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ABSTRACT 9 

 10 
The hawkmoth is able to sustain a steady hover or level flight at lower speeds. However, previous wind 11 

tunnel experiments have suggested that long sequences of steady forward flight are less common at higher 12 

flying speeds (>4.0 m/s) despite changes to the flight posture. This flying speed is about one-half of the 13 

theoretical prediction based on its body mass. It is unclear why hawkmoths have not been observed 14 

achieving steady flight at higher speeds. This study aims to compare the aerodynamics involved in 15 

hawkmoth hovering to those in forward flight. High-speed video recordings and 3D surface reconstruction 16 

were used to capture a hawkmoth’s wing kinematics when hovering and at forward flight speeds of 2 m/s 17 

and 4 m/s. Following reconstruction, the insect model was simulated using an in-house immersed-18 

boundary-method based computational fluid dynamics (CFD) solver. The CFD solver provided a 19 

quantitative measure of the force generation, power consumption, and vortex structures generated during 20 

sustained flight. These results enabled the analysis of certain trends in how a hawkmoth adjusts flapping 21 

kinematics and its associated unsteady aerodynamics changes across different flight speeds. The results 22 

show that the moth minimizes drag as flying speed increases, but it immediately loses its lift producing 23 

upstroke even at the slow forward flight speed (2 m/s). A significant amount of negative lift is generated 24 

during upstrokes at the high forward flying speed (4 m/s). This negative lift in the upstroke potentially 25 

reduces maximum sustained flight speeds. This work provides physical insight into the low-speed flights 26 

in flying insects.  27 

 28 
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1 Introduction 1 

As insects flap their wings, they create tornado-shaped leading-edge vortex (LEV) above the wing surface 2 

to generate sufficient aerodynamic force required to perform various flight tasks [1]. As a consequence, the 3 

unsteady flow evolves to a trail of aerodynamic footprints (complex vortex structures) in the wake. Among 4 

all flight modes, the two most widely studied modes are hovering and forward flight due to their potential 5 

broader applications in man-made robotic designs. In order to achieve a sustained flight mode at a fixed 6 

position (hovering) or at a constant forward flight speed (cruising), insects need to adjust their wing 7 

movements to reach a force balance in both vertical and horizontal directions.  8 

Previous studies have used several different methods to examine how insects’ kinematics and 9 

aerodynamics change as their flight speed increases. Dudley & Ellington [2, 3] used high-speed 10 

cinematography and a force transducer to measure bumblebee wing kinematics and aerodynamic 11 

performance over a range of flight speeds (0 m/s-4.5 m/s). They found that as a bumblebee’s forward flying 12 

speed increases, its wing angle of attack relative to the stroke plane also increases. In addition, during 13 

hovering flight, the bumblebee’s downstroke and upstroke were shown to provide equal contributions to its 14 

total lift. However, as the bumblebee transitions to forward flight, its downstroke plays an increasingly 15 

dominant role in lift production. Zhu & Sun [4] demonstrated a similar trend using computational fluid 16 

dynamics (CFD) simulations of fruit fly forward flight. Results showed that as a fruit fly’s flight speed 17 

increases, its stroke plane becomes more vertical, and its wing angle of attack during the upstroke increases. 18 

In addition, a fruit fly’s downstroke contributes approximately half of the total lift at low forward flying 19 

speeds, while at high forward flying speeds, the downstroke contributes almost all of the total lift. Song et 20 

al. [5, 6] also performed CFD simulations of hummingbird hovering and fast forward flight. Results showed 21 

that during hummingbird hovering, lift production is asymmetric between the downstroke and upstroke, 22 

with the downstroke producing 74% of the total lift, consistent with particle imaging velocimetry results 23 

[7]. During hummingbird fast forward flight, the downstroke contributes all of the total lift, and negative 24 

lift is generated during the upstroke. Song et al. suggest that at high hummingbird forward flying speeds, 25 

the upstroke is used to generate thrust at the cost of lift production. In a separate study, Suzuki et al. [8] 26 

simulated forward flight of a butterfly-like flapping model with various flapping kinematics and Reynolds 27 

numbers. Their parametric study demonstrated most of the lift force was generated during the downstroke. 28 

The backward flapping motion during the upstroke created a significant negative lift force, and the 29 

magnitude of the negative lift could be modified by tuning the maximum angle of attack of flapping cycle.    30 

 The hawkmoth (Manduca sexta) is another small flying animal capable of both hovering and 31 

forward flight. Hedrick & Daniel [9] discovered many different sets of kinematic parameters capable of 32 

producing hovering flight in a model hawkmoth. Their results suggest that the flapping mechanism used in 33 

hawkmoth flight is likely determined by factors beyond kinematic and aerodynamic performance. These 34 
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factors may include biological constraints, such as the ability to apply a single wingbeat pattern to several 1 

different flight modes. For a flying animal of its size, a hawkmoth’s maximum forward flying speed has 2 

been reported much lower than expected. Stevenson et al. [10] used the hawkmoth’s body mass to calculate 3 

a theoretical maximum flying speed of 7-10 m/s. However, experimental results have shown that 4 

hawkmoths are incapable of sustaining steady forward flight at speeds greater than 5m/s [11, 12]. Studying 5 

how a hawkmoth’s wing kinematics and aerodynamics change as its flight speed increases can help explain 6 

why its maximum forward flying speed is lower compared to other flying animals with similar body mass, 7 

such as hummingbirds. Willmott & Ellington [11] used high-speed videography to calculate a hawkmoth’s 8 

wing kinematics for flight speeds ranging from 0 m/s (hovering) to 5 m/s (forward flight). Results showed 9 

that as the hawkmoth’s flying speed increased, its stroke plane angle became more vertical. This trend is 10 

consistent with the previously discussed results for other flying animals. Willmott & Ellington [13] also 11 

studied the aerodynamic performance of hawkmoths flying over the same range of speeds. They used a 12 

modified blade-element (BEM) approach to calculate the mean lift and drag coefficients for stationary 13 

hawkmoth wings. Because the wings were stationary, a time history of the instantaneous lift and drag was 14 

not provided. In addition, the researchers were able to qualitatively determine that the downstroke 15 

increasingly dominates lift support as forward flying speed increases, but exact contributions were not 16 

calculated in their study.  17 

In addition to the above experimental measurements, Aono et al. [14] used real insect data to 18 

perform CFD simulations of hawkmoth hovering. The researchers noted the formation of a doughnut-19 

shaped vortex ring in the wake of the hovering hawkmoth. Their results showed that the downstroke and 20 

upstroke both provided significant contributions to the total lift, but simulations for hawkmoth forward 21 

flight were not part of this study. Zheng et al. [15] also used real hawkmoth hovering data to compare CFD 22 

simulation results with a BEM based approach. Results showed that the BEM approach did not match the 23 

predictive abilities of the CFD. The researchers also found that for hawkmoth hovering, most of the lift is 24 

generated during the downstroke, similar to results from hummingbirds. This study also did not include any 25 

simulations of hawkmoth forward flight. Yao & Yeo [16] performed CFD simulations of both hawkmoth 26 

hovering and forward flight. However, wing kinematics were prescribed using a generic proportional-27 

integral-derivative (PID) controller and were not based on real hawkmoth flapping data. Results from this 28 

study showed that for hawkmoth hovering, the downstroke and upstroke provided approximately equal 29 

contributions to the total lift generated during each wingbeat. At a forward flying speed of 1.3 m/s, the 30 

downstroke provided most of the lift, but positive lift was still generated during the upstroke. At all flight 31 

speeds greater than 1.3 m/s, the upstroke generated negative lift. Yao & Yeo suggest that this trend is due 32 

to the highly vertical stroke plane at high forward flying speeds.  33 



 S. Lionetti, T. Hedrick, and C. Li 

4 

 

As described above, prior experimental measurements and computational simulations of hawkmoth 1 

flight have mainly focused on hovering. The exception, Yao & Yeo [16], performed CFD simulations of 2 

hawkmoth forward flight, but used a flat-plate wing with flapping kinematics prescribed as sinusoidal 3 

equations. The present study is among the first to use real hawkmoth flight data to simulate hawkmoth flight 4 

over a range of flying speeds. We aim to find out what prevents the hawkmoth from achieving a fast forward 5 

flying from a fluid dynamics perspective. In the current study, hawkmoth wing kinematics were 6 

reconstructed based on high-speed video recordings of flying hawkmoths at speeds of 0 m/s, 2 m/s, and 4 7 

m/s in a wind tunnel. The reconstructed hawkmoth model was then simulated using an in-house immersed 8 

boundary method (IBM) based in-house CFD solver. Simulation results were used to calculate 9 

instantaneous lift and drag forces produced by the flying hawkmoth, and power consumptions required to 10 

achieve different flight motions. The force generation on the deformable wing surfaces and its associated 11 

near and far wake structures were compared across different flying speeds.  12 

 13 

2 Methodology  14 

2.1 Experimental setup and filming procedures 15 

Hawkmoths were recorded flying at three different flight speeds- hovering (0 m/s), slow forward flight (2 16 

m/s), and fast forward flight (4 m/s). Moths were males acquired as pupae from the domestic colony in the 17 

Department of Biology at the University of North Carolina at Chapel Hill. Following eclosure, moths were 18 

placed in individual 30×30×30 cm mesh cages in an environmental chamber maintaining ~25°C and a 20:4 19 

Light/Dark cycle. Before filming, moths were not fed for a minimum of 12 hours. At recording, each moth 20 

was placed inside a wind tunnel (octagonal working section, 1.2m long and 0.6m diameter, see Ortega-21 

Jimenez et al. [17] for further details), and an artificial flower with a 1 to 4 honey water mix ratio was 22 

provided for the insect to feed on; moths were trained via prior experience to recognize the flower and feed 23 

from it at a variety of tunnel flow speeds. Three high-speed cameras (two Phantom v7.1 equipped with 24 

35mm Nikon lenses, and one Phantom v5.1 with a Zeiss 50mm lens, Vision Research Inc., Wayne, NJ, 25 

USA) operating at 1000 frames s-1 with a 300 s shutter duration were used to record hawkmoth flight. 26 

Illumination for the cameras was provided by four 12 W multi-LED infrared (730 nm) lights (Larson 27 

Electronics LLC, Kemp, TX, USA); these emit at a wavelength below the hawkmoth visual spectrum and 28 

thus do not alter flight behavior. The cameras were calibrated for 3D kinematics using a structure-from-29 

motion approach [18]. During the experiments, the flight speed is controlled by changing wind tunnel 30 

speeds without removing the animal. Recordings from a single individual flying at different flight speed 31 

were selected for detailed 3D reconstruction and meshing for computational simulation. The morphological 32 

data for the hawkmoth used in this study is summarized in Table 1. Note that the moth was allowed to hover 33 

and feed to satiation after the video data were collected, and the pre-feeding mass from Table 1 is expected 34 
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to be characteristic of the moth during recordings. The flight speeds were recorded in the following order: 1 

2 m/s, 4 m/s, and 0 m/s. 2 

 3 

Table 1. Morphological data for the hawkmoth in this study. The data for the wing is presenting a single 4 

side wing combining both forewing and hindwing. 5 

Parameter Values 

Body mass before feeding (g) 1.45 

Body mass after feeding (g) 1.95 

Body length (cm) 5.3 

Wing mass (g) 0.0382 

Wing span length, R (cm) 5.5 

Mean wing chord, c (cm) 2.3 

Wing area (cm2) 10.7 

Flapping frequency, f (Hz) 27.9±2.4 

 6 

 7 
Figure 1. Comparison between hawkmoth meshed model and real hawkmoth. The hawkmoth mesh shown 8 

on the left was used for all simulations in this study. 9 

 10 

2.2 Reconstruction of hawkmoth flight 11 

After recording hawkmoth hovering (0 m/s), 2 m/s forward flight, and 4 m/s forward flight, a meshed model 12 

of the flying hawkmoth was reconstructed using Autodesk Maya.  In nature, hawkmoths possess both a 13 

forewing and hindwing that combine to provide a lifting surface. However, in this study, we joined the 14 

forewing and hindwing into a single mesh to reduce computational complexity. The computational wing 15 

used in our simulations is shown on the left in Figure 1. The model hawkmoth was superimposed over the 16 

side-view and top-view high-speed video recordings of hawkmoth flight. For each flying speed, one 17 

flapping cycle was selected where the hawkmoth body was relatively stationary. At various points 18 

throughout the selected wingbeat cycle, the morphology of the model hawkmoth’s left wing was adjusted 19 

to align with the high-speed recording. The flapping wings of the hawkmoth were reconstructed using a 20 

template-based hierarchical subdivision surface method [19, 20]. Using easily identifiable natural patterns 21 

on the wing surfaces, we reconstructed the 3D wing kinematics with surface deformation during the 22 

flapping wingbeat cycles. During the reconstruction process, we adjusted the subdivision control points to 23 
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incorporate these natural twisting/bending deformations. As shown in the high-speed video recordings 1 

(included in the supplemental material [21]), the hawkmoth’s wings bend and twist considerably during 2 

flight. Between these reconstructed points, Fourier interpolation was used to reconstruct hawkmoth flapping 3 

motions. A side-by-side comparison between high-speed video recording and reconstructed model is 4 

demonstrated in the supplemental material [21]. 5 

 6 
Figure 2. Definition of stroke plane angle (  ) and body incline angle (  ). Colored circles in the figure 7 

denote the wing leading edge, and the lines present the pitch angle of wing chord at the 0.75R along the 8 

wingspan. The hawkmoth flapping motion follows a counterclockwise trajectory. The downstroke is 9 

pictured in red, and the upstroke is shown in blue. See movie 1 in the supplemental material for 10 

reconstructed flapping motions [21]. 11 

 12 

Figure 3. Wing Euler angles definition, including wing stroke ( ), wing deviation ( ), and wing pitch 13 

( ) angles. The wingtip trajectory during the downstroke is shown in red, and the upstroke is shown in 14 

blue. Two snapshots of the left hawkmoth wing are shown- one at the beginning of the flapping cycle and 15 

one during the downstroke. 16 

 17 
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 Using the reconstructed data, the hawkmoth’s body incline angle and stroke plane angle were 1 

determined for each flight speed. As shown in Figure 2, the body incline angle is defined as the angle 2 

between the hawkmoth body and the horizontal x-axis. The stroke plane angle is defined as the angle 3 

between the stroke plane and the x-axis. The stroke plane was determined based on the least square plane 4 

of the wingtip trajectory that passes through the wing root and is represented by the dashed line in Figure 5 

3. Next, wing kinematics were quantified on the stroke plane using three Euler angles: wing stroke ( ), 6 

wing deviation ( ), and wing pitch ( ). The wing stroke angle provides the location of the wing in the 7 

stroke plane, defined as the angle between the projection of the root-to-tip connection line and the z-axis. 8 

The deviation angle is the angle between the line from wing root to tip and its projection onto the stroke 9 

plane. The wing pitch angle provides the angle between the wing chord and the stroke plane.  10 

 11 

2.3 Governing equations and numerical method 12 

The numerical methodology of the immersed-boundary-method-based in-house CFD solver employed in 13 

the current study is briefly introduced here. The 3D viscous, incompressible Navier-Stokes equations can 14 

be written in a tensor form as follows: 15 

 16 

0i
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u

x





; 

( ) 1
( )

i ji i

j i j j

u uu up

t x x Re x x

  
   
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 (1) 

Where 
iu  are the velocity components, p is the pressure, and Re is the Reynolds number.  17 

 18 

The above equations are discretized using a cell-centered, collocated arrangement of the primitive 19 

variables, and are solved using a finite difference-based Cartesian grid immersed-boundary method [22]. 20 

The equations are integrated in time using the fractional step method. A second-order central difference 21 

scheme is employed in space discretization. The Eulerian form of the Navier-Stokes equations is discretized 22 

on a Cartesian mesh and boundary conditions on the immersed boundary are imposed through a ghost-cell 23 

procedure. Compared to the boundary-conforming methods, such as the curvilinear grid [23-25] and the 24 

finite-element methods [26-28], the IBM approach eliminates the need for complicated re-meshing 25 

algorithms. It thus significantly reduces the computational cost associated with simulating flow past 26 

complex moving boundaries. Immersed boundary methods can be broadly characterized under two 27 

categories: continuous forcing approach [29-31] and discrete forcing approach [32-34]. The present study 28 

employs a multi-dimensional “ghost-cell” methodology to impose the boundary conditions on the immersed 29 

boundary [22]. This method can be categorized as a discrete forcing approach wherein forcing is directly 30 

incorporated into the discretized Navier-Stokes equations [35]. The movement of the immersed boundaries 31 

(hawkmoth wings) were prescribed according to the image-based reconstruction. This method has been 32 
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successfully applied in the simulations of insect flights [36-38] and bio-inspired propulsions [39-42]. 1 

Validations of the current in-house CFD solver can be found in our previous studies [20, 43-45].  2 

 

Figure 4. Wing kinematics of a rectangular flapping wing used in solver validation. The benchmark 

setup is based on Suzuki et al. [8]. 

 3 

 

Figure 5. Comparison of lift (a) and drag (b) coefficients of flapping rectangular wing between current 

CFD results and data available in the literature [8, 46, 47]. 

 4 

 5 
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 1 
Figure 6. Validation of the in-house CFD solver used in this study. Lift and drag forces produced by a 2 

hawkmoth’s wings and body in hovering flight are plotted against previous experimentally and 3 

computationally determined results. Experimental and numerical results obtained by Zheng et al.[15] and 4 

Aono et al.[14] are included. 5 

 6 

2.4 Validation of computational modelling 7 

2.4.1 Flapping rectangular wing 8 

To demonstrate the validity of the CFD solver, a benchmark setup proposed by Suzuki et al. [8] is used 9 

here. The simulation consists of a rectangular wing flapping along a horizontal stroke plane with zero 10 

deviation (Figure 4). The rectangular wing has a chord length c, a spanwise length L=2c, and a thickness of 11 

w=0.1c. The wing kinematics are controlled by two rotational angles: wing stroke and wing pitch. The wing 12 

stroke angle provides the location of the wing in the stroke plane and is prescribed by ( ) cos(2 )mt ft   , 13 

where =80m  . For the wing rotation along the stroke plane, the wing root is extended out at a distance 14 

0.4c away from the vertical rotational axis. The wing pitch angle is given by15 

( ) tanh[ sin(2 )] / tanh( )mt C ft C    , in which =45m and =3.3C . The rotational axis of wing pitch 16 

is located at a distance 0.16c from the wing’s leading-edge. The Reynolds number ( /tipRe U c v ) is set to 17 

100, in which the average tip velocity is calculated by m=2 ( 0.4 )tipU f L c   . A non-uniform Cartesian 18 

grid of size 305 137 177  is used in a computational domain of size 30 30 30c c c   to get domain 19 

independence results. The simulation is conducted for four flapping cycles. The lift coefficient is calculated 20 

by
2

2 / ( )tipL LC F U Lc , and the drag coefficient is calculated by
2

2 / ( )tipD DC F U Lc . Figure 5 shows 21 

the lift and drag coefficients from the fourth cycle together with the simulation results from the literature 22 

[8, 46, 47]. As can be seen, our simulation results capture the key features of the instantaneous forces well 23 

and present a good agreement with the simulation data from the literature.   24 
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2.4.2 Hovering hawkmoth 1 

In addition to flapping rectangular wing, the aerodynamic force production of the hovering hawkmoth was 2 

compared to previous studies. A reconstruction of hovering hawkmoth flight was created, and the model 3 

was immersed in a non-uniform Cartesian computational grid with size 225×193×225. Following the 4 

simulation, aerodynamic lift and drag production was calculated for both wings and the hawkmoth’s body. 5 

Figure 6 compares our CFD results with the forces calculated by Zheng et al. [15] using both numerical and 6 

experimental approaches. In addition, the numerical results obtained by Aono et al. [14] are also included. 7 

As illustrated in Figure 6, the force magnitudes and overall trend of our calculations are consistent with the 8 

literature. Specifically, the force predictions from the current study are aligned best with the experimental 9 

estimation of aerodynamic forces calculated in Zheng’s study [15]. It is worth noting that there is some 10 

variation between the different studies presented in Figure 6. The discrepancies can be explained by the 11 

fact that different hawkmoths were used in each study. Natural variations in wing shape, body size, and 12 

flapping kinematics between different individual hawkmoths can lead to slight differences in force 13 

magnitude. Despite these differences, the overall trend of force production in the current study is consistent 14 

with previous results. Additional validations of the current in-house solver can be found in our previous 15 

studies [20, 36, 40, 43, 45].  16 

 17 

 18 

Figure 7. Simulation setup and computational grids applied in the study. Grids are shown for hovering (left) 19 

and forward flight (right).  20 

 21 

2.5 Simulation setup 22 

Figure 7 shows the simulation setup for both hovering and forward flight. The domain mesh has two refined 23 

layers. As seen in this figure, a very high-resolution mesh is provided in a rectangular region around the 24 



 S. Lionetti, T. Hedrick, and C. Li 

11 

 

hawkmoth. Around this region, there is a secondary denser mesh, and beyond this layer, the grid is stretched 1 

rapidly. Different computational grids were used for hovering and forward flight to accommodate different 2 

relative positions of downwash. In addition, different boundary conditions were also applied to the two 3 

meshes. For hovering, a zero gradient was used for all boundaries. For forward flight, the inflow boundary 4 

condition was specified at the front of the fluid domain, while an outflow boundary condition was used at 5 

the back of the fluid domain. At all other boundaries, a zero gradient was adopted. The forward flight grid 6 

contains approximately 1 million more computational cells than the grid used for hovering flight. In order 7 

to achieve a periodic state of the force history, all simulations were run for 4 flapping cycles.  We concluded 8 

that the force history was periodic after four flapping cycles, because the difference in cycle-averaged lift 9 

between the third and fourth flapping cycles was very small (< 2% for all three flight conditions). The 10 

simulation results we present in the results section are based on the 4th flapping cycle.  11 

The simulations were carried out on a non-uniform Cartesian grid. The grid size employed in the 12 

current simulations is 225×193×225 (x  0.0044R) for hovering and 313×153×225 (x  0.0041R) for 13 

forward flight. To ensure the simulation results are grid-independent, grid independence studies were 14 

performed for both hovering flight and forward flight at 4 m/s. Figure 8 shows the comparison of simulated 15 

lift and drag for a single hawkmoth wing in three grids of different densities at hovering. The coarse mesh 16 

presents slightly higher peak values for both lift and drag forces compared to other two meshes. This can 17 

partly be explained by the pressure oscillation of the immersed-boundary method when the mesh resolution 18 

is not sufficient for the moving boundaries. When the medium mesh is applied for the simulation, the 19 

difference between the cycle average force for the medium and fine meshes is less than 3% for both lift and 20 

drag, which indicates that grid-independent results are achieved.   21 

 22 

Figure 8. Lift and drag force production during hovering flight by a single hawkmoth wing. Results are 23 

shown for three different grid densities: coarse (177×145×177≈5 million, x  0.0096R), medium 24 

(225×193×225≈10 million, x  0.0044R), and fine (257×225×257≈15 million, x  0.0019R).  25 
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In the present study, we observed that the hawkmoth slightly changed its flapping frequency as the 1 

flying speed increased from 0 m/s (hovering) to 4 m/s (forward flight). In order to make a fair comparison, 2 

we incorporate both cycle-averaged wing-tip velocity and flight speed in the definition of Reynolds number. 3 

Following the previous literature [48], the Reynolds number (Re) and advance ratio (J) in our study are 4 

defined as: 5 

( ) (1 ) (2 )tipU U c J fR c
Re

v v

  
   (2) 

2tip

U U
J

U fR

  


 (3) 

Where U
represents the body moving velocity (zero for the hovering case); tipU is the mean wing tip 6 

velocity and can be expressed as 2 fR , in which  is the stroke amplitude, f is the flapping frequency, and 7 

R is the wing root to tip length (0.055m for all cases); c is the average wing chord length (0.023m for all 8 

cases); and ν is the fluid kinematic viscosity (around 1.56×10-5 m2s-1 for air at room temperature of 25℃). 9 

 10 

2.6 Evaluation of power consumption 11 

In this study, the mechanical power (
mechP ) was calculated using a similar treatment as presented by Wan et 12 

al. [49] and Aono & Liu [50]. The mechanical power includes two components, namely, aerodynamic 13 

power (
aeroP ) and inertial power (

inerP ). Specifically, the aerodynamic power is the power needed to 14 

overcome air resistance, and it is defined as the scalar products of the velocity and the aerodynamic force 15 

of the wing (Eq. 4).  16 

𝑃𝑎𝑒𝑟𝑜 = −∑(𝐹𝑎𝑒𝑟𝑜,𝑖 ∙ 𝑣𝑖)

𝑁

𝑖

 (4) 

𝑃𝑖𝑛𝑒𝑟 =∬𝜌̅𝑤ℎ̅
𝑑𝒖𝑐
𝑑𝑡

∙ 𝒖𝑐𝑑𝑠 (5) 

The inertial power is the power needed to accelerate each wing, and it is defined as the surface 17 

integral of the product of the average wing density, average wing thickness, acceleration of each element, 18 

and the velocity of each element (Eq. 5). In our calculation, the product 𝜌̅𝑤ℎ̅ was calculated as the wing 19 

mass divided by the wing surface area (𝑚𝑤𝑖𝑛𝑔/𝑆). The mechanical power required to move each wing is 20 

the sum of the aerodynamic power and the inertial power (Eq. 6). The power can be normalized by dividing 21 

by the body mass (
bm ) of the hawkmoth to compute the mass-specific power (Eq. 7). 22 

𝑃𝑚𝑒𝑐ℎ = 𝑃𝑎𝑒𝑟𝑜 + 𝑃𝑖𝑛𝑒𝑟 (6) 

𝑃∗ =
𝑃𝑚𝑒𝑐ℎ

𝑚𝑏
 (7) 
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 The true cycle-averaged mechanical power 𝑃̅∗  depends on the elastic energy storage of the 1 

hawkmoth wings and therefore cannot be reported directly. Instead, limiting cases representing 0% and 2 

100% elastic storage must be considered, and the real 𝑃̅∗ lies between these values [51]. In the case of 0% 3 

elastic storage, all negative power is dissipated, and the cycle-averaged mechanical power can be written 4 

as 5 

𝑃̅𝑚𝑒𝑐ℎ,0%
∗ = 𝑃̅+ (8) 

 In the case of 100% elastic storage, all negative power is stored for later use, and the cycle-averaged 6 

mechanical power can be written as 7 

𝑃̅𝑚𝑒𝑐ℎ,100%
∗ = 𝑃̅+ − |𝑃̅−| (9) 

 8 

 9 
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Figure 9. Images of the hawkmoth while (a) hovering and at forward flight speeds of (b) 2 m/s and (c) 4 1 

m/s. See movie 1 in the supplemental material for high-speed video recording [21].  2 

 3 

3 Results and discussion 4 

3.1 Flight kinematics at different flying motions 5 

Figure 9 shows image sequences we collected in the experiments for the hawkmoth under hovering motion, 6 

2 m/s forward flight, and 4 m/s forward flight over the course of one wingbeat cycle. Based on these images, 7 

it is clear that the hawkmoth’s flight kinematics change substantially as the insect transitions from hovering 8 

to forward flight. During the hovering downstroke (approx. t/T=0.125 to 0.5), the wings sweep horizontally 9 

past the body lateral center towards the front of the moth. This ‘back-and-forth’ flapping behavior indicates 10 

a significant negative stroke angle as the hawkmoth begins the upstroke (t/T=0.5), as defined in Figure 3. 11 

At forward flying speeds, the hawkmoth transitions to a more ‘up-and-down’ flapping motion. At 4 m/s 12 

forward flight, the wings do not reach to the body lateral center at all, resulting in a consistently positive 13 

stroke angle. In addition, during hovering flight, the hawkmoth’s wings exhibit a significant pitching 14 

motion, where they rotate to form an angle with respect to the stroke plane, as defined in Figure 3. The 15 

wing pitch during hovering flight is most clearly seen at t/T=0.5 and 0.625 in Figure 9. At higher flight 16 

speeds, however, the wing pitching motion is less pronounced, with the wings remaining more horizontal 17 

throughout the flapping cycle. The hawkmoth’s body angle also changes as its flight speed increases. At 18 

hovering, the body angle is significantly greater than during forward flight. In addition, Figure 9 shows that 19 

at each flying speed, the upstroke begins roughly halfway through the flapping cycle. The duration of the 20 

upstroke and downstroke was determined by inspecting the high-speed video of the flying hawkmoth 21 

(included in the supplemental material [21]). Each half-stroke begins once the wingtip reverses direction at 22 

the end of the previous half stroke. For each flight speed, the downstroke comprises approximately 47% of 23 

the flapping cycle duration. 24 

 25 
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 1 
Figure 10. Wing Euler angles for hawkmoth hovering (a, d), 2 m/s forward flight (b, e), and 4 m/s forward 2 

flight (c, f). The first row of plots shows the wing pitch ( ) angle at three different locations along the 3 

wingspan R. The second row shows the wing stroke ( ) and wing deviation ( ) angles for each flight 4 

speed. The downstroke is shaded gray. 5 

 6 

 For each flight speed, the flapping cycle shown in Figure 9 was used to calculate the wing Euler 7 

angles. Figure 10 shows the instantaneous Euler angles during one flapping cycle for hawkmoth hovering, 8 

2 m/s forward flight, and 4 m/s forward flight. The Euler angle plots in Figure 10 reinforce the qualitative 9 

observations made using Figure 9. At hovering, the stroke angle ψ ranges from 50° at the beginning of the 10 

downstroke to -50° at the beginning of the upstroke. This is evidence of the back-and-forth sweeping flight 11 

pattern depicted in Figure 9. At 4 m/s forward flight, the stroke angle is consistently positive. This 12 

corresponds to the transition towards a more up-and-down flapping motion at higher flight speeds. Figure 13 

10 also shows that the wing pitch angle tends to peak during the upstroke, and as flying speed increases, 14 

the maximum pitching angle decreases. The maximum wing pitch angle at 0.50R decreases from 63° at 15 

hovering to -10° at 4 m/s forward flight. This is evidence of the decrease in wing pitching motion observed 16 

using Figure 9. 17 

 18 
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 1 
Figure 11. Wing chord trajectory for (a) hawkmoth hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward 2 

flight. Colored circles in the figure denote the wing leading edge, and the lines present the wing chord at 3 

the 0.75R along the wingspan. The hawkmoth flapping motion follows a counterclockwise trajectory. The 4 

downstroke is pictured in red, and the upstroke is shown in blue. See movie 1 in the supplemental material 5 

for reconstructed flapping motions [21]. 6 

 7 

 8 

Figure 11 shows the hawkmoth’s wing trajectory and wing chord orientation for hovering, 2 m/s 9 

forward flight, and 4 m/s forward flight. During hovering flight, the wing chords are significantly more 10 

vertical than during 4 m/s forward flight. This is evidence that as the hawkmoth’s flight speed increases, its 11 

wing pitch angle becomes more parallel to the incoming flow, which potentially reduces the drag force 12 

generated during the downstroke. Figure 11 also shows that the stroke plane angle for hawkmoth hovering 13 

is smaller than the stroke plane angle for both forward flying speeds. In addition, the body incline angle 14 

during hovering flight is greater than during forward flight. 15 

 16 

Table 2. Table summarizing significant wing kinematics parameters. 17 

Parameter Hovering Slow Forward Flight Fast Forward Flight 

Avg. body moving velocity (U
) 0 m/s 2 m/s 4 m/s 

Flapping frequency (f) 25.6 Hz 27.8 Hz 30.3 Hz 

Stroke amplitude ( ) 101.22° 91.09° 81.21° 
Advance ratio (J) 0 0.41 0.85 

Reynolds number (Re) 7335 10117 12863 

Stroke plane angle  57.61° 72.54° 66.44° 
Body incline angle 30.0° 14.0° 16.0° 

 18 

We summarized the changes in significant kinematic parameters in Table 2. Table 2 also includes 19 

the advance ratio J and Re for different flight speeds. These calculations rely on the flapping frequency f 20 

and the stroke amplitude . The flapping frequency is equal to 25.6 Hz for hovering, and it increases to 21 

27.8 Hz and 30.3 Hz for 2 m/s and 4 m/s forward flight, respectively. The stroke amplitude tends to decrease 22 

as flying speed increases. Table 1 also shows that the stroke plane angle for both forward flying speeds is 23 

greater than for hovering, but the stroke plane angle for 2 m/s forward flight is slightly greater than the 24 
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stroke plane angle for 4m/s forward flight. In addition, the body incline angle for forward flight is 1 

significantly smaller than the body angle for hovering, but the body incline angle for 4 m/s forward flight 2 

is slightly greater than the incline angle for 2 m/s forward flight. 3 

 4 

3.2 Evaluation of unsteady aerodynamics of hawkmoth under various flight speeds 5 

Using the reconstructed body and wing kinematics described in the previous section, the unsteady flow and 6 

its associated aerodynamic forces were captured using the in-house CFD solver. In Figure 12, we compare 7 

the time history of lift (vertical force) and drag (horizontal force) forces on the hawkmoth body and left 8 

wing at different flying motions. The overall trend of lift and drag forces are significantly affected by the 9 

flying speed of hawkmoth. During hovering flight (Figure 12 (a)), the hawkmoth produces lift during both 10 

downstroke and upstroke, with 72% of the lift being generated during the downstroke. However, as the 11 

hawkmoth transitions to forward flight, it loses its lift-producing upstroke. At flying speeds of 2 m/s and 4 12 

m/s, positive lift is only produced during the downstroke, and negative lift is generated during the upstroke. 13 

It is also worth noting that the lift force in the hovering case peaks three times throughout the flapping 14 

cycle: once during the downstroke, once during the transition from downstroke to upstroke, and once during 15 

the upstroke. However, during hawkmoth forward flight, the lift peaks only once at mid-downstroke (Figure 16 

12 (b-c)). For all three cases, the cycle-averaged lift generated by two wings matched reasonably well with 17 

the body weight of the hawkmoth (see Table 3). As the hawkmoth switched from hovering to forward flight, 18 

its body also generated a small amount of lift due to the wing-body interaction [52], a contribution about 19 

one order of magnitude smaller than a single wing. In addition to keeping its body aloft in the air, another 20 

challenge for the flying hawkmoth is balancing its drag force along the horizontal direction (Figure 12 (d-21 

f)). Although the cycle-averaged drag force is close to zero for all three cases, its magnitude is significantly 22 

different at various flying speeds. During hovering flight, the hawkmoth produces a large amount of positive 23 

drag during the downstroke and negative drag (thrust) during the upstroke. As the hawkmoth’s flying speed 24 

increases, the magnitude of drag production is minimized. At 2 m/s, maximum drag production is 0.012N, 25 

roughly half the maximum drag during hovering. At 4 m/s forward flight, the drag force production during 26 

both downstroke and upstroke is almost negligible. We suspect that minimizing the drag force during the 27 

entire flapping cycle is critical to achieving stable fast forward flight for the hawkmoth. By modulating its 28 

flapping kinematics to achieve this, the hawkmoth inevitably produces a large amount of negative lift during 29 

the upstroke. This biological limitation prevents the hawkmoth from reaching higher forward flying speeds 30 

as predicted based on its body size [10].     31 

 32 
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 1 

Figure 12. (a-c) Lift and (d-f) drag force production for hawkmoth hovering, 2 m/s forward flight, and 4 2 

m/s forward flight. Force production is shown separately for a single hawkmoth wing and the hawkmoth 3 

body. The downstroke is shaded gray. 4 

 5 

 6 
Figure 13. Instantaneous mass-specific aerodynamic, inertial, and mechanical power of wing pair for (a) 7 

hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward flight. The downstroke is shaded gray. 8 

 9 

 One may speculate that the flying speed limitation of hawkmoth observed in nature might be due 10 

to the high power consumption in fast flight. In order to evaluate this possibility, we calculated the 11 

instantaneous mass-specific aerodynamic, inertial, and mechanical power for hawkmoth hovering, 2 m/s 12 

forward flight, and 4 m/s forward flight, as shown in Figure 13. This figure shows that for all flight speeds, 13 

the hawkmoth consumes more aerodynamic and mechanical power during the downstroke than during the 14 



 S. Lionetti, T. Hedrick, and C. Li 

19 

 

upstroke. This is consistent with results previously obtained for other insects [49, 51]. Greater power 1 

consumption during the downstroke is likely due to the downstroke’s dominant role in lift production. 2 

Across all three flying speeds, most of the hawkmoth’s lift is generated during the downstroke, resulting in 3 

greater power consumption. In addition, Figure 13 shows that the inertial power is positive at the beginning 4 

of each half-stroke and negative towards the end of each half-stroke. As a result, the mechanical power 5 

briefly becomes negative before each stroke reversal. This may be evidence that the hawkmoth elastically 6 

stores some negative power before beginning each stroke. Similar results were obtained by Wan et al. for 7 

the cicada [49]. Table 3 reports the cycle-averaged force and power for each flight speed. Since the 8 

hawkmoth was feeding occasionally during the recordings, the cycle-averaged lift presents a slight 9 

difference between different flight motions. According to our experimental measurements, the body weight 10 

of the hawkmoth was 14.2 mN before the recording, and 19.1 mN after all experiments. Table 3 also shows 11 

that the cycle-averaged mechanical power for hovering and 2 m/s forward flight is greater than for 4 m/s 12 

forward flight. This can be explained by the reduction in drag from the wings as the hawkmoth’s flying 13 

speed increases (see Figure 12 (e-f)). During 4 m/s forward flight, the hawkmoth produces less drag than it 14 

does during hovering and 2 m/s forward flight, and as a result, its cycle-averaged mechanical power is 15 

lower. In addition, our results also shed the insights that the speed limit in hawkmoth forward flying seems 16 

not directly related to the high power consumption in high-speed flight.  This is consistent with a recent 17 

particle image velocimetry study of hawkmoth forward flight [53], which also found at the power 18 

requirements of flight at the maximum sustained wind tunnel flight speed was less than that of hovering 19 

flight. 20 

 21 

Table 3. Cycle-averaged lift, mechanical power (with 100% elastic storage), lift-to-power ratio, mass-22 

specific aerodynamic power (𝑷̅𝒂𝒆𝒓𝒐
∗ ), inertial power (𝑷̅𝒊𝒏𝒆𝒓

∗ ), 100% elastic mechanical power (𝑷̅𝒎𝒆𝒄𝒉,𝟏𝟎𝟎%
∗ ), 23 

and 0% elastic mechanical power (𝑷̅𝒎𝒆𝒄𝒉,𝟎%
∗ ) for hovering (0 m/s), slow forward flight (2 m/s), and fast 24 

forward flight (4 m/s).  25 

Cycle-averaged Values Hovering Slow Forward Flight Fast Forward Flight 

Lift (mN) 16.38 16.09 15.22 

Mechanical Power (mW) 89.45 90.13 81.50 

Lift-to-Power Ratio (N/W) 0.18 0.18 0.19 

𝑃̅𝑎𝑒𝑟𝑜
∗  (W/kg) 51.32 52.87 47.57 

𝑃̅𝑖𝑛𝑒𝑟
∗  (W/kg) 1.29 0.15 0.37 

𝑃̅𝑚𝑒𝑐ℎ,100%
∗  (W/kg) 52.61 53.02 47.94 

𝑃̅𝑚𝑒𝑐ℎ,0%
∗  (W/kg) 87.86 81.06 62.83 

 26 

Next, we compare the vortex structures generated by hawkmoth across three different flight speeds 27 

in Figure 14. Five slides cut along the wingspan demonstrate how the different flapping kinematics 28 

modulate the LEV at various flight motions. During hovering flight, a strong LEV is formed and attached 29 
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well on the wing surface during both the downstroke and upstroke. At both forward flying speeds, a larger 1 

LEV is present during the downstroke (e.g. at t/T=0.25 in Figure 14), while a smaller LEV is present during 2 

the upstroke (e.g. at t/T=0.75 in Figure 14). To take a closer look at LEV formation with different flight 3 

motions, we present both three-dimensional and two-dimensional views of slice cuts at the mid-downstroke 4 

(Figure 15) and mid-upstroke (Figure 16).  5 

Figure 15 depicts the vortex structures at t/T=0.25, and it includes vectors to show the direction of 6 

net force at different forward flying speeds during the hawkmoth’s downstroke. This figure shows that as 7 

the hawkmoth’s flight speed increases, the net force vector during the downstroke becomes increasingly 8 

vertical. As a result, the drag produced during the downstroke is minimized, as shown graphically in Figure 9 

12 (f). We hypothesize that this minimization of drag may be attributed to flight stability requirements at 10 

higher forward flying speeds. The instantaneous momentum at higher flying speed is much higher than that 11 

at lower speed. So, the hawkmoth not only needs to maintain a cycle-averaged force balance in the 12 

horizontal direction, but also has to minimize the magnitude of drag force oscillation during each stroke. 13 

At higher flight speeds, the hawkmoth must limit instantaneous drag force magnitude during its downstroke 14 

to keep itself from blowing away in the incoming flow. In order to do so, the hawkmoth must keep its wing 15 

pitching angle roughly parallel to the incoming flow when flying at higher forward flight speeds, as seen in 16 

Figure 11(c). 17 

 18 
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 1 

Figure 14. Wing slices throughout one wingbeat cycle for (a) hawkmoth hovering, (b) 2 m/s forward flight, 2 

and (c) 4 m/s forward flight. A total of five slices were taken at 0.11R, 0.28R, 0.44R, 0.60R, and 0.77R. 3 

 4 

Figure 16 shows the mid-upstroke vortex structures and net force vectors for hovering 2 m/s 5 

forward flight, and 4 m/s forward flight. During the hovering upstroke, the wing pitch angle is more vertical, 6 
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and the net force is angled upward. During the forward flight upstroke, however, the wing pitch angle is 1 

more horizontal, and the net force vector is angled down. As a result, lift is generated during the hovering 2 

upstroke but not during the forward flight upstroke, as shown graphically in Figure 12 (a-c). We hypothesize 3 

that due to biological limitations, a hawkmoth cannot drastically alter its wing kinematics as it transitions 4 

from downstroke to upstroke. As a result, the horizontal wing orientation observed during a forward flying 5 

hawkmoth’s downstroke is also present during its upstroke. This may explain why the hawkmoth’s upstroke 6 

is used to generated positive lift during hovering flight but a significant amount of negative lift force 7 

generation was observed during 2 m/s and 4 m/s forward flight.  8 

Among all three simulations, we observed two separate LEV above the hawkmoth wing at 2 m/s 9 

forward flight, as shown in Figure 17. This phenomenon is also known as a dual LEV and has been observed 10 

throughout 1 m/s and 2 m/s hawkmoth flight by Johansson et al.[54]. For the current study, the dual LEV 11 

was only visible during the upstroke for the 2 m/s forward flying hawkmoth, but not for the 4 m/s case. 12 

 13 

 14 

Figure 15. Three-dimensional and two-dimensional views of slice cut vortex structures at mid-downstroke 15 

(t/T=0.25) for (a) hawkmoth hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward flight. The 2D view 16 

is shown for the chord located at 0.60R. Net force vectors and arrows representing flapping direction are 17 

also included. The black circle is located along the wing’s leading edge. 18 

 19 
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 1 
Figure 16. Three-dimensional and two-dimensional views of slice cut vortex structures at mid-upstroke 2 

(t/T=0.75) for (a) hawkmoth hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward flight. The 2D view 3 

is shown for the chord located at 0.60R. Net force vectors and arrows representing flapping direction are 4 

also included. The black circle is located along the wing’s leading edge.  5 

 6 

 7 

Figure 17. Dual LEV is observed for the hawkmoth forward flight at 2m/s forward flight. The time instant 8 

for this picture is at t/T=0.79, around the mid-upstroke.  9 

 10 

In addition to the visualization of the vortex structures near the wing surface, we also present the 11 

far wake structures. Figure 18 shows the time sequence for the flow field at hovering, 2 m/s forward flight, 12 
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and 4 m/s forward flight. The vortex structures were plotted using the iso-surface of the Q-criterion. For 1 

each flight speed, a strong LEV is formed during the downstroke.  A tip vortex and trailing edge vortex can 2 

also be observed. As one can expect, the downwash is located directly below the hawkmoth’s body during 3 

hawkmoth hovering flight. At 2 m/s forward flight, the downwash is situated both below and behind the 4 

hawkmoth. When the flight speed increase to 4 m/s, a chain of vortex tubes is observed behind the insect 5 

body. This change in wake structures can be explained by a combination of flight speed and the induced 6 

flow generated by flapping wings at each flight speed. As the hawkmoth’s flight speed increases, the wing 7 

kinematics shift from a ‘back-and-forth’ motion to an ‘up-and-down’ motion. During 4 m/s forward flight, 8 

the hawkmoth’s wing pitching angle is roughly parallel to the incoming flow. Combined with such a high 9 

forward flying speed, vortices are shed directly behind the hawkmoth. 10 

Figure 19 shows the vortex structures present at mid-downstroke (t/T=0.25) for hovering, 2 m/s 11 

forward flight, and 4 m/s forward flight. The downstroke for all three flight speeds is accompanied by the 12 

formation of a large LEV and TV. A TEV is also present during the downstroke for all three flapping cases. 13 

However, for 4 m/s forward flight, the size of the TEV is significantly smaller than for hovering and 2 m/s 14 

forward flight. Zheng et al.[15] and Aono et al.[14] have noted that during hovering flight, the LEV, TV, 15 

and TEV form a horseshoe-shaped pattern around the hawkmoth wing during the downstroke. For the 16 

current study, this pattern can be clearly observed during hovering and 2 m/s flight, but the much smaller 17 

TEV for 4 m/s flight prevents the formation of a full horseshoe pattern. This can be partially explained by 18 

the stretching and distortion of the vertex structures due to the strong convection at 4 m/s.   19 
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 1 
Figure 18. Q-criterion vortex structures for (a) hawkmoth hovering, (b) 2 m/s forward flight, and (c) 4 m/s 2 

forward flight. The iso-surface of 
210( / )tipQ U R  was used to plot the vortex structures. See movie 1 in 3 

the supplemental material for simulated flow animations [21]. 4 

 5 
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 1 

 2 

Figure 19. Top view of vortex structure generated at the mid-downstroke (t/T=0.25) for (a) hawkmoth 3 

hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward flight. The iso-surface of 
210( / )tipQ U R was 4 

used to plot the vortex structures.  5 

 6 

Next, we visualize the distribution of lift force generation on the wing surface. Figure 20 shows 7 

mean lift production on the wing surface during the downstroke and upstroke, respectively, for all simulated 8 

flight motions. Lift production during the hovering downstroke increases along the wingspan, with the 9 

highest amount of lift produced near the wing tip and the lowest lift produced near the wing root. However, 10 

during the downstroke for the forward flying cases, the greatest lift is produced along the leading edge of 11 

the wing, and the lowest lift is produced along the trailing edge. We believe that this difference is linked to 12 

the location of the maximum flow velocity for each flight case. During hovering flight, the maximum flow 13 

velocity is generated by the wing tip, resulting in the greatest lift generation near this region. However, 14 

during forward flight, the flapping wing encounters the incoming flow which will enhance the development 15 

of the LEV along the wingspan. In addition, as the flying speed gradually increases, hawkmoths tilt the 16 

stroke plane more vertically, which further promotes lift generation during the downstroke. As a result, 17 

there is a larger LEV along the spanwise portion of the wing, and a greater portion of the overall lift is 18 

generated during the forward flight downstroke.  19 

The most significant difference in the lift generation between hovering and forward flight appears 20 

during the upstroke. The hovering upstroke is similar to the hovering downstroke, with lift production 21 

increasing along the wingspan, resulting in greatest lift close to the wing tip. However, the lift production 22 

during the forward flight upstroke displays an opposite pattern. For 2 m/s and 4 m/s forward flight, 23 

significant negative lift is produced near the wing tip, while slight amount of positive lift production is seen 24 

close to the wing root. This reversal of lift production during the upstroke is evidence for a different 25 

mechanism of lift production for hovering compared to forward flight. For both 2 m/s and 4 m/s forward 26 
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flight, approximately 75% of the wing surface produces negative lift during the upstroke. This observation 1 

is reflected in Figure 12 (b-c), which shows positive lift generation during the downstroke and negative lift 2 

generation during the upstroke for both 2 m/s and 4 m/s forward flights. However, during the hovering 3 

upstroke, the entire wing surface shows positive lift production. This corresponds to Figure 12 (a), which 4 

shows that positive lift is generated during both the upstroke and downstroke for hovering flight. 5 

 6 

 7 

Figure 20. Stroke-averaged lift force distribution on the wing surfaces during downstroke and upstroke for 8 

(a) hovering, (b) 2 m/s forward flight, and (c) 4 m/s forward flight. 9 

 10 

3.3 Comparison of hawkmoths and other flying animals 11 

We have observed that as the hawkmoth’s advance ratio J increases along with flight speed, lift production 12 

is increasingly dominated by the downstroke. At hovering (J=0), both the downstroke and upstroke provide 13 

positive contributions to the total lift generation for the flapping cycle. However, at 2 m/s (J=0.41) and 4 14 

m/s (J=0.85) forward flight, the downstroke produces 100% of the overall lift, and negative lift is generated 15 

during the upstroke.  16 

Several previous studies [2, 3, 49, 55] have also commented on the relationship between an insect’s 17 

advance ratio and the downstroke’s contribution to total lift production. The results of the current study are 18 

qualitatively consistent with results obtained by Sun & Wu [55] for a model fruit fly. They found that for 19 

an advance ratio of 0.13, the downstroke contributes 75% of the total lift production. For an advance ratio 20 

of 0.53, the downstroke contributes 100% of the total lift, and negative lift is generated during the upstroke. 21 

Dudley & Ellington [3] also found that for a relatively high advance ratio of 0.59, 100% of a bumblebee’s 22 

total lift is produced during the downstroke, but they did not indicate whether the upstroke generates 23 

negative lift in their study.  24 

 25 
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 1 

Figure 21. Relationship between the advance ratio (J) and Fvert,d (% Fvert) for different small animal species, 2 

including hawkmoth (current study), bumblebee[2, 3], hummingbird[5, 6], and fruit fly[4]. Least-squares 3 

trendlines are shown as dashed lines for each species. 4 

 5 

Following the definition presented in the literature [3], we evaluated the percentage of the vertical 6 

force generated during the downstroke (Fvert,d) over the vertical force generated during the entire cycle (Fvert) 7 

as a function of the advance ratio (J ) across different species. Figure 21 shows the relationship between J 8 

and Fvert,d (% Fvert) for a variety of small flying animals. This plot shows that as an animal’s advance ratio 9 

increases, the downstroke plays an increasingly important role in the overall lift production. The plot also 10 

shows that if the advance ratio is sufficiently high, the downstroke generates 100% of the total lift. In 11 

addition, a least-squares trendline is included for each species. Comparing the results for each species shows 12 

that as a flying animal’s weight increases, the slope of this trendline generally decreases.  13 

Based on the results from the current study, we suspect that maximum flying speed limitation is 14 

due to changes in a flying animal’s wing kinematics as its advance ratio increases. As the flight speed 15 

gradually increases, the animal must find a way to minimize drag during its entire flapping cycle to prevent 16 

itself from blowing away in the incoming flow. To minimize the magnitude of the instantaneous drag force 17 

generated during the downstroke, the animal has to reduce its wing pitching angle by orienting its wings 18 

roughly parallel to the flow direction, while still maintaining sufficient angle of attack for lift generation. 19 

As the advance ratio continuously increases with flight speed, a significant amount of negative lift force 20 

starts to appear during the upstroke resulting from a negative angle of attack. As a consequence, the positive 21 

lift generated during the animal’s downstroke is not sufficient to overcome the body weight together with 22 

the negative lift generated during the upstroke. However, increasing downstroke lift would also increase 23 
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downstroke drag, requiring more upstroke thrust and resulting in more upstroke negative lift. Thus, these 1 

kinematic limitations result in a limit to its maximum forward flying speed as we and others observe in 2 

wind tunnel flight studies [11, 12]. Compared to birds and bats, insects are more strongly limited by these 3 

effects because they cannot reconfigure their wings during the stroke cycle. For example, birds typically 4 

flex their wings at the wrist joint during the upstroke, reducing wing span and area [56]. Despite having 5 

inflexible wings in comparison to most other bird species, even hummingbirds exhibit such an ability and 6 

increasingly reduce wing span during the upstroke as flight speed increases [57]. Insects have no such 7 

ability, and thus might generally exhibit lower maximum flight speeds than flying vertebrates of similar 8 

wing loading. 9 

 10 

4 Conclusions 11 

We have numerically investigated the unsteady aerodynamics of hawkmoth flight across a range of flying 12 

speeds (0 m/s – 4 m/s). Flapping wing kinematics of hawkmoths have been reconstructed using high-speed 13 

wind tunnel recordings. An in-house immersed-boundary-method-based CFD solver has been used to 14 

simulate hawkmoth’s flight. Results show that as the hawkmoth transitions from hovering to forward flight, 15 

the hawkmoth’s stroke plane angle increases and its upstroke wing pitch angle decreases. These kinematic 16 

changes lead to differences in aerodynamic force production and power consumption between hovering and 17 

forward flight.  18 

During hawkmoth hovering, significant lift is generated during both the downstroke and upstroke, 19 

with the downstroke contributing around 72% of the total lift. At 2 m/s and 4 m/s forward flight, however, 20 

the downstroke provides all of the lift, and negative lift is generated during the upstroke. Detailed analysis 21 

has been performed on the vortex formation and force destructions on the wing surfaces. Our results 22 

indicated that the power consumption seem not to restrict forward flight speed in hawkmoths. Instead, the 23 

hawkmoth has to manage drag during its downstroke to prevent large, unstable body oscillations at higher 24 

forward flying speeds. To reduce drag force generated during each downstroke, the forward flying 25 

hawkmoth must maintain a small wing pitching angle that is roughly parallel to the flying direction. Due to 26 

biological limitations, the hawkmoth cannot drastically alter its wing pitching angle during the short period 27 

of the wing reversal. As a result, a forward flying hawkmoth’s wings have to remain approximately 28 

horizontal respect to the stroke plane during the upstroke, which leads to a negative lift force generation. 29 

As the flying speed increases, the lift generated during the downstroke cannot balance with the body weight 30 

together with the negative lift generated during the upstroke. This effect limits high speed flight in 31 

hawkmoths, and highlights the importance of reconfigurable wings to the wide range of flight speeds 32 

achieved by flying vertebrates.  33 

 34 
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