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The suspension balance model (SBM) for viscous Stokes flow has been well studied for the case of
identical, monodisperse spherical particles in a channel, however, more work remains to be done to
explore the bidisperse and polydisperse SBM. We present a simple extension of the SBM that allows
for modeling of suspensions of particles of bidisperse size. The comparison with available experi-
ments and direct simulations is found to be good. Additionally, we present a range of simulations
to justify the assumptions made in the polydisperse suspension balance model for non-Brownian,
neutrally buoyant particles that vary in size with a bidisperse distribution. The aim is to study
the effects of moderate size variation on the rheology of the suspension and the distribution of the
particles across the flow, especially in the near-wall regions. It is shown that, at the size ratios
considered, bidispersity in the particle size does not significantly affect rheological parameters in-
cluding the particle volume fraction and relative viscosity in the bulk of a Couette flow. The particle
phase stresses are distributed between small and large particles in proportion to the relative volume
fractions of each species. In bidisperse suspensions, the large particles in the wall layer develop a
spatial structure and form chains in the streamwise direction.

PACS numbers: 47.15.G-, 47.57.E, 47.55.Kf, 47.60.Dx

Keywords: Stokes flow, Viscous suspensions, Particle dispersion, Bidisperse, Suspension Balance Model

∗ stany.gallier@ariane.group



2

I. INTRODUCTION

Flows of suspended particles with disparate sizes are ubiquitous in both natural and industrial applications including
materials processing, food and beverage manufacturing, and microfluidic cell sorting [1–4]. Questions are often posed
as to whether the particles separate by size and how the rheology of the suspension is affected by variations in the
particle size ratio. In the present study, we consider bidisperse suspensions of spherical, non-Brownian particles in a
wall-bounded Couette flow.
Experiments have shown that even in the zero Reynolds number Stokes flow limit, where the flow is linear and

reversible, the presence of particles induces chaos and irreversibility at sufficient volume fraction, φ, and accumulated
strain, γ̇t, where γ̇ is the strain rate [5–8]. In this work, we focus on neutrally buoyant non-Brownian particles with
large Peclet number. In the case of two spherical particles in a shear flow, small irregularities of the particle surface
or shape prevent contact of the particles as they interact due to the flow [9–11]. Subsequent studies by Da Cunha and
Hinch [12] calculated the change between initial and final streamlines for two rough particles flowing past each other
in a shear flow, showing that rougher particles have a larger net displacement. Zarraga and Leighton Jr. [13] extended
this work to bidisperse particle sizes. When a small and large particle with a small, finite surface roughness come into
near-contact in a shear flow both particles undergo a net, irreversible displacement, with the smaller particle having
a larger net displacement. Further work by Meunier and Bossis [14] indicates that the self-diffusion of particles in a
shear flow decreases sharply in bidisperse suspensions.
Early experiments with a densely packed suspension of bidispersed particle with size ratio λ = 0.255 and total

volume fraction φT = 0.6 were completed by Graham et al. [15] in a wide-gap annular Couette flow device at low
Reynolds number. The particles migrated to the lower shear rate region at the outside wall of the device and while
the large and small particles could not be imaged separately, the particle layering at the outside wall suggests that the
wall layer consisted only of large particles. Similar size segregation in bidisperse suspensions has been seen in various
configurations where the shear rate varies across the channel because large particles have been shown to migrate to
regions of lower shear faster than small particles [16]. In Poiseuille flow, this faster large particle migration results in
enrichment of large particles at the channel centerline where the shear rate goes to zero [17–22].
The earliest simulations of bidisperse suspensions in a shear flow were completed with Stokesian Dynamics for a

monolayer of particles confined to a plane of shear, see Chang and Powell [23, 24, 25, 26]. These simulations found
that the average cluster size in a bidisperse suspension decreases due to the presence of small particles, resulting in
a lower effective shear viscosity [23]. Stokesian Dynamics has been used more recently for fully three-dimensional
simulations of bidisperse suspensions of colloidal particles in a uniform shear flow in a periodic domain using Spectral
Ewald Accelerated Stokesian Dynamics [27] to study the short-time transport and diffusion properties of a system of
bidisperse colloidal particles [28, 29]. Recently, Pednekar et al. [30] used discrete element modeling with the lubrication
flow description of hydrodynamic interactions to quantify the relative viscosity and normal stress differences for densely
packed bidisperse and polydisperse suspensions of frictional particles, with size ratios λ = 0.25− 0.5. These numerical
simulations have all considered periodic representations of unbounded domains. Chun et al. [21] used lattice Boltzmann
simulations with walls consisting of fixed particles. These “bumpy” walls may obscure wall layering that was seen in
Graham et al. [15], Hampton et al. [31], Snook et al. [32].
Previous simulations are at the particle-scale and—although they are instrumental in understanding physics—they

are too computationally involved to handle migration and segregation in complex industrial flows. This generally calls
for a continuum version where fluid and particles are lumped together into a homogenized system. Many models are
reported in the literature (e.g., see Vollebregt et al. [33] for a detailed list) but they fall into the two following classes:
diffusive flux models or suspension balance models. Diffusive flux models follow the ideas of Leighton and Acrivos [34]
and consider a phenomenological description of migration based on different empirically-fitted diffusive-like terms,
like the well-known Philipps model [35]. Work by Chun et al. [21] requires hand fitting four parameters to simulation
results. On the other hand, the suspension balance model (SBM) attempts to relate the migration flux and the
suspension rheology based on volume-averaged balances of mass and momentum for the fluid and particle phases.
Relying on the ideas of Nott and Brady [36], Morris and Boulay [37] developed a simple, and now widely used, model
in which the migration flux is found to be directly proportional to the gradient in the particle stress. Diffusive flux
models are phenomenological models that are generally satisfactory for most flows but can fail in certain situations,
such as curvilinear flows. Suspension balance models have stronger theoretical grounds and are therefore expected to
be more general.
However, most work looks at suspensions of monodisperse particles and less is known for suspensions having different

size classes or significant size distribution. Available works in the literature have mostly relied on an extension of the
diffusive flux model to binary suspensions [20, 21, 38, 39]. As far as we are aware, SBM applied to binary mixtures
are extremely scarce. Vollebregt et al. [33] have considered such models together with highly complex closures for the
particle stress [40, 41]. This model suffers from a lack of validation and our experience is that it sometimes leads
to spurious results. Norman et al. [42] addressed pressure-driven flows with bimodal negatively buoyant particles.
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They proposed an extension of the SBM assuming that the particle pressure of each particle species i shares with the
relative volume fraction φi/φ. They obtained a relatively fair agreement with their experiments. Lyon and Leal [17]
considered a SBM assuming the binary suspension behaves as a monodisperse system consisting of the large particles
with liquid and small particles lumped together into an effective suspending fluid. Agreement with their experiments
was poor, suggesting that the presence of small particles influences the overall flow and cannot be reduced to an
increase in viscosity of the background fluid.
From this literature survey, we conclude that work in developing SBM for bidisperse suspensions is still limited.

The purpose of this work is to propose a SBM for bidisperse suspensions. It takes its roots from the Morris-Boulay
model [37] and has extended to two classes of particles with different sizes. However, doing so leads to new and
unknown quantities (e.g., how the stress is shared between species) which require specific constitutive relations to
close the system. Therefore, in this work, we follow a multiscale approach by first using fully-resolved particle
simulations to gain insight into the rheology of bidisperse suspensions and then subsequently derive a constitutive
model to close our suspension balance model. Since direct numerical simulations of bidisperse suspensions are very
scarce in the literature, an originality of this work is to rest on two different numerical methods (Force Coupling
Method and Fictitious Domain), which we believe strongly strengthens the confidence in the obtained results.

II. SUSPENSION BALANCE MODEL

A. Monodisperse model

The model proposed in our work is strongly related to the well-known Suspension Balance Model (SBM) proposed
by Morris and Boulay [37] and we first start by providing an overview of this model. The suspension is homogenized
as an equivalent incompressible fluid. Under Stokes flow assumptions, the suspension is governed by

∇ · u = 0 (1)

∇ ·Σ = 0 (2)

where u is the average suspension velocity vector and Σ the suspension stress. The suspension stress is given as the
sum of the suspending fluid stress 2ηfE and the particle stress modeled as

Σp = 2(ηs − ηf )E− ηnγ̇Q Q =





1 0 0
0 λ2 0
0 0 λ3



 (3)

where E is the local bulk suspension rate of strain, ηs is the suspension shear viscosity, ηf is the viscosity of the fluid,
and ηn the normal stress viscosity both depending on the volume fraction φ. Anisotropy parameters are taken to
λ2=0.8 and λ3=0.5 [37]. An isotropic assumption Q=I is also a common choice, which will be made here.
The evolution equation for volume fraction φ reads

∂φ

∂t
+ u · ∇φ = −∇ · j (4)

with the migration flux j given by

j =
2a2

9ηf
f(φ)∇ ·Σp (5)

where a is the particle radius and f(φ) is the hindrance function classically given by a Richardson-Zaki form of the
kind f(φ)=(1− φ)α with α=4 ∼ 5. There are closures available for shear and normal viscosities as

ηs(φ) =

(

1−
φ

φc

)−2

(6)

ηn(φ) = 1.33

(

φ

φc

)3(

1−
φ

φc

)−2

(7)

where φc is the critical volume fraction. This is taken to be φc=0.68 in the initial Morris-Boulay paper [37] but
more recent experiments for monodisperse suspensions indicate φc ≈ 0.59 is a more relevant value for non-Brownian
suspensions [43, 44].
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B. Bidisperse suspension balance model

In this paper, we propose a SBM for bidisperse suspensions. We start from the same ideas as developed by Morris
and Boulay [37] but extended to two classes of particles with different sizes, which was the idea already proposed
by Norman et al. [42]. The model shares the same sound theoretical grounds as the initial Morris-Boulay model but
new quantities arise that are not reported experimentally. A novelty of the present work is to propose closures for
those new quantities that will be taken from particle-resolved simulations.
In the following, we consider a suspension composed of two classes of particles i, i = 1, 2. The total volume fraction

is φ=φ1+φ2. The bidisperse suspension flow is still given by Eq. (1) and Eq. (2). To extend the SBM to multiple
particle sizes in the same simulation, we write the monodisperse SBM for each phase i

∂φi

∂t
+ u · ∇φi = −∇ · Ji (8)

for a volume fraction of species i denoted by φi, time t, and suspension velocity field u. The flux ji is given by

ji =
2a2i
9ηf

fi∇ ·Σp
i (9)

where ai is the particle radius and fi is the hindrance function. The particle stresses are given in the isotropic case
by

Σ
p
i = 2(ηis − ηf )E− ηinγ̇I. (10)

The problem now becomes to find the closures for phase-specific hindrance function fi, normal viscosity ηin, and shear
stress ηis.
For the hindrance functions, experimental correlations are available such a simple correlation by Shauly et al. [45]

fi = (1− φi)/(ηs/ηf ) (11)

or the more complex Davis-Gecol correlation [46]

fi = (1− φi)
−Sii



1 +
∑

i6=j

(Sij − Sii)φj



 (12)

where the Sij are given function of particle size ratio. In our model, Eq. (11) was chosen for simplicity and robustness.
Indeed, the Davis-Gecol expression can sometimes lead to unphysical values.

Empirical correlations for shear and normal viscosities as given by Eq. (6) and Eq. (7) are devised for monodisperse
suspensions only. However, many experimental works [24, 47, 48] suggest they can still be valid provided that the crit-
ical volume fraction φc is adjusted. The critical volume fraction φc

bi in bidisperse suspensions varies depending on the
relative volume fractions and sizes of the small and large particles and the following expression can be found [38, 49]:

φc
bi = φc

mono

(

1 + c

∣

∣

∣

∣

a1 − a2
a1 + a2

∣

∣

∣

∣

3/2(
φ1

φ

)3/2(
φ2

φ

)

)

(13)

with c ≈ 1.5 and with a1 > a2. The monodisperse critical volume fraction φc
mono is taken to 0.59. Hence, viscosity

expressions given by Eq. (6) and Eq. (7) are used while choosing φc
bi as the critical volume fraction. This will be

checked in the forthcoming simulations.
Finally, we assume that the phase normal viscosities ηin vary between the two cases according to the relative volume

fraction:

ηin = (φi/φ)ηn (14)

This assumption, already put forward by Norman et al. [42], will be justified in the following sections based on
numerical results. Shear viscosity may follow this rule too but the quantity ηis is not required for modeling segregation
in 1D flows and has therefore not been addressed in the scope of this work.
Equations (8)-(14) are solved for unidirectional flow with variations in the direction of the velocity gradient using a

finite-difference technique. It is well known that at the centerline of a Poiseuille flow such homogenized models lead to
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a singularity: the shear stress ηsγ̇ is constant across the suspension but at the centerline we have γ̇=0 by symmetry,
which implies ηs → ∞. To alleviate associated numerical instabilities, we classically add a non-local shear rate γ̇nl to
the computed flow shear rate γ̇. This non-local shear rate is defined as [36, 50]

γ̇nl = 〈a〉
umax

h2
(15)

where 〈a〉 is the average particle radius, umax the maximum flow velocity, and Lz the channel width. Since it is
non-zero at the centerline, it avoids any divergence. This correction is not activated for a Couette flow where there is
a non-zero shear rate across the flow.

III. NUMERICAL METHODS

A. The Force Coupling Method

The first set of numerical simulations is completed using the force coupling method (FCM) for spherical particles
confined to a planar channel [51]. Previous work on bidisperse suspensions with the FCM has been limited to
moderate volume fractions φT ≤ 0.2 in a periodic domain [52]. An important feature at higher volume fractions is
the accurate representation of short-range viscous lubrication forces. A detailed discussion of the FCM procedure for
monodisperse particles is given in Yeo and Maxey [51] and Yeo and Maxey [53]. Here, we will present the extension of
the lubrication correction, developed for monodisperse particles by Dance and Maxey [54] and Yeo and Maxey [51],
to apply to bidisperse particle sizes.
The equation of fluid motion for Stokes flow with FCM is:

∇p = f + µ∇2u+

NP
∑

n=1

{Fn∆M (rn) + (Gn · ∇)∆D(rn)} (16)

where p is the pressure, f represents any external body forces, µ is the fluid viscosity, u is the fluid velocity, Fn is the
force monopole moment on the nth particle, ∆M (x) is the FCM force monopole density distribution or envelope, Gn

is the force dipole moment, ∆D(x) is the force dipole, and rn is a vector representing the relative distance from the
center of particle n, rn = x−Yn.
The monopole and dipole force envelopes, ∆M and ∆D, are given by Gaussians scaled by the particle radius a:

∆M =
1

(2πσ2
M )3/2

exp

(

−
x2

2σ2
M

)

(17)

∆D =
1

(2πσ2
D)3/2

exp

(

−
x2

2σ2
D

)

(18)

with σM = a√
π

and σD = a
(6

√
π)1/3

[55, 56]. A weighted integral of the flow u determines the particle velocity.

Similarly, the FCM stresslet is set so that the weighted integral of the strain-rate is zero for each particle.
Yeo and Maxey [51, 53] demonstrated that FCM with the lubrication interactions is equivalent to solving a mobility

problem:

[

MFV F tot

MFEF tot +E∞

]

=

[

R−1 +MFV −MSV

MFE −MSE

] [

F lub

Stot

]

(19)

V is a vector containing the particle translational and angular velocities, V = [VT ,ΩT ]T , with size (6NP ), and F is
a vector containing the monopole particle forces and torques, F = [FT ,TT ]T , also with size (6NP ). E

∞ is the strain
rate of the imposed fluid velocity field, and V ∞ corresponds to the translational and angular velocities arising from
the imposed external fluid flow field. S denotes a (5NP ) vector containing the five independent stresslet components
for each particle: S11,S12,S13,S22,S23. Each submatrix MAB is a mobility matrix which calculates the value of a
quantity B given A. Similarly, a matrix RAB is the resistance matrix that relates A to B. The force and torque
vector, F tot, and FCM stresslet vector, Stot, are given by

F
tot = F + REFE∞ (20)

Stot = S+ RESE
∞ − RV S(V − V

∞). (21)
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The lubrication correction matrix R is constructed through the pairwise addition of the two particle lubrication
resistance matrices as in Stokesian Dynamics [57] and lattice-Boltzmann simulations [58]. The two particle lubrication
correction matrices are given by R2B = Rexact

2B − RFCM
2B , where Rexact

2B denotes the analytical form of the two-body
resistance matrix and RFCM

2B is the FCM two-body resistance matrix. The FCM resistance matrix RFCM
2B is found by

constructing the two-body FCM mobility matrix for two particles with size ratio λ with varying separation distances,
then inverting the matrix to form the FCM resistance matrix. The polynomial fit tool in Matlab (2017a) is used to
fit a fifth degree polynomial for each of the resistance functions [59]. The exact two-body resistance matrices, Rexact

2B ,
are taken from Jeffrey and Onishi [60] and Jeffrey [61], and are also available in corrected form in [54, 59, 62–65].
In the simulations it is necessary to choose a cut-off distance for the lubrication forces, which represents the

separation at which two particles in the simulation are considered to no longer be coupled by lubrication forces. In
practice, the cut-off distance is chosen at the point that RFCM

2B ≈ R2B so the difference between the two terms
and thus the lubrication force goes to zero. Bidisperse suspensions add additional complications in calculating the
lubrication cut-off distance. If the cut-off distance for a pair of the largest size particles is greater than the diameter
of the smallest particle it is possible for a small particle to enter the gap between two large particles. As the resistance
functions assume only empty fluid between two lubrication neighbors the analytical functions will no longer be valid.
To avoid this, the lubrication cut-off distance must be less than the diameter of the smallest particle in the simulation,
which limits the size ratios λ that the method can handle. For very small values of λ, this can result in RFCM

2B 6= R2B

at the cut-off distance, so the lubrication force term will have a jump discontinuity. For size ratios considered in this
paper this is not a concern, and consideration of smaller values of λ is left for a future study.
Beyond the hydrodynamics, a short-range particle-particle contact force between the particles is included to model

a small particle surface roughness or asperities that prevent particles from overlapping during the simulation or full
direct contact between particles. As in previous studies, the contact force between particles α and β, with centers rα

and rβ , acts along the line of centers of the particles and is given by

F
αβ
P =











−6πā2γ̇Fref

(

R2
ref − |r|2

R2
ref − 4ā2

)6
r

|r|
if |r| < Rref ,

0 otherwise

(22)

in which r = rβ − rα, Rref is the cut-off distance, and ā is the reduced radius,

ā =
aα + aβ

2
. (23)

Fref is a constant chosen to so that the minimum gap between two particles of equal radius a is 0.005a when
Rref = 2.01a [51]. An analogous particle-wall contact force is included to represent the dynamics of the particle
interactions with the wall,

Fα
W =











−6πa2αγ̇Fref,wall

(

R2
ref,wall − |Yα|

2

R2
ref,wall − a2α

)6
ŷ

|Yα|
if |Yα| < Rref,wall,

0 otherwise

(24)

Here, |Yα| is the distance between the wall and the y-coordinate of the center of particle α, ŷ is the unit vector in
the y-direction, normal to the wall, and Rref,wall and Fref,wall are parameters. For the simulations considered here,
Rref,wall = 1.01a and Fref,wall = 100.0.
The contribution to the particle stress due to the elastic contact forces is found by the dipole moment of the force

distribution,

〈σC〉 =
NP

V
〈SC〉 =

1

NP

NP
∑

α=1

Nc(α)
∑

β=1

[

−
1

2
(rβ − rα)Fαβ

P

]

(25)

where Nc(α) is the number of particles within the contact force cut-off of particle α and V is the volume of the domain
[66]. The particle contribution to the bulk stress is then the sum of the contribution from the contact stress, SC , and
other stresslet moments from the resolved FCM dipole terms or the lubrication corrections, S,:

〈σij〉 =
NP

V
〈Sij〉+

NP

V
〈SC

ij 〉. (26)

The particle contact pressure is defined as the trace of the contact stress tensor,

Π = −
1

3
(σC

11 + σC
22 + σC

33). (27)
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B. Fictitious Domain Method

The second method used in the frame of this study is the fictitious domain (FD) method [67–69] in which solid
particles are supposed to be filled with a fluid having the same properties as the actual fluid. Particles are thus
considered as some regions of the fluid constrained to have a rigid body motion through an additional momentum
forcing λ. Just like the FCM, the Stokes equations are solved for an incompressible fluid as

∇ · u = 0 (28)

−∇p+ µ∇2u+ ρλ = 0 (29)

Momentum forcing enforces a rigid body motion inside the particle region. The Stokes equations are solved by finite
differencing on a staggered Cartesian grid using standard projection methods. Most numerical details are skipped
here for brevity and may be found in Gallier et al. [69].
A correction procedure for force, torque, and stresslet is considered for lubrication interactions similarly to Stokesian

Dynamics [57, 70] or FCM, as described in the previous section. A grand resistance lubrication matrix R is constructed
by pairwise addition of two-particle lubrication resistance matrices. This two-particle lubrication correction matrix
is similarly estimated as R2B = Rexact

2B − Rresolved
2B , where Rexact

2B is the analytical two-body resistance matrix [62]
and Rresolved

2B is the two-body resistance matrix explicitly resolved by the FD scheme. It is obtained by a priori

computations for many pairs of particles with different orientation, separation, and size ratio λ and is then tabulated
for current configurations during computations. Exact theoretical lubrication functions are taken from the references
already cited in the previous section dedicated to FCM. Lubrication correction is only needed for very close particles
and is activated whenever the separation distance between particles is smaller than one grid spacing ∆, here taken
to be ∆ = ā/5 where ā is the average particle radius for the considered pair. Since theoretical lubrication functions
diverge at contact, this can lead to numerical difficulties when particles come to near-contact. This is alleviated by
adding a small value 10−6ā to the actual particle separation when evaluating lubrication functions.
A short-range force is used to model direct contact between particles and avoid particle overlapping. Assuming a

soft-sphere Hertzian contact for pair α and β, the normal force F
αβ
P then reads

F
αβ
P = −kn |‖r‖ − aα − aβ − hr|

3/2 r

|r|
(30)

Particle roughness is accounted for in the model assuming sparse asperities of size hr. Contact is therefore supposed
to take place whenever ‖r‖ 6 aα + aβ + hr. Note that lubrication forces are however still evaluated based on the
actual separation distance ‖r‖− aα − aβ since the fluid is assumed to flow freely between asperities. In this work, the
roughness size is fixed to hr/ā = 5.10−3, which is a typical roughness measured for suspension particle. The normal

stiffness kn is chosen sufficiently high so as to mimic rigid particles and the non-dimensional stiffness kn/µγ̇ā
2h

−3/2
r

is typically 105. We check a posteriori that the maximum roughness deformation never exceeds one (i.e., none of the
asperities are completely deformed). Contacts with the wall are treated in the same way. Rheological quantities and
particle stress are computed similarly to FCM with the stress having contributions from the explicitly-resolved flow,
lubrication corrections, and contacts.

Both FCM and FD methods share some similarities as they both rely on solving directly the Stokes equations. The
additional forcing is distinct in essence and expression but in both cases it accounts for the effect of the particles on
the flow field. The way lubrication is accounted for is also quite close although some minor variations may exist in
the way FCM/resolved interactions are modeled (polynomial fit vs. tabulation). The two major differences lie in the
numerical methods (although not detailed further in the context of this paper, this includes numerical methods to
solve Stokes equations or linear systems, grid spacing, etc.) and in the contact force modeling. Although the force
model is different, driving parameters such as cut-off distance or force scale are basically in the same range. In any
case, our goal is not to strive to closely match those two numerical models: getting the same results twice would not
bring much for our study. Rather, the idea was to use them as is—without any change—and assess whether they
yield a similar rheology for bidisperse suspensions. If so, this mitigates the risk of errors and strengthens the obtained
results on binary suspensions—which is desirable as they have been only scarcely addressed so far.

C. Simulation parameters

The particle size ratio is given by λ = aS/aL, where aS and aL are the radii of a small and large particle, respectively.
The relative small particle bulk volume fraction, β = φS/φT , is the ratio of the small particle volume fraction φS and



8

the total volume fraction φT . The large particle volume fraction is then given by φL = (1− β)φT . The large particle
size is kept fixed at aL = 1 and the small particle size is varied so that the large particle radius aL can be used as a
scaling parameter.
The bidisperse simulations are completed in a planar channel with channel widthHy = 40aL and vorticity dimension

Lx = 30aL for a suspension with total volume fraction 0.4. The channel length in the streamwise direction, Lz, is
adjusted depending on the particle size ratio so that the total number of particles in the simulation is on the order of
103 − 104. The direction of mean vorticity, x, is denoted by the subscript 1, the wall-normal direction, y, is denoted
by the subscript 2, with channel walls at x2 = 0 and 40aL, and finally the streamwise direction, z, is denoted by the
subscript 3. Periodic boundary conditions are applied in the streamwise (z) and spanwise (x) directions, with planar,
no-slip walls in the y direction. A simulation with monodisperse particles is also run to provide a comparison. The
simulation parameters are given in table I.

λ Lz φT β 〈a〉 NP fS
L60 1 0.6 30 0.4 0.25 0.757 6558 0.607
L60 3 0.6 30 0.4 0.75 0.627 12797 0.933
L72 3 0.72 40 0.4 0.75 0.751 10357 0.889
L80 1 0.8 60 0.4 0.25 0.921 8515 0.394
L80 2 0.8 60 0.4 0.50 0.868 10216 0.657
L80 3 0.8 60 0.4 0.75 0.829 11791 0.854

Monodisperse – 60 0.4 – 1.0 6878 –

TABLE I: List of bidisperse simulation parameters. The last column is the fraction of small particles, fS = NS/NP ,
where NS is the number of small particles, NL is the number of large particles, and NP is the total number of
particles, provided as a comparison to other works. 〈a〉 is the average particle radius, 〈a〉 = NSaS+NLaL

NS+NL
, and

β = φS/φT is the ratio of the small particle volume fraction to the total volume fraction.

For each of the Couette flows the mean shear rate is kept fixed at γ̇ = 1. In both FCM and FD models, the
contact force coefficient scales with shear rate, so that results are independent of shear rate and the exact value of γ̇
is irrelevant. Investigating the role of the shear rate (using a constant force barrier in the simulation) has not been
done in the frame of this paper and is left for future studies. Each simulation is run for 100 strain units, then results
are averaged over 25 equally spaced time intervals over the subsequent 25 strain units. This study focuses on a single
value of volume fraction φT=0.4. This value of 0.4 was chosen since for this range of fraction, both contact and
hydrodynamic forces equally prevail [78]. In addition, the only relevant experiments on bidisperse suspensions [18]
(and to which our results will be validated) are obtained for φT=0.4.

D. Validation tests

Exact results for the relative velocities for two particles in a shear flow can be obtained from Batchelor and Green
[71] in terms of three non-dimensional functions and the particle separation distance r,

V(r) = −γ̇











r2(B/2− r21/r
2(A−B))

r1(B/2− r22/r
2(A−B))

r1r2r3/r
2(A−B)

(31)

Here, r = (r1, r2, r3) is the separation between the particles in the stream-wise, velocity gradient, and vorticity
directions, respectively. The values of A,B, and C are given by Batchelor and Green [71] for the far-field case of
widely separated spheres for all size ratios λ, and in the near-field case for λ = 1. The near-field values of A and
B for λ = 0.5 can be found in Pesche [72]. The results of the FCM and FD simulations and the near- and far-field
values are shown in Figure 1 for λ = 0.5, where ξ = r/aL. Good agreement is shown between the values, even when
the particles are very close together. In particular, FD and FCM simulations show very similar results.

E. Particle stresses for Couette flow

The total volume fraction profile and the volume fraction profiles of the small and large particles for the FCM
simulations is shown in Fig. 2, where the phasic average is defined as in Yeo and Maxey [53], Drew [73]. The volume
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FIG. 1: Values of A and B for two particles in a shear flow for λ = 0.5 from both FCM and FD. The exact far field
solution is given by Batchelor and Green [71] until ξ = 1.75. The near field solution is from Pesche [72]. We see

excellent agreement between the previous results and the two numerical methods considered here.

fraction profiles in the center of the channel do not change significantly with the bidispersity in the simulations and
the volume fraction is constant for y/aL > 10. The first wall layer forms at y/aL = λ, with subsequent layers forming
adjacent to the wall layer. This layering due to the wall extends out to y/aL = 5− 6, and comparing flows with equal
volume fractions of large and small particles shows there is a significantly higher volume fraction of small particles
than large particles in both the first and second wall layers. The volume fraction of large particles will be higher
slightly outside the wall layering to accommodate the large particles that may migrate out of the wall layer during
the simulation. This wall layering will be discussed in detail in sec. V.

The normal stress differences are given by

〈N1〉 = 〈σP
33〉 − 〈σP

22〉 (32)

〈N2〉 = 〈σP
22〉 − 〈σP

11〉 (33)

where 1,2,3 refers to the the vorticity, velocity gradient, and streamwise directions, respectively. The particle averaged
normal stress differences, scaled by the wall shear stress, τ = µrµγ̇, are shown in Fig. 3. As in simulations for
monodisperse suspensions, we find that N1 and N2 are negative [57, 74]. Experiments with bidisperse suspensions
have again shown that both N2 and N1 are negative, and similar in magnitude [27, 75, 76]. Zarraga et al. [77] showed
that for monodisperse spheres in a shear flow |N2| > |N1|, and |N2| ≈ 3.6|N1|, while Stokesian Dynamics simulations
by Sierou and Brady [57] found that |N2| ≈ |N1|. Here the two normal stress differences are approximately equal
in magnitude, with |N1| < |N2|. Friction is also known to alter N1 and N2 [78] but it is not accounted for in the
framework of this study. An overall good agreement is noted between FD and FCM simulations. There is a slight
disparity—mostly for N2—which is expected because of the differences in contact force modeling. However both
models find that N1 and N2 are virtually unaffected by bidispersity for this range of λ.

In Fig. 4 we plot the normal stress difference profiles across the channel, averaged over the channel centerline.
Both N1 and N2 are negative and approximately uniform in the central portion of the channel away from the wall
layer. N1 becomes positive immediately adjacent to the wall, while N2 is more negative in the wall layer due to the
localized dynamics near the wall. The first normal stress difference N1 varies slightly with the size ratio, increasing
with smaller values of λ. For N2 there is no significant difference with λ for the size ratios considered.

An understanding of this behavior of the normal stress differences can be found by looking at the particle stress
profiles at the channel wall in Fig. 5. σ33 becomes less negative at the channel wall, while σ22 becomes more negative,
resulting in a positive value for N1. The value of σ11 becomes slightly less negative at the channel wall, so N2 becomes
more negative. This behavior was already noted in [79] and is due to wall layers as it will be shown in Sec. V. The
formation of chains in the direction of the flow reduces the contact stress in that direction 3, hence a significant
reduction in |σ33| as noted in Fig. 5. The relative contributions to the stress profiles from the small and large
particles are also plotted in Fig. 5.

A major finding of this work is that the particle stresses are divided relative to the volume fraction of each species,
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FIG. 2: (a) Total volume fraction profile. (b) Solid lines: small particle volume fraction profile. Dashed lines: large
particle volume fraction profile for λ = 0.8, 0.72, and 0.6 with β = 0.75, compared to a monodisperse simulation,
averaged over γ̇t = 100− 125. The channel wall is at y/aL = 0 while the channel centerline is at y/aL = 20 (FCM
simulations). (c) Large particle volume fractions scaled by the average large particle volume fraction (〈φL〉 = 0.1)

and monodisperse volume fraction scaled by the average monodisperse volume fraction (φ = 0.4). (d) Small particle
volume fractions scaled by the average small particle volume fraction (〈φS〉 = 0.3) and monodisperse volume fraction

scaled by the average monodisperse volume fraction.
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FIG. 3: Average normal stress differences for bidisperse suspensions at a range of particle size ratios and small
particle volume fractions averaged over all particles for γ̇t = 100− 125. Left: N1. Right: N2. Filled symbols: FCM.

Empty symbols: FD. Averages are taken over the domain 5aL ≤ y ≤ 35aL to exclude the wall layer.



11

0 5 10 15 20
y/aL

−0.2

−0.1

0.0

0.1

0.2

N
1/τ

λ=0.8
λ=0.72
λ=0.6
Monodisperse

0 5 10 15 20
y/aL

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

N
2/τ

λ=0.8
λ=0.72
λ=0.6
Monodisperse

FIG. 4: Normal stress difference profiles N1 (left) and N2 (right) from FCM simulations for varying λ at β = 0.75
and a monodisperse suspension averaged over γ̇t = 100− 125. Both N1 and N2 are negative on average across the

channel, however N1 is positive in the wall layer.

with

〈σS
ij〉

〈σL
ij〉

≈
φS

φL
.

This is demonstrated in Fig. 6, where the relative volume fractions of the small and large particles are compared to
the average contributions to the total stress from the small and large particles. The data fits very well to a linear fit,
in agreement with the results from Wang and Brady [27] for total volume fraction φ = 0.45. This result is at the core
of the present SBM model, accounted for by Eq. (14). It is interesting to pinpoint that this result is found both by
FCM and FD simulations, which is believed to strengthen the relevance and generality of this conclusion.
Finally, we can consider the contact pressure profile for bidisperse Couette flows in Fig. 7. Previous work for non-

Brownian suspensions in shear flow has shown that particle migration across the channel is closely linked to gradients
in the particle contact pressure [80]. Here, the particle volume fraction profiles are constant across the channel with
no significant gradients in the contact pressure other than near the wall, where the wall contact force balances the
particle-particle contacts. The contact pressure outside the wall layer decreases slightly with smaller values of λ,
and at the core of the channel the monodisperse suspension has a larger particle contact pressure than any of the
bidisperse simulations.
In all the quantities considered in this section, including the maximum volume fraction, the relative viscosity, the

stress profiles, and the volume fraction profiles, the bidisperse suspensions behave in a very similar manner to a
monodisperse suspension. Any variation shown, such as in the contact pressure, is relatively small compared to the
overall magnitude of the quantity. This is partly because there is not a significant variation in the maximum volume
fraction at the particle size ratios considered. In addition, segregation of bidisperse suspension flows has been shown
to occur when there is a gradient in the shear rate, as the induced particle velocity in the cross-stream direction
then depends on the particle size. In a Couette flow, there is no particle migration flux, and thus no mechanism for
size-induced segregation.

IV. BIDISPERSE SUSPENSION BALANCE MODEL RESULTS

In the previous section, we showed that the stresses in a suspension of bidisperse particles in a Couette flow are
distributed proportionally to the relative volume fractions of each population of particles. In particular, the total stress
(and contact pressure) is the same for monodisperse and bidisperse simulations, at least for the moderate size ratios
investigated. In this section, we show how the bidisperse SBM we have proposed compares with FCM simulations of
a dense Poiseuille flow and also with experiments.
Fig. 8 and Fig. 9 compare the SBM and FCM simulations of Poiseuille flow with λ = 0.6 and λ = 0.8, respectively,

and β = 0.25, 0.5, and 0.75 for φT = 0.4. In Fig. 8 the accumulated strain is γ̇t = 320 and in Fig. 9 the accumulated
strain is γ̇t = 265. The SBM performs well here. Overall, the bidisperse SBM is able to accurately predict the particle
volume fractions across the channel outside the wall layer, defined by y/aL ≤ 5. This latter point will be addressed
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FIG. 5: Stress profiles σ33 (top row), σ22 (middle row), σ11 (bottom row) for λ = 0.6 for β = 0.25 (left column) and
β = 0.75 (right column) averaged over γ̇t = 100− 125 (FCM simulations). The stress for each size particle is

distributed by the relative volume fraction of each species.

in the next section. We note in particular that small particles are likely to migrate when they are present in large
quantities (β = 0.75). This contrasts to the usual assumption that only the largest particles can migrate significantly.

In Fig. 10 we compare the SBM with two experimental cases from Semwogerere and Weeks [18]. The channel width
is Hy = 32aL. The particles have a size ratio of λ = 0.5. In Fig. 10a, φL = φS = 0.1, with a total volume fraction of
φT = 0.2. In Fig. 10b, φL = 0.25 and φS = 0.1, with a total volume fraction of φT = 0.35. The SBM is calculated at a
strain γ̇t = 1500 as in experiments, and the FCM results are at strain γ̇t = 280 due to computational time limitations.
For both cases we compare with the bidisperse SBM results and experimental results. The bidisperse SBM results
agree with experiments, although they do not show the segregation dip that occurs at the center of the channel for the
large particle volume fraction in [18]. One explanation for this is that the FCM simulations do not consider Brownian
motion. In the experiments (where the particle size is about 1 µm), Brownian motion may be responsible for small
particles migrating away from the centerline, where they can be replaced by large particles migrating towards the
center. In comparison, with FCM or SBM there is no force to remove particles from the centerline.
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FIG. 8: Volume fraction profiles for λ = 0.6 and β = 0.75 (a), 0.5 (b), and 0.25(c). Comparisons between SBM and
FCM simulations at strain γ̇t = 320.
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FIG. 9: Volume fraction profiles for λ = 0.8 and β = 0.75 (a), 0.5 (b), and 0.25(c). Comparisons between SBM and
FCM simulations at strain γ̇t = 265.
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FIG. 10: Volume fraction profiles: comparisons between SBM, FCM simulations and experiments (SW)[18]
(λ = 0.5). φT = 0.2 and β = 0.5 (a); φT = 0.35 and β = 0.71 (b). SBM results are computed for a strain γ̇t = 1500
and FCM results are at strain γ̇t = 280. The results from [18] are scaled by an additional factor of σ = 1.04 so that
H/(aLσ) = 32 to provide a direct comparison with the FCM and SBM results (in [18], H = 50µm, aL = 1.5µm, and

aS = 0.69µm, so λ = 0.460.)

V. WALL LAYERING

In Fig. 8, it is apparent that in steady-state for the FCM simulations the volume fraction of large particles in the
wall layer drops to zero. This trend is less clear when the size ratio λ is larger in Fig. 9. In fact, the dynamics of
the wall layer for both the Couette and Poiseuille flow are fascinating, and we present some details here. The wall
layer dynamics are not accounted for in the SBM simulations. This was anticipated because such models result from
a homogenization procedure and can therefore not capture length scales below a few particle diameters. However, a
thorough understanding of the wall layers can contribute to future refinements of the bidisperse SBM.

As we noted above, the wall layer consists predominately of small particles with λ = 0.6 in a Poiseuille flow. An
understanding of why can be found by studying the wall layers of Couette flows. In Fig. 11, we show a snapshot
of the wall layer located one small particle radius above the wall. It is evident that the large particles are clustered
together, forming chains in the streamwise direction. A quantitative look at the orientation between pairs of touching
particles is seen in Figure 12. Large particles are predominately aligned in the streamwise direction, while small
particles are relatively uniformly distributed at a distance 2as from the particle center, with a slight preference for
forming chains in the direction of flow. Looking at small-large and large-small particle interactions, we see that small
and large particles are most likely to collide perpendicularly to the direction of fluid flow. To understand this, we
consider a collision between a small and large particle. The force between the two particles is in the direction of the
vector connecting the centers of these two particles. In the case of a collision between a small and large particle, the
force vector has a small component perpendicular to the wall, which pushes the small particle closer to the wall and
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γ̇t = 100 (FCM simulations). The small particles are shown as empty circles and the large particles are shown as

filled circles.
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FIG. 12: Pair-correlation function of the relative distances between particle centers with λ = 0.6 and β = 0.5 (a-d)
and β = 0.25 (e-h) for a Couette flow (FCM simulations). We consider the interactions between small and large
particles separately. The flow is sampled at the top and bottom walls on the planes y = as and y = Hy − as at 40

timesteps equally spaced between γ̇t = 25 and γ̇t = 125. The arrow indicates the direction of flow.

the large particle away from the wall. Thus, the large particles will, over time, exit the wall layer. In order for a large
particle to remain in the wall layer it must predominately have collisions with other large particles and not engage in
collisions with small particles, thus the formation of large particle chains in the streamwise direction.

VI. CONCLUSIONS

In this paper we examine the effect of moderate particle size variations on a dense suspension Couette and Poiseuille
flows by numerical simulations at particle scale. At the size ratios λ considered (0.6∼0.8), the bidispersity leads to
no significant change in rheological parameters of the suspension for the Couette case, including the particle volume
fraction and relative viscosity. The results shown here for the normal stress differences and relative viscosity agree well
with previous results from numerical simulations of bidisperse suspensions in periodic domains. Also in agreement
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with previous studies, the particle stresses are distributed proportionally to the relative volume fractions of small
and large particles. This result was confirmed with two different numerical approaches (FCM and FD). The particle
contact pressure does show a slight variation with changes in the particle size ratio λ, but at the size ratios considered
here the difference is small.
Due to limitations in particle manufacturing, many experiments may use particles with size variations of up to 10%.

The results in this paper demonstrate that numerical simulations with monodisperse sizes can accurately capture the
rheology of such a suspension. Variations in particle sizes may have a greater effect at lower values of λ than considered
here. In particular, with larger size variations the maximum volume fraction of the suspension may increase as the
small particles can fill in gaps between the large particles at maximum packing.
This work also proposes a new suspension balance model (SBM) for bidisperse suspensions. It is based on extending

the usual SBM for two size classes and using the result that normal stresses share with the relative particle fraction.
An overall good agreement is found between this SBM and direct simulations of Poiseuille flows as well as with
experiments. In particular, small particles can also migrate to the centerline when they are present in sufficient
quantity.
Future work might consider direct simulations for larger size ratios in order to improve and validate the SBM for

a wider range of suspensions. Also, the effect of volume fraction needs to be investigated to assess whether SBM
is likely to be predictive for the whole range of volume fractions, including very dense suspensions. Stokes flow is
inherently linear so varying the shear rate on the face of it should not have an effect. However, in our simulations we
have the irreversible effects of the contact barrier. Usually we have set this to give a specific minimum gap width,
which means our force coefficient scales with shear rate. If we fixed the barrier force parameters, then varying the
shear rate would give different minimum gaps and different shear viscosities or normal stresses. Lubrication forces
will have a stronger effect as the minimum gap decreases. You see a bit of this between FCM and FD results given the
different parameterizations of the force barrier. Investigating this effect could be part of future studies; the fraction
profiles at steady state however do not depend on the shear rate for SBM. The simulations conducted so far showed
a depletion of large particles at the wall that is missed by the SBM. A first physical mechanism has been proposed
and could be included in the future in an improved SBM to provide more reliable predictions in the near-wall region.
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