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Preferential transport of swimmers in heterogeneous two-dimensional turbulent flow
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We investigate the performance of active swimmers in a strongly heterogeneous two-dimensional
weakly turbulent flow. The flow is heterogeneous in Reynolds number along one direction. Using a
hybrid experimental-numerical model, we demonstrate that there are three regimes of preferential
transport for rod-like swimmers as the swimmers’ intrinsic speed increases. Using Lagrangian statis-
tics along swimmers’ trajectories, we reveal that the three regimes are due to the relative strengths
of three different effects: the intrinsic speed of the swimmers, the re-orientation ability of the shear
layer at the interface of two flow regions, and the attracting Lagrangian Coherent Structures (LCSs)
of the flow field. Our results elucidate the mechanism of preferential transport for swimmers in het-
erogeneous flow. We hope to raise researchers’ attention to the dynamics of swimmers in strongly
heterogeneous flow environments.

I. INTRODUCTION

The transport of swimming particles in a complex background flow is important for areas ranging from aquatic
ecology [1–3], active matter system [4–6] to bio-inspired design [7, 8]. Apart from considerable intrinsic mobility,
these organisms are also universally featured with non-spherical shapes. Unlike passive spherical tracers, active
non-spherical swimmers do not follow the flow exactly due to their shapes and intrinsic mobility.

Previous works on swimming particles in a complex background flow have found that the diffusion of swimming
particles can be lower than passive particles because swimmers with small intrinsic mobility can enter and be trapped
by elliptical islands [9]. At higher intrinsic mobility, researchers have found that there exists a threshold swimming
velocity above which there are no barriers to the transport of swimmers. Moreover, this threshold is a function of the
swimmer’s shape [10]. In addition, hydrodynamic shear [11] and flow velocity [12] can have nontrivial effects on the
orientation and spatial distribution of swimmers due to their intrinsic mobility and shapes, where rod-like swimmers
preferentially align with flow velocity [12] and the fluid shear can trap swimmers [11]. For gyrotactic swimmers
that have a preferred swimming direction, it is found that the coupling of swimmer mobility and shear can cause
clustering in thin horizontal layers [13] and microscale patchiness [14]. Finally, it is shown that the attracting LCSs
have a particularly prominent effect on the preferential alignment and heterogeneous distribution for non-spherical
swimmers. The mechanism of the preferential alignment between swimmers and attracting LCSs are revealed in a
numerical study of swimmers in a two-dimensional turbulent flow [15].

In general, clustering and patchiness are much weaker in three-dimensional isotropic turbulence than that observed
in simple cellular or vortical flows [9, 10] due to the complex topology [16]. Despite a weaker effect, turbulence can
also cause swimmers to distribute heterogeneously [14, 17, 18]. Swimmers tend to sample regions with lower fluid
vorticity and accumulate at the low vorticity regions [18]. In addition, spherical swimmers show a stronger clustering
effect than elongated swimmers in isotropic turbulence [16]. It is also found that elongation as a consequence of chain
formation can enhance the vertical migration of motile phytoplankton through weak to moderate turbulence [19].

Previous works have predominantly focused on the dynamics of swimmers that are surrounded by homogeneous
flows or periodic flows, such as isotropic two-dimensional and three-dimensional flows and cellular flow. However, in
reality, most of the swimmers are living in systems with strong heterogeneity [11, 20, 21].

Here, we study the preferential transport of swimmers in a flow that is strongly heterogeneous in Reynolds numbers
along one direction using a hybrid experimental-numerical model [15]. In this paper, we report three regimes of the
preferential transport for rod-like swimmers between two regions of two-dimensional turbulent flows with different
flow intensities. While the two regions have different Reynolds numbers, the flow field is smooth everywhere. The
swimmers can move with different intrinsic speeds and can be passively rotated by the flow field. At small to
intermediate intrinsic speed, rod-like swimmers show a preferential transport to the faster side of the flow. We claim
that it is due to the combined effects of attracting LCSs and the shear layer at the interface of the two flows. As the
intrinsic speed increases, the swimmers shift the preferred transport to the slower side. We find that this is because the
shear layer loses the ability to re-orient swimmers while the attracting LCSs still have a decent effect of accumulating
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swimmers. As a consequence, attracting LCSs alone facilitates the transport of swimmers to the slower side. Lastly,
as the intrinsic speed increases to an even larger value, both the shear layer and the LCSs lose the ability to affect
the swimmers, and there is no preferential transport.

We begin below by first describing the method of measuring the flow field and the hybrid experimental-numerical
model in section II. In section III, we discuss the properties of the heterogeneous flow field and elucidate the mechanism
of the preferential transport of swimmers. Lastly, in section IV, we summarize our results and draw conclusions.

II. METHOD

A. Flow realization and measurement

We generate the quasi-two-dimensional flow in an electromagnetically forced conducting thin layer system. A
schematic diagram of the apparatus is shown in Fig. 1. Similar systems have been used in many other works [15, 22–
25]. The outer frame of the setup is made of acrylic with lateral dimensions of 38 × 33 inch2 (96.5 × 83.8 cm2); it
supports a smooth and flat glass floor at the center with the dimension of 32× 32 inch2 (81.3× 81.3 cm2). The upper
side of the glass floor is coated with hydrophobic materials (Rain-X) to reduce friction, and the bottom side is covered
with light-absorbing black-out film. Beneath the glass floor lies an acrylic board that can hold an array of 29 × 29
cylindrical magnets with the center to center space of 1 inch (2.54 cm). Each magnet (neodymium grade N52) with an
outer diameter of 0.5 inches (1.27 cm) and thickness of 0.25 inches (0.635 cm) has a maximum magnetic flux density
of 1.5 T at the magnetic surface. We load a thin layer of 14 % by mass NaCl solution with density ρ = 1.101 g/cm3

and viscosity ν = 1.25×10−2 cm2/s. A pair of copper electrodes are placed at opposite sides of the setup. By passing
a DC current through the conducting layer, we are able to drive a quasi-two-dimensional flow with the Lorentz body
force in horizontal directions. The Lorentz force is large enough to generate weakly turbulent flow while small enough
to keep the two-dimensionality.

In order to create a strongly heterogeneous flow, we put a piece of 0.25 inch (0.635 cm) thick acrylic board to fully
cover the left half of the glass floor to increase bottom friction [25]. Meanwhile, the right half of the setup is fully
placed with magnets, while the left half is only placed with 1/5 the number of magnets in the right half. Magnets in
both halves are randomly arranged and have equal numbers of opposite poles facing upward. The thicknesses of the
conducting layer in the two halves are measured to be 9 mm and 2 mm, respectively. In this way, both the strength of
dissipation and energy injection are different on two sides of the flow, and the resulting flow is highly heterogeneous.

To track the fluid motion, the working fluid is seeded with green fluorescent polyethylene particles (Cospheric) with
a density of 1.025 g/cm3 and diameters ranging from 106 to 125 µm. The Stokes number is of order 10−3, which
means the particle can accurately track the flow [26, 27]. The tracers stay at the surface of the thin layer, which is the
two-dimensional plane we study. A small amount of surfactant is added to reduce the surface tension, and the surface
tension is too small to affect the movement of the tracers. We use a machine vision camera (Basler, acA2040-90µm) to
image the particles illuminated with green LED lights. A 1600 pixels × 1600 pixels frame size gives a 23 cm × 23 cm
area at the center (70 pixels/cm). About 11,000 particles can be recorded with a frame rate of 60 frames per second.
The particle number density and frame rate enables us to obtain a highly spatiotemporally resolved Eulerian velocity
field through a particle tracking velocimetry (PTV) algorithm, which has been described in detail elsewhere[28]. The
mean distance between neighbor particles is d = 0.22 cm, which is one order of magnitude smaller than the smallest
energy injection length scale (2.54 cm). And the frame rate is two orders of magnitude smaller than the eddy turnover
time. In two-dimensional flow, most of the flow dynamics take place in scales greater than the energy injection length
scale due to the inverse energy cascade, where the spectral energy is fluxed toward larger scales rather than smaller
scales [29].

To ensure a reliable two-dimensionality, we further project the measured flow field onto a basis of numerically
computed stream function Fourier modes [22]. The projection reveals that the energy associated with out-of-plane
motion is negligible, indicating our assumption of two-dimensionality is valid. The measured flow is then interpolated
onto regular Eulerian grids using cubic interpolation with grid size ∆x = 10 pixels (0.14 cm), which is of a similar
order of magnitude as d.

In this work, the root mean square velocity of the flow field is measured to be 1.5 cm/s (Uf ) in the right (faster)
half and 0.6 cm/s (Us) in the left (slower) half. The integral length scales for the right half (Lf ) and left half (Ls)
are 2.5 cm and 1.0 cm, respectively. As a result, the Reynolds number Re = UfLf/ν for the faster side is 300, and
the Reynolds number for the slower side is 48.
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FIG. 1. A schematic for the experimental setup. The pair of electrodes conduct DC current horizontally through the saltwater.
The vertical magnetic field from the permanent magnets and the horizontal DC current together generate the Lorentz force
on the fluid that is nearly entirely in the plane. The fluid layer has a very high aspect ratio that can be considered as quasi-
two-dimensional. A piece of acrylic board is put above the left half of the setup to increase bottom friction. The quantity
of magnets in the left half is only 1/5 of that in the right half, so that the energy injection in the left half is reduced. The
reduced energy injection as well as the increased friction damping make root mean square velocity of the left hand side flow
much smaller than that of the right hand side flow.

B. Hybrid experimentalnumerical model

We seed virtual swimmers to the measured flow field. Swimmers are modeled as inertialess, non-interacting and
point-like ellipsoids that swim in their major axis directions p with intrinsic velocity magnitude vs. Simultaneously,
the swimmers are advected by the local flow velocity u and oriented by local flow vorticity ω and local rate of strain
tensor E following Jeffery’s equation [30, 31]. Local u, ω, and E are obtained through cubic interpolation of the
measured flow data in Sec. II A. Consequently, we have the motion of swimmers as

ẋ = u(x, t) + vsp

ṗ =
1

2
ω × p + αp ·E · (I− pp),

(1)

where the overdot represents the Lagrangian derivative, x is the location of swimmers, I is the identity matrix,
E = (∇u + ∇uT )/2 is the strain-rate tensor, ω = ∇ × u is the flow vorticity and α = (γ2 − 1)/(γ2 + 1) is the
eccentricity with γ the ratio between the major and minor axis of the swimmers. When α = 0, the particle is
spherical and when α = 1, the particle is an infinitely thin line segment. Jeffery’s equation essentially states that
together with responding to local vorticity, swimmers with higher eccentricity also have stronger responses to the
flow’s local rate of strain.

The trajectories of swimmers are integrated with a second-order Runge-Kutta scheme in Matlab. The time step,
∆t = 1/60 s, is the same as the time gap between two frames of the experimental measurement. The time step is small
enough to prevent overshoot problems when solving the Jeffery’s equation because the Courant number C = Uf∆t/∆x
= 0.18 is much smaller than 1. We initiate 15,000 swimmers uniformly in the domain with random initial directions.
At the end of each time step, for swimmers that leave the domain through the right half of the outer boundary,
we randomly assign them back to the edge of the right half domain with random directions. Swimmers leaving the
domain through the left half of the outer boundary are treated the same way. Our boundary condition limits the
exchange of the virtual swimmers between the two flow regions to happen only through the interface. The system
can be seen as two infinitely large flow regions which are connected via a finite length interface. Since our boundary
condition reinforces the number of the swimmers in the domain to be a constant and the exchange between the two
flow regions can only happen via the finite interface, the preferential transport direction of swimmers will be reflected
by the concentration difference between the two flow regions when the system reaches a statistically stationary state.
Therefore, we use the time-averaged swimmer concentration ratio between the faster side and the slower side under
a statistically stationary state as a proxy to indicate the probability of swimmers going from the slower side to the
faster side. We run the simulation for 8,000 time steps (80 eddy turnover time of the faster side, the system reaches
statistically stationary state after about 3000 time steps), and the Lagrangian trajectory history for each individual
swimmer is recorded.
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C. Finite time Lyapunov Exponent (FTLE)

FTLE method is one of the most commonly used methods for the detection of LCSs [32]. We compute the FTLE
in 2D space for the flow field following the method by Haller [32]. The flow map gradient ∇F t

t0(x0) is caculated using
finite difference approximation as:

∇F t
t0(x0) ≈

(
x(t;t0,x0+δ1)−x(t;t0,x0−δ1)

|2δ1|
x(t;t0,x0+δ2)−x(t;t0,x0−δ2)

|2δ2|
y(t;t0,x0+δ1)−y(t;t0,x0−δ1)

|2δ1|
y(t;t0,x0+δ2)−y(t;t0,x0−δ2)

|2δ2|

)
,

where F t
t0(x0) = x(t; t0,x0) represents the flow map that depicts the advection of fluid particles from their initial

locations x0 at time t0 to their new positions x at time t. δ1 and δ2 represents small perturbations on initial locations
in x and y directions. The right Cauchy-Green tensor

C(x0) = [∇F t
t0(x0)]T∇F t

t0(x0)

depicts how an infinitesimal perturbation evolves with time. Since C is symmetric and positive definite, the eigenvalues
of C, λ1 and λ2, satisfy 0 < λ1 < 1 < λ2. Then, the FTLE is calculated as:

FTLE(x0) =
1

t− t0
log
√
λ2(x0).

The flow map can be traced in either forward time or backward time. The FTLE calculated with forward time
integration is positive and is denoted as FTLE+; the FTLE calculated with backward integration is negative and is
denoted as FTLE−. Regions with extreme values are usually organized as ridges in two-dimension [32, 33]. FTLE+

ridges and FTLE− ridges are typically considered as effective detection for repelling and attracting LCSs.

In this paper, we take the magnitudes of both δ1 and δ2 to be 10 pixels (0.14 cm). The integration time length is
5 s (3 eddy turnover time of the faster side). The calculation of FTLE is robust and is not sensitive to small changes
of the integration time length.

III. RESULT AND DISCUSSION

A. Asymmetric LCS distribution and a shear layer at interface

Due to the strong heterogeneity of the flow velocity, we observe the asymmetric distribution of attracting LCSs.
Previous works have revealed that attracting LCSs have a much stronger effect on re-orientating and accumulating
swimmers than repelling LCSs [15, 34–37], so we focus on attracting LCSs for the rest of the paper. Fig. 2(a) shows
a single snapshot of FTLE− field, where the ridges are the approximated locations of LCSs [15, 38]. For a given
integration time, the right half region with higher flow velocity has more well-defined LCSs than the left half. It is
worthwhile to note that the strong LCSs in the faster half do not end right at the middle interface but extend to the
slower half to a limited length. This is because the fluid field is continuous, and the flow momentum is diffused and
advected from the faster side to the slower side.

Meanwhile, near the middle interface, the strong velocity difference between two sides invokes the formation of
shear flows tangent to the interface. Fig. 2(b) shows the temporally averaged angle β between the y-direction and the
eigenvectors corresponding to the larger eigenvalues of the local rate of strain tensors (extensional eigenvectors). β
ranges from 0 to π/2 and an average smaller than π/4 suggest that extensional eigenvectors of the local rate of strain
tensors tend to align with the y-direction. It can be noticed that within a 2 to 3 cm band near the interface, the
averaged β decreases as it approaches the interface from both sides, which indicates the existence of the shear layer.

From Jeffery’s equation [30, 31], we know that rod-like swimmers (α > 0) tend to rotate to align with extensional
eigenvectors of the local rate of strain tensors. Moreover, it is found that the alignment between rod-like swimmers
and LCSs is more prominent than that between swimmers and the extensional rate of strain eigenvectors [15, 39]. In
the following two sections, we will demonstrate that the intrinsic speed of swimmers, the re-orientation ability of the
shear layer at the interface of two flow regions, and the attracting LCSs conspire to lead to three distinct regimes
of the preferential transport of swimmers in the heterogeneous two-dimensional turbulent flow based on the relative
strengths of the three effects.
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(a) (b)

FIG. 2. (a) A snapshot of FTLT− field, where the colorbar shows local FTLT− values (negative). Larger absolute FTLT values
indicate stronger dynamics. The solid line is the middle interface. Dash lines roughly mark the boundaries of the shear layer.
(b) The angle β between the middle interface (y-axis) and the eigenvectors corresponding to the larger eigenvalues of local
strain rate tensors, averaged over time and y-direction.

B. Three regimes of the preferential transport of non-spherical swimmers

We calculate the ratio between the time-averaged swimmer density in the faster side (〈Cf 〉) and that in the slower
side (〈Cs〉) for swimmers with different vs and α after the simulation reaches statistically stationary state (Fig. 3). For
elongated swimmers, as α increases, the 〈Cf 〉 / 〈Cs〉 ratio shows three distinct regimes of preferential transport (Fig.
3). We claim that these three regimes result from the relative strengths of three different effects: the intrinsic speed of
the swimmers (effect 1), the re-orientation ability of the shear layer (effect 2) at the interface of two flow regions, and
the attracting LCSs (effect 3). In the range of vs between 0.5Uf and 1Uf , the swimmers have preferential transport
toward the faster side (regime I; effect strength in increasing order: effect 1, effect 2, effect 3). As vs increases to the
range between 1Uf and 2Uf , they have preferred transport to the slower side (regime II; effect strength in increasing
order: effect 2, effect 1, effect 3). When vs is greater than 2Uf , the preferential transport gradually disappears, and
there will be no preferential transport in the heterogeneous flow (regime III; effect strength in increasing order: effect
2, effect 3, effect 1).

One thing to note is that for the tracer case (vs = 0), the simulation shows a preferential transport toward the
slower region. In our experiment, we measured only a subsection of the interface. At a steady state, the transport of
tracers toward each side should be the same along the whole interface, but it is not necessarily true for a subset of
the interface. Hence, we determine that this is due to the limited size of the measurement domain, limited Reynolds
numbers, combined with the numerical boundary conditions we use and the arrangement of finite-numbered magnets.
As the intrinsic speed of the swimmers increases, the interaction between the intrinsic mobility of swimmers and the
flow becomes dominant, and the effect that results from the boundary conditions becomes negligible. This can be
validated by looking at the behavior of concentration ratio for spherical swimmers with increasing intrinsic speed
(α = 0, dark blue curve). As vs increases, the concentration ratio quickly converges to 1, as it should be.

In the following of this paper, we will use rod-like swimmers (α = 1) as an example for discussions because they
show the strongest effect.

In regime I (vs between 0.5Uf and 1Uf ), due to the intermediate intrinsic velocity of the swimmers, both LCSs
and the shear layer have significant effects on the swimmers’ movement. Even with an intermediate intrinsic velocity,
swimmers in the slower side of the flow become less dependent on the flow and will approach a uniform distribution.
However, in the faster side, within the range of swimming velocity between 0.5Uf and 1Uf , swimmers show a strong
preferential alignment and heterogeneous distribution near LCSs [15]. A great portion of swimmers in the faster flow
region are swimming along LCSs. Since LCSs extend through the middle interface into the slower region (Fig. 2 (a)),
swimmers will swim along these LCSs both toward and away from the interface. Additionally, there exists a shear
layer tangent to the middle interface. For the swimmers swimming toward the slower side along the LCSs, the shear
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layer re-orientates the swimmers to the direction tangent to the middle interface, which increases the probability for
those swimmers to encounter another LCS where the local flow field points back to the faster side. Hence, swimmers
in the faster side of the flow will have a higher chance to go back to the faster side once they reach the vicinity of the
interface. We call this phenomenon “swimmer recycling”. The recycling requires both the shear layer at the interface
and LCSs with local flow velocities pointing back toward the faster side (see schematic in Fig. 5). Since there is no
definite LCS in the slower side for the time scale we consider, there will be no recycling mechanism and, consequently,
the LCSs with local flow velocities pointing toward the faster side will keep guiding the swimmer from the slower side
to the faster side. Thus, when vs is between 0.5Uf and 1Uf , the rod-like swimmer is preferentially transported toward
the faster side of the flow.

In regime II (vs between 1Uf and 2Uf ), the intrinsic speed of swimmers is strong enough to overcome the weaker
re-alignment effect of the shear layer at the interface. Even though the alignment and accumulation effects of the LCSs
start to weaken, there are still a substantial amount of swimmers that swim along the LCSs. Since the re-orientation
of the shear layer is the key step in the recycling mechanism and it is significantly weakened in regime II, swimmer
recycling is weak in this regime. Without the swimmer recycling, the LCSs in the faster side then serve to facilitate
the transport of swimmers from the faster side to the slower side, resulting in the preferential transport toward the
slower side of the flow.

In regime III (vs greater than 2Uf ), the swimmers’ intrinsic speed continues to increase, and both LCSs and the
shear layer have negligible effects on the swimmers. Therefore, the concentration ratio gradually approaches 1.

One thing to note is that for very slow spherical swimmers (around vs/Uf = 0.2 and α = 0), the concentration
ratio shows a weak descending trend compared with that for tracers. This might result from the trapping effect near
the elliptical region in the slower side. Khurana et al. [9] found that swimming does not necessarily enhance swimmer
transport. By advecting spherical swimmers in a 2D cellular flow, they showed that small but finite swimming speed
could cause swimmers to get stuck for long times near elliptical islands. Here in our measured flow, there also exists
long-lasting elliptical structures that can possibly result in similar trapping effects as that in Khurana et al. [9].

C. Lagrangian statistics for preferential transport

To support our mechanistic picture, we start to investigate the Lagrangian statistics for swimmers in both sides of
the flow that are within a 3 cm distance from the middle interface, where the effects of both the shear layer and the
LCSs are substantial. Our result is consistent for any reasonable range of distance near the interface.

We first examine the response of swimmer motions toward attracting LCSs near the interface. We sample equal
numbers of swimmers uniformly at both sides of the interface and look at the FTLE− values along their trajectories.
As time moves forward, we keep tracking the normalized ensemble average of local FTLE− values for swimmers that
still remain in the domain of interest (Fig. 4(a)). Comparing the swimmers starting from the slower and faster sides,
we see that for both swimmers with vs = 0.7Uf and vs = 1.4Uf , the normalized ensemble average of local FTLE−

keeps increasing for swimmers starting from the faster side. But for swimmers in the slower side, the normalized
ensemble average of local FTLE− doesn’t show significant changes with the change of time. This means that the
retained swimmers are closely related to LCSs in the faster flow region but are not affected by LCSs in the slower flow
region because the slower side does not have definite LCSs for the time scale we consider. This result suggests that
the retained swimmers starting from the faster flow region tend to sample higher |FTLE−| (the vicinity of attracting
LCSs) and, thus, indicates that LCSs play a key role in recycling swimmers in the faster flow region. Moreover, the
lower increasing trend for swimmers with vs = 1.4Uf tells the weakened accumulation effect of LCSs for swimmers.
Note that this is not direct evidence for the swimmer recycling but a consequence of the recycling. In the following,
we will show evidence for each component of the recycling mechanism.

We then reveal how the shear layer re-orients swimmers clustered on the LCSs in the faster side. In doing so, we
specifically condition on the swimmers that (1) are near the vicinity of LCSs and (2) have intrinsic speed pointing
toward the slower side. Swimmers in the right (faster) 3 cm band with local |FTLE−| higher than 0.4 and x component
of p pointing to left (slower side) at t = 0 are selected out. The specific threshold of FTLE− does not affect our
result. We calculate the forward time Lagrangian statistics of the angle θ between the middle interface (y-axis) and
the orientation of swimmers p (Fig. 4(b)). If the x component of p is pointing left, θ is recorded to be positive; if the x
component of θ is pointing right, θ is recorded to be negative. Therefore, θ ranges from −π/2 to π/2 and 〈θ〉 closer to
zero indicates that the swimmers are more tangential to the y axis. When swimmers approach the middle interface, for
both swimmers with vs = 0.7Uf and vs = 1.4Uf , the mean angle decreases. A similar trend indicates that swimmers
with both velocities can be re-oriented by the shear layer. Despite the similar trend, swimmers with vs = 0.7Uf show
a sharper decrease and a much smaller 〈θ〉 than swimmers with vs = 1.4Uf , which indicates that the shear layer has a
more prominent effect on re-orienting intermediate swimmers (vs = 0.7Uf ). A great portion of swimmers swimming
along LCSs toward the interface is re-aligned and recycled to their original domain. For swimmers with vs = 1.4Uf , it
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FIG. 3. The ratio between the time-averaged swimmer density in the faster side (〈Cf 〉) and the time-averaged swimmer density
in the slower side (〈Cs〉). From blue to red, the α of swimmers increases from 0 to 1.

can be noticed that even though the shear layer tends to align the swimmers to be parallel to the y axis, the effect is
very limited. A mean angle that doubles the 〈θ〉 for swimmers with vs = 0.7Uf indicates that most swimmers cannot
be re-oriented to the tangent direction of the interface. This makes the recycling of faster swimmers (vs = 1.4Uf )
much more difficult than that of swimmers with vs = 0.7Uf . This result shows that the shear layer can re-orient
swimmers on LCSs toward the slower side for the swimmers in regime I but not for swimmers in regime II.

To further reveal the effect of the shear layer for any swimmers that cross the interface toward the slower side,
in Fig. 4(c), we show the forward time Lagrangian statistics of the angle θ for all swimmers that cross the middle
interface from the faster side to the slower side at t = 0. Therefore, in this case, swimmers both near LCSs and away
from LCSs are included. We can observe that Fig. 4(c) shows similar trend as Fig. 4(b). However, since the off-LCSs
swimmers are moving in a more random manner, the decreasing of 〈θ〉 in Fig. 4(c) is slower than Fig. 4(b). Also, a
mean angle greater than π/4 for swimmers with vs = 1.4Uf near t = 0 indicates that most swimmers are swimming
in a normal direction with respect to the middle interface rather than in the tangent direction when crossing the
interface. Fig. 4(b) and (c) together reveal that the shear layer has a decent effect on re-orienting swimmers to be
parallel to the interface in regime I but not in regime II.

After showing the effect of LCSs and the shear layer, we now demonstrate that the recycling of the swimmers
indeed exists. We calculate the ratio of the swimmers that return to their original side (“recycling”) in forward time
for swimmers that pass the middle interface at t = 0 (Fig. 4(d)). In the slower side, swimmers with both vs = 0.7Uf

and vs = 1.4Uf have similar ratios of returning their original domain (slower side) because LCSs, as one of the key
components for swimmer recycling, are less prominent in the slower side during the time scale that we consider.
Moreover, in both cases, the swimmers’ intrinsic velocities are faster than the root mean square velocity of the flow
in the slower side; hence swimmers at both intrinsic velocities are uniformly distributed in the slower side. This
confirms that the recycling mechanism is missing in the slower side. For swimmers that originate from the faster
side, however, those with vs = 0.7Uf have a much higher ratio of returning their original domain (faster side) than
those with vs = 1.4Uf . This is because the swimmers’ intrinsic speed is small enough to be affected by both the
shear layer and LCSs so that the recycling mechanism takes effect. The ratio of recycling after crossing the interface
is also consistent with the results in Fig. 4 (a), (b), and (c). For swimmers with vs = 1.4Uf , we see that the return
ratio is the lowest. This is because the swimmers’ mobility is strong enough to overcome the re-alignment effect of
the shear layer (Fig 4 (b) and (c)) but not strong enough to overcome the effect of LCSs [15]. In this case, the LCSs
are facilitating the transport of swimmers from the faster side to the slower side. This result is consistent with our
explanation in section III B that the recycling mechanism only happens to swimmers that start from the faster side
and only for those affected by both the shear layer and LCSs, i.e., in regime I. Note that recycling does not only
happen at a small band on the interface; it happens over a pretty broad range around the interface.
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(a) (b)

(c) (d)

FIG. 4. (a) The time averaged local FTLE− values for swimmers stay in the band within 3 cm distance from the middle
interface; normalized by the initial averaged FTLE−. (b) The forward time Lagrangian statistics of the angle θ between the
middle interface (y-axis) and the orientation of swimmers p for swimmers that are in the right 3 cm band and have the x
component of p pointing toward the left at t = 0. If the x component of p is pointing toward the right (faster side), θ is
considered as negative; if the x component of p is pointing toward the left (slower side), θ is considered as positive. The
sub-figure shows the schematic of calculating θ. (c) The forward time Lagrangian statistics of θ for swimmers that cross the
interface at t = 0 from the faster side to the slower side. (b) and (c) show that the shear layer is effective in re-orienting
swimmers with vs = 0.7Uf (in regime I) but not in re-orienting swimmers with vs = 1.4Uf (in regime II). (d) The ratio of
swimmers that return to their original side when they cross the middle interface at t = 0. The direction of p in the legend
indicates the direction of vs when swimmers cross the interface at t = 0.

IV. CONCLUSION

We examined the preferential transport of active swimmers in strongly heterogeneous flow by seeding virtual
swimmers to experimentally measured two-dimensional weak turbulence. Our results provided new insights into the
swimmer dynamics in strongly heterogeneous flow. After a brief description of the asymmetric property of the flow
field, we demonstrated that there exist three distinct regimes of preferential transport as the rod-like swimmers’
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FIG. 5. A schematic for the effect of LCSs and the shear layer on rod-like swimmers at different regimes. The intermediate
swimmer (light green) is at regime I, and it is affected by both LCSs and the shear layer. Once it walks on an LCS to reach the
interface, it is re-oriented by the shear layer and encounters another nearby LCS where local velocity points toward the faster
side. Thus, recycling is completed. The fast swimmer (dark green) is in regime II, and it is only affected by the LCSs. In this
case, LCSs on the faster side facilitate the preferential transport toward the slower slide. Once the swimmers’ intrinsic velocity
increase and reach regime III, the flow will have a negligible effect on the swimmers, and preferential transport will disappear.

intrinsic speed increases. We revealed that the three regimes are due to the relative strengths of three different effects:
the intrinsic speed of the swimmers, the re-orientation ability of the shear layer at the interface of two flow regions,
and the attracting LCSs.

When the swimmers’ intrinsic speed is small, and the re-orientation ability of both the shear layer and the LCSs are
strong, a recycling mechanism exists that helps to recycle the swimmers originating from the faster region back to their
original domain, leading to a preferential transport toward the faster side (regime I). As the swimmers’ intrinsic speed
increases, the shear layer loses the ability to re-orient the swimmers, and the LCSs in the faster side alone actually
facilitate the preferential transport of the swimmer toward the slower side (regime II). The preferential transport
gradually disappears as the swimmers’ mobility increases even higher, in which case both the shear layer and the
LCSs have negligible effects on the swimmers (regime III). After forming the mechanistic picture, we used Lagrangian
statistics to support this mechanistic picture. We demonstrated that: (1) The spatial distribution of swimmers near
the interface is strongly correlated with LCSs in the faster side of the flow. But swimmers show no preference for
the slower side of the flow. In addition, LCSs play a more prominent role for swimmers in regime I than for those in
regime II (Fig. 4(a)). (2) The shear layer re-orients the swimmers to be parallel to the interface, and the shear layer
has a more significant effect on swimmers in regime I (Fig. 4(b) and (c)). (3) There is a significant contrast between
swimmers’ return statistics, and the contrast is consistent with the recycling mechanism (Fig. 4(d)).

Lastly, we want to raise the attention to the swimmers’ dynamics in strongly heterogeneous flows since many of
the swimmers in natural and industrial systems are surrounded by heterogeneous flows instead of homogeneous flows.
There are many open questions to answer which are outside the scope of this paper. First, what will the swimmer
dynamics change when the Reynolds number ratio changes. If the Reynolds number ratio decreases, LCSs at both
slower and faster sides will be similarly prominent. Then, it is unclear which regime will disappear first as the Reynolds
number ratio decreases. If the Reynolds number ratio increases while there is enough dynamical range for both flow
regions, there will be a case where the swimmer’s intrinsic speed is low compared to both the slower flow and faster
flow. New dynamics should emerge in this range according to our previous research [15] because the swimmers in
the slower side will not distribute homogeneously. Currently, this range is too narrow due to the intrinsic limitation
of the experiments. Moreover, the swimmers’ dynamics in three-dimensional heterogeneous flow are not known. We
hypothesize that it will be intrinsically distinct from the two-dimensional dynamics because LCSs, one of the critical
factors in the preferential transport in two-dimensions, are not stable in three-dimensions.



10

ACKNOWLEDGMENTS

L.F. wants to thank the start-up package and Pitt Momentum Fund at the University of Pittsburgh, and U.S.
National Science Foundation under Grant No CMMI-2143807.

[1] H. L. Fuchsand G. P. Gerbi, Seascape-level variation in turbulence-and wave-generated hydrodynamic signals experienced
by plankton, Progress in Oceanography 141, 109 (2016).

[2] J. S. Guasto, R. Rusconi, and R. Stocker, Fluid mechanics of planktonic microorganisms, Annual Review of Fluid Mechanics
44, 373 (2012).

[3] D. Elmi, D. R. Webster, and D. M. Fields, Response of the copepod acartia tonsa to the hydrodynamic cues of small-scale,
dissipative eddies in turbulence, Journal of Experimental Biology 224, jeb237297 (2021).

[4] P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Graham, Diffusion and spatial correlations in suspensions of swimming
particles, Physical review letters 100, 248101 (2008).

[5] S. C. Takatori, W. Yan, and J. F. Brady, Swim pressure: stress generation in active matter, Physical review letters 113,
028103 (2014).

[6] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of
soft active matter, Reviews of modern physics 85, 1143 (2013).

[7] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Microscopic artificial swimmers, Nature
437, 862 (2005).
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