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Many microorganisms live and evolve in complex fluids. Examples include mammalian sperma-
tozoa in cervical mucus, worms (e.g., C. elegans) in wet soil, and bacteria (e.g., H. pylori) in our
stomach lining. Due to the presence of (bio)polymers and/or solids, such fluids often display non-
linear response to (shear) stresses including viscoelasticity and shear-rate dependent viscosity. The
successful interaction between these microorganisms and their fluid environment is critical to the
function of many biological processes including human reproduction, ecosystem dynamics, and the
spread of disease & infection. This interaction is often nonlinear and can lead to many unexpected
behavior. Here, I will discuss developments in characterizing, modeling, and understanding the
swimming behavior of model microorganism in viscoelastic and shear-thinning fluids. Three main
microorganisms will be explored: (i) the nematode C. elegans, an undulatory swimmer; (ii) the
green algae C. reinhardtii, a puller swimmer; and (iii) the bacterium E. coli, a pusher swimmer.
Investigation with artificial particles/swimmers will also be discussed; such studies are helpful in
decoupling the biology from hydrodynamic effects. We will explore the interactions between these
swimmers’ gaits, geometry, and actuation and fluid rheological behavior using mostly experiments,
and discuss these results relative to numerical and analytical predictions.

I. INTRODUCTION

This manuscript is based on an invited talk at the 2021 American Physical Society-Division of Fluid Dynamics
(APS-DFD) meeting. It was a return to an in-person setting, mostly, and a reminder that science is very much a
human endeavor. Before we begin I would like to make it clear that this manuscript is not intended as a comprehensive
review. For that, I guide the reader to many excellent treatments on the fundamentals of swimming at low Reynolds
numbers (Re) [1–4] and on motility of living organisms and propulsion of active particles in complex fluids [5–8].
Rather, this article offers an experimentalist view on the current state of low-Re swimming in non-Newtonian fluids;
technical details will only be briefly described and arguments will appear oversimplified, often relying on published
literature. I hope such strategy does not jeopardize the reader’s interest in the field; my goal is to provide a quick
starting guide for those interested in joining our community.

FIG. 1. (a) Rod-climbing effect with a viscoelastic fluids (VE) [9]. (b) Schematic of polymer stretching in flows with curved
streamlines [10]. (c) Electron microscopy image of lung cilia (from Wikipedia). (d) Schematic of cilia normal beating cycle
showing a power and recovery strokes [11]. (e) Images of mammalian sperm cell moving in Newtonian. Inset show flagellum’s
nearly sinusoidal waveform. (f) Sperm swimming in VE fluids. (inset) Flagellum shows a hyper-extended waveform due to the
presence of fluid elasticity [12]. (g,h) The worm nematode C. elegan moving in wet granular suspensions of (g) monodispersed
and (h) polidispersed particles [13]. Similar to sperm cells, interaction between nematode and suspension microstruture signif-
icantly affects kinematics.
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Complex fluids are widely found in nature and biology; examples include wet sand, mud, milk, cervical mucus,
saliva, and blood. While homogeneous at the macroscale, these fluids often possess structure at an intermediate
scale typically a few sizes of its constituents) Importantly, their macroscopic flow behavior (i.e., rheology) is a strong
and nonlinear function of their microstructure [14–22]. Many fascinating macroscopic responses of fluids containing
polymer molecules, surfactants, colloids, liquid crystals, etc., have been reported in the literature over the years [23–
30]. In the particular case of polymeric fluids, the presence of (flexible) polymer molecules in the fluid and interaction
of the molecules with the flow are responsible for nonlinear flow behavior such as hydrodynamic instabilities, drag
reduction, and even turbulence [9, 24, 26, 31–39]. The exact mechanisms responsible for such phenomena are still
being elucidated and is a topic of much current research [22, 39]. But we do know that mechanical stresses in these
polymeric fluids are history dependent and depend on a characteristic time λ. In dilute solutions, this time scale has
been found to be proportional to the relaxation time of a single polymer molecule [40–42]; in semi-dilute solutions,
λ depends also on molecular interactions [14]. These (elastic) stresses grow nonlinearly with strain rate and can
dramatically change the flow behavior. An example is the ”rod-climbing” effect, in which a viscoelastic (VE) fluid
(e.g., cake batter, bread dough, yogourt) creeps up a rod being rotated in the fluid [9] (Fig. 1a). This phenomenon
was first described in the 1940’s [43] and involves a VE fluid being stirred by a rotating rod as shown in Fig. 1(a). The
combination of high-velocity gradients and curved streamlines can stretch the (bio)polymer molecules, which leads to
a normal stress difference N1 = τθθ − τrr, where r, θ, and z are cylindrical coordinates. This normal stress difference
(or hoop stress since the rod is curved) produces a volume force, N1/r, that acts inwards against the outwards radial
pressure gradient pushing the fluid up the rod (Fig. 1b). The development of such viscoelastic ”hoop stresses”, as
polymer molecules are driven out of their equilibrium conformation by the imposed flow, induce radial secondary
flows that is responsible for many destabilizing flow phenomena observed in VE flows [9, 22, 24, 34, 35, 39]. As
we will see here, these additional (elastic) stresses and time scales can significantly affect the swimming behavior of
microorganisms.

Due to their small length scales, microorganisms such as bacteria, sperm cells, and various kinds of protozoa
move/swim at low Reynolds (Re) (Fig. 1c-h). In such regime, fluid linear viscous forces dominate over nonlinear inertial
ones [44–47], and locomotion results from non-reciprocal deformations in order to break time-reversal symmetry; this
is the so-called ”scallop theorem” [48]. To survive, microorganisms must then seek locomotion strategies that break
time-symmetry. Much work has been devoted in understanding such strategies in experiments, theory, and numerical
simulations [3, 4, 7, 45–47, 49, 50]. Despite much progress, our understanding of swimming at low Re numbers
is mostly derived from investigations in Newtonian fluids. But there are many microorganisms (e.g., sperm cells,
bacteria) that evolve in liquids that contain (bio)polymers, surfactants, and/or solids (e.g., mud, mucus, gels) [49, 51–
53] and exhibit non-Newtonian behavior such as shear-thinning viscosity and viscoelasticity. The question is: how
these non-linear flow behaviors affect the swimming behavior of microorganisms?

Let us consider the cilia beating in the human lungs (Fig. 1c-d), which is lined with respiratory mucus. This complex
biological fluid (mucus) has double duty: it protects against foreign particulates and pathogens while allowing the
transport of gases and nutrients [54]. Not surprising, the rheological behavior of mucus is quite complex; it possesses
large elastic and viscous modulus, which are both shear-rate dependent [55]. We can estimate the elastic effects
on ciliary motion by computing the Elasticity number, El = λµ/ρL2. Here, µ are ρ the fluid viscosity and density
respectively, and λ is the fluid relaxation time, and L is a characteristic length scale associated with the microorganism.
The quantity El is often thought as the ratio of two time-scales: the time for elastic stresses to relax, λ, relative to
the viscous time scale, ρL2/µ. When El � 1, fluid elasticity dominates the dynamics. It is important to note that
the El is independent of flow kinematics or speed (i.e., U), and it is only a function of fluid properties and system
geometry. For a typical cilia beating frequency (∼ 60 hz), one can approximate mucus viscosity to be µ ∼ O(1) Pa·s
with a relaxation time λ ∼ O(10)s [54]. Taking the system length scale to be the flagellum length L ∼ O(10−5)m
and ρ ∼ O(103)kg/m3, we arrive at El ∼ O1010(!). This is an exceedingly high value demonstrates that lung ciliary
motion occurs in a environment dominated by mucus elasticity. Note that El scales inversely with the square of the
organisms’ length scale L (usually in the µm scale), which means that elastic stresses are likely to be accentuated for
micron-sized organisms. A prime example is the swimming of mammalian sperm cell (Fig. 1e,f), which switch from
a nearly sinusoidal waveform in Newtonian liquids to a hyperextended waveform in elastic media [12, 49].

The examples above illustrate the complex behavior once microorganisms encounter fluids with nonlinear rheological
properties. The coupling between microorganisms’ kinematics and fluid microstructure and the ensuing flow fields can
give rise to unexpected results, some of which may seem counter-intuitive relative to Newtonian expectations. This
coupling is often nonlinear and is a two way street: microorganism swimming motion affect the fluid response, and
in turn the fluid affect the organisms’s kinematics. Figure 1 (g,h) shows how the waveform of small worm nematodes
is affected by simply modifying the distribution of particle sizes (from monodisperse to polydisperse) in a granular
suspension. Thus, from an experimental standpoint, it is important to work with model systems both in terms of
choice of fluid and swimming microorganism; that is, fluid rheological properties (i.e., shear-thinning, viscoelasticity,
yield-stress, etc) should be carefully characterized and organisms’ velocity fields (in those fluids) should be measured
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and/or computed. There is a vast literature and well-established procedures for the former [9, 14, 56, 57], and the
community is making significant strides in the latter. Some of those efforts will be discussed here.

This article is organized as follows: Section II presents a brief background on the fundamental of swimming at low-
Re in Newtonian and non-Newtonian fluids; Section II focuses on propulsion of artificial particles in complex fluids;
Section III will discuss mainly experimental works on the swimming behavior of living microorganisms in viscoelastic
fluids; Section IV provides a summary and outlook.

II. BRIEF BACKGROUND

We begin by briefly discussing the hydrodynamics of swimming at low Re; a more thorough review of the subject
can be found elsewhere [4, 47, 58]. Under steady, low Re (no inertia) flow conditions, the equation of motion reduces
to:

∇p = ∇ · τ , (1)

where p is pressure and τ is the deviatoric stress tensor. Equation 1 is known as the Stokes’ equation, named after the
mathematician Sir George Stokes [44]. For Newtonian fluids, the stress τ is linearly proportional to the strain rate γ̇
such that τ = µγ̇ = µ

(
∇u + (∇u)T

)
, where the constant of proportionality is the dynamic viscosity µ. Equation (1)

can then be expressed as:

∇p = µ∇2u. (2)

Note that Equation (2) is linear in both velocity u and pressure p. Equation (2) is also instantaneous; it has
no dependence on time other than via boundary conditions. The lack of time dependence means that the flow is
reversible. An external force, F(t), will lead to a flow that upon reversal of the force, F(−t) and its history, brings
the flow back to its original state. This kinematic reversibility forms the hydrodynamic basis of the scallop theorem
put forth by Purcell in 1977 [48]. These hydrodynamic properties illustrate that swimming at low Re can seem at
first as a highly confined phenomenon, yet microorganisms have found a variety of ways to overcome the constraints
of the scallop theorem.

But what if a microorganism is instead swimming in a complex fluid, as in the case of sperm cells in cervical mucus
[59] (Fig. 1f). Such fluids display a plethora of nonlinear rheological behavior including yield stress, thixotropy, shear-
thinning viscosity behavior, and viscoelasticity. To describe such flow behavior one needs to develop constitutive
models that can accurately capture the nonlinear relationship between (deviatoric) stress (τ ) and strain-rate (γ̇).
That, of course, is easier said than done and much effort has been devoted to the development of constitutive models
for complex fluids [60–63]. Here we will briefly discuss two such instances: shear-thinning viscosity and viscoelasticity.

1. Shear-Thinning Fluids

Many biological fluids exhibit shear-rate dependent viscosity (e.g., shear-thinning and shear-thickening), that is
τ = η(γ̇)γ̇, where γ̇ =

(
∇u + (∇u)T

)
is the strain-rate tensor and η(γ̇) is a non-Newtonian viscosity. Note that γ̇

is the magnitude of the strain-rate tensor, γ̇ =
√

1/2(γ̇ : γ̇). Shear-thinning fluids have a viscosity that decreases
as shear rate increases (e.g., paints, ketchup), while shear-thickening fluids posses a viscosity that increases as shear
rate increases (e.g., suspensions of corn starch). This non-Newtonian viscosity is often described by an empirical
power law model of the type η(γ̇) = k|γ̇|n−1, where k is a viscosity factor and n is a power law index. If n > 1,
the fluid is shear thickening whereas if n < 1 the fluid is shear-thinning; for n = 1, the model reduces to Newtonian
behavior. This viscosity model, however, is unbounded in the limit of low (γ̇ → 0) and high (γ̇ → ∞) shear rates,
producing nonphysical viscosity values in those limits. A more realistic (empirical) model for shear-thinning fluids is
the Carreau-Yassuda viscosity model [9] usually given as:

η = η∞ + (η0 − η∞)[1 + λc|γ̇|a](n−1)/a, (3)

where η0 is the zero-shear viscosity, η∞ is the infinite-shear viscosity, and n is the usual power-law index. The quantity
λc is a time-scale associated with the shear-rate (in the unit of inverse time) at which the fluid viscosity departs from
Newtonian behavior. When the exponent a = 2, then the equation above is known as the Carreau model. We
can define a Carreau number, Cr = λcγ̇, which is used to characterize the transition from Newtonian-like behavior
(zero-shear rate region) and power-law region; Cr = 1 marks the departure from low shear-rate Newtonian viscosity
(see Fig. 2a for a schematic). This model offers advantages over the power law model discussed above. The most
significant perhaps is that the Carreau-Yassuda model is able to capture the frequently observed viscosity transition
from a low-shear-rate Newtonian plateau to the power-law region as the shear-rate γ̇ is gradually increased.
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FIG. 2. Schematic of fluid rheological models and working phase space. (a) Sketch of shear-thinning viscosity behavior captured
by Carreau-Yassuda model. The Carreau number, Cr describes the transition from Newtonian to power-law behavior. (b)
Schematic of the Maxwell model, a linear constitutive equation for viscoelasticity. Its described by an element containing a
viscous damper and an elastic spring connected in series. (c) Non-dimensional phase space. This manuscript will focus on low
Reynolds number behavior in which inertia is virtually negligible. Two main fluid behavior will be explored: viscoelasticity and
shear-thinning viscosity behavior. The Weissenberg (Wi) & Deborah (De) numbers characterize elasticity, while the Carreau
(Cr) number characterizes shear-thinning.

2. Viscoelastic Fluids

Fluid elastic stresses accumulate, grow nonlinearly with strain rate, and are expected to significantly affect the
swimming behavior of microorganisms. Accurately describing such stresses (state and history) is, however, quite the
challenge [39, 64]. A simple, linear constitutive model is the Maxwell model, which is represented by a viscous damper
and a elastic spring connected in series [14, 65] (Fig. 2b). The Maxwell model is usually expressed as:

τ + λ
dτ

dt
= ηγ̇, (4)

where λ = η/G is the fluid relaxation time andG is the spring elastic modulus, This model introduces a time-dependent
stress that is proportional to ”fluid elastic memory” λ, and it reverts to Newton’s law of viscosity for λ = 0. The
Maxwell model predicts that the stress relaxes exponentially in time, which is relatively accurate for many dilute
polymeric solutions. However, Eq. (4) predicts that stress will increase linearly with time under constant stress, a
trend not observed in rheological measurements. Importantly, the Maxwell model is only valid for small deformations.
For large deformations, one can generalize the Maxwell model by incorporating frame-invariance, which leads to the
upper-convected Maxwell model in the following tensorial form:

τ + λ
∇
τ = ηγ̇. (5)

Here,
∇
τ denotes the upper-convected derivative of τ , defined as:

∇
τ =

∂τ

∂t
+ u · ∇τ − (∇u)T τ − τ (∇u). (6)

While a significant improvement over its linear counterpart, the the upper-convected Maxwell (UCM) model does
not consider the contribution from the solution’s solvent viscosity (ηs) to the total stress; hence it fails to predict the
“retardation effect” of elasticity when a step change in stress is applied. The Oldroyd-B model addresses this and
other issues [22, 39], as is usually written as:

τ + λ
∇
τ = η(γ̇ + λr

∇
γ̇), (7)

where λr = ληs/(ηp+ηs) is the fluid retardation time, and ηs and ηp are the viscosities of the solvent and the polymer,
respectively. A parameter β = ηs/(ηp + ηs) is usually defined, and one recovers the UCM model in the limit of zero
solvent viscosity, ηs = 0. While the Oldroyd-B model is quite useful, it also has its limitations: it cannot capture
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rate-dependent viscosity and normal stress behaviors, and its stresses become unbounded in extensional flows beyond
a critical (extensional) rate. These issues arise mostly due to the infinite extensibility of the model polymer chains
– the Finite-Extensibility Nonlinear Elastic (FENE) type-models can address (some of) these issues. Nevertheless,
the Oldroyd-B model is often employed to simulate viscoelastic shear flows where stretching is relatively moderate
[42] and is known to capture many nontrivial viscoelastic phenomena such as the development of hoop-stresses and
hydrodynamic instabilities [9, 22, 24, 39, 66]. It is important to note the nonlinear relationship between stress,
τ , and flow field, u, and its consequence for swimming studies. It indicates that swimmers with different motility
kinematics such as body undulations and rotation of helical flagella are expected to produce different responses from
the (viscoelastic) fluid.

One can define two main dimensionless parameters to describe the effects of elasticity. The first is the Deborah
number (De), defined as the ratio of fluid relaxation time to the flow time scale such that De = λ/T . Here T is
characteristic time-scale associated with the flow deformation process; fluid-like behavior is obtained in the limit of
De = 0. In swimming studies, this flow time-scale is often substituted by the microorganisms’ beating frequency f
such that De = fλ. The second is the Weissenberg number (Wi) which quantifies the degree of nonlinearity associated
with (fluid) normal stresses N1 = 2ληγ̇2 (from UCM) relative to shear stresses τ = 2ηγ̇; hence Wi = λγ̇. (For more
information, please see [67].) Nonlinear elastic stresses are expected to become important in the flow for De,Wi > 1.

A working phase space can now be defined using the dimensionless numbers describe here (Fig. 2c). The different
axis quantify the effects of inertia (Re), elasticity, and shear-thinning viscosity (Cr). These forces/effects often appear
together along the planes in the phase space, and such situations have yet to be studied in detail. Here, however, we
will focus on cases in which fluid inertia in negligible, that is, Re � 1. We will straddle the Wi,De and Cr axis,
focusing on situations in which one of these effects is dominant.

III. RECIPROCAL SWIMMERS: CAN FLUID RHEOLOGY ENABLE PROPULSION?

The discussion above makes it clear that fluid rheology can significantly affect the swimming behavior of living
organisms. But can fluid rheology enable propulsion at low Re? That would mean breaking the scallop theorem [48],
for which the main assumptions are no inertia and Newtonian behavior (see Eq. 2). If we relax these assumptions,
then it may be possible to break kinematic reversibility and achieve net motion even for reciprocal swimming strokes
[68]. Consider Purcell’s scallop now immersed in a shear-thinning fluid. If the scallop opens and closes its mouth
at different rates during one stroke, then it may produce different non-Newtonian shear viscosities (η) (in space and
time) along the stroke’s path if the condition of Cr > 1 is met. That is, the viscosity field around the scallop would
be non-uniform with the lowest viscosity values near the boundary and largest values away from boundary at a
particular instant in the stroke. This would mean that the scallop would experience different viscous stresses during
one reciprocal stroke. This viscous stress “imbalance” may be enough to lead to net motion. That is, (shear) rates
matter when it comes to propulsion in shear-rate-dependent viscosity fluids. The possibility that fluid rheological
properties could enable propulsion has been explored for a handful of special cases: a flapping surface extending from a
plane [69, 70]; a sphere which generates small-amplitude sinusoidal motion of fluid along its surface [47]; a “wriggling”
cylinder with reciprocal forward and backward strokes at different rates [71]; oscillating [72, 73] and counter-rotating
spheres [74] (Fig. 3 c,d). Analysis of the flow fields generated by these ”swimmers” moving in Oldroyd-B and FENE-P
model fluids suggests that elastic effects can generate forces that scale quadratically with the amplitude of the motion
[69, 70]. This demonstrates that fluid elastic stresses can be exploited to enable propulsive forces, circumventing the
scallop theorem.

Nearly a decade ago, fluid-assisted propulsion for a reciprocal swimmer was experimentally demonstrated in vis-
coelastic fluids [75, 76]. In those studies, a single rigid object, in this case an asymmetric dumbbell particle or dimer,
is externally actuated in a reciprocal manner in viscous fluids. In the experiments, the dimer such as the one shown in
Fig. 3(a) is repeatedly reoriented by a magnetic field. The effects of inertia are absent due to the high fluid viscosity
(∼ 10 Pa·s); the Re ≈ 10−4, a value comparable to that of a swimming microorganism. By applying only magnetic
torques, the apparatus reciprocally actuates just one degree of freedom in the system, the dimer’s orientation â. No
net motion is observed for the Newtonian case since â(t) is cyclic; this is as expected. Yet when a small amount of
polymer [75] or surfactants [76] are added to the Newtonian solvent (corn syrup), the same cyclic stroke results in net
propulsion in a direction set by the dimer’s shape and boundary conditions.

Figure 3b shows dimer speed as a function of De for dilute polymeric solutions [75]. The first observation is that
the dimmer speed increases monotonically as De increases; that is, the more elastic the fluid becomes, the faster the
dimer propels itself. The dimer speed seems to obey a De2 scaling or U ∼ (fλ)2. It is worth noting that at low
frequencies, assuming Oldroyd-B fluid model, G′ ∼ f2 where G′ is the fluid elastic modulus. Thus, the observed
propulsion seems to be a purely elastic effect, likely generated by the interaction of polymer molecules with the flow
curved streamlines (Fig. 3a). Similar to the rod-climbing effect (see Fig. 1a,b), the combination of polymer stretching
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FIG. 3. Breaking the scallop theorem in non-Newtonian fluids. (a,b) Asymmetric dimer (L ≈ 3mm) being reciprocally actuated
in a viscoelastic (VE) fluid at Re� 1. The dimer produces enough curvature in the streamline to generate normal stresses in
fluid. Dimer propulsion speed increases (quadratically) with De [75] (c,d) Counter-rotating spheres in VE fluids can achieve
propulsion due to hoop stresses surrounding the faster-spinning smaller sphere [74]. (e,f) Self-assembled, magnetic colloidal
scallops moving in shear-thinning fluids; propulsion directionality can be controlled by tuning the actuation and/or colloidal
structure size [77]. (g,h) A autonomous robotic swimmer based on (c,d) [78].

with flow velocity gradients and curved streamlines generated by the actuated dimer lead to a volume force (or “hoop
stress”) N1/r. Because of the dimer is asymmetric, so are these hoop stresses, and that imbalance leads to the dimer’s
net motion. These stresses are history-dependent and do not entirely cancel out over one forcing period, but instead
have a small rectified component that accumulates particularly as De increases.

Propulsion may also be enabled by other fluid rheological properties, such as shear-rate dependent viscosity. Indeed,
Qiu et al. [79] have observed net propulsion in reciprocally-swimming micro-scallops immersed in shear-thinning and
shear-thickening fluids in both experiments and simulations. Recently, it has been shown that one can manipulate
not only the speed but also the direction of propulsion of re-configurable magnetic ”colloidal scallops” by carefully
controlling the actuation rates in shear-thinning fluids (Fig. 3e,f) [77]. The direction of propulsion changes with both
the size and structure of these colloidal assemblies because of the different viscous stresses that they produce and
experience. This viscous imbalance is thought to be responsible for particle propulsion for Cr > 1.

In the experimental investigations described above, the ”swimmers” or particles are externally actuated. That is,
they are force but not torque free. Very recently, however, a robotic autonomous dimer particle has been developed
specifically for propulsion in viscoelastic media by local hoop stresses [74] (Fig. 3g,h). Remarkably, the robotic system
passively adapts to propel itself forward at different speeds, depending on the properties of the surrounding fluid.
As a result, this prototype can serve as a local rheometer for complex fluids environments allowing the estimation
of quantities such as first and second normal stress differences [78]. The passive sensing capability of this robotic
swimmer can lead to many application in biology and human health.

In summary, there is growing evidence that fluid nonlinear rheological properties can be exploited to break the scallop
theorem and obtain propulsion for artificial swimmers. Such swimmers can move through complex fluids with only
reciprocal actuation, a simple body shape, and/or no moving parts – a less complicated design than other propulsive
strategies. Experiments with artificial particles are also helpful in decoupling the biology from hydrodynamic effects
[80–82], which permits a more direct comparison with analytical works. It is important to note, however, that just
because kinematic reversibility is broken, it does not mean that one has achieved efficient propulsion; it only means
that propulsion is possible. For example, the dimmers described in [75, 76] have propulsive efficiencies (O(1%)) similar
to those of non-reciprocal swimmers in Newtonian fluids, including magnetic torque-driven helical micro-robots (≈ 1%
[83]) and self-propelling force-free bacteria (≈ 2% [84]). That is, there is still much room for improvement. Further
understanding of factors controlling this efficiency could greatly simplify fabrication of micro-swimmers in many
complex, artificial environments or for biological settings where non-linear rheology is ubiquitous.

IV. SWIMMING OF MICROORGANISMS IN COMPLEX FLUIDS

We now turn our attention to studies with living microorganisms. Emerging studies - some of which are discussed
in [5, 6]- are revealing the effects of fluid rheology on the swimming behavior of microorganisms. The goal is to
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understand the nonlinear coupling between the microorganism’s swimming kinematics and fluid rheological properties.
To do so, at least experimentally, it is advisable to work with model systems, both in the choice of microorganism
and working fluid. Model organisms are non-human species which are extensively studied to understand particular
biological phenomena and/or function. Examples include the zebra fish (Danio rerio), the bacterium Escherichia
coli, fruit fly (Drosophila melanogaster), and the nematode Caenorhabditis elegans, among many others. The idea
is that discoveries made in model organisms will provide insight into the workings of other non-model organisms,
including humans. In the case of swimming studies, the vast wealth of genetic information available for these systems
allows precise control over their motility strategies. From a hydrodynamics’s standpoint, one would also wish to work
with organisms for which their kinematics and the velocity fields have been characterized, at least in the base case
(Newtonian fluids).

FIG. 4. Model organisms for swimming studies. (a) The bacterium E. coli, (b) the green algae C. reinhardtii, (c) The nematode
C. elegans. Below each organism is their corresponding, time-averaged experimentally measured velocity field. The flow data
indicates that (a) behaves as a pusher [85], (b) as a puller [86], and (c) as an undulatory swimmer [87]

Three main model organism for swimming studies will be discussed here: the nematode C. elegans, the green algae
C. reinhardtii, and the bacterium E. coli. The swimming kinematics and the resulting velocity fields for all these
organisms are well established in Newtonian fluids [85, 86, 88]. Based on these data, one can consider C. elegans
to be a model undulatory swimmer that resembles Taylor’s waving cylinder, while C. reinhardtii and E. coli are
considered to be ”puller” and ”pusher” swimmers, respectively (Fig. 4). We will discuss these classifications in more
detail shortly.

Equally important is to develop model fluids with known rheological properties. Ideally, working fluids should
emphasize a single rheological behavior such as elasticity or shear-thinning viscosity behavior. Such model fluids have
been extensively used in the field of rheology and non-Newtonian fluid mechanics [14, 24, 39]. An example is the
well-known ”Boger” fluid, developed by David Boger in the 1970’s [89, 90]. This fluid is highly elastic but maintains
a nearly-constant shear viscosity. These rheological features are approximated by the Oldroyd-B constitutive model
(partially), and thus Boger fluids have been widely used in the study of the effects of viscoelastic on fluid flows.
Unfortunately, some of the polymer and specially solvents involved in the formulation of typical Boger fluids are toxic
to many microorganisms, limiting its application for swimming and biological studies. Alternatives do exist, but
adequately characterizing the rheological properties of the working fluids is critical.

A. Undulatory Swimming: From Taylor’s waving sheet to C. elegans

1. Purely Viscous Fluids

Nearly seventy years ago, G. I. Taylor [91, 92] beautifully demonstrated that a slender body such as a (non-
extensible) waving sheet (Fig. 5a) could swim in an incompressible, Newtonian fluid by generating traveling waves in
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the absence of inertia. The sheet oscillates in time according to y(x, t) = b sin(kx− ωt), where b is the traveling wave
amplitude, ω is the frequency, and the wavelength Λ is 2π/k; the traveling wave speed is c = ω/k. For vanishing Re,
the sheet oscillations induce a speed UN = 0.5ωb2k +O(kb)4 [91]. That is, if the fluid is at rest relative to the sheet,
then the sheet is propelled in the direction opposite to that of the propagation of the distorting wave. Note that fluid
properties, such as viscosity, do not enter in Taylor’s speed equation for the waving sheet. Taylor later considered the
case of waving cylindrical tails, in which waves of lateral displacement move down a filament [92]. While the analysis
is limited to small amplitudes and fixed kinematics, it provided one of the first predictions regarding the propulsion in
viscous environments. It should be noted that around the same time J. Lighthill showed that a deformable body could
move in a viscous fluid with a speed proportional to the square of the deformation amplitude [93]. Soon after (1953),
G. J. Hancock [94] (a student of Lighthill) built on Taylor’s results but took a different approach: he distributed
Stokes’ singularities, Stokelets and dipoles, along a waving filament’s center-line, which was the starting point for the
well-known slender body theory (SBT) [95].

FIG. 5. Schematic of two-dimensional waving sheet in a viscous fluid illustrating the traveling wave of velocity c progressing in
the x-direction and the forward swimming speed (U) in opposite direction. (b) Application of Resistive Force Theory (RFT)
on C. elegan body illustrating the normal and tangential components of the velocity U and force F , and the resulting net
propulsive force.

Many important investigations followed these pioneering works. Of particular importance is the introduction of
resistive force theory (RFT) developed by Gray and Hancock [96]. RFT assumes that the hydrodynamics forces
are proportional to the local body velocity such that the force exerted by a body or flagellar segment is given by
F = CNUN +CTUT. Here, C corresponds to the local drag coefficient per unit length that depends on geometry and
fluid viscosity, and N and T are the normal and tangential components, respectively (see Fig. 5b). It is the anisotropy
between the normal and tangential drag coefficients, with CN > CT , that lies at the origin of drag-based thrust; for
infinitesimally thin filament, Gray and Hancock found Cn/Ct = 2. While RFT is only an approximate solution (each
element is independent of the other), it has been widely applied with good success in biological systems [47, 97, 98],
and even in granular systems [50, 99, 100].

Later, Lighthill [101] re-introduced and extended the the viscous slender body theory (SBT) presented in Hanckock’s
1953 manuscript [94] to improve RFT by pointing out importance of long-range hydrodynamics interactions and
incorporation slender body approximations. Such improvements led to CN/CT = 1.5 for the case of an undulating
filament moving in an unbounded fluid medium. Experiments with C. elegans found very similar values with CN/CT ≈
1.4 [88]. When incorporating wall-effects into the analysis, a significantly larger value of the drag coefficient ratio
(CN/CT = 4.1) is obtained [102]; that is, the propulsive speed is faster near walls. SBT formulation has become
almost standard for the analysis of undulatory swimmers at low Re, and many excellent analytical and numerical
works have emerged since then [1, 45, 46, 49, 53, 97, 103–109]. A major challenge, however, is to extend this framework
to fluids that displays both solid and fluid-like behavior, such as viscoelastic fluids.

2. Undulatory Swimming in Complex Fluids

One of the first attempts to incorporate the effects of fluid elasticity on undulatory swimming used a series of
expansions similar to Taylor’s analysis and a second-order fluid constitutive model[110]. The analysis show that fluid
elasticity could either increase or decrease self-propulsion depending on the value of Re. It is important to note that
the second-order fluid model is a (second-order) asymptotic approximation about the rest state of a given viscoelastic
fluid and is only valid for slow and slowly varying velocity fields. Thus its applicability to Taylor’s waving sheet
problem is probably inadequate. Later, inspired by observations of spermatozoa swimming in mucus [111, 112], the
effects of elasticity on beating flagella were considered using the (linear) Maxwell model [113] (see also Eq. 4). It was
shown that self-propulsion was not affected by fluid elasticity even at large Deborah numbers (De), but the total work
decreased with increasing De. These results should be interpreted carefully since the Maxwell model is not valid for
large deformations.
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About 15 years ago, Lauga [53] showed that, for a 2D waving sheet (Fig. 2a), elastic stresses could significantly
alter the organism speed and the work required to achieve net motion. Using nonlinear constitutive models (e.g.,
Oldroyd-B, FENE-P), the author showed that the organism speed (U) is given by the equation

U

UN
=

1 + βDe2

1 +De2
. (8)

The Newtonian velocity is defined as UN , which is Taylor’s original result. In Eq. 8, β = ηs/(ηp+ηs) is the ratio of
the solvent viscosity to the solution (total) viscosity, as defined in Eq. 7. Hence, for a given swimming gait U < UN ;
that is, elastic stresses reduces the swimmer overall speed relative to the Newtonian base case. Fu, Wolgemuth, and
Powers found similar expression for the case of 2D waving cylinder or filament [114] and extended to 3D finite-size
bodies [71]. Unlike Taylor’s result, Eq. 8 depends on fluid material properties; similar to Taylor’s result, Eq. 8 is for a
given (fixed) kinematics. In reality an organism could compensate the reduction in velocity by increasing its beating
frequency and/or decrease in wavelength. Nevertheless, Eq. 8 represents an important step forward since it provides
a quantitative measure of the effects of fluid elasticity on the swimming speed of microorganisms. It spurred much
activity in the field, some of which we will discuss here.

Numerical simulations have also been used to address the role of fluid elasticity on the swimming behavior of
microorganisms. In particular, Teran, Fauci, and Shelley [115] considered two-dimensional swimming ”free” sheets
(i.e., with free head and tail) of finite length L in an Oldroyd-B fluid. The simulations show that, for accentuated
tail motions, the sheet swims faster at De ≈ 1 than in a Newtonian fluid, that is, ”swimmer” stroke frequency
matches the fluid relaxation time. As elasticity is increased, the filament swimming speed decreases as predicted by
Eq. (8). Further developments show that swimmer speed could increase or decrease in viscoelastic fluids depending
on swimmer gait/kinematics [116, 117] as well as the filament material properties (e.g., stiffness) [118]. But do
experiments corroborate these findings?

3. Experiments with C. elegans

The nematode Caenorhabditis (C.) elegans is a multi-cellular, free-living roundworm found in soil environments.
The nematode posses a quasi-cylindrical body shape of length L ≈ 1 mm and radius r ≈ 80µm. Much is known
about the nematode’s genetics and physiology; its genome has been completely sequenced [119] and its cell lineage
has been established [120]. These nematodes are equipped with 95 muscle cells that are highly similar in both
anatomy and molecular makeup to vertebrate skeletal muscle [121]. Their neuromuscular system controls their body
undulations which allows C. elegans to swim, dig, and crawl through diverse environments. The wealth of biological
knowledge accumulated to date makes C. elegans ideal candidates for investigations that combine aspects of biology,
biomechanics, and the fluid mechanics of propulsion. This slender nematode can serve as experimental analog of
Taylor’s waving cylinder problem [92, 114].

Figure 6a shows an image of the nematode moving in a Newtonian buffer solution together with the path of its
body centroid over multiple beating cycles. Due to its size (L ∼1 mm), the swimming nematode can be imaged using
standard bright-field microscopy, an experimental advantage over microscopic systems. The nematode swimming
speed (U) is calculated by differentiating the nematode centroid position with respect to time. Figure 6b shows the
nematode’s body (centerline) postures as a function of time, obtained via image analsys. Note that the amplitude is
larger at the nematode’s head than at its tail, indicative of the traveling waves moving along the nematode’s body
[88, 122].

An important consideration in swimming experiments with live organisms is the fluid medium. Fluids must be
constructed or developed such that they possess the desirable rheological property (elasticity, shear-thinning, etc)
but without being toxic to the organism. In the case of C. elegans, Newtonian fluids of different shear viscosities,
µ, are prepared by mixing two low molecular weight oils (Halocarbon oil, Sigma-Aldrich), while viscoelastic fluids
are prepared by adding small amounts of carboxymethyl cellulose (CMC, Mw = 7 × 105) into de-ionized water.
By varying the polymer concentration in solution, one can tune the level of elasticity in the fluid and obtain fluid
relaxation times λ ranging from 0.4 s for the most dilute concentration (1500 ppm) to about 5.6 s for the most
concentrated solution (8000 ppm). This strategy provides a reasonable dynamic range in fluid elasticity (about an
order of magnitude). These CMC solutions are not purely elastic, they display shear-thinning viscosity behavior
too. In order to compensate for the effects of shear-rate dependent viscosity, an aqueous solution of the stiff polymer
Xanthan Gum (XG) that is shear-thinning but possesses negligible elasticity is used in experiments; more details can
be found at [122].

Propulsion Speed: Newtonian vs Viscoelastic: With the methods in place, it is now possible to address the question
of whether fluid elasticity hinders or enhances the propulsion speed of live organisms. The nematode’s swimming
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FIG. 6. The nematode C. elegans swimming in complex fluids. (a) bright-field image of nematode moving in Newtonian fluids
over several beating cycles. The nematode’s centroid path shows periodic body oscillations. (b) Nematode’s centerline postures
over one beating cycle measured using image analysis and color coded by time. (c) Nematode swimming speed, U as a function
of fluid viscosity for both Newtonian and VE fluid cases. (d) Normalize swimming speed as a function of De. Inset shows that
nematode wavespeed is affected by fluid viscosity but not by polymers. (e) Experimental and numerical velocity fields [87]. (f)
Normalized power expenditure by swimming nematode in shear thinning fluids. Nematode spends less power in shear thinning
fluids for Cr > 1.

speed as a function of fluid viscosity for both Newtonian and viscoelastic (CMC) solutions is shown in Fig. 6(c). For
relatively low viscosity values, the swimming speed is independent of µ and the values of U are nearly identical for
both cases. For µ > 30 mPa·s, however, the swimming speed (U) decreases with increasing µ even for Newtonian
fluids; recall that Taylor’s result for the waving sheet is independent of fluid properties [91, 92]. This decrease in U
is most likely due to the nematode’s finite power. The speed data shows that U decays slower than µ−1/2, suggesting
that the nematode does not swim with constant power. Importantly, the values of U for viscoelastic fluids are found
to be 35 % lower than the Newtonian fluid of same shear viscosity (Fig. 6c). Thus, it appears that fluid elasticity
hinders propulsion speed of an undulatory swimmer in agreement with analytical results [53, 114].

The effects of fluid elasticity on the nematode’s swimming behavior are best illustrated by plotting the normalized
swimming speed U/UN as a function of the Deborah number (De = λf), as in Eq. 8. Here, UN is the Newtonian
speed. Figure 6(d) shows that the normalized swimming speed decreases monotonically with De, and reaches an
asymptotic value of 0.4 as De is further increased. That is, it appears that elastic stresses introduces resistance to
propulsion, therefore decreasing the nematode’s swimming speed; more details in [122]. The experimental data seems
to agree relatively well with analytical predictions [53, 114] and Eq. 8. Of course, such agreement is not necessarily
expected because there are significant differences between the experiments and the calculations. For example, the
analysis are two-dimensional (2D) while the nematode is allowed to swim in 3D although only planar swimming was
considered in the experiments. Most importantly, while the calculations imposes a particular prescribed kinematics
or waveform, the nematode is free to choose its own. In fact, we find that the nematode’s wavespeed, c, decreases as a
function of fluid viscosity for both Newtonian and VE cases, as shown in Fig. 6(d, inset). Nevertheless, the agreement
is rather remarkable and may point to generic features in this problem.

So what could explain the decrease in swimming speed for nematodes moving in viscoelastic fluids? We may find
clues in the velocity fields produced by the swimming nematodes. Figure 6(e) shows experimental and numerical
velocity fields for swimming C. elegans in Newtonian fluids [87]; the numerical velocity field was obtained using
boundary element methods (BEM) along with time-resolved nematode’s body postures obtained in experiments. The
agreement between the numerical and experimental velocity fields is quite remarkable, and it allow us to inspect
the base flow. A common feature of the velocity fields are regions of fluid recirculation that are aligned along the
nematode’s body. These recirculation regions persist throughout the bending cycle, but their exact location varies.
The flow structures presented here and elsewhere [88] show that the nematode’s velocity field are complex and does
not strictly fall into the pusher-puller category. The velocity fields also show curved streamlines and high velocity



11

gradients, which can locally stretch polymer molecules and lead to the production of extra elastic stresses. These extra
stresses can lead to additional resistance to propulsion and hinder swimming speed. In fact, it was originally thought
that these elastic stresses were produced in extensional regions of the flow, which in turn dramatically increase the
local extensional viscosity of the medium. Numerical simulations, however, showed that not to be the case; rather
they found large elastic stresses produced near the head of swimmer where the amplitude is higher [118].

While much effort has been devoted to understand the effects of fluid elasticity on swimming behavior of undulatory
swimmers, shear-thinning effects has received much less attention. That is an oversight since shear-thinning behavior
is very common in polymeric solutions. Using Taylor’s waving sheet along with a Carreau fluid model, Vélez-Cordero
and Lauga [123] showed that the ”swimmer” is more efficient in the shear-thinning fluid even though its speed remains
the same as in the Newtonian case. A numerical simulation by Montenegro-Johnson, Smith, and Loghin [124] showed
that for large amplitude waves the swimming speed increases in shear-thinning fluids. These recent studies have shown
that even relatively simple non-Newtonian fluid behavior can have a significant impact on the swimming kinematics
of microorganisms. In experiments, shear-thinning viscosity seems to have little to no effect on the swimming speed
of C. elegans (as in [123]), but it modifies the velocity fields produced by the swimming nematode [125]. Velocimetry
data show significant enhancement in local vorticity and circulation. Figure 6(f) shows that the work or cost of
swimming required for nematodes to move in shear-thinning fluids is less than that of a purely viscous fluids for
Cr > 1 [125, 126]. So, it may be ”easier” for C. elegans to swim in shear-thinning fluids.

In summary, experiments with the nematode C. elegans shows that fluid elasticity hinders its swimming speed
[122] while shear thinning viscosity had no effect on U [125]. The data indicates that the more elastic the fluid
is, the slower the nematode will swim (until an asymptote is reached). This trend is predicted by both numerical
simulations [115, 118] and theory [53, 114], but the agreement is only qualitative. There is still room for refining both
experiments and analysis, particularly in resolving time-dependent, 3D flows. For example, it is still unclear how
the nematode’s body material properties (tissue viscosity, body elasticity and bending stiffness) couples with fluid
rheology [118, 127, 128] and the ensuing swimmer kinematics. Experiments with C. elegans swiming in viscous fluids
show that nematode’s Young’s modulus and tissue viscosity increase as fluid viscosity increases [127], and simulations
describe how soft swimmers ”soft” filaments can swim faster than stiffer ones, a result corroborated (at least in part)
by an analysis of the Taylor swimming sheet [116]. The governing dimensionless parameter is the Sperm number
defined as Sp = (ηω/κk3)1/3, where η is the fluid total viscosity, ω is the swimmer beating frequency, k is wave
number, and κ is the swimmer bending stiffness. Fluid stresses are negligible for Sp << 1 (stiff limit), but they
become increasingly important as Sp increases beyond unity. The challenge before us is to understand and describe
how the (active) nematode’s kinematics emerge from the interactions with its fluid environment. The idea would be
to incorporate neuro-activity and -muscular models and data into swimming models to understand how observed C.
elegans’s motility behavior is related to sensory inputs [129, 130].

B. Pulling & Pushing in Complex Fluids

We now turn our attention to two archetypal modes of swimming, namely pusher and pullers (Fig. 4a,b). These
types of swimmers are a mathematical construct (from Eq. 2) developed to describe the flow field generated by
real microorganisms. As noted by Hankock [94], at Low Re flow disturbances driven by the kinematic motion of a
swimming microorganism depend linearly upon the stresses exerted by the moving body on the fluid; the velocity
fields of such flow disturbances are described as linear superpositions of fundamental solutions of the Stokes’ equation
and decay with inverse powers of r (or swimmer length scale). The first solution, referred to as a “Stokeslet”, arises
from the net force on the fluid and decays as 1/r. The next solution, known as a “stresslet” flow, is induced by the
first force moment exerted by the body on the fluid and decays more rapidly (1/r2); higher-order solutions decay even
more rapidly (1/r3). The combination of these basic solutions can yield flows with complex and qualitatively different
behaviors, exhibiting contrasting near- and far-field behaviors [85, 86, 131].

Consider, for example, a neutrally buoyant force-free micro-swimmer propelling itself along its axial direction e
(unit vector). The swimmer produces a force dipole p = αe in the fluid. Two different types of force dipoles can in
general arise. Swimmers described by a negative force dipole (α < 0) are called “pullers” (Fig. 4b); they draw fluid
in along the elongated direction and push fluid out from the sides. The actuation for pullers occurs near the particle
head, and a prime example is the algae Chlamydomonas reinhardtii (Fig. 4b). Swimmers described by positive force
dipole (α > 0) are called “pushers” (Fig. 4a) in the sense that they repel fluid from the body along their axis and draw
fluid in to the sides. A pusher swims by an actuating stress along the posterior of its body, and examples include the
bacteria Escherichia coli (Fig. 1b) and Bacillus subtilis. Then, broadly speaking, the kinematics of microorganisms
can be classified into two main types: pushers (E. coli) and pullers (e.g. C. reinhardtii). Note that other organisms
such as the alga Volvox carteri may fall between this pusher/puller distinction. While this pusher-puller classification
is limited and simplified, it provides a dichotomy for a reasonable framework.
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1. Pulling in Viscoelastic Fluids

The alga Chlamydomonas reinhardtii is a model system in biology and has been widely used in studies of motility
[2]. The algae has ellipsoidal cell body that is roughly 10 µm in size and two anterior flagella each of length L ≈ 10µm,
Structurally, the two flagella possess the same conserved “9 + 2” microtubule arrangement seen in other organisms
axonemes including mammalian sperm cells. The algae executes a cyclical breaststroke-like patterns with asymmetric
power and recovery stokes at frequencies f ≈ 30 − 60 Hz to generate propulsion (Fig. 7a). This swimming gait
generates far field flows corresponding to an idealised puller [2, 86].

FIG. 7. The puller swimmer C. reinhardtii swimming in Newtonian and viscoelastic fluids. (a) Time-averaged flagellum strokes
over one beating cycle. Fluid viscoelasticity dramatically constricts the the algal flagellar beating waveform, compared to the
control case (b) Strain energy density (polymeric stresses) for C. reinhardtii for both Newtonian and VE strokes at De = 2.
Note that Newtonian stroke produces significantly more elastic stresses than the VE stroke. (c) Fluid elasticity hinders cell
swimming speed (top) but leads to a sharp increase in beating frequency (bottom). (d) Combination of experiments and
simulations show that Newtonian stroke moves faster than a VE stroke in VE fluids (top) but spends more energy (bottom).

Motile cilia and flagella are important sensors of their environment. The dynein-dependent sliding of microtubules
and subsequent relaxation that governs the bending of cilia and flagella can be significantly affected by the character-
istics of the external fluidic environment such as viscosity and elastic stresses. Increasing fluid viscosity, for example,
can activate Ca2+ influx pathways that, in turn, increase cilia beating frequency [132]. Thus, one expects extracellu-
lar conditions to affect motor function and flagellar waveforms. For example, sperm flagellum shows high amplitude
waveforms in low viscosity fluids, while relatively rigid waveforms with large tail amplitudes are found in high viscosity
fluids [133]. Notably, experiments by Susan Suarez and colleagues have shown that fluid non-Newtonian rheology can
significantly modify mammalian sperm flagellar kinematics [49, 59], which translates into faster swimming speed and
enhanced ability to penetrate the vestments encasing the egg [12].

Recently, the effects of fluid elasticity on flagellar kinematics and cell motility has been systematically investigated
in experiments [134] and simulations [135] using the green alga C. reinhardtti. Experiments are performed in a thin
fluid film is order avoid issues with solid boundaries. Two main fluids are used: (i) a Newtonian buffer solutions
and (ii) viscoelastic (VE) polymeric solutions. The dilute polymeric solutions are aqueous solutions of high molecular
weight polyacrylamide, a flexible polymer. By carefully varying polymer concentration, we can construct solutions
with relaxation time, λ, ranging from 6 ms to 0.12 s. That translates into Deborah numbers (De = fλ) ranging from
0.3 to 6 if one takes f = 50Hz; that is, over one order of magnitude in elastic effects. Newtonian fluids with viscosity
values ranging from 1 cP to 10 cP (10x the viscosity of water) are produced to investigate purely viscous effects.
Similar to the experiments with C. elegans, we compare results from VE and Newtonian fluids at similar viscosity
values to isolate elastic from viscous effects. More information about methods and fluid characterization can be found
in [134].

Results show that C. reinhardtii flagellar kinematics is significantly affected by both viscous and elastic stresses
(Fig. 7a); these modified kinematics in turn affect fluid flow and stress fields (Fig. 7b). Both flagella’ beating frequency
and cell swimming speed decrease as fluid viscosity increases (not shown, see Fig. 2 in [134]). That is, the cell swimming
kinematics is significantly affected by even linear viscous stresses, similar to [132]. Figure 7a shows that the shape
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beating forms (over one cycle) for the Newtonian case differs from the VE case even at similar viscosity values (µ = 6
cp). The VE case shows flagellar movement severely restricted (less mobile) or bundled together near the cell body.
Most of the bending or movement seems to occur away from the cell body with large localized bending at the distal
tips. How does these kinematic changes translate into cell swimming speed?

Similar to C. elegans, the cell normalized swimming speed (U/UN ) decreases as De (or fluid elasticity) increases,
as shown in the top panel of Fig. 7(c). The decay of U/UN vs De resembles the theoretical predictions and Eq. 8
[53, 114]. But the agreement may be coincidental since the cell beating frequency f is found to increase, sharply, for
De ≥ 2, as shown in the bottom panel of Fig. 7(c). This is curious since one would expect the swimming speed to
increase as ω increases, illustrating the non-trivial response of cell flagellum to external fluid stresses. Unfortunately,
experiments alone are insufficient to fully understand this non-trivial response and the governing mechanism that
lead to a particular waveform. Is the emerging waveform a result of a passive response solely based on the material
properties of the flagellum? Or is it an active response based on motor response to external load? Or a combination
of both?

2. Numerical Simulations with Pullers in VE fluids

Numerical simulations together with experimental data can provide information that goes beyond what can be
experimentally measured or numerically calculated alone. In particular, it can provide data on local polymeric/elastic
stresses and insights into the question of flagellum active vs passive response to flow stresses. To that end, Becca
Thomases, Bob Guy, and colleagues recently developed the first 3D numerical model [135] of a micro-organism
swimming in a complex fluid with swimming kinematics derived solely from experimental data (Fig. 7b). A numerical
tool was designed to prescribe the exact kinematics (obtained from experiments) to separate the effects of gait and
fluid rheology. Numerical simulations were validated by comparing the resulting swimming speed from the simulations
to those from experiments. With the model and methods in place, it is possible for the first time to visualize the
elastic stress accumulation in the fluid medium and to measure the energy expended by the C. reinhardtii.

To isolate the effect of fluid elasticity on swimming behavior and flagellar kinematics, experimental data on the
gaits of C. reinhardtii swimming in Newtonian and VE fluids are used as inputs to numerical simulations. Thus, sim-
ulations are able to independently change swimming kinematics (gait/stroke) and fluid rheology (viscosity/elasticity).
Figure 7(b) shows polymeric (elastic) stress fields (elastic strain energy density) for Newtonian and VE strokes beating
in a VE fluid at De = 2. Both strokes are obtained from experiments at similar viscosity values (≈ 2.5 cP); they are
then placed/immersed in a numerical VE fluid simulated using the Oldroyd-B model (Eq. 7. Results show that most
of the polymeric stresses are produced along the flagellum and near the distal tips; polymeric stresses are relatively
low around the alga’s body. Surprisingly, the simulations show that the Newtonian stroke induces higher elastic stress
than its VE counterpart, as shown in Fig. 7(b). These elevated stresses are responsible for the larger power needed
by the swimmers using the Newtonian stroke to propel in VE fluids, even though they swim faster (Fig. 7d). That
is, the VE stroke is more energy efficient (but slower) suggesting that the swimmer may change its stroke (or gait) to
the fluid properties based on energy availability.

In summary, these results show that fluid material properties, in particular viscoelasticity, can significantly affect
flagellar kinematics (stroke) and cell speed [134, 135]. The mechanism responsible for observed changes in kinematics
are still unclear. Numerical simulations suggest, however, that such changes are an active response but we still do
know to what extend or the precise mechanisms. On the other hand, these findings suggest that one may control
the ciliary/flagellar beating and tune transport properties (e.g., cleareance of mucus) by manipulating fluid rheology.
This opens up the possibility of using ciliary response to fluid properties to treat airway disease related to impaired
cilia motility, such as primary cilia dyskinesia and cystic fibrosis, where “thickened” mucus due to large amount of
DNA, actin, and bacterial biofilms leads to reduced mucociliary clearance and breathing difficulty.

3. Running & Tumbling in Polymeric Fluids

As we have seen so far, the two-way coupling between swimmer kinematics and fluid rheological properties can give
rise to many unexpected behaviors for microorganism swimming in complex fluids. We now explore the case of the
bacterium E. coli, an archetypical model organism for motility studies [3]. E. coli are rod-shaped cells (1 to 2 µm in
size) with 3 to 4 helical flagella that rotate and bundle together as the they swim forward at speed of approximately
10 µm/s (in buffer solution). Notably, E. coli moves using run-and-tumble dynamics that is diffusive at long times
[3, 136]; the ”run state” is characterized by forward swimming while the ”tumble state” is characterized by changes
in cell direction due to motor reversal. Their velocity field is well-approximated by an idealised pusher [85].
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Nearly 50 years ago, Schneider & Doetsch investigated the effects of non-Newtonian fluid viscosity on the swimming
behavior of E. coli [137]. Surprisingly, they found an increased in cell swimming speed with increasing fluid viscosity
in aqueous solutions of poly-vinyl-pyrrolidone (PNP, Mn = 360 kDa) and of methyl-cellulose (MC, Mn unknown);
Mn is the number-averaged molecular weight. The data reproduced from their original manuscript in Fig. 8(a) shows
an increase in bacterium swimming speed with polymer concentration and a peak; note that the abscissa is in unis of
inverse viscosity. It was argued at the time that E. coli was able to move faster in polymeric solutions because they
swim through polymer network pores, and thus only experience the solvent viscosity [138]. Numerical simulations
based on this argument was able to reproduce some of the experimental results [139]. As discussed in [140], the
proposed mechanism is not physical; the estimated pore size for the polymers used in the experiments are far too
small, approximately 80 nm for PNP (Mw = 106 kDa) assuming random coil, for an E coli cell of cross section
≈ 1 µm to move through it, among other issues. That prompt Martinez, Morozov, Poon, and colleagues [140] to
revisit the experiments of Schneider & Doetsch. They carefully prepared a fresh set of fluids using the same type of
polymers as the original study. They found that, for low Mw polymers, E coli swimming kinematics can be explained
by Newtonian hydrodynamics alone. The authors argued that impurities in the polymeric solutions may have been
responsible for the increased in cell swimming speed with µ observed by Schneider & Doetsch. They showed that
only the case with the highest Mw polymeric solution (near overlap concentration) showed an increase in swimming
speed due to local shear-thinning effects [140]. They developed a minimal model that captures their experiments in
the Newtonian (dilute) and shear-thinning (semi-dilute) regimes remarkably well.

https://www.overleaf.com/project/62c1ae992a6bff77973ddbff

FIG. 8. E. coli in polymeric solutions. (a) Experiments by Schneider & Doetsch show that cell swimming speed increases as
fluid viscosity increases [137]. (b) Numerical simulations with helical bodies in VE fluids showing the effects of body geometry
on propulsion [141]. (c) Experimental cell trajectories showing the suppression of tumbling in VE fluids [142]. (d) Rotational
diffusivity for different polymeric solutions indicate the tumbling suppression is a viscous effect. (e) Increase in cell speed and
the concomitant decrease in cell wobbling as a function of elasticity for a fixed viscosity (µ = 10 cP). (f) Schematic of hoop
stresses acting on E. coli cell. (g) Snapshots of DNA molecules being stretched by E. coli ’s swimming action.

The effects of fluid elasticity on E. coli swimming behavior, however, were less clear. Simulations of helical structures
in viscoelastic fluids (Oldroyd-B model) show that elastic stresses can either enhance or hinder the structure propulsion
speed and efficiency, depending on geometry (pitch, radius) and rotation rate [141, 143] (Fig. 8b). A local maximum
in propulsion speed as a function of De is found in the simulations, a result that is similar to experiments in scaled-up
mechanical systems [81]. The question is whether these findings translate to living microorganism.

To address the question above, our laboratory performed a systematic experimental investigation on the effects of
fluid elasticity on the swimming behavior of E. coli [142]. Similar to the studies with C. reinhardtii, experiments
are performed in a thin film using Newtonian and polymeric solutions. Polymeric solutions are prepared using high
molecular weight polymers (Mw = 10 × 106) and are dilute, c < c∗ where c∗ is the overlap concentration; for more
details on methods and protocols, please see [142]. Figure 8(c) shows E. coli trajectories in both Newtonian and
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VE fluids using tracking techniques. While the typical run-and-tumble dynamics is observed in the Newtonian case,
we find a very different behavior in VE fluids – tumbling is suppressed as cell trajectories become more ballistic. It
turns out, however, that this tumbling suppression is not due to fluid elasticity. Figure 8(d) shows E. coli rotational
diffusivity as a function of fluid viscosity µ for several polymeric solutions of different Mw (and thus elasticity levels).
The data show minimal differences among the different fluids suggesting that the suppression of tumbling (or rotational
diffusivity) is a viscous effect.

Fluid elasticity does seem to affect the E. coli swimming speed. Figure 8(e) shows cell swimming speed (top) as a
function of polymer molecular weight (Mw) for a fixed viscosity µ = 10 cP. The data shows a clear increase in cell
as polymer Mw (or elasticity) is increased, even though the fluid viscosity is kept relatively constant by adjusting
polymer concentration below c∗. This means that the increase in speed is not a viscous effect and likely due to elasticity.
Intriguingly, the enhancement in cell swimming speed is accompanied by a decrease in cell wobbling, as shown in
Fig. 8(e, bottom). Cell wobbling are oscillations of the cell body along its path, a behavior typical of swimming E.
coli. These two-dimensional lateral oscillations of the cell body are projections of the cell’s three-dimensional helical
trajectory. The bacterium E. coli can wobble by as much as 20 to 30 degrees about its path centerline. The question
is whether the decrease in wobbling is mechanistically related to the increase in bacteria speed in VE fluids. One could
argue that the presence of curved streamlines in the E. coli velocity field (Fig. 8f) could lead to polymer stretching
and the production of elastic hoop stresses in a mechanism that is similar to the one responsible for the rod-climbing
effect. As discussed in the introduction, these stresses points inward in the radial direction (r) towards the cell body
and perpendicular to the cell’s swimming direction. These hoop stresses then cause the cell body to align with the
projected direction of motion, thus reducing wobbling. Visualization of individual fluorescently labeled DNA polymers
reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce
local elastic stresses in the fluid (Fig. 8g). Hence, we believe that hoop stresses are responsible for suppressing cell
wobbling, which in turn leads to faster cell swimming speeds.

In summary, these results show how local shear-thinning effects [140] and elastic stresses [142] can significantly
affect the swimming behavior of E. coli. Despite progress, the mechanism responsible for suppression of tumbling
and the changes in cell speed in VE fluids are still being debated; there is no consensus just yet. For example, recent
numerical simulations find that elasticity can indeed lead to an increase in cell swimming speed due to azimuthal
swirl in its gait that decreases the extensional wake behind the swimmer [144], while an experimental investigation
show that wobbling is indeed reduced by normal stresses but its not the main cause for increase in swimming speed.
Rather, speed enhancement is due to shear-thinning effects similar to [140]. Very recently an intriguing study by X.
Cheng and colleagues showed that E. coli can swim faster in suspensions of colloidal particles [145]. They argued
(and demonstrated) that as bacteria cells swim near particles, they experience a torque that aligns the flagella with
their body leading to faster swimming. A similar mechanism may be at play when cell move near polymer molecules.
This study, as well a recent numerical simulation [146], shows how nonlocal effects must be consider particularly as as
the length scale of fluid microstructure is of the same order as the cell length scale; the continuum approach breaks
down under those conditions. clearly, there is still much that we do not know regarding the effects of fluid rheology
on the swimming behavior of E. coli.

V. CONCLUSIONS & OUTLOOK

Swimming in complex fluids is a rich, nonlinear problem that still is not fully understood. The two-way coupling
between swimmer kinematics and fluid rheological properties can give rise to many unexpected behaviors, as shown
here. In some instances, fluid rheology can aid propulsion but in others it may be detrimental. It is, therefore,
difficult to make general statements regarding propulsion speed and/or energy expenditure because much depends
on how the swimmer interacts with the polymers and particles in the fluid. Nevertheless, the field has made much
progress in characterizing/modeling such interactions with the goal of developing general understanding of motility.
Opportunities for those interested in joining the community are still plenty. I will discuss a few below.

Perhaps one of the most outstanding questions is whether the gait or kinematic changes observed in the experiments
is a passive or active response (or a combination of both). For example, we show that elastic stresses can significantly
affect and change the beating waveform of C. reinhardtii, relative to what is commonly observed in simple, Newtonian
fluids (Fig. 7). Yet, we are not sure whether the alga cell is actively responding to fluid stresses. It has been shown in
experiments [127], simulations [135], and analysis [128] that organisms’ motility behavior can vary widely depending
on flagellum/organism (passive) material properties. One avenue to address this question (active vs passive response)
is to combine experimental data with numerical simulations [135] in order to decouple swimming kinematics from
fluid rheological effects. Moving forward, it is desirable to include accurate models for the flagellum active forces (e.g.,
dynein motor activity), for instance, in the fluid-swimmer formulation. Could these types of formulations capture the
emerging flagellum waveforms?
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Albeit described only briefly [140, 145, 146], the importance of resolving nonlocal effects cannot be understated.
While there is enough separation of scales for microorganism swimming in Newtonian fluids, that may not be the case
for fluids containing polymers and/or solids. This can be quantified by the Knudsen number, Kn = Lf/Ls, where
Lf and Ls are the characteristic length scales of the fluid and swimmer, respectively. Consider for example E. coli
Ls ∼ O(1)µm moving in water Lf ∼ O(0.1)nm. In such case Kn O(10−4), and the system can be adequately described
by the continuum approach. The picture is different even in polymeric solution; polymer radius of gyration,Rg, for
high Mw molecules can be as high as 300 nm. Then, Kn = 0.3 for the same E. coli indicating that a molecular,
statistical approach may be more adequate to describe such swimmer [6, 146]. Of course, a natural length scale to
consider is the one associated with the velocity decay, rv. Considering again the E. coli, we can estimate rv by first
noting that the velocity decays as 1/r2 (for a pusher dipole). The flagellum helix diameter, a, is approximately 0.25 µm
and it rotates at an angular speed Ω of about 170 rad/s. We can estimate the velocity decay to 10% of the maximum

speed next to the rotating flagellum (aΩ) to be (a2/r2)aΩ = 0.1aΩ. This gives a length scale rv = a
√

10 = 0.75 µm.
Hence, the Kn = Rg/rv = 0.4. This is a similar result as using the Ls ∼ O(1)µm suggesting that the use of statistical
approach is warranted. For a more comprehensive discussion on this topic, please see [5].

Finally, while there has been much progresses in understanding swimming of single organisms in complex fluids,
much less is now about their collective motion. Only a few investigation are available: numerical simulations predict
that elasticity can significantly affect the size of clusters in non-dilute swimmer suspensions [147, 148], while experi-
ments with sperm show that polymers can even promote collective swimming [149]. Recently, large oscillatory vortices
were found in bacterial suspensions inside droplets containing viscoelastic fluids (DNA suspensions) [150]. It is still
unclear, however, how polymers mediate microorganism hydrodynamic interactions and affect collective motion.

The above are just a few areas in need of development. Needless to say that they come with a bit of bias from the
author. I am hoping that after reading this article, the readers will have their own ideas on how to move our field
forward.
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