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Abstract4

In this combined experimental and numerical study, we film the formation of fire ant rafts to5

determine how they cohere together. Surprisingly, we discover that ants prioritize separation and6

exploration: they flail legs and bounce off neighbors when they collide. Despite the active repulsion,7

Fire ants cohere by the Cheerios effect, a capillary force that attracts small floating objects such as8

breakfast cereal. Experiments reveal that rafts consisting of fewer than ten ants disintegrate within9

minutes. Predictions by a Langevin model reproduce the stability transition and the critical raft10

size, which emerges from the balance between their mutual repulsion and the Cheerios effect. This11

work may inspire physically grounded models for the behavior of natural swarms.12

Introduction13

Animal groups accomplish tasks that individuals cannot achieve [1, 2, 3]. For example, army ants14

link their bodies to build bridges over gaps [4]. Slime molds Dictyostelium discoideum distribute15

their spores by building fruiting bodies to grow in height by a factor of 200 [5, 6]. Fish schools16

reduce energy expenditure and facilitate evasion of predators [7, 8, 9]. One way that we recognize17

a flock of birds or a school of fish is by its cohesion [10]: members of a swarm remain together18

despite changes in the swarm’s shape and internal structure. Although cohesion in natural swarms19

is a simple enough concept to recognize, the mechanism by which it arises is still a mystery.20

Understanding how individuals cohere may inspire new swarm models and guide the designs of21

artificial systems. The goal of this study is to investigate the origin of cohesion in fire ant rafts.22

Currently, most models of swarms require a “social force” that attracts individuals towards their23

neighbors or the center of the swarm [11, 12, 13, 14, 15, 16]. The 1995 Vicsek model [17] does not24

feature social attraction and thus swarms behave unrealistically: they disperse in the open space25

[18, 11, 19]. A social attraction force is fundamentally different from physical forces such as drag26

and thrust. It involves a cascade of internal signals in which the animal senses the distance to its27

neighbors and propels itself to maintain that distance. Social attraction forces have long been used28

to rationalize the motion of fish schools [20, 21, 22, 23], bird flocks [24, 25, 26], and insect swarms29

[27]. Although social attraction enables models to emulate various collective behaviors, Lopez et al.30

[28] cautioned that this approach increases the number of model parameters to be measured from31

experiments. Furthermore, as a proxy for complex animal interactions and sensory feedback, social32

attraction is in itself an emergent property. It may be difficult to justify social attraction forces33

for insect swarms, for which individuals have limited sensing capabilities and intelligence. Despite34

years of work, it remains unknown if social attraction forces are legitimate or simply a crutch. In35

this work, we rationalize the formation of ant rafts without invoking social attraction.36

We perform experiments with red imported fire ants (Solenopsis invicta, Figure 1A). Native to37

the Pantanal wetlands in Brazil [29], this invasive species can now be found on all continents except38

for Antarctica [30]. Fire ants can link their bodies together to build rafts, towers, and bridges. Ants39
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on the raft perform random walks and expand the raft by accretion of their bodies on the raft edge40

[31]. Fire ants may also extend pseudopod-like appendages through treadmilling [32] and morph41

into streamlined airfoil shapes when in flow [33]. Previous studies have focused on large rafts with42

more than 1000 ants [31, 34, 32] but did not discuss how rafts stayed together. In this study, we43

focus on rafts with size 2 to 158 ants to better understand the mechanisms of raft formation.44

Results45

Experimental observations: Small rafts are not stable46

We filmed the behavior of balls of ants placed on the water surface (Movie S1). In total, we47

performed 72 experiments involving groups ranging from 2 to 158 ants. Surprisingly, we find that48

ant rafts are only stable if they contain at least Nc ≈ 10 ants. Figure 1C shows a time series of a49

raft of five ants breaking apart when placed on the water surface. The dense ant ball expands rapidly50

as it contacts the water surface, and then ants begin to disperse in all directions. Figure 1B shows51

the relationship between N , the number of ants initially in a raft, and P , the proportion of ants52

that leave the raft after five minutes. Experimental data are shown by orange triangles. Clearly,53

larger rafts are more stable, with a stark transition to stability at ten ants. Phenomenologically,54

such a trend is shown by a logistic function(Figure 1B),55

P (N) =
1

1 + e(N−Nc)/∆N
, (1)

where Nc is the critical number of ants for stability, and ∆N is the width of the transition interval.56

Note that when N = Nc, half of the ants go astray (P = 0.5). The dashed orange line shows a57

least-squares fit to our experiments. The best fit yields Nc = 9.3 and ∆N = 1.5 (n = 72, R2 = 0.66).58

To better understand the factors that lead to the critical raft size, we film the interaction between59

pairs of ants as they encounter each other on the water surface. Each pair of ants separates after60

an average interaction time of 77 ± 69 seconds (n = 14). The interaction time is highly variable,61

ranging from as little as 10 seconds up to four minutes. During this interaction, they flail their62

legs, intermittently colliding with each other before ultimately departing in opposite directions.63

This observation contradicts with the näıve assumption that all swarming individuals have social64

attraction.65

To determine the dominant forces on the ants, we calculate common dimensionless groups. The66

Reynolds number Re = Ul/ν ∼ 10, where l ∼ 3 mm is an ant’s characteristic body length, U ∼67

4 mm/s its characteristic swimming speed, and ν the kinematic viscosity of water. The Reynolds68

number suggests that both inertia and viscous force influence an ant’s motion. Indeed, when pushed69

manually, dead ants can drift for tens of body lengths through their inertia. The Reynolds’s number70

remains small if other characteristic length scales are considered such as the body width w = 171

mm, or the leg width w′ = 100 µm. The Bond number Bo = ρgl2/γ ∼ 1.3 where ρ is the density of72

water, g is the gravitational acceleration, and γ is the surface tension of water. The Bond number73

suggests that both surface tension and buoyancy contribute to the weight support of the ants.74

Indeed, we see that fire ants maintain their position mostly above the water surface, with just their75

legs’ tips and ventral surfaces wetted. From here on, we will characterize their motion on the water76

as walking rather than swimming.77
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A Langevin model describing fire ant interactions78

We proceed by presenting a model for raft formation that does not rely on social attraction. The79

goal of our model is to rationalize the critical number of ants Nc for raft cohesion as well as the80

effect of different parameters such as ant activity level and initial spacing. Newton’s law applied81

to a single ant of mass m ≈ 1 mg states:82

mẍi = kaηi − kf ẋi −
∑
i 6=j

kcK1(|dij |/lc)d̂ij +
∑

i 6=j,dij<2r

krdij (2)

inertia = propulsion + drag + capillary + repulsion

where xi is the two-dimensional position of ant i and ẍi is its acceleration. The forces experienced83

by the ants include propulsion, viscous drag, capillary attraction, and ant-to-ant repulsion. These84

four terms are characterized by their corresponding coefficients ka, kf , kc, and kr.85

Active propulsion86

In Equation (2), the first term on the right-hand side is the random propulsive force of ants.87

Dropping the i subscript, the propulsive force for an ant may be written as the product of an88

activity coefficient ka and η, the two-dimensional standard normal distribution with zero mean89

and unit standard deviation. Effectively, kaη is the Gaussian distribution with standard deviation90

ka. At each time step, and for each ant i, we randomly sampled a value from this distribution. To91

measure activity level ka, we first describe their trajectories.92

Figure 2(A) shows an overlay of ten individual fire ant trajectories on the water surface. These93

trajectories are characterized by looping circular paths with straight-line distances of less than a94

few body lengths. Trajectories on water vary significantly from trajectories atop ant rafts, where95

their straight line distance is on the order of 4 cm, or over 13 body lengths [31]. For simplicity,96

ants in our model are considered circular discs with no heading.97

The velocity distribution of ants on the water surface is qualitatively similar to that of Brownian98

particles such as pollen. Figure 2(B) shows the probability distribution of an ant’s speed U =99 √
u2 + v2, where u and v are the x and y components of the ant’s walking velocity ẋi = [u, v]. The100

two insets of Figure 2(B) show that an ant’s translational velocity components (u, v) are normally101

distributed around zero, indicating that ants have no directional bias. The standard deviation102

σ of velocity in either direction (u, v) is approximately 3.5 mm/s (n = 96). Ants on the water103

locomote at speeds of U = 4.2±2.8 mm/s (n = 96), a fifth of their walking speed on land, 20 mm/s104

[35]. Previous work reports that fire ants “showed no directed motion” and categorized them as105

non-swimmers compared to other tropical ant species [36]. Notably, fire ants are also smaller than106

other tropical species, which may make their locomotion less effective on water.107

Following the prediction from statistical mechanics, Figure 2B shows the probability distri-108

bution of the velocity magnitude U , which is well approximated by the two-dimensional Maxwell-109

Boltzmann distribution (solid red line),110

pdf(U) =
1

2πσ2
e−

1
2

(U/σ)2 (3)

where pdf is the probability distribution function, and σ is the standard deviation for u and v. The111

mean squared displacement (MSD) of ant trajectories is defined as112

MSD(∆t) =
〈
|x(t+ ∆t)− x(t)|2

〉
, (4)
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where 〈. . .〉 denotes the average over all samples and time t. Figure 2C shows the MSD of ant113

trajectories (n = 96), where MSD is in mm2 and the time interval ∆t is in seconds. The MSD114

reveals that the motion is ballistic at short times (∼ 7.5∆t2 for ∆t < 5 s, R2 = 0.97) and diffusive at115

long times (∼ 30∆t for ∆t > 8 s, R2 = 0.98). These statistical features confirm that the locomotion116

of fire ants on the water surface can be modeled by inertial random walkers such as dust particles117

in plasmas, mini-robots, and Whirligig beetles [37, 38].118

The transition between the two regimes is smooth and we could not identify a critical threshold119

based on the MSD statistics alone. However, though the coasting dead ant experiments that we120

will introduce below, we calculate a time scale for inertial effects (vertical gray dashed line) that121

lies in the transition region of MSD.122

Fitting the MSD at the early ballistic stage yields the characteristic velocity of 2.7 mm/s123

(R2 = 0.97), comparable to the average speed in the histograms in Figure 2B. From the later124

diffusive phase, we calculate the diffusion coefficient D of 7.5 mm2/s (R2 = 0.98). This diffusion125

coefficient suggests that over 22 minutes, an ant’s final position on water will be ten centimeters126

away from its initial position. We can relate the activity coefficient ka in our model (Equation (2))127

to the friction coefficient kf through ka = kf
√

2D/δt [37], where δt is the time step used in our128

simulations (see the Materials and Methods section).129

Although we neglect turning in our model, we briefly explain the looping trajectories observed.130

Directional bias is absent in our experiments: the mean orientational velocity of the ants, θ̇, is131

negligible at -0.002 rad/s (n=97). Persistent turning explains the circular trajectories in Figure132

2A. Fig. S1 shows that orientational MSD has a slope of 1.7 (R2 = 0.995), indicating that ants’133

angular velocities are hyper-diffusive.134

Fluid drag135

The second term in Equation (2) is the fluid drag on an ant. We performed experiments by136

manually pushing dead ants by hand and recording their deceleration on the water surface due137

to hydrodynamic drag (Fig. S2). In the intermediate Re regime (Re∼ 10), drag involves both138

pressure drag (∼ U2) and viscous drag (proportional to ∼ U). However, we found that viscous139

drag is sufficient to explain the deceleration. We fit the relationship between fluid drag and the140

velocity to obtain the coefficient kf = 0.24 mg/s (n = 14, R2 = 0.82). The time scale of the141

inertial effect τ = m/kf = 4.3 s approximately coincides with the transition between the inertial142

and diffusive regimes in MSD (vertical gray dashed line in Figure 2), as predicted by the Langevin143

model for Brownian particles. Indeed, in the absence of interaction terms, Equation (2) describes144

Brownian motion [37].145

Capillary attraction146

The last two terms of Equation (2) involve the interaction among individuals and vary with dij =147

xi − xj , the distance between a pair of ants. Small floating objects such as paperclips or Cheerios148

are drawn together by capillary forces, which act to minimize the deformation of the water surface.149

Similarly, in both experiments with live and dead ants, we observe attraction sufficient to draw ants150

together if the initial distance is within a few centimeters. Nicolson et al. derived the attraction151

force between two floating spheres152

Fc = kcK1(d/lc), (5)

where kc is a fitting parameter measured from experiments, K1 is the modified Bessel function, d153

is the distance between the two objects, and lc = 2.7 mm is the capillary length of water. The154
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parameter kc depends on the geometry, contact angle, and density of the object [39, 40, 41]. We155

account for these effects by fitting the interaction between two dead ants. Although ants are156

elongated and have a rough surface, we neglect these second-order effects and focus on representing157

the capillary attraction between ants as floating spheres. Through measuring the attraction between158

pairs of dead ants (see the method section and Fig. S3), we obtain kc = 2.6 nN (n = 33, R2 = 0.83).159

Based on the value of kc, the attraction force between two ants is comparable to the attraction160

between a pair of small plastic spheres (diameter 1 mm, density 1.1 g/mL, and contact angle 70◦).161

Short-range repulsion162

The last term in Equation (2) is the short-range elastic repulsion force when two ants collide. In163

simulations, we approximate ants as a 2D discs with radius r = 1 mm, which was chosen to be164

both comparable to the ant length l and ant width w. Collisions occur when the inter-ant distance165

dij < 2r. Our simulation results were comparable for most non-zero values of kr; therefore we used166

kr = 0.05 nN/mm.167

Our final model, Equation (2), is capable of simulating the trajectories of arbitrary numbers of168

ants. Except for kr, which was set to avoid overlapping agents when they came too close, there169

were no free parameters in our model; all parameters were measured from our experiments on both170

live and dead ants. In the Materials and Methods section, we detail how we measure the four model171

parameters (ka, kf , kc, kr) that characterize the four forces acting on the ants.172

Multi-agent simulations capture the stability transition173

In this section, we present simulations of raft destabilization and raft formation, in which we vary174

factors that would be difficult to change experimentally.175

Raft destabilization simulations begin with ants in a hexagonal lattice, the tightest possible176

configuration for monodisperse discs. We perform 150 simulations with 15 different raft sizes and177

10 numerical trials with different values for the random variable η which describes their diffusion.178

Figure 3A and Movie S2 demonstrate that assemblies of seven agents disintegrate, while rafts of179

19 agents remain stable, similar to the behavior observed in experiments. Figure 1B shows P , the180

proportion of stray ants at the end of the trial of five minutes, decreases with the number of ants181

N in simulations (gray circles). We fit the simulation results to the logistic function, Equation (1),182

finding that the critical number of ants Nc = 9.5 and ∆N = 1.1 (n = 150, R2 = 0.88), matching183

the experimental logistic function well. We thus conclude that the stability transition emerges from184

the agent interactions in our model, the combination of random walks, drag, contact repulsion, and185

Cheerios effects (Figure 3B). We next use our model to explore the effect of activity levels and186

the initial spacing of ants.187

Next, we consider the effect of ant activity on raft stability. In our experiments, we observed188

that the leg motion of fire ants dwindles over time. Immediately after being placed on water, ants189

flail their legs at 20.2 ± 4.5 mm/s (n = 6) at their tips. The movement slows down to 10.0 ± 4.5190

mm/s (n = 6) over a span of ten minutes. This slow down with time is consistent with our previous191

findings that ants reduce exploration and metabolism with time [42, 33]. Could the decrease in192

activity improve the stability of the rafts? To answer this question, we simulated ants with activity193

coefficient ka ranging from 0.5 to 3.4 nN, where the activity level measured from our experiments194

was 3.0 nN. Figure 3C shows the stability diagram of the rafts (n = 1200). Larger rafts with195

less active ants are more stable, as expected. This black dashed curve represents the critical size196

where half of the ants remain stable in the raft (P = 0.5); by fitting to an exponential, we find this197

stability criteria correspond to Nc ≈ 0.3e1.2ka .198
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Now that we have identified how ant rafts remain stable, we investigate how rafts are assembled199

in the first place. These simulations were conducted with ants in a square lattice of centroid-200

to-centroid spacing L. Figure 4a shows the proportion of ants that remain isolated after five201

minutes as a function of the activity level and initial spacing L. Each data point is an average of202

ten numerical trials per condition (n = 660). For ants to assemble into a raft from a dispersed203

state, they must be sufficiently close together. Closely spaced ants with a spacing of L = 16.7 mm204

condense into rafts if the activity is sufficiently low. Higher activity levels lead to collisions that205

destabilize the aggregation. Conversely, distant ants with spacing L = 37.5 mm rarely encounter206

any neighbors within five minutes if their activity is low (ka = 0.5 nN). This phenomenon is observed207

in our experiments: satellite ants a few centimeters away from their neighbors remain isolated if208

their activity level is too low. Ants must actively locomote on the water surface to encounter209

neighboring ants. In our experiments, as ant activity levels naturally dwindle with time, sparsely210

distributed ants have increasing difficulty encountering neighbors. Therefore, the initial spacing is211

a critical factor for raft formation.212

Figure 4B-C demonstrate the time series of stray ant proportions P for various activity levels213

and two initial ant-to-ant spacing, L, of 18.75 mm and 30 mm. At small ant-to-ant spacing,214

L = 18.75 mm, even though the proportion of ants P at t = 5 min is monotonic with activity,215

the time-scale to achieve 50 percent assembly is nonlinear. Such nonlinearity is due to the pros216

and cons of increasing activity levels: namely, high activity enables ants to find one another but217

impedes raft formation upon contact. Conversely, ants of low activity level take longer to find218

one another but stick together better once in contact. When the activity is low at ka = 0.5 nN,219

rafts assemble slower because it takes longer for ants to find their neighbors. For large ant-to-ant220

spacing L = 30 mm, even though low-activity ants assemble more slowly, newly formed rafts rarely221

break apart. The comparison between Figure 4B and Figure 4C reveal that for any fixed activity222

level ka, the raft is established more rapidly at low initial spacings (Figure 4C). At the spacing of223

L = 18.75 mm, except for when ka = 1.5 nN, the system either quickly converges to the aggregated224

state (ka < 1.5 nN), or maintains the dispersed state (ka > 1.5 nN).225

Discussion226

Phase-transition analogy of raft stability227

Animal swarms can display both behavioral phases (such as Pharaoh ant trail-following [43], and228

desert locust swarming [44, 45]) and thermodynamical phases [46, 47, 48, 49, 50, 51, 52]. The229

assembly and disassembly of fire ant rafts is analogous to the phase transition of non-living materials230

such as water. Here, the raft may be considered the liquid phase; and the dispersed ants, the231

vapor phase. Subsequently, the proportion of stray ants is analogous to the vapor quality. In232

this viewpoint, we can readily compare Figure 4A to the T-V diagram of the water, where the233

temperature T corresponds to the ant activity and volume V corresponds to the number of ants.234

Following the statistical mechanics’ framework and assuming detailed balance, we may also235

estimate the effective temperature Tactivity = 1.4 × 1013 K using the Stokes-Einstein relation D =236

kBTactivity
6πµl , where kB is the Boltzmann constant, µ the viscosity of water and l the length of the237

ants. We can estimate the pressure per unit depth Pactivity by equating the energy scales (ideal238

gas law) PactivityA = kBTactivity, where A is the surface area of an ant. We obtain Pactivity = 0.2239

mN/m, which is around 1/300 of the water surface tension. Note that the pressure drives ants240

apart, and surface tension pulls them together.241

Fire ant rafts constantly expend energy and are thus out of equilibrium, departing from most242

traditional physical systems. From previous work, we know that ants slow down and ant rafts shrink243
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on the order of hours [33]. To avoid these fatigue effects, which are difficult to model, we chose five244

minutes as the time frame to perform our observations and simulations. The numbers calculated245

will vary with the time frame chosen, but the physical picture should remain the same. Further246

understanding of the collective dynamics of biological systems calls for a statistical mechanical247

framework that permits temporal variability as well as individual differences.248

Biological assemblies on the water surface249

Can our model predict if and under what conditions other species can aggregate? Three factors250

should be considered. Different animals have different physical properties (density, size, hydropho-251

bicity, etc.), and thus different coefficients for the Cheerios effect attraction kc. While ants are252

well described by random walks, other organisms may need different models. For example, the253

locomotion of whirligig beetles resembles “corralled active Brownian particles” [53]. Chirality is254

critical in describing starfish embryo assemblies [54].255

Recently, biologists have identified more ant species that can build rafts, including Pheidole,256

Formica, Wasmannia, and Linepthema spp. [36, 55, 56, 57, 58, 59]. They are often found in257

habitats prone to inundation. Notably, one common feature of these rafting species is their small258

body size (< 1 cm), hinting at the potential significance of surface tension and the Cheerios effect259

in their assembly mechanism. Comparative studies of these species that test the predictive power260

of our model would be an exciting future direction.261

As we focus on the fire ant behaviors on the water surface over a short time scale (five minutes),262

it can be argued that ants have very limited sensory capabilities. Indeed, we demonstrate that ants263

walking on the water surface cannot recognize neighboring ants and ricochet off them. The nature264

of the system calls for stochastic dynamics, where the activity is modeled as white noise that does265

not require any memory or feedback loop. The lack of memory or feedback is similar for swarms266

of black soldier larvae as well [60].267

Our research coincides with active matter beyond the over-damped limit [61, 38, 62, 53]. Löwen268

has shown that rich physics can arise from the addition of the inertial term, such as the co-existence269

of different temperature phases [38]. There has also been increasing interest in active matter at the270

fluid interfaces [63, 64, 65, 53, 54, 66]. Our model, Equation (2), shares significant similarity with271

these systems. Through this combined experimental and theoretical study, we present fire ants as272

a model system for future explorations on these topics.273

Conclusion274

We have shown that fire ants cohere on the water surface through capillary forces. Remarkably,275

the activity of the ants destabilizes the assembly, causing small rafts to disintegrate. We used a276

Langevin model to simulate raft breakages and reproduced the stability transition condition we277

discovered in experiments. Further, we used the model to predict the initial ant spacing required278

to assemble rafts.279

Materials and methods280

Raft experiments281

Fire ant colonies were collected from the campus of Georgia Institute of Technology, Atlanta,282

Georgia. We kept them in plastic trays with access to water and food. In all collected colonies,283
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multiple queens were found. To reduce the effects of the artificial rearing environment in the lab,284

we only used ants harvested within three months for experiments.285

To make rafts, we used previously published protocols [31]: we selected ants from a colony and286

placed them into a beaker coated with Insect-a-Slip. Then we swirled the beaker to roll the ants287

into a ball and placed the ball on the water surface. Ants fewer than 30 in number were manually288

counted before the experiment. For larger numbers, the beaker was weighed and converted to the289

number of ants using the average weight of one ant, which was around one milligram. For five290

minutes, we recorded the trajectories of ants and counted the number of stray ants at the end of291

the film.292

Measuring parameters for the Langevin model293

We tracked 96 ants to determine their activity level on the water surface. Ants were picked up294

from the colony using tweezers and transferred to the water surface by gently tapping the tweezers.295

Occasionally, ants landed on their back and could not flip over due to surface tension. These trials296

were excluded from further analysis. We recorded the trajectories of ants using an Opti-Tekscope297

USB microscope placed above the water surface. The recordings were analyzed using a custom298

MATLAB tracking program. The same system was used to obtain the trajectories in the following299

experiments.300

To measure drag coefficient kf and the Cheerios effect coefficient kc, we used recently deceased301

ants. We euthanized the ants by placing them in the freezer for around ten minutes. We used302

tweezers to straighten the ants’ bodies and legs before placing them on the water surface. We gently303

pushed the ant so that it started drifting with an initial velocity. We recorded 14 trajectories as they304

decelerated due to fluid drag. We used Gaussian smoothing and forward difference to calculate the305

velocity using a time interval of 0.06 s. We find that velocity decreases exponentially with time (Fig306

S2), suggesting that fluid drag is proportional to the velocity magnitude. We obtain the coefficient307

for drag kf from fitting a straight line to the relationship between the logarithm of velocity log(U)308

and time t. We measured kf to be 0.24 mg/s (n = 14, R2 = 0.82, Fig. S2).309

The activity coefficient ka depends on both drag coefficient kf and the time step δt. For310

intuition, consider the random propulsion term kaη as an average value over a period of δt. The311

larger the δt, the more smoothed out the random signal becomes in each period, hence the smaller312

the activity coefficient ka. To estimate ka, we used δt = 0.1 s, the same value that we used for313

integrating Equation (2) in the simulations. Together, we obtained ka = kf
√

2D/δt = 2.88 nN.314

Detailed derivation of this relationship may be found in the supplemental materials.315

The Cheerios effect coefficient kc was measured by placing two dead ants on the water surface.316

Through the same procedure above, we calculated the relative velocity and acceleration as they317

attracted each other. The attractive force was calculated as the sum of inertia and fluid drag318

terms of the Langevin model, Equation (2). Fig. S3 shows that the attraction force decreases319

monotonically with the distance between the ants. We fit the data to the modified Bessel functions,320

which we expect from theory [41, 40, 39]. We arrived at kc = 2.56 nN (n = 33, R2 = 0.83).321

Simulation322

We performed 1860 agent-based simulations in MATLAB, consisting of 1200 simulations for raft323

destabilization and 660 for raft assembly. Raft destabilization simulations were performed with324

ants initially on a hexagonal lattice, and raft assembly simulations with a square lattice. Circular325

agents were characterized using four coefficients measured from experiments (m, ka, kf , kc) and one326

free parameter, the close-range repulsion kr that had little effect on the results when it was above327
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the chosen value. At each time step, the location and the velocity of each agent were updated328

according to Equation (2). For raft destabilization simulations, we integrated the equations with a329

semi-explicit scheme with a time step of δt = 0.1 s. For each parameter combination, we simulated330

five minutes of ant motion. The results were averaged over ten trials with different seeds for random331

number generators.332

For raft assembly simulations, we started the simulations from agents on square lattices. The333

simulation domain was a square that was 150 body radii wide. Periodic boundary condition was334

imposed in both directions so that the density within the domain remained constant. At the335

beginning of the simulations, agents were placed in 4x4 to 9x9 square formations. Similar to the336

raft destabilization trials, we simulated five minutes of ant motion, and results were obtained after337

averaging over ten realizations.338
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Figure 1: Small rafts are unstable. (A) A raft of twenty ants on the surface of water. (Photo
credits: Andre L Magyar and Candler Hobbs) (B) Proportion of stray ants P as a function of the
raft size N . Orange triangles indicate experimental results (n = 72) and gray circles simulation
results (n = 150). Orange and gray dashed lines represent the respective best-fit logistic functions
for experiments and simulation. (C) A time series showing the destabilization of raft of five ants
over 100 s. Scale bar is 1 cm.
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Figure 2: Ants on the water surface behave as inertial random walkers. (A) Ten representative ant
trajectories. (B) Probability distribution of the velocity magnitude U . Velocity components u and
v are shown in the insets. The red solid line is the two-dimensional Maxwell-Boltzmann distribution
with a standard deviation 3.5 mm/s. (C) Mean squared displacement of ant trajectories. The blue
dashed line has a slope of 2 and the red a slope of 1, and both are offset from the best fit for
clarity. The vertical gray dashed line marks the time scale we obtain through a separate series of
experiments τ = m/kf 4.3 s. The shaded area represents one standard deviation, which appears
distorted under the logarithmic scale. n = 96 for both (B) and (C)
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Figure 3: Destabilization of simulated ant rafts. (A) Trajectories of simulated ants as they start
from a dense, ordered raft. Initial state of ants shown in red circles and end state shown with black
circles. Note that many of the ending states have gone beyond boundaries of the figure. As the
number of ants on the raft increases from 7 ants (left) to 9 ants (middle), and to 13 ants (right),
rafts become more stable. (B) Schematic of our Langevin model (Equation (2)). (C) Raft stability
diagram. Color represents the proportion of stray ants P after five minutes. Black dashed line
marks the transition point where half of the ants go astray (P = 0.5).
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Figure 4: Assembly of ant rafts from different initial spacings. (A) Proportion of stray ants P as
a function of activity level ka and initial spacing L. Top left inset show the definition of initial ant
spacing L. The remaining insets show representative trajectories of ants across a time frame of five
minutes. Time series of P for (B) small initial spacing L = 18.75 mm and (C) large initial spacing
30 mm. Color represents the P for all subplots.
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