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Abstract

We show that non-equilibrium and equilibrium measurements of slip are consistent, provided the

hydrodynamic wall location associated with the equilibrium measurement is properly taken into account.

The latter is a strong function of the fluid state and wall-fluid interaction and cannot be neglected as

it typically has. Our results are based on an alternative approach for calculating the hydrodynamic

wall location which alleviates most of the difficulties associated with its calculation via a Green-Kubo

integral that appear to have contributed to its neglect. Extensive molecular dynamics simulations are

used to validate our approach including a model for calculating the slip length that does not involve a

Green-Kubo integral.

1 Introduction

The hydrodynamic behavior of fluids under confinement is a topic of significant theoretical

and practical importance. In many instances, slip/jump boundary conditions can be used

[1, 2, 3] to extend the range of validity of traditional macroscopic hydrodynamic models into

the regime of small, or in some cases even moderate confinement. The most well-known

boundary condition of this type is, perhaps, the Navier slip boundary condition

ux|z=zw = β
∂ux
∂z
|z=zw (1)

given here for a fluid-solid boundary, parallel to the z=0 plane and located at z = zw. We

have also assumed, without loss of generality, that the solid boundary, or wall, is at rest and

that the fluid flow and resulting slip is in the x direction.

Reliable methods for calculating the slip length β using molecular dynamics (MD) simu-

lations are invaluable both from a practical point of view but also for informing fundamental

research [4, 5, 6, 7, 8, 9, 10, 11] into relation (1) based on a microscopic description of the

fluid-solid interaction at their interface. Slip in MD simulations can be measured in the

presence of a velocity gradient by extrapolating the velocity profile to the wall location.
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This approach is referred to as the non-equilibrium method. The inherent presence of non-

equilibrium is considered to be a disadvantage by some authors, since, if the deviation from

equilibrium is large, viscous heating, associated thermostats or other non-linear effects may

contaminate the result. In response to this school of thought, methods for measuring slip

using equilibrium simulations have also been developed. The most well-known, perhaps, is

the Green-Kubo method proposed by Bocquet and Barrat [5], which invokes linear response

theory to calculate β. More recently, Duque-Zumajo et al. [12] developed an alternative

approach which avoids the well-known plateau problem associated with the Green-Kubo for-

mulation [12, 13, 14]. Interestingly, in one of their publications [13] they are able to show

that their GK expressions, although different in appearance, are equivalent to the original

result of Bocquet and Barrat. Here we also note the work by Hansen et al. [15] who first

introduced the concept of the near-wall fluid-slab on which the analysis by Duque-Zumajo

et al. is based.

Given the existence of these two quite different approaches to measuring slip in MD sim-

ulations, the lack of a comprehensive investigation into their equivalence is conspicuous by

its absence. Comparisons between the two methods have been brief and cursory, typically

limited to the case of large slip length, with the hydrodynamic wall location, an important

parameter within the GK method, neglected. On the other hand, typical modern computa-

tional resources are sufficient for performing low statistical uncertainty [16] non-equilibrium

simulations at small deviations from equilibrium such that non-linear effects are negligible.

In this work we undertake this task, namely a detailed comparison between non-equilibrium

and Green-Kubo measurements of slip to show the that the two approaches are indeed equiv-

alent, provided the hydrodynamic wall location is properly taken into account. To this effect

we propose a new approach for determining the latter quantity. Additionally, by partially

evaluating the GK relation for the slip length developed by Bocquet and Barrat, we develop

a model for calculating the slip length that does not involve a Green-Kubo integral.

2 Hydrodynamic wall location via tangential force balance at the

wall

We consider an atomic liquid in contact with an atomically smooth solid. Let z denote

the direction normal to the solid-liquid interface and pointing into the liquid, with z = 0

corresponding to the first layer of solid atoms in contact with the liquid.

According to the Green-Kubo theory of Bocquet and Barrat [5], the slip length appearing

in eq. (1) can be calculated from

βGK =
µAkBT∫∞

0 〈Fx(t)Fx(0)〉dt
. (2)
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In this expression, angled brackets denote ensemble average, A denotes the interface area,

kB is Boltzmann’s constant, µ is the fluid viscosity and T is the (interface) temperature.

Moreover Fx(t) denotes the force exerted by the solid on to the fluid in the x (slip) direction.

According to this theory, the ”hydrodynamic wall location” at which relation (1) is to be

applied is not the fluid-solid interface (z = 0), but a location inside the fluid given by

zwGK =

∫∞
0 〈Fx(t)Πxz(0)〉dt∫∞
0 〈Fx(t)Fx(0)〉dt

(3)

where Πxz =
∑
imivxivzi +

∑
fxizi denotes the x − z component of the fluid stress tensor,

vj i denotes the velocity of atom i in direction j and mi denotes the mass of atom i; i runs

through all liquid atoms. Here we note that fxi, the x-direction component of the force on

liquid atom i includes the forces exerted by the solid onto the liquid.

A well-known issue [5] that limits the accuracy of GK approaches in finite systems

(MD simulations) is associated with the identification of the ”plateau” in integrals such

as
∫∞
0 〈Fx(t)Fx(0)〉dt. As remarked above, Dugue-Zumajo et al. have recently proposed [14]

a reformulation that avoids these theoretical difficulties. On the other hand, researchers

using eq (2) typically sidestep this issue by approximating [5] the plateau with the first peak

of
∫ t
0〈Fx(t′)Fx(0)〉dt′. Oga et al. [17] have recently provided some supporting argumentation

for this approach by developing a model for the time evolution of 〈Fx(t)Fx(0)〉 which reduces

calculation of the autocorrelation integral to the determination of three fitting coefficients

in the model. Assuming their model to provide an accurate estimate of the GK integral,

they show that the error incurred by calculating βGK using the first peak of the function∫ t
0〈Fx(t′)Fx(0)〉dt′ becomes small when the separation between the viscoelastic and GK re-

laxation timescales in the system studied is large; moreover, according to their model, for

typical values of these timescales found in MD simulations the discrepancy is on the order of

a few percent. Our MD results (see figure 1) are consistent with these findings; namely, iden-

tifying the plateau with the first peak of
∫ t
0〈Fx(t′)Fx(0)〉dt′ results in a small over-estimation

of βGK of order 5% compared to the value predicted by the model of Oga et al.

Evaluation of expression (3) is more challenging. In addition to being significantly more

sensitive to noise [5] than (2), a reliable approach for identifying the plateau in the addi-

tional GK integral has yet to be developed. As a result, the hydrodynamic wall location

has received considerably less attention, with studies utilizing the GK formulation simply

ignoring its existence or perhaps implicitly assuming that it is small compared to the slip

length. Unfortunately, as will be seen below, the latter is not an appropriate assumption,

even in the case of moderately large slip length. This can perhaps be used to explain the

existence of a number of publications questioning the validity of (2); the reader is referred

to Ref. [12] for a more thorough review of this body of work.
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Figure 1: Comparison between estimates of βGK calculated using the model of Oga et al. [17] (red) and by

identifying the plateau by the first maximum of the running integral
∫ t

0
〈Fx(t′)Fx(0)〉dt′ (black). Simulations

performed at T = 1.5 for εsl = 1 and Csl = 0.6.

Our objective here is to perform a thorough validation of the GK approach by comparing

its predictions to non-equilibrium measurements of slip. To achieve this goal we need accurate

measurements of the hydrodynamic wall location. We obtain those by using the tangential

force balance at the wall [5]

〈Fx〉 = −µAux(z = zwGK)

βGK
(4)

This serves as an implicit equation for zwGK , since the slip velocity ux(z = zwGK) involves the

(hydrodynamic) wall location in its definition. In other words, given a measurement of the

force on the solid boundary, zwGK can be determined as the location at which ux(z = zwGK)

satisfies the above equation, with βGK determined from eq. (2).

3 Validation

We have performed equilibrium and non-equilibrium MD simulations of a model system

over a variety of conditions in order to (a) validate the ability of eq. (4) to determine the

hydrodynamic wall location and (b) make a comprehensive comparison between equilibrium

and non-equilibrium measurements of slip.

Our simulations were performed using the LAMMPS software [18]. The model system,
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simulation setup and parameters as well as our results are described in detail below.

3.1 Molecular simulation setup

We consider a system comprising a dense liquid bounded by two fcc-structured walls in a

slab geometry. Atomic interactions follow the generalized Lennard-Jones potential [19]

uij(r) = 4εij

[(
σij
r

)12

− Cij
(
σij
r

)6
]
, (5)

where r denotes the distance between atoms i and j.

In what follows, we will use subscript s to denote solid atoms and their properties and l to

denote liquid atoms and their properties. All quantities will be reported in non-dimensional

units using the characteristic time τLJ =
√
mlσll2/εll, the characteristic distance σll and the

potential well depth εll associated with the liquid-liquid interaction. In all our simulations

Css = Cll = 1, while Csl was varied in the range 0.4 ≤ Csl ≤ 1 as will be discussed below.

The simulated system measured 30.8 LJ units in each of the two dimensions parallel to

the walls; the distance between the walls was also L = 30.8 units; increasing L to 61.6 units

did not produce any significant change in our results.

Each wall consisted of a 7.71 unit thick FCC slab of atoms divided into three regions,

each under different dynamics. The outermost region contained three atomic layers frozen

in place. The middle region contained 7 atomic layers thermostated to the desired system

temperature (T ) via a Nosé–Hoover thermostat. The innermost region, in contact with the

fluid, comprised of a single atomic layer under NVE dynamics. The surface of the wall

exposed to the fluid is the (0,0,1) plane of the FCC crystal. The wall density was fixed at

nw=1.09. In all simulations ms = 5 (ml = 1), σsl = 1 (σll = 1) and εss = 4 (εll = 1). A

potential cutoff of 5 LJ units was used.

3.1.1 Equilibrium simulations

We calculate βGK by numerical integration of the wall-force autocorrelation trace, namely

inserting the result for
∫∞
0 〈Fx(t)Fx(0)〉dt into (2). In all results presented here, the ”plateau”

value of
∫∞
0 〈Fx(t)Fx(0)〉dt was identified with the maximum value of this function, in accor-

dance with our discussion in section 2.

3.1.2 Non-equilibrium simulations

We performed Couette flow simulations at wall speeds of ±0.1, which are sufficiently small for

non-linear effects to be negligible and viscous heating to be small (maximum temperature

variation across the fluid was less than 0.01). The non-equilibrium slip length, denoted
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Figure 2: Comparison between the Green-Kubo prediction, βGK , and the non-equilibrium slip, βneq, as a
function of fluid density at T = 1.5 with εsl = 1 and Csl = 0.6. Red symbols denote βneq at z = 0, black
symbols denote βneq referred to z = zwGK (βneq + zwGK), while the predictions and uncertainty associated
with βGK are shown by the black line and blue shading, respectively.
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Figure 3: Comparison between the Green-Kubo prediction, βGK , and the non-equilibrium slip, βneq, as a
function of fluid density at T = 1.5 with εsl = 0.6 and Csl = 0.6. Red symbols denote βneq at z = 0, black
symbols denote βneq referred to z = zwGK (βneq + zwGK), while the predictions and uncertainty associated
with βGK are shown by the black line and blue shading, respectively.

by βneq was defined as the distance into the wall at which the extrapolated fluid velocity

profile reaches the wall speed value. The above extrapolation was performed via a linear

approximation of the velocity profile fitted over the middle 75 % of the fluid domain, away

from the layering present close to the walls [20].

Here we note that the slip length obtained by this procedure implicitly assumes that the

hydrodynamic wall location is z = 0 (zwneq = 0). As will be seen below, this leads to con-

siderable differences between the equilibrium and non-equilibrium results for the slip length.

The two can be compared by referring both to the same hydrodynamic wall location. In the

present case, this was done by referring the non-equilibrium value to the GK hydrodynamic

wall location, or in other words, by comparing βGK to βneq + zwGK , where zwGK was deter-

mined by applying eq. (4) to the non-equilibrium MD data. We note that due to the linear

velocity profile in Couette flow, this convention is arbitrary: comparing βGK − zwGK to βneq

is equivalent.

3.2 Simulation results

Simulations were performed for a wide variety of conditions, including variable liquid density,

variable temperature, variable solid-liquid attraction as characterized by Csl and variable
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β

T

Figure 4: Comparison between the Green-Kubo prediction, βGK , and the non-equilibrium slip, βneq, as a
function of temperature at ρ = 0.68 with εsl = 0.6 and Csl = 0.6. Red symbols denote βneq at z = 0, black
symbols denote βneq referred to z = zwGK (βneq + zwGK), while the predictions and uncertainty associated
with βGK are shown by the black line and blue shading, respectively.

liquid-sold interaction strength. Figures (2)-(6) show comparisons between the slip length as

determined from eq. (2) via equilibrium simulations (βGK), the slip length as determined by

non-equilibrium simulations (βneq) and the non-equilibrium slip length referred to z = zwGK
(βneq + zwGK). Each datapoint corresponds to the average value of the results from each of

the two walls in the system. In these comparisons, eq. (2) was evaluated using bulk fluid

properties.

The results clearly establish that non-equilibrium measurements of the slip length at

the fluid-solid interface, that is without taking into account the hydrodynamic wall loca-

tion, can be very different from those predicted by the GK theory (2). However, when the

hydrodynamic wall location is taken into account, in the present figures by referring the

non-equilibrium result to this location, the agreement between the two methods is excellent.

This also serves as a validation of using (4) to determine the hydrodynamic wall location.

These results also show that the magnitude of zwGK can be significantly larger than the

value of one LJ unit usually assumed in the literature and as such it cannot be neglected,

especially since it appears to be sensitive to the fluid state.
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Figure 5: Comparison between the Green-Kubo prediction, βGK , and the non-equilibrium slip, βneq, as a
function of εsl at T = 0.825 and ρ = 0.83 with Csl = 1. Red symbols denote βneq at z = 0, black symbols
denote βneq referred to z = zwGK (βneq + zwGK), while the predictions and uncertainty associated with βGK

are shown by the black line and blue shading, respectively.
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4 An expression for β which does not involve a GK integral

In this section we discuss a model for calculating β without evaluating a GK integral. This

result is inspired by previous work [6] where such an expression was developed by relating the

force autocorrelation integral in (2) to a model for the relaxation dynamics of the density-

density correlation function, using a number of approximations as well as a detailed account

of fluid-solid interaction dynamics. The present work also models the force autocorrelation

integral but follows a different route, based on the observation, first reported for the case

of the Kapitza resistance [21], that the timescale associated with the GK integral governing

interfacial transport can be approximately estimated using bulk fluid transport properties.

This observation enables the elimination of the autocorrelation integral in terms of the

mean square of the tangential component of the wall-fluid force and known fluid properties,

arguably resulting in a simpler and more physically intuitive final expression.

Following [21] we write (2) in the form

β =
µAkBT

〈F 2
x 〉
∫∞
0 φ(t)dt

=
µAkBT

〈F 2
x 〉Iβ

(6)

where φ(t) = 〈Fx(t)Fx(0)〉/〈F 2
x 〉 and

Iβ = lim
t→∞

∫ t

0
φ(t′)dt′ (7)

The importance of this rearrangement is that it reduces the contribution of the GK integral

in (2) into the two distinct factors, namely 〈F 2
x 〉, which is strongly dependent on the fluid-

solid interaction and fluid state, and the timescale Iβ which our MD simulations show, in

agreement with the results in [21] for the case of the Kapitza resistance, is a very weak

function of the fluid state and fluid-solid interaction.

Further progress can be made by introducing the assumption Iβ = τ/Dβ, where Dβ is a

constant and τ is the homogeneous fluid viscous relaxation timescale defined by

µ =
1

V kBT

∫ ∞
0
〈Πij(t)Πij(0)〉dt =

〈Π2
ij〉

V kBT

∫ ∞
0

〈Πij(t)Πij(0)〉
〈Π2

ij〉
dt = G∞τ (8)

where Πij denotes a non-diagonal component of the homogeneous fluid stress tensor (i 6= j)

and

G∞ =
1

V kBT
〈Π2

ij〉 (9)

is the fluid high-frequency shear modulus [22]. This assumption yields

β =
DβG∞kBT

A−1〈F 2
x 〉

(10)
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β

Csl

Figure 6: Comparison between the Green-Kubo prediction, βGK , and the non-equilibrium slip, βneq, as a
function of Csl at T = 1.5 and ρ = 0.68 with εsl = 1. Red symbols denote βneq at z = 0, blue symbols
denote βneq referred to z = zwGK (βneq + zwGK), while the predictions and uncertainty associated with βGK

are shown by the black line and blue shading, respectively.
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β

T ρ

Cslεsl

Figure 7: Validation of relation (10) for a variety of conditions. MD simulation results and associated
uncertainty (for βGK) are shown in red symbols, while the prediction of equation (10) and associated uncer-
tainty are denoted by the black line and blue shading, respectively. Simulations performed at the following
conditions: Top left, T = 1.5, Csl = 1, ρ = 0.83; top right, T = 1.5, εsl = 1, ρ = 0.68; bottom left,
εsl = 0.6, Csl = 0.6, ρ = 0.68; bottom right, T = 1.5, εsl = 1, Csl = 0.6.

in which the dynamics ”hidden” within the GK integral have been expressed in terms of

system properties.

Figure (7) shows that eq (10) provides a very reasonable approximation to our MD re-

sults. In this comparison, the value Dβ = 1.05 was chosen as the one that gives best overall

agreement between expression (10) and the MD results; G∞ was calculated using the ana-

lytical expression for a LJ potential in [23], while A−1〈F 2
x 〉 was taken from MD simulations.

Here we emphasize that once determined as described above, the value of Dβ is not adjusted

in any way; this is quite remarkable given the variety of fluid conditions and solid-liquid

interaction parameters explored in this figure.

5 Discussion

We have shown that non-equilibrium and equilibrium measurements of slip are consistent,

provided the hydrodynamic wall location associated with the equilibrium measurement is

taken into account. Moreover, our simulations show that the hydrodynamic wall location
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associated with βGK is dependent on the fluid state in a non-trivial manner and can be a

significant fraction of the slip length. In other words, zwGK cannot be neglected in general;

instead, a reliable method for its calculation is needed. Our work has shown that reliable

and accurate measurements of zwGK can be obtained by utilizing the tangential force balance

at the wall in a non-equilibrium shear flow, given by equation (4). Given that this latter

approach requires a non-equilibrium simulation, we note here that a method which uses MD

simulations of two non-equilibrium flows, namely a Couette and a Poiseuille flow, to calculate

the slip length and the associated hydrodynamic wall location was recently proposed in [24].

The need for two distinct simulations for simultaneously determining both of these quantities

was first discussed in [5]; a variant of this approach was implemented for dissipative particle

dynamics simulations in [25]. A comparison between the method proposed here and the one

that uses 2 non-equilibrium simulations would be an interesting topic for future work.

The relative success of the approximation Iβ = τ/Dβ is also worth noting, both because it

enables the closed from expression (10), but also because the similar success of the analogous

approximation in the case of the Kapitza resistance [21] suggests some generality. Models

such as eq. (10) as well as others [6, 9] are valuable because they replace the GK integral with

a more transparent connection between system properties and the slip length. Returning to

model (10), further work is required for developing methodologies for calculating the value

of Dβ from first principles. We also note that based on our results, model (10) would benefit

from a model for predicting the associated hydrodynamic wall location; this will be the

subject of future work.

The new GK formulation by Español and collaborators [12, 13], aimed at alleviating

the GK plateau issue discussed in section 2, also introduces a modified hydrodynamic wall

location zw,CGK = zwGK −GβGK/µ, where G > 0, given in terms of a GK integral, represents a

correction to the fluid viscosity at this location due to the wall presence [26]. Provided that

the evaluation of G is less challenging than that of zwGK , this new formulation may indeed

be preferable, since it could provide less ambiguous estimates of βGK coupled to a smaller in

magnitude, and thus less important compared to the slip value, hydrodynamic wall location.

Such a formulation would also be advantageous for models such as the one presented in

section 4, since it diminishes the importance of accurately determining zw,CGK (or zwGK).
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