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Upon coming into contact with a solid surface, a liquid droplet spreads rapidly during the early moments
due to inertial/capillary effects before the viscous dissipation slows it down. The temporal evolution of the
spreading radius depends on the the viscosity of the liquid drop. For low viscosity liquids, the spreading radius
follows a power-law whereas for higher viscosity liquids it scales linearly with time with additional logarithmic
corrections. In this work, the spreading dynamics of molten sand is investigated at isothermal conditions. The
molten sand is a mixture of Calcia, Magnesia, Alumina and Silicate, commonly referred to as CMAS, and is
characterized by large viscosity, density and surface tension. The multiphase many-body dissipative particle
dynamics (mDPD) model is carefully parameterized to simulate a highly viscous molten CMAS droplet at 1260
oC. Three-dimensional (3D) simulations were carried out at different initial drop sizes and equilibrium contact
angles. Despite its unique properties, the spreading behavior of molten CMAS is in good agreement with theory
and experiments of viscous coalescence of drops. Importantly, the two distinct spreading regimes are observed
in the mDPD simulations. Due to the large viscosity, a slower but a non-unique spreading rate is observed in
the inertial regime. However, the spreading rate in the viscous regime is in agreement with Tanner’s law. The
spreading radius remains unaffected by the initial drop size and collapses onto a master curve under viscous
time scaling in agreement with theory and experiments. For different equilibrium angles, the spreading rate is
observed to be nearly identical in the inertial regime. This indicates a universal spreading behavior during the
early stages of spreading unaffected by both the initial drop size and the equilibrium contact angle. The contact
line velocity was also computed to assess its relation with the dynamic contact angle. The dynamic contact
angle data collapse when plotted as a function of the capillary number, displaying a remarkable agreement with
Hoffman’s description of dynamic contact angle evolution.

I. INTRODUCTION

Droplets will start spreading on a solid surface as the liquid contacts with a surface. Droplet spreading and wettability play
a crucial role in many engineering processes and have garnered renewed attention due to their importance in self-cleaning [1],
fabrication of micro-electromechanical systems [2] (MEMS), microfluidic devices [3] and high-quality inkjet printing [4]. The
spreading process is dictated by the capillary and the viscous forces and is a simple exercise in minimization of potential and
surface energies of the drop. The dynamic spreading of simple liquids, i.e., water, water/glycerin mixtures, silicone oils, etc.,
has been extensively studied by many experimental work [5–8] and numerical simulations [9–11]. Bianche et al. [5] observed
that the spreading of a completely wetting drop on a solid surface is analogous to droplet coalescence which has been studied
in great detail. Analytical solutions, based on Stokesian dynamics, have also been derived for the growth of the radius at the
neck between two coalescing droplets. Generally, the radius of the spreading area follows a power law of the form r ∼ tα and
is comprised of two distinct regimes, an inertial regime and a viscous regime. In the inertial regime, the large gradient of the
interface curvature drives the contact line and is resisted by the inertia of the drop. At this stage, the Laplace pressure drives
a capillary wave across the droplet surface. Once the capillary waves dissipate, the spreading enters the viscous regime where
the driving force is balanced by the viscous friction. When the effects of gravity are negligible, a pure water drop spreads at a
rate of t1/2 in the inertial regime and t1/10 in the viscous regime. The spreading rate in the viscous regime corresponds to the
well-known Tanner’s law. On the other hand, the spreading rate of more viscous drops was observed to vary between 0 and 1 in
the inertial regime along with a logarithmic dependence on r as shown in Eq. 1 while Tanner’s law was observed in the viscous
regime [8]. This is the solution of the Stokes flow of two viscous drops coalescing when the viscosity of the surrounding fluid is
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In case of partial wettability, another factor that determines the spreading rate is the equilibrium contact angle. In the case
of low viscosity liquids [7], drops with a smaller equilibrium contact angle were observed to spread faster compared to larger
contact angles. It should be noted that in these experiments the spreading was inertial/capillary dominated. When the spreading
is viscous dominated [6], the spreading in the inertial regime was observed to be independent of the equilibrium contact angle.
This is consistent with the spreading-coalescence analogue. Another important aspect of wettability is the evolution of the
contact angle in relation to the speed of the contact line. This determines the shape of the interface which is important in
determining the boundary conditions. In fact, there are analytical expressions [13] (based on asymptotic expansions) describing
the evolution of the apparent contact angle (θap) as a function of the capillary number which is defined as Ca = µucl/σ where
ucl is the velocity of the contact line, µ is the dynamic viscosity and σ is the surface tension. These expressions generally take
the form θD ∼Ca1/3 for Ca < 1, where θD is the dynamic contact angle. Additionally, approximate and empirical expressions,
based on experiments, have also been developed [14, 15].

Most of previous studies of drop spreading on solid surfaces focused on relatively low viscous fluids [16], while much less is
known about the dynamics of spreading and wetting of highly viscous fluids, i.e., greater than 1000 times the viscosity of water,
such as a lot of molten materials in 3D printing [17]. One particular area where the high-viscous fluids play an important role
and which is the subject of research in this paper pertains to the deposition of molten sand particulates in gas turbine engines
(GTEs) [18]. Rotorcrafts operating in dusty environments suffer structural damage due to the ingestion of solid particulates into
the gas turbine engines. The ingested particles can cause erosion due to repeated impact, accumulate in air pathways leading
to blockages and cause material degradation due to molten particulate deposits on the hot sections of the GTE. Environmental
barrier coatings (EBC) offer protection against kinetic impacts while the inertial particle separators filter out larger particles
(> 75µm) without a significant pressure drop at the compressor inlet. Smaller particles, on the other hand, pass through the cold
section and melt in the combustion chamber. The molten particulates, primarily composed of the oxides of calcia-magnesia-
alumina-silica (CMAS), adhere to and damage the thermal barrier coating on the hot-section components. The molten CMAS
material has been observed to infiltrate, react chemically with the thermal barrier coating (TBC) and solidify into a glassy coating
as it cools down. This is referred to as ‘CMAS attack’ [19]. In addition to the structural damage, the CMAS penetration has also
been observed to alter the thermal properties of the TBCs such as volumetric heat capacity and thermal conductivity [20]. Some
of the mitigation strategies involve tailoring the TBC microstructure [21, 22], accelerating the chemical reaction time between
the molten CMAS deposit and the coating to induce solidification and thus prevent penetration [19]. With the performance
envelope of the GTEs ever expanding, the operating temperatures are bound to increase which will only exacerbate CMAS
attack. From a hydrodynamic point of view, it is important to understand the fundamental process of droplet spreading in order
to gain more insight into CMAS attack and aid in the development of tailored functionalized surfaces [23, 24].

The viscosity of CMAS is a strong function of temperature which reduces non-linearly with an increase in temperature [22].
A molten CMAS drop is more than 3000 times viscous (at 1260 oC) than a water drop and the surface tension is 6.4 times
larger than the water-air surface tension. The large viscosity and surface tension of CMAS provide an interesting regime of
fluid phenomena in itself but owing to its importance in understanding the CMAS attack on TBCs it is crucial to understand the
spreading dynamics. Towards developing a more fundamental insight into the spreading dynamics of molten CMAS, a detailed
numerical study is carried-out using the many-body dissipative particle dynamics (mDPD) framework, which is a multiphase
extension of dissipative particle dynamics (DPD) [25]. As shown in Fig. 1, experiments were performed at the high-temperature
contact angle facility at the Army Research Laboratory (ARL) in Aberdeen Proving Ground to measure the equilibrium contact
angle of a molten CMAS drop on a flat ceramic coating surface. With a linear increase of temperature to the melting point
of CMAS and then holding it at 1260 oC for 40 minutes, the contact angle of a CMAS drop reaches to θeq = 39o ± 1o at
the end of the experiment. In the experiment, spreading and melting processes are coupled and the CMAS infiltrates into the
coating. To simplify the problem and focus on the spreading dynamics of the highly viscous CMAS drop, we consider an
isothermal process and simulate the spreading dynamics of a 3D CMAS drop using a mesoscale mDPD method, which is able
to accurately capture the contact line motion under the thermodynamic fluctuations as demonstrated in many previous mDPD
simulations of droplet dynamics [26–29]. Although the emphasis is not laid upon the role of thermodynamic fluctuations on
the contact line dynamics in this work, the primary reason for choosing the mDPD framework, over other particle-based and
continuum-based methods, lies in the fact that the constitutive relation need not be prescribed in this framework. The spreading
and infiltration dynamics of molten CMAS have been investigated numerically by several groups. Recently, Munuhe et al. [30]
investigated CMAS spreading and infiltration into porous TBC under non-isothermal conditions using the lubrication theory
in a two-dimensional (2D) axisymmetric configuration. Kabir et al. [31] employed a volume-of-fluid method to study CMAS
infiltration into ‘feathery’ microstructures in a 2D geometry. The spreading of molten CMAS on smooth substrates following
an impact at a high velocity (up to 250 m/s) was systematically investigated by Chaussonnet et al. [32] for different CMAS
morphologies and physical properties using the smoothed particle hydrodynamics (SPH) method. In all these studies, the molten
droplet was treated as a Newtonian fluid and in the absence of experimental data on the exact rheology of molten CMAS, the



3

Tim
e

𝑡
0 20 40 60

t (minutes)

1140

1180

1220

1260

T
(o

C
)

T

0

30

60

90

120

150

180

✓ m
ea

n
(d

eg
re

e)

✓mean = 39o

✓mean

𝜃

Figure 1. Left: Experimental measurement of the evolution of temperature T and wetting contact angle θmean of a molten CMAS drop, where
the molten temperature of the CMAS is 1260 oC. Right: the setup of multiphase DPD simulations of a 3D CMAS droplet spreading dynamics
(isothermal process) on a hydrophilic surface with equilibrium contact angle θeq = 39o.

aforementioned advantage of mDPD allows for a better representation of the underlying fluid dynamics. In fact, Song et al. [33]
reported that molten drops of volcanic ash remain heterogenous, possibly due to the presence of crystals and bubbles, below a
temperature of 1315 oC thereby implying a non-Newtonian nature of the melts.

DPD is a mesoscopic simulation method developed to study hydrodynamic phenomena [34]. Lately, mDPD has been widely
used to study multiphase phenomena in soft-matter and rheological problems [35]. In this method, each mDPD particle is a
collection of atoms/molecules which are alike. The system is representative of a coarse-grained molecular dynamics (MD)
method and can be rigorously derived from microscopic dynamics [36] as well as from fluctuating Navier-Stokes equation [37].
Compared to MD, mDPD by design, offers the advantage of taking larger integration time-steps due to the soft interaction
potentials [38]. The moving contact line (MCL) creates a non-integrable stress singularity at the solid-liquid boundary and
requires a special treatment in continuum-based models [39]. Typically, cutoffs are introduced at molecular and capillary length
scales to deal with the singularity. Incidentally, this does not pose a problem to particle-based methods such as the one used
in this work. At the solid-liquid interface, the no-slip boundary condition developed for arbitrary-shaped geometries [40] is
used in this work. In this work, sessile drop simulations of molten CMAS at different radii and equilibrium contact angles are
carried-out at isothermal conditions. A previous experiment performed by Eddi et al. [8] is also used to compare the spreading
rates of the drop obtained in mDPD simulations.

The layout of this paper is as follows: The numerical method is introduced briefly in §II and is followed by a discussion on the
simulation setup and parameter mapping in §III. The results describing the evolution of the contact area radius and the dynamic
contact angle behavior are presented in §IV. Finally, the findings are summarized in §V.
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II. GOVERNING EQUATIONS

The interactions between mDPD particles are considered pairwise and their motion is governed by the Newton’s second law
of motion [41]. The position and velocity of the i-th mDPD particle is tracked using

dri

dt
= vi, mi

dvi

dt
= Fi = ∑

j 6=i
FD

i j +FR
i j +FC

i j, (2)

where mi denotes the mass of the particle i, ri, vi, and Fi are its position, velocity, and force vectors, respectively. The total force
Fi is taken to be the linear superposition of the dissipative (FD

i j), random (FR
i j) and conservative forces (FC

i j) between neighboring
particles i and j, which are computed by

FC
i j = Aωc(ri j)ei j +B(ρi +ρ j)ωd(ri j)ei j, (3)

FD
i j =−γωD(ri j)(ei j ·vi j)ei j, (4)

FR
i j = βωR(ri j)(dt)−1/2

ξi jei j, (5)

where ω(∗) is a weighting function which depends on the relative distance ri j = |ri−r j| between the two particles i and j. These
forces have a compact support and vanish beyond a cut-off distance rc. The constants γ , β , A and B determine the strengths
of each individual force. The relative velocity between a pair of particles is given by vi j = vi− v j. The forces between a pair
of particles always lie along the line of centers ei j = ri j/ri j. The Gaussian white noise ξi j is a random variable drawn from
a Gaussian distribution with 〈ξi j(t)〉 = 0 and 〈ξi j(t)ξkl(t ′)〉 =

(
δikδ jl +δilδ jk

)
δ (t − t ′) where δi j is the Kronecker delta and

δ (t− t ′) is the Dirac delta function [42].
By design, a mDPD system is isothermal and the thermal equilibrium of the system is dependent on the fluctuating and

dissipative forces. In the presence of these forces, the system should recover the canonical Gibbs-Boltzmann distribution [42].
This is referred to as the fluctuating-dissipation theorem (FDT)[41] and leads to the following relation between the weights and
the strengths of these two forces

ωD = ω
2
R, β

2 = 2γkBT, (6)

where ωD = ω2
R = (1− ri j/rD)

s with s = 0.5, rD = 1.45 and the non-dimensional temperature kBT = 1.0 where kB is the
Boltzmann constant. At a molecular scale, the random (Brownian) motion of particles persists even at thermal equilibrium
leading to tiny thermal fluctuations. The fluctuation-dissipation theorem ensures that these fluctuations remain bounded even
under the action of an external force via a dissipative force. This is what is referred to as the thermal equilibrium. The non-
dimensional temperature, which remains a constant, affects the magnitude of the random force. Throughout the course of the
simulation, Eq. 6 is satisfied for all the pairwise interactions. In many-body interactions, the conservative force is dependent on
an attractive force and a local density (ρ) dependent repulsive force. The local density of a particle is computed as weighted sum
of its neighbors i.e. ρi = ∑ωρ (ri j). In this work, ωρ is the Lucy kernel and is defined as [43]

ωρ (ri j) =
105

16πr3
cρ

(
1+

3ri j

rcρ

)(
1− ri j

rcρ

)3

. (7)

Furthermore, the weight functions for the attractive and the repulsive components of FC
i j are defined as ωc (ri j) = 1− ri j/rc and

ωd (ri j) = 1− ri j/rd respectively. Throughout this work the following cut-off distance are used: rcρ = rd = 0.75 and rc = 1.0.
Particles representing the distinct phases of a multiphase system are assigned a unique numeric ID at initialization to handle
the pairwise interactions. For example in a binary system comprised of liquid and solid particles, the force parameters and the
cut-off distances are assigned for liquid-liquid, liquid-solid and solid-solid interactions.

III. PARAMETER MAPPING & SIMULATION SETUP

III.1. Parameter Mapping

To accurately represent the properties of the fluid, the mDPD parameters have to be chosen carefully by mapping the mDPD
parameters to the physical system of interest i.e. molten CMAS. The physical properties of molten CMAS are taken to be at
1260 oC and the relevant physical properties at this temperature are taken from the experimental work of Naraparaju et al. [22].
These are: density ρl = 2690 kg/m3, surface tension σl = 0.46 N/m and dynamic viscosity µl = 3.6 Pa · s. Following Arienti
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et al. [44], reference length [L], mass [M] and time [T] scales are computed to non-dimensionalize the system. The reference
quantities are defined in terms of the reference units as

ρre f =
[M]

[L]3
; σre f =

[M]

[T ]2
; νre f =

[L]2

[T ]
. (8)

Following this, the non-dimensional (mDPD) parameters are defined as

ρ =
ρl

ρre f
=⇒ [M] = [L]3

ρl

ρ
(9)

σ =
σl

σre f
=⇒ [T ]2 = [M]

σ

σl
(10)

ν =
νl

νre f
=⇒ [T ] = [L]2

ν

νl
. (11)

To match both the viscosity and surface tension we eliminate [T] from Eq. 10 and Eq. 11 and then substitute [M] from Eq. 9.
The resulting equation is given by

[L] =
(

νl

ν

)2 ρl

ρ

σ

σl
(12)

Clearly from Eq. 12, [L] can be estimated from ρ , σ and ν which are computed a posteriori from mDPD simulations and are not
imposed as done in continuum-based methods.

To compute the kinematic viscosity ν of the mDPD fluid, a doubly periodic Poiseuille (DPP) flow [45] is setup. This has an
exact solution given by

u(y) =
fxyd
2ν

(
1− |y|

d

)
(13)

where fx is the body force and d is the half-channel height. To simulate this flow, mDPD particles are initialized in a doubly
periodic box of size 30× 80× 10 mDPD units along the x-, y- and z-directions as shown in Fig. 2(a). Above the half-channel
height, the particles are driven by a body force fx imposed along the positive x-direction and below the half-channel height, fx is
imposed along the negative x-direction. The system is allowed to relax for 10 mDPD time units without the action of any body
force to dissipate the additional energy from initialization. Following this, the body force is applied and the system is run for
40 mDPD time units before it reaches a steady state. Upon reaching the steady state, the average velocity along the y-direction
is computed by binning the particles into 80 slabs in the xz-direction for another 40 mDPD time units. Finally, the kinematic
viscosity ν is computed from the least-squares approximation to the mDPD solution and is shown in Fig. 2(b). For a simulation
that is carried out with A = −40, B = 25, γ = 20, kBT = 1, rc = 1.0, rd = rcρ = 0.75, rD = 1.45 and ρ = 6.74, the resulting
viscosity is ν = 29.093 in mDPD units. The kinematic viscosity computed for different cut-off distances rD is shown in Fig. 2(c).

The surface tension, on the other hand, is computed using the thin liquid film method [46] wherein the surface tension is
computed from the normal and tangential stresses across the plane using the Irving-Kirkwood equation given by

σ =
∫ Lz

0
[pzz−0.5(pxx + pyy)]dz (14)

where Lz is the length of the domain along the z-direction, pzz is the normal and pxx, pyy are the tangential stress components. The
mDPD particles are initialized in a triply-periodic domain of size 52×52×20 mDPD units as shown in Fig. 3(a). The mDPD
simulations are run with same parameters and cut-off distances as in the DPP flow. As done in the case of the DPP flow, the
system is relaxed for 10 mDPD time units and the time-averaged surface tension is computed for the next 40 mDPD time units.
The distribution of σ for different attraction parameters A is shown in Fig. 3(b) and the corresponding mean values are shown in
Fig. 3(c). In this work, A = −40 is selected which gives 〈σ〉 = 9.287±0.07 in mDPD units. Based on the physical properties
of the molten CMAS droplet and the computed non-dimensional properties of the mDPD fluid, the reference units obtained are:
[L] = 17.017 µm, [M] = 1.964×10−8 kg and [T ] = 6.297 µs. The physical and the reference quantities are tabulated in Table I.

III.2. Simulation Setup

To examine the spreading behavior of molten CMAS, sessile drop simulations are performed on a smooth substrate. The
droplet and the wall are composed of randomly generated pre-equilibriated mDPD particles. Simulations are carried-out with



6

(a)

(b)

(c)

Figure 2. (a) Setup of the DPP flow. The particles are colored by their velocities along the x− direction. (b) The mDPD and the exact solution
of the flow at steady state. (c) Viscosity ν computed from the curve-fit to the mDPD solution for different cut-off distances rD. The open star
corresponds to rD = 1.45 and ν = 29.093 in mDPD units i.e. the values used for the molten CMAS drops.

(a)

(b)

(c)

Figure 3. (a) Setup used in the thin liquid film method. (b) The distribution of σ for different attraction parameter (A) values. (c) Mean values
of σ for different A. The open star corresponds to A =−40 and 〈σ〉= 9.287 in mDPD units i.e. the values value used for the molten CMAS
drops.
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Table I. Physical and reference properties of molten CMAS.

Property Physical units mDPD units
Density ρ 2690 kg/m3 6.74
Dynamic viscosity µ 3.6 Pa · s 196.08
Kinematic viscosity ν 1.33×10−3 m2/s 29.093
Surface tension σ 0.46 N/m 9.287
Length [L] 17.017×10−6 m 1.0
Mass [M] 1.964×10−8 kg 1.0
Time [T ] 6.297×10−6 s 1.0

drops of initial radii R = 8, 10, and 12 mDPD units, which corresponds to 0.136 mm, 0.17 mm and 0.204 mm respectively
in physical units. In experiments, molten CMAS exhibited extensive wetting on most TBC surfaces. The final contact angles
observed in these experiments were well-below 90o with some completely wetting the samples. This is in agreement with the
available body of experimental work from different groups [21, 22, 47, 48]. In light of this ‘sandphillic’ behavior, three shallow
equilibrium contact angles i.e. θeq = 39o, 55o, and 70o, are used to investigate the effect of θeq on droplet spreading. To obtain
the correct θeq, the liquid-solid interfacial tension is altered by varying the attraction parameter Als between the liquid and solid
particles. The equilibrium contact angle for different values of Als is shown in Fig. 4. Collectively, a total of five simulations are
performed. All the simulations are carried out with B = 25, γ = 20, kBT = 1, rc = 1.0, rd = rcρ = 0.75, rD = 1.45 and ρ = 6.74.
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θ e
q

(d
eg

re
e)

Figure 4. Equilibrium contact angle is plotted as a function of the mDPD liquid-solid attraction parameter Als. The open stars correspond to
Als =−28, −30, and −32 i.e. the parameters used in the simulations.

The attraction parameter between the liquid particles All is set to the −40 and the same between the liquid and solid particles
Als is set accordingly to obtain the required θeq. The time integration of the governing equations is carried-out using a modified
velocity-Verlet algorithm with time step dt = 0.002. For CMAS, the capillary length lc =

√
σ/(ρg) is 4.17 mm and hence the

effects of gravity on spreading can safely be ignored for the drop sizes under consideration in this work. The Ohnesorge number,
defined as Oh = µ/

√
σρR, is an useful indicator to demarcate viscous and inertial regimes. In this study, Oh = 8.77, 7.85, and

7.16 for R = 0.136 mm, 0.17 mm and 0.204 mm respectively.

The mDPD implementation [49] in the massively parallel open source code LAMMPS [50] is used to perform the simulations.
Furthermore, the evolution of the contact line and the dynamic contact angle are tracked in this work to investigate the underlying
spreading mechanisms. Given the discrete nature of the numerical scheme, approximate curve-fitting approaches are taken to
compute the quantities of interest. First to compute the spreading radius r, mDPD particles on the surface of the drop are
extracted based on the local number density. The particles with ρ ∈ [0.45,0.6] are identified as the surface particles. From these
surface particles, a thin layer of particles that are in contact with the solid surface are extracted and fitted to a circle of radius r.
To compute the contact angle, first the centroid and the radius of the surface particles are computed by averaging the minimum
and maximum spatial positions of the surface particles. Using these values as an initial guess, a sphere is fit to the surface
particles. Finally, the contact angle is defined as the angle between the tangent of the fitted sphere and the horizontal wall.
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Figure 5. The effect of (a) initial drop size R and (b) equilibrium contact angle θeq on the spreading radius is shown on a log-log plot.

IV. RESULTS

IV.1. Spreading Radius

To investigate the spreading behavior of molten CMAS, the spreading radius of r is tracked over time. The effect of initial
drop size R and the equilibrium contact angle θeq on the spreading radius r is shown on the log-log plots in Fig. 5 (a) and (b)
respectively. The results in Fig. 5 (a) correspond to θeq = 55o and those in Fig. 5 (b) correspond to R = 0.17 mm. As a result of
the large viscosity, the spreading occurs over a long time before an equilibrium is reached. The case with θeq = 39o and R = 0.17
mm takes the longest time owing to the small θeq. More importantly, two distinct spreading regimes can be identified in these
plots. The formation of the neck at the interface during the early moments of CMAS spreading is shown in Fig. 6. At this point,
the droplet takes a distinctively non-spherical shape. Once the capillary waves are dissipated, the droplet assumes the shape of a
spherical cap.

To characterize these spreading regimes, well-established scaling laws developed in the context of droplet coalescence are
used. In an inertia dominated case, r/R = f

(
t/
√

ρR3/σ ,θeq

)
whereas in a viscosity dominated case, the temporal evolution is
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Figure 6. A cross-section view (left) and an aerial view (right) of the spreading dynamics of a 3D CMAS drop with a radius of R = 0.17 mm
on a hydrophilic surface with θeq = 39o.

dependent on the viscous time scale τv = µR/σ . Given the large Oh of the CMAS drops in this work, the spreading radius was
scaled using the viscous time scale. With this scaling, the spreading radii of different size drops collapse on to a master curve
for a given θeq. This is shown in the log-log plot in Fig. 7 (a). This indicates that the contact line motion on a given surface is
independent of the drop size. The drops spread over a longer t/τv to reach equilibrium due to the effects of large viscosity. By
fitting the data to a power law of the form r/R∼ (t/τ)α using least-squares minimization, the exponent α i.e. the spreading rate
is computed both at an early and late time. Fig. 7 shows that the slope of the normalized spreading radius changes smoothly from
the inertial regime with α = 0.26 to the steady state with α = 0, which does not change with droplet size R but changes when the
equilibrium contact angle θeq varies. The spreading rate in the inertial regime is in excellent agreement with the experimental
results [33] of molten volcanic ash droplets spreading on a smooth Alumina substrate. The experiments report a spreading rate
of 0.28 at 1272 oC under viscous scaling. Although the viscosity of volcanic ash greater than that of CMAS (500 Pa.s), the
surface tension (0.35-0.37 N/m) and the density (2000-2895 kg/m3) are quite comparable. Compared to the CMAS used in
this study, the volcanic ash is characterized by 61% higher SiO2 and 83% lower CaO by weight percentage which could be the
reason for higher viscosity of molten volcanic ash. A spreading rate of approximately 0.26 in the inertial regime is followed by a
rate of approximately 0.1 in the viscous regime before the drop reaches equilibrium. The spreading rate of α = 0.1 corresponds
to the Tanner’s law of spreading for vanishing contact angles wherein the spreading dynamics are controlled by the contact line
dissipation. On the other hand, no such collapse of data is observed for the spreading radius at different θeq as shown in Fig. 7
(b). However, the spreading rate in the inertial regime is fairly robust with the curves only diverging once the effects of partial
wetting kick-in. Interestingly, Bird et al. [7] reported a spreading rate varying between 0.5 and 0.25 for θeq = 3o− 117o. The
lower spreading rates were attributed by the authors to the effects of finite equilibrium contact angle. The effects of viscosity on
the spreading are discussed in more detail in the next section.

IV.2. Effect of Viscosity

In their experiments with viscous fluids (µ = 0.3−10.3 mPa · s), Bird et al. [7] observed inertia dominated spreading. This is
evident from the divergence of spreading radius when viscous time scale τv is used. Aarts et al. [6] on the other hand, observed
viscosity dominated coalescence experiments with silicone oil drops with a wide range of viscosities but relatively low surface
tension (0.02 N/m). A linear relation between r/R and t/τv was observed but the logarithmic dependence, predicted by the theory
[12], was not observed. Eddi et al. [8] investigated the spreading of viscous drops (10−1.12 Pa · s) and reported a continuously
decreasing exponent ranging between 0.8 and 0.5 in the inertial regime before transitioning sharply to the viscous regime with an
exponent consistent with Tanner’s law. Following Eddi et al. [8], the spreading rate α = dlnr/dln t is computed. This is shown
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Figure 7. Non-dimensional spreading radius as a function of time re-scaled using the viscous time scale is shown on a log-log plot for (a) R =
0.136 mm, 0.17 mm and 0.204 mm at θeq = 55o and (b) θeq = 36o,55o and 70o at R = 0.17 mm. The least-squares fit to the power law in the
inertial and viscous regimes are shown in dashed black lines along with the exponent α of the power law.

in Fig. 8 (a) as a function time. The spreading rate varies between 0.3 and 0.2 in the inertial regime before plateauing. Due to
the high viscosity of CMAS, the transition between the two regimes is smooth and in accordance with experimental evidence.
For comparison, experimental data of pure glycerin drop from Eddi et al. [8] is also plotted. The density, dynamic viscosity and
the surface tension of the glycerin drop used in the experiments are 1262 kg/m3, 1.12 Pa · s and 0.063 N/m respectively. This
particular data from the experiments was chosen since the viscosities of glycerin and CMAS are of the same order-of-magnitude
although the surface tension of CMAS is still 7 times larger. Clearly, the CMAS drops exhibit a lower rate of spreading compared
to the glycerin drop. Since the simulations are of partially wetting fluids, the CMAS drops reach equilibrium, i.e. α = 0, unlike
the glycerin drop from experiments which is in a complete wetting configuration and takes longer to reach equilibrium.

When, the spreading rate α is plotted as a function of non-dimensional spreading radius r/R the data collapses for different
initial radii again in line with the experimental data. This is shown in Fig. 8 (b). The solid line in the plot is referred to as the
‘effective exponent’ and is defined as

α =
ln r

R
ln r

R −1
. (15)

This equation is obtained by applying the definition of the spreading rate α = dlnr/dln t to Eq. 15. The experimental data
from Eddi et al. [8] at lower viscosities agrees well with the curve in the inertial regime indicating the effects of logarithmic
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Figure 8. Spreading rate as a function of (a) time and (b) non-dimensional spreading radius r/R is shown on a semi-logarithmic plot. The
dashed line in (b) corresponds to Eq. 15. The spreading data of pure glycerin drop (R = 0.5 mm, µ = 1.12 Pas, σ = 0.063 N/m and
ρ = 1262 kg/m3) from Eddi et al. [8] is represented by the open circles.

correction. However, significant deviations from curve appear at higher viscosities. The effects of logarithmic correction on the
spreading radius are not observed in this work since the correction is relevant in the asymptotic limit. Aarts et al. [6] estimate
these effects to be prominent at r . 0.03R which is about 6 µm for the largest drop size used in the simulations. Unfortunately,
this level of spatial resolution was not realized in the simulations.

IV.3. Contact Angle Evolution

The evolution of the contact angle is shown in Fig. 9. At early time, the contact angle evolution is identical for all the curves
with the differences appearing later on due to the effects of partial wetting again reinforcing the observation that the early-time
dynamics are independent of the equilibrium contact angle. To investigate the dynamics of the moving contact line the contact
line velocity ucl is computed by taking a time-derivative of the spreading radius. The relationship between ucl and θap is shown
in Fig. 10 (a) and as expected the contact line motion seizes as θap→ θeq.

When the viscosity of the surrounding fluid is negligible compared to that of the drop, Cox [13] derived an expression for
contact angle evolution which is given by

g(θ) = g(θm)+Ca ln(x/L) (16)
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Figure 9. Time evolution of the apparent contact angle θap.

where θm is the microscopic contact angle and x, L correspond to macroscopic and microscopic length scales. The function g(θ)
is defined as

g(θ) =
∫

θ

0

x− sinxcosx
2sinx

dx. (17)

For θ < 135o, g(θ) can be approximated as θ 3/9 within 1% error. A simpler representation of the Cox’s relation was presented
by Hoffman [51] and Kistler [52]. Hoffman observed that the contact angle data from his experiments closely followed a general
curve when plotted as a function of Ca with a certain shift factor. An empirical fit to this curve was obtained by Kistler and is
given by

θap = fH
[
Ca+ f−1

H (θeq)
]

(18)

where fH is referred to as the Hoffman function defined as

fH(x) = arccos

{
1−2tanh

[
5.16

(
x

1+1.31x0.99

)0.706
]}

. (19)

In this work, the inverse Hoffman function f−1
H is approximated using the Hoffman-Voinov-Tanner law [53] which is valid for

Ca < 1 and is given by

f−1
H =

θ 3
eq

cT
(20)

where cT is a constant assumed to be about 72 rad3. In Cox’s theory, there are no restrictions placed on the microscopic contact
angle: it can be constant or velocity-dependent. In Eq. 18, which has an identical functional form as Eq. 16, θeq is used instead
of θm. Following this, the contact angle is plotted as a function of Ca shifted by the approximate inverse Hoffman function
given by Eq. 20 and is shown in Fig. 10(b). The Hoffman function, given by Eq. 19 is overlaid on the simulation data and is
represented by the solid black curve. A very good agreement is observed between the simulation results and the model. This
indicates that the Cox’s theory is still valid for molten CMAS.

V. CONCLUDING REMARKS

A detailed numerical study was conducted to investigate the spreading dynamics of molten CMAS on smooth surfaces using
many-body dissipative dynamics. To this end, sessile drop simulations were performed at isothermal conditions with different
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Figure 10. (a) The apparent contact angle θap is plotted as a function of the contact line velocity ucl for drops with different equilibrium contact
angles θeq. (b) The apparent contact angle θap is plotted as a function of the capillary number Ca. The solid black curve is the model proposed
by Kistler and is given by Eq. 18-20.

drop sizes and equilibrium contact angles to investigate the effects of initial drop size and partial wetting. In particular, the
temporal evolution of the spreading radius and the dynamic contact angle were studied and compared with the existing theory
and experiments. Modeling CMAS, which has very high surface tension in addition to being highly viscous and dense, required
an equally large viscosity in the simulations typically unseen in mDPD community.

The spreading of molten CMAS is clearly characterized by two distinct, inertia-dominated and viscosity-dominated, regimes.
In agreement with experimental evidence, the contact line spreading was observed to be independent of the drop size throughout
the entire spreading phase. This is evident from the data collapse in Fig. 7(a) wherein a characteristic viscous time scale τv
was used to rescale the data. This indicates a quantitative agreement with the theory of viscous coalescence of drops. Although
the spreading radius does not exhibit such collapse for different equilibrium contact angles, the spreading in the inertial regime
is quite identical with all the curves exhibiting an overall slope of 0.26. The spreading rate in the inertial regime agrees well
with the available experimental data of molten volcanic ash spreading on smooth surfaces which is between 0.26 and 0.31. The
curves in Fig. 7(b) begin to diverge as the effects of partial wettability become dominant. Within the inertial regime, a non-
unique spreading rate α was observed which is consistent with experiments. The value of α in this work is between 0.3 and 0.2
in the inertial regime which is lower than what was observed in the experiments of Eddi et al. [8]. This is attributed to the higher
viscosity and surface tension of CMAS. The logarithmic corrections on the spreading were not observed when α is plotted as
a function of r/R due to a lack of sufficient resolution to capture the very early-time evolution of the contact line. Despite the
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unique properties of CMAS, a good agreement between the simulation results and theory was observed for the dynamic contact
angle evolution. The simulation results are in good agreement with Hoffman’s model for dynamic contact angle.

The evidence presented in this work indicates that the spreading of molten CMAS is in good agreement with that of other
relatively lower viscosity fluids. This study further reinforces the analogous behavior between droplet coalescence and droplet
spreading. To gain a more fundamental insight in to the role of interfacial dynamics on CMAS attack, the effects of surface
roughness, pressure, heat transfer and phase change on the moving contact line need to be investigated and will be the focus of
future research.
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