inertia, sur-
face tension and viscous terms are balanced: the inertial-
viscous regime (IV ). The evolution of the minimum neck

radius hmin was found to be h
(IV )
min = 0.03(σ/µ)(tb − t),

where σ, µ and tb are the surface tension, viscosity and
time of break up, respectively. However, its range of va-
lidity is not universal as the pinch-off can be triggered
upstream under a pure dominance of inertia or viscosity,
although after an intermediate regime [6–8], the thread
dynamics behaves according to the IV-regime [5].

However, Moseler and Landman [9] demonstrated
via molecular simulations how the breakup of a liquid
propane jet forced through a hole with a diameter of six
nanometers does not obey the exponent and predictions
based on the IV analysis. To address this limitation, a
stochastic force was added to the slender jet model in or-
der to identify a regime where thermal fluctuations from
the bulk can control the pinching process (bT-regime).
This approach was later exploited by Eggers [10] who

derived numerically h
(bT )
min ∝ (tb − t)0.418. Subsequently,

researchers have studied the inclusion of vapor-pressure
effects in molecular dynamic simulations [11], ultra-low
surface tension experiments at much larger scales [12–14],
and further numerical explorations regarding the validity
of the 0.418-power-law for ultra-low surface tension [15].

Whether the power-law exponent is determined by the
balance of inertia, viscous and surface tension stresses, or
stochastic forces, these works share a common assump-
tion no matter the length scale that is under study: an
interface thickness δ such that δ/hmin � 1. This simplic-
ity has a profound implication for the interface dynamics,
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FIG. 1. Sketch about the minimum thickness of the pinching
of a liquid thread. A detailed view in the vicinity of the
minimum radius hmin and at a scale comparable in size to
the interface thickness δ (in grey color gradient).

which is a frozen sharp layer that affects the jet behavior
through the Laplace-Young stress with a certain value for
σ.

However, the interface cannot be considered infinitely
narrow under the following scenarios: (i) during the
pinch-off of jets where eventually δ/hmin ∼ 1 or (ii) for
thin enough steady liquid jets with a radius h∞ such as
h∞ −→ δ. It is then natural to ask: (i) does a finite
interface produce intermediate spatio-temporal scales in
between the IV- and bT- regimes? and, if so, (ii) would
these novel scales lead to self-similar properties within
the breakup of a liquid jet and, consequently, to a new
power-law exponent for the dynamics of the minimum
neck radius? In this work, we shed light on this matter
by deriving an extended but analytically approachable
slender model for a liquid jet that is affected by the finite
thickness of the interface.

Model Formulation - We distinguish two domains, a
liquid bulk and a finite phase-graded interface, which are
separated by a non-material contact line as the axisym-
metric surface function r = h(z, t) (Fig. 1). The classical
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idea [1] that we utilize is that for a sufficiently slender
jet (i.e. characteristic radial ` and axial L length scales
are such as their ratio ε = `/L � 1) higher-order terms
are negligible and can be removed from the set of non-
dimensional incompressible axisymmetric Navier-Stokes
equations for the liquid bulk,

ut + uur + vuz = −pr
ε2

+
urr
ε2

+ uzz +
ur
rε2
− u

r2ε2
(1a)

vt + uvr + vvz = −pz +
vrr
ε2

+ vzz +
vr
rε2

, (1b)

where subscripts denote partial derivatives. The axial z
and radial r lengths, and time t have been, respectively,
made dimensionless by the axial L = µ2/(ρσ) and radial
` = εL scales and the characteristic time τ = ε2µ3/(ρσ2).
Note that p, u, v are measured in terms of `, L, τ and the
density ρ, with the units ρL2/τ2, `/τ and L/τ , respec-
tively. Additionally, µ/ρ is implicitly related to L and τ
as τ ∼ L2ρ/µ. Given the radial er and longitudinal ez
cylindrical unit vectors, we radially expand in the bulk
(r < h(z, t)) the dimensionless pressure p(r, z, t) and ve-
locity fields v(r, z, t) = u(r, z, t)er + v(r, z, t)ez by using
the aforementioned parameter ε = `/L � 1; below we
link with the finite interface as a matching condition in
terms of its thickness δ and mobility M from the Cahn-
Hilliard description.

We next take advantage of these previous standard
ideas by the classical variable expansion

p(r, z, t) = p0(z, t) + p2(z, t)(εr)2 + ... (2a)

v(r, z, t) = v0(z, t) + v2(z, t)(εr)2 + ... (2b)

u(r, z, t) = −v0z(z, t)εr/2− v2z(z, t)(εr)3/4 + ..., (2c)

that simultaneously satisfy mass conservation and the
symmetry of the problem.

Once the Navier-Stokes equations are simplified with
the variable expansion and after retaining the leading
terms [1], the classical axial momentum equation is

v0t + v0v0z + p0z = 4v2 + v0zz. (3)

Both the bulk and finite-thickness interface flow to-
gether through a quiescent outer fluid with a density ρo
and a viscosity µo that does not exert any external stress
over the entire jet (Fig. 1). Thus, there is an inner
balance of stresses between both domains through the
boundary line that enables us to add the resulting net
normal f (n) and shear f (s) stresses from the interface
to the bulk at r = h(z, t), leading to two dimensionless
equations along the normal n and tangential s coordi-
nates (see Fig. 1),

p−
2
[
ur + ε2vzh

2
z −

(
vr + ε2uz

)
hz
]

1 + ε2h2z
= f (n) (4a)

2ε2hz (ur − vz) +
(
vr + ε2uz

) (
1− ε2h2z

)
ε (1 + ε2h2z)

= εf (s) (4b)

For the evaluation of f (n) and f (s) we utilize the Cahn-
Hilliard formulation [16–18] for the fluid fraction φ, which
is based on the behavior of the chemical potential θ =
φ3−φ−δ2∇2φ that is formed by the competition between
the phase separation, φ3 − φ, and interface penalizing,
−δ2∇2φ, terms

φt +
(
v(i) − v(s)

)
· ∇φ = (5)

3Mσ

2
√

2δ
∇2
(
φ3 − φ− δ2∇2φ

)
.

The difference of velocity components along n and s,
respectively, from the inner interface v(i) = u(i)n + v(i)s
to the boundary streamline v(s) = u(s)n + v(s)s are as-
sumed to be of O (ε) due to the departures of the inter-
face from a sort of frozen state. Next, we take advan-
tage of the slenderness of the interface as δ ∼ ` � L
and ∂/∂s ∼ 1/L � ∂/∂n ∼ 1/δ ∼ 1/`. Thus, we ne-
glect shear derivatives for terms that involve ∇φ (i.e,
∇ ≈ n∂/∂n). In addition, our expansion parameter

can be scaled as ε ∼ (3Mρ/2
√

2τ)1/2 in order to enable
compatibility of capillary waves along with the interface
[18] as φt cannot be neglected. This scaling for ε should
be seen as an equivalent squared Cahn number also es-
timated in [18]. Subsequently, this matching condition
comes from the spatio-temporal coupling between both
interface and bulk within the earliest stages of this pinch-
off regime after leaving the equilibrium. Thus, we can
utilize the viscous-capillary dimensional group to express
interfacial parameters, as σ/` ∼ ρL2/τ2. Then, φ(n, s, t)
varies from the boundary line r = h(z, t) (where φ = −1)
to the outer fluid (φ = 1). With these simplifications,
Eq. (5) then relates the second-order derivative of the
chemical potential to the temporal evolution of φ:

φt =
(
φ3 − φ− φnn

)
nn
. (6)

The reader should notice that δ is not present in
the previous equation and hereafter as a result of
our aforementioned simplifications and strategy of non-
dimensionalization. In this way, the chemical potential,
θ, turns out θ = φ3 − φ− φnn.

We are interested in the expressions of the resulting net
stresses across the interface, f (n) and f (s), which result
from the momentum equations due to the φ−phase vari-
ations. This identification is realistic as we focus on a liq-
uid jet flowing through a quiescent surrounding medium
with a low-viscosity µo as µ � µo and without any ex-
tra external force over the whole fluid system (i.e., fi-
nite interface and bulk). First, we write the coupled set
of non-dimensional Cahn-Hilliard Navier-Stokes momen-
tum equations, retaining each side’s dominant contribu-
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tion [18]

u
(i)
t + ε

(
u(i) − u(s)

)
u(i)n + ε

(
v(i) − v(s)

)
u(i)s + (7a)

+
ρpn
ρi
− ρµiunn

ρiµ
= −3ρκφ2n

2
√

2ρi

v
(i)
t + ε

(
u(i) − u(s)

)
v(i)n + ε

(
v(i) − v(s)

)
v(i)s + (7b)

ρps
ρi
− ρµivnn

ε2ρiµ
=

3ρθφs

2
√

2ρi
,

where ρi, µi, κ = 1/h + O(ε2) are the inner density,
viscosity of the interface and its first-order curvature, re-
spectively, where µi is classically assumed to vary linearly
with φ. Note that we take advantage of our previous scal-
ing where ε and the squared-Cahn number are linked.
The interface’s slenderness also leads to having a dom-
inant shear speed component (i.e. this statement could
be better understood if we think in absolute coordinates)
as we have u(s) = 0 at both the liquid-interface bound-
ary line and the outer streamline between the interface
and environment. From the integration of Eqs. (7) along
the normal direction as analogously was performed for a
single outer length scale by Magaletti and coworkers [18],
we obtain the first-order expressions of f (n) and f (s), be-
ing stresses that are ultimately transferred to the bulk
through the boundary line in Eqs. (4):

f (n) = ∆(pn) =
3κ

2
√

2

∫ δ

0

φ2ndn (8a)

εf (s) = −∆(vnn) =
3ε2µ

2
√

2

∫ δ

0

θφs
µi

dn. (8b)

We observe that the classical balances at the interface
f (n) = κ and f (s) = 0 are special cases of our more
general approach towards an infinitely-narrow interface
where φss = tanh(n/

√
2) is the solution for the steady

version of Eq. (6). In contrast, as we depart from the
tanh−solution, we have a φ−dependent Laplace-Young
expression and a non-zero, but much weaker than the
latter, O

(
ε2
)

shear stress in Eq. (8). Now we substitute
the set of radially expanded variables of the bulk, Eq.
(2) into Eq. (4), leading to the bulk-interface boundary
equations in terms of stresses along normal and shear
coordinates, respectively:

p0z + v0z = f (n) (9a)

−3v0zhz − v0zzh+ 2v2h = f (s). (9b)

We substitute the variable expansion from Eq. (2) into
the equation of motion for the streamline of the bulk
boundary ht + vhz = u along with the expressions for pz
and v2 from Eqs. (9) and f (n), f (s) from Eqs. (8). Subse-
quently, from the evaluation of Eq. (3), we find a slender

model for the liquid jet at the scale of the interface:

ht + v0hz = −1

2
v0zh (10a)

v0t + v0v0z =
3
(
v0zh

2
)
z

h2
+

3

2
√

2

hz
h2

∫
φ2ndn+ (10b)

+
3εµ

2
√

2h

∫
θφs
µi

dn+ v0zz,

which corresponds to two equations for the unknowns
h(z, t) and v0(z, t) and a parametric dependence on
φ(n, s, t) because φt 6= 0 in Eq. (6). Note how the sec-
ond, third and fourth terms on the right-hand side of
Eq. (10b) respectively correspond to a diffusive surface
tension stress, a non-zero interface shear stress, and the
retainment of vozz from the classical expansion where it
is systematically neglected. Indeed, this extra term vozz
appears as we relax the zero free-shear stress boundary
conditions of the classical slender model [19] towards a
subdominant role in our formulation. The reader should
notice how the set of the derived governing equations, al-
though corresponding to two well-defined and separated
regions of the fluid domain, are inherently linked through
a spatio-temporal coupling within the pinching of the
whole fluid system as the temporal dependence of φ cre-
ates a transient dynamics that prevents the stability of
the classical steady-state solution in the finite-thickness
interface.
Towards the singularity - Next, we seek the physical

behavior of Eqs. (10) close to the pinch-off. For this
reason, we take t∗ = tb− t and z∗ = z− zb as the time t∗

and length z∗ scales before the breakup. As t∗, z∗ −→ 0,
the change of variables

ξ = t∗−1/2z∗ (11a)

η = t∗−1/4n (11b)

φ = t∗χΦ(η) (11c)

h = t∗(2χ+3/4)H(ξ) (11d)

vo = t∗−1/2V (ξ) (11e)

enable us to balance the interface penalizing term with
the temporal variation of φ along with the dominance
of the stresses with origin in the diffusive surface ten-
sion over the interface shear contribution. Subsequently,
both the bulk and finite interface are spatio-temporally
tied, and from Eq. (6) and Eqs. (10) we find similarity
equations

− χΦ +
ηΦη

4
= −Φηηηη (12a)

−
(

2χ+
3

4

)
H +

ξH ′

2
= −1

2
HV ′ − V H ′ (12b)

V

2
+
ξV ′

2
= −V V ′ + 4V ′′ +

6V ′H ′

H
+

3H ′

2
√

2H2

∫
Φ2
ηdη,

(12c)

where ′ = d/dξ. The three ordinary differential equa-
tions (12) describe two sub-spaces: the interface with
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Eq. (12a), where Φ depends on η and parametrically on
χ; and the bulk with ξ as the independent variable in the
Eqs. (12b, 12c) that govern H, V , which are affected by
the value of χ through both the prefactor of H in Eq.
(12b) and the resulting varying surface tension stress.
From Eq. (12b), we observe

H ′ = H

(
2χ+

3
4

)
−V

′

2

V+
ξ
2

, (13)

and consequently the existence of a certain value ξ0 that
makes H singular unless we also impose analytical prop-
erties to require V1 = V ′(ξ0) = (4χ+ 3/2).
Results - We construct a solution around ξ0 as a

Taylor series expansion for H =
∑∞
i=0Hi(ξ − ξ0)i and

V =
∑∞
i=0 Vi(ξ−ξ0)i. Substituting them into Eqs. (12b),

(12c) and after algebraic manipulations, we obtain the
terms of order ξ1 and ξ2 for H and V , respectively

H1 =
9ξ0H

2
0

H0(9− 8χ) + 3
2
√
2
N

(14a)

V2 =
9ξ0H0(3− 4χ)

H0(9− 8χ) + 3
2
√
2
N
, (14b)

where N =
∫

Φ2
ηdη. Note that Eqs. (14) only depends

on ξ0, H0 and N , which are to be determined later. In
addition, we derive a set of boundary conditions where
the solution has to match the outer spatio-temporal scale
at η, ξ −→ ±∞, making the left-hand terms of Eqs. (12)
vanish due to their slow temporal origin and leading to

the asymptotic behavior Φ ∝ η4χ, H ∝ ξ(4χ+
3
2 ) and

V ∝ ξ−1.
On the one hand, the family of solutions of Eqs. (12)

within the interface is numerically obtained (Fig. 2) by
the shooting method for the derived boundary condi-
tions, where the values N = 2

√
2/3 and χ = 9/8 set

the domain that recovers the unity prefactor of the sur-
face tension stress term in the classical IV’s momentum
equation. It is also interesting to note that the length
of the self-similar domain in η is not infinite in a strict
sense and has a cut-off of value, 15.6, (i.e. which was
determined by machine-learning based numerical strate-
gies) to ensure both odd-symmetry and only one inflexion
point as the initial conditions from the base state solution
impose when this pinch-off regime is triggered. However,
this is far away enough to consider it as an approxima-
tion to ensure convergence to apply the aforementioned
asymptotic boundary condition, with inspiration in clas-
sical works [5]. Then, we compute the resulting N by
varying the value of χ in Eq. (12a). We observe that
the morphology of the solution varies abruptly (Fig. 2)
as χ < χmin ≈ 0.745, where N diverges. Indeed, the
latter cases entail that interfacial velocities would reach
infinite values that could not match the basic physical as-
sumptions of the thinning jet and, consequently, are dis-
regarded. We only consider the N−χ curve for χ > χmin.

Now, we seek a pair (χ, N) that could lead to solutions
of Eqs. (12b, 12c) that exhibit symmetry with respect to

FIG. 2. Inner interfacial solutions of Φη for χ ∈ [0.625, 1.125].
The inset shows the relation between N and χ, with a diver-
gent behavior of N for χ < χmin = 0.745 that corresponds to
quasi-vertical blue curves in the main figure.

FIG. 3. Family of self-similar solutions for H as a function of
χ. There is only an even symmetric profile (blue, solid line),
for χ = 0.795 (left vertical axis). The rest of the candidate
curves are examples of how the symmetry is broken as χ varies
(right vertical axis).

χ for the profiles of H and V , where we recall the same
flow feature that on average takes place at the nanoscale
[9] and also in larger-scaled pure diffusive experiments
[12]. This strategy involves two parameters (χ,N) tied to
the thermal interface roughening and the diffusive pinch-
off, respectively, as the breakup radius and speed profiles
turn out to be symmetric in the self-similar space of χ.
We select the pair (χ,N) that is compatible with the
latter features. To do so, we numerically solve Eqs. (12b,
12c) by the shooting method. For each (χ,N), firstly
we assume the values (ξ0, H0) to evaluate the starting
integration points for the branches of the solution on the
right and left from ξ0, by the expansion mentioned earlier
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FIG. 4. Family of self-similar solutions for V as a function of
χ. There is only an odd symmetric profile (blue, solid line),
for χ = 0.795. The rest of the candidate curves are examples
of how the symmetry is broken as χ varies.

(Eqs. 14). Then we obtain a curve of candidate values of
(ξ0, H0) for both branches that are compatible with the
defined boundary conditions for |ξ| � |ξ0|.

The global solution for a given pair (χ,N) is deter-
mined as both branches share the same location of the
singularity ξ∗0 and its corresponding minimum thickness
H∗0 . In these solutions, we check the intended symmetric
profiles as a function of χ and its corresponding value of
N . In particular, we observe in Fig. 3 how H−profiles
become more symmetric as χ decreases. In addition, the
smaller is the value of χ, the smaller is the minimum
value of H, and the closer is ξ0 to zero. Similar fea-
tures occur with the respective V−profiles shown in Fig.
4, although in this case, the approach to symmetry is
for an odd function instead of an even function. As χ
decreases, V−profiles rotate clockwise as the singularity

tends to move to zero. Ultimately, we find that the values
(χ = 0.795, N = 0.00953, 2χ + 3/4 ∼ 2.34) lead to sym-
metric self-similar solutions for H and V , even and odd,
respectively, along with ξ0 = −0.01 and H0 = 0.00107.
Hence, we arrive at an expression of the evolution of the
minimum neck radius hmin = 0.00107(tb − t)2.34. Thus,
we have solved an open fundamental problem and pro-
vided keys for approaching a vast number of fluid phe-
nomena that involve topological changes close to the con-
tinuum limit.
Prospects - Using the approach presented in this paper,

it should be possible to address other open questions in
jet-related fundamental problems:

1. The relation between the intact jet length and its
instability [20], with a self-destabilizing loop close
to the breakup region [21], to better appreciate the
role played by transient pinch-off regimes.

2. The relation between pinch-off and recoil dynamics
with the absence of satellite droplets in pure diffu-
sive experiments [12, 13].

3. The role of interfacial fluctuations close to the con-
tinuum limit [9, 10] and whether or not they emerge
before those that come from the bulk and, if so,
how both energetic levels might compete within the
fragmentation.

4. The extension of this work, together with the above
points, to widely studied co-flowing streams [22–29]
or electrosprays [30–34], where, probably below a
specific scale, the finiteness of the Debye layer and
diverse electrokinetic effects might appear [35].
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