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The Force Partitioning Method (Menon and Mittal, JFM 907, A37, 2021) is employed to de-
compose and analyze the pressure-induced drag for turbulent flow over rough walls. The pressure
drag force imposed by the rotation-dominated vortical regions (Q > 0, where Q is the second in-
variant of the velocity gradient tensor) and strain-dominated regions (Q < 0) are quantified using
a geometry dependent auxiliary potential field (denoted by φ). The analysis is performed on data
from direct numerical simulations (DNSs) of turbulent channel flows, at frictional Reynolds number
of Reτ = 500, with cube and sand-grain roughened bottom walls. Results from both simulations
indicate that the Q-induced pressure drag is the largest contributor (more than 50%) to the total
drag on the rough walls. Data are further analyzed to quantify the effects of time-mean (coherent)
and incoherent turbulent flow on the Q-induced drag force, and to discuss possible effects of roller
and U-shaped structures expected to occur at the crest and mid-crest locations of the roughness
elements, respectively. Based on the observation that the φ field encodes information about the
surface geometry that directly impacts the drag, we provide initial evidence that it can also be used
to parameterize the surface drag. Specifically, we propose and test three norms based on the φ field
(two of them related to the surface-induced potential flow), and explore the characterization of the
Nikuradse equivalent sandgrain height ks based on these parameters for a number of channel flows
with different roughness topologies. Data are provided from a suite of DNS cases by Aghaei-Jouybari
et al. (JFM, 912, A8, 2021). An empirical correlation depending on these φ-based parameters, with
5 empirically-tuned coefficients, is shown to predict ks with average and maximum errors of 10.5 and
26 percent, respectively. The results confirm that a purely geometric quantity, the φ-field, provides
useful additional information that can be used in drag law formulations.

I. INTRODUCTION

Turbulence over rough surfaces occurs in many flows, such as atmospheric flows over plant canopies and geomor-
phology [1, 2], internal flows such as channel and pipe flows [3, 4], external flows past aircraft wings, wind turbine
blades [5], ship hulls, and flows in many other applications [6–8]. The primary effect of a rough wall is its tendency
to increase the hydrodynamic drag (except for some particular roughness geometries such as riblets). The drag is
mainly caused by viscous effects in low Reynolds number flows and pressure effects at high Reynolds numbers [9, 10].
Readers are referred to Refs. [11–13] for recent studies quantifying the contribution of each component (viscous and
pressure) to the total hydrodynamic drag.

As opposed to the viscous drag, which is generated by regions of high shear rates, the sources of pressure drag are
less well understood. In incompressible flows, the pressure field is governed by a Poisson equation (∇2P = −2ρQ,
where Q is the second invariant of the velocity gradient tensor), an elliptic equation, meaning that the pressure at
each point inside the domain is influenced by all other points. This fact opens the door for many questions regarding
the pressure drag. For example, how is the pressure drag influenced by the vortical structures (where Q > 0) and
straining motions (where Q < 0), happening at different distances from the roughness elements? Or, what are the
relative contributions by the mean coherent motions (those persistent in time) and the small scale turbulent motions
to the total pressure drag? In the first part of the paper we aim to answer such questions regarding the sources of
pressure drag. We use the force partitioning method [FPM, 14–17], where the main idea is to express the pressure
drag, a surface integral (

∫
B
Pn1dS), in terms of volume integrals that involve distinct and identifiable effects such as

vortex-induction and viscous momentum diffusion. This approach is explained in Sec. II.
Another important aspect of turbulent flow over rough surfaces concerns the quantitative prediction of the drag

force using knowledge regarding a characteristic length scale. Already in his seminal work, Nikuradse [18] found that
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the logarithmic velocity profile for flow over surfaces under fully rough conditions can be scaled using a characteristic
length scale termed the sandgrain roughness height, ks. Moody [19] adopted this idea to connect the hydrodynamic
drag coefficient of pipe flows to the characteristic length scale of the wall roughness, resulting in the widely used Moody
diagram. Predicting the hydrodynamic drag using a single length scale to characterize the roughness geometry is of
great importance in many industrial and engineering applications, and has been the focus of several studies throughout
decades [10, 20–27]. In geophysical and environmental flows [28–30] the effects of roughness on drag are usually
expressed by means of the roughness height z0, also simply related to ks [see e.g. 10].

There exists, however, a major challenge – that there is no known one-to-one correlation that can accurately and
universally predict the length scale (ks or z0) for a given roughness geometry [31]. Attempts to create physics based
correlations include [25–27, 32–34], among others. Data driven approaches have also been explored, such as a recent
study by Aghaei-Jouybari et al. [35] that used machine learning to predict ks. They trained a neural network which
used 9 geometric and statistical parameters (such as height skewness, slope, etc.) as inputs. For network training,
they employed a database of diverse roughness geometries, including 30 DNSs and 15 experimental flows, all identified
to be in the fully rough regime. The trained network (including 3 layers with 18, 7 and 7 nodes in each layer) was
able to predict ks with average and maximum errors of less than 10 and 30 percent, respectively.

Further improvements in predictive capabilities should be possible if one could better connect surface geometric
features to flow structures and then relate those to the drag force acting on the rough surface. A number of studies
have identified particular flow structures that occur near roughness elements in rough wall boundary layers. For
narrow-bandwidth rough walls (where one scale of the roughness is dominant), Talapatra and Katz [36] identified
U-shape structures that wrap around roughness elements (pyramids in their case) and are lifted from the surface due
to upward velocity induced by the legs of the adjacent structures. In the case of cube roughness, Aghaei-Jouybari
et al. [37] noticed that the heads of these structures are separated from the legs at the crest location, due to high
effective shearing, so that the structures roll over the roughness elements. This behavior causes a shortened streamwise
length scale of the coherent motions, reinforcing the dissipative scales and possibly affecting drag. Away from the
wall in the outer flow, one expects to see whole or partial hairpins structures [38], similar to those in smooth-wall
flows due to the outer layer similarity [39]. Quantitatively relating surface geometric properties and flow structures to
hydrodynamic drag forces can be accomplished using the FPM, which as explained in more detail in Sec. II, involves
a potential scalar field φ(x) that connects the surface geometry to flow structures in the bulk of the flow. Since φ(x)
depends only upon the surface geometry it may provide additional information about the surface, useful in predicting
roughness length scales.

There are two main objectives in this study. First, to decompose the hydrodynamic drag down to its fundamental
components and to relate it to flow structures occurring in the bulk of the flow. As shown later, the properties of
the scalar potential field φ will be crucial to understand the effects of flow structures on the hydrodynamic drag. The
second objective is to illustrate that the newly introduced potential field φ, that depends on roughness geometry only,
may also be used to define additional parameters in models to predict the equivalent sandgrain roughness height.

As will be fully explained in Sec. II, the FPM is derived from the Navier-Stokes (NS) equations, and can, in-
principle, exactly quantify the contribution of each vortex or strain-dominated regions to the pressure drag. Analysis
of DNS data of fully developed channel flows over a regular array of aligned wall-mounted cubes and randomly oriented
sand-grain elements are presented in Secs. III A and III B, respectively, and a number of generic trends associated
with the effects of Q-induced motions on the pressure drag are identified. Having shown that the FPM provides
interesting insights into the correlations among flow structures and hydrodynamic drag via the potential function φ,
the latter is employed to examine several statistical geometric parameters based on φ and its spatial gradients across
the domain. These parameters are then used to propose a correlation for the sandgrain roughness height ks involving
several adjustable parameters that are fitted based on data. Results are presented in Sec. IV, while conclusions for
this study are summarized in Sec. V.

II. FORCE PARTITIONING METHOD

Following Menon & Mittal [17] we use FPM to partition and quantify the contribution of rotation and strain-
dominated regions to the total hydrodynamic drag (see the schematic of Fig. 1). A vortex-dominated region (Fig. 1a)
is identified as a region where Q > 0, and similarly a strain-dominated region occurs where Q < 0 (Fig. 1b). If a vortex
filament emerges upstream and sufficiently close to a roughness element (location A) it opposes the hydrodynamic
drag, and if it happens downstream of a roughness element (location B) it increases the drag. Vice-versa, if a strain-
dominated region emerges at location A, it contributes to the hydrodynamic drag, while if it occurs at location B, it
reduces the net drag. The physical reason behind these is rather straightforward [17]– regions with Q > 0 correspond
to the cores of vortical structures where the local pressure is lower than values at surrounding points. Therefore, a
vortex would decrease(increase) the drag if it happens in the upstream(downstream) of a roughness element. Regions
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FIG. 1. Schematics of drag generation and annihilation by vortex-dominated (Q > 0, a) and strain-dominated (Q < 0, b)
regions in the bulk of the flow.

with Q < 0 correspond to strain-dominated regions where streamlines have tendency to block each other and form
pseudo-stagnation regions, causing the pressure to be locally higher than the surrounding points. These regions of
the flow would increase(decrease) drag if they occur upstream(downstream) of a roughness element.

The starting point of FPM [14] is the calculation of an auxiliary potential field φ, which obeys the Laplace equation
(∇2φ = 0) with a Neumann boundary condition solely dependent on the solid body geometry and the direction of the
force one wishes to partition. Thus for the ith direction, the auxiliary potential φi satisfies the following equation:

∇φi · n =

{
ni on B,

0 on Σ.
(1)

Here B represents the flow exposed boundary of the solid body (in our case roughness) that FPM is applied to and
Σ expresses all other boundaries. Also, n is the unit normal vector (positive into the solid) and i = 1, 2, 3 is the
direction of the decomposed force. Note that with these specified properties, φi is a surface dependent field that does
not depend on the flow field and that can be obtained using standard numerical techniques for any given surface. For
examining the force in an arbitrary direction characterized by a unit vector e, ni in Eq. 1 can be simply replaced by
n · e. This study focuses on drag, i.e, the i = 1 direction, and we will dispense with the subscript i in the remaining
discussion while indicating the i = 1 direction of the surface normal as n1.

By performing an inner product between the NS equations and ∇φ, and integrating in the entire fluid volume V ,
one obtains: ∫

V

∇P ·∇φ d3x = −
∫
V

ρ

(
∂u

∂t
+ u ·∇u− ν∇2u

)
·∇φ d3x, (2)

where u, P , ρ and ν are, respectively, the velocity vector, pressure, fluid density and fluid kinematic viscosity. The
left hand side of Eq. (2) is converted to a surface integral using (∇P ·∇φ = ∇ · (P∇φ)−P∇2φ). Further rearranging
the right hand side of Eq. (2) using properties of φ and the incompressibility constraint, and noting the connection
between the divergence of the non-linear term and the quantity Q [17] one obtains the following for a flow with
stationary boundaries: ∫

B

Pn1dS︸ ︷︷ ︸
Fp1

= −2ρ

∫
V

φQ d3x︸ ︷︷ ︸
FQ

+ µ

∫
V

∇2u ·∇φ d3x︸ ︷︷ ︸
Fν

,
(3)

where F p1 is the total pressure force exerted on the surface B in the streamwise direction, FQ is the so-called Q-induced
force (Q is defined as usual as Q = −0.5ui,juj,i, where ui,j = ∂ui/∂xj), and Fν is the viscous momentum diffusion
induced pressure force. We have also assumed stationary total momentum in the volume so that the volume integral
of ∂u/∂t has been neglected.

The volume integrals in Eq. (3) enable us to calculate the contributions to pressure drag arising from any arbitrary
region in the bulk of the flow. The force densities fQ ≡ −2ρ φQ and fν ≡ µ∇2u · ∇φ are central to the FPM
decomposition and will be analyzed alongside the integrals over the entire flow volume in the following sections.
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FIG. 2. Cubical roughness elements (a), and iso-surfaces of φ (b), φ = +0.01 (red bulb-like surface) and φ = −0.01 (blue
bulb-like surface).

Considering that the Q-criterion is a well-known vortex identification method, the integrand fQ shows direct effects
of the vortex dominated regions (Q > 0) and strain dominated regions (Q < 0) on the pressure drag. While we follow
the approach of [17] most closely, additional details and earlier applications of FPM-like analyses can be found in
Refs. [14–16].

III. RESULTS

The FPM analysis is performed for two roughness topographies, a cubical roughness in Sec. III A and a sand-grain
roughness in Sec. III B. For both cases a DNS is performed for a fully-developed periodic channel flow at frictional
Reynolds number of Reτ = 500 with roughened bottom wall and smooth top wall. The DNSs are performed using the
in-house ViCar3D code [40, 41] that is based on a fractional step method. The solver employs a second-order spatial
central-difference discretization as well as a second order Adams-Bashforth time advancement scheme to solve the
NS equations. The pressure Poisson equation is solved using scheduled relaxation Jacobi (SRJ) method [42]. Both
the solver and the immersed boundary method have been extensively validated and employed in several applications
previously [40, 41]. The length, height and width of the channel are 8δ, 2δ and 4δ, respectively (δ being the channel
half-height) for both cases. The respective grid resolutions in viscous units are ∆x+ = 8, ∆y+max = 4.5 (with the first
3 grid points below y+ = 1 and ∆y+ = 0.44 at the crest location y = kc) and ∆z+ = 10. Both simulations ran for
28T (where T = δ/uτ is a large eddy turn over time) to reach the stationary turbulence and then flow statistics were
gathered for at least 10T .

Here, we first examine FPM results for cube case in Sec. III A and then the results will be compared with those of
sand-grain in Sec. III B, focusing on the main similarities and differences between these two widely-different roughness
topographies.

A. Cube

Figure 2 shows the cubical roughness geometry and isosurfaces of the associated φ field. In total 98 cube elements
of height kc = 0.2δ were mounted on the bottom wall, 14 rows in x and 7 rows in z directions. The height of the
cubes in viscous units is k+c = 100 and the flow can therefore be considered to be in the fully rough regime [10, 43].

Figure 3 shows contours of u, Q, φ, fQ and fν at an instantaneous time snapshot. As the figure shows, φ is
positive in front of each roughness element and negative at the back of the elements. Therefore, one infers that vortex
dominated regions (Q > 0) contribute to drag when they occur at the back of a roughness element (in significant
negative φ regions), but they decrease the drag if they occur in front of an element (in significant positive φ regions).
The trend for strain dominated regions (Q < 0) is the opposite, namely they contribute to drag if they occur in
front of an element and they decrease the drag if they occur at the back of an element. Furthermore, if we zoom
in on the roughness sublayer (displayed on the left column of the figure) and extract one vortex filament (encircled
in Q contour), we notice that the left portion of this vortex produces a drag force since it is closer to the upstream
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FIG. 3. Contours of instantaneous u, Q, φ (constant in time), fQ and fν . A vortex structure cross-section is encircled in the
zoomed in figures of Q and fQ.

roughness element and the right portion opposes the drag since it is closer to the downstream element. These are
evident from the respective fQ contour. The FPM therefore allows us to identify the drag generating and annihilating
portions from even a single vortex filament.

Next, we can compute the volume integrals of the pressure force components FQ and Fν over the entire flow volume
along with the surface integrals of the shear forces. The results are shown in Fig. 4, where five sources for the total
drag can be identified. Their respective contributions for this particular kind of roughness at the Reynolds number
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FIG. 4. Decomposition of the total hydrodynamic drag as function of time. Ab and At are, respectively, the area of the regions
not covered by cubes in the bottom wall and the area of top wall. “Momentum rate” refers to the volume integral of the
unsteady term in NS equations. Considering the simulation is done in a constant pressure gradient mode, the mass flux inside
the channel is not exactly constant (although being statistically stationary) and its time derivative fluctuates around zero. The
average contribution by this term is small (less than 1%), as expected.

of the simulation are:

Total drag =

Q-induced pressure drag on roughness elements (FQ) (= 21.99; 52.6% of total drag on bottom wall)

+ Viscous diffusion induced pressure drag on roughness elements (Fν) (= 9.25; 22.1% of total drag on bottom wall)

+ Shear drag on surfaces of roughness elements (= 6.23; 14.9% of total drag on bottom wall)

+ Shear drag on bottom wall, non-roughened parts (= 4.31; 10.4% of total drag on bottom wall)

+ Shear drag on top wall (= 18.97)

= 60.75 (on average)

The total drag force should balance the total momentum source in an equilibrium channel flow with stationary

turbulence. The total source term is −∂P∂x V = 63.2 (normalized by δ and the friction velocity), where −∂P∂x = 1 was
imposed on the right hand side of the streamwise component of NS equations to drive the flow in this direction. The
associated difference between the total momentum source and the total drag force is less than 5%. The sources of the
momentum budget discrepancy can be traced mostly to discretization errors in evaluating Q from velocity gradients,
and from numerical integration. We consider this level of discrepancy to be sufficiently small for the purposes of the
present study.

Note that the total drag force on the roughness side of the channel—sum of FQ, Fν , the shear force on the roughness
surface and the bottom wall shear—contributes to 68.8% of the total drag, in which the Q-induced force FQ is the
largest contributing factor to both the rough wall drag (52.6%) and the total drag. Also the contribution from Fν is
almost equal to the total shear drag exerted on the bottom wall (on both roughened and non-roughened parts).

To examine these forces in more detail, we can make use of their volume-integral nature and perform a conditional
averaging analysis based on different spatial events. Each force is first conditionally averaged based on four conditions:
Q > 0 and φ > 0 (contribution of vortex-dominated regions upstream of the roughness elements), Q < 0 and φ > 0
(strain-dominated, upstream), Q > 0 and φ < 0 (vortex-dominated, downstream), and Q < 0 and φ < 0 (strain-
dominated, downstream), then multiplied by the condition probability. The latter is necessary to quantify the actual
contribution of each event to the total drag. The results are shown in Fig. 5 for both FQ and Fν . Upstream of a
roughness element (where φ > 0) strong generation and annihilation of FQ occurs, respectively, by strain-dominated
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FIG. 5. Weighted conditional averages of FQ (a) and Fν (b) based on four events: i) φ > 0 and Q > 0 (vortex-dominated region,
upstream of the cube elements) ii) φ > 0 and Q < 0 (strain-dominated, upstream) iii) φ < 0 and Q > 0 (vortex-dominated,
downstream) and iv) φ < 0 and Q < 0 (strain-dominated, downstream). Please note we plot the weighted conditional averages
Es to accurately quantify the contribution of each event to the total drag. Here Es(event) = E(event) × P (event), where E
and P are the true (intrinsic) conditional averages and probability of an event. Also note Es(f |φ > 0) = Es(f |(φ > 0, Q >
0)) + Es(f |(φ > 0, Q < 0)), shows contribution of the upstream events to the respective force, and Es(f |φ < 0) = Es(f |(φ <
0, Q > 0)) + Es(f |(φ < 0, Q < 0)) shows contribution of the downstream events. The total drag per volume is shown by the
solid black lines Es(f).

FIG. 6. Contribution to drag by Q = −0.5ui,juj,i (note ui,j = ∂ui
∂xj

), Quavg = −0.5ui,juj,i and Qurms = −0.5u′i,ju
′
j,i. Their

respective forces are fQ, fQuavg , and fQurms , intrinsically averaged in both time and x-z plane. Note FQ =
∫
AffQdy = 22.0,

FQuavg =
∫
AffQuavgdy = 12.3 (= 0.56FQ) and FQurms =

∫
AffQurmsdy = 9.7 (= 0.44FQ), all normalized by δ and uτ . Also

Af is the planar fluid occupied area.

and vortex-dominated regions (Fig. 5a), and the net effect (sum of the red and green curves, black dash line) is the
balance between these two strong opposing forces. The roles of vortex-dominated and strain-dominated regions switch
downstream of the roughness elements (where φ < 0), but their net effect is almost zero. One, therefore, concludes
that the net FQ is predominantly determined by the events upstream of the roughness elements, where φ > 0. Figure
5(b) shows the conditional averaging for Fν based on the same events. Here, although the contribution from each
event is small in magnitude (compared to their respective values in FQ plot), all of them are positive, irrespective of
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FIG. 7. Contours of Q = −0.5ui,juj,i, Quavg = −0.5ui,juj,i and Qurms = −0.5u′i,ju
′
j,i with their respective forces fQ, fQuavg ,

and fQurms . All quantities are time averaged and phase averaged over each cube element. Possible signatures of U-shape
structures (occurring around y = 0.5kc) and roller structures or turbulent motions generated in the thin shear layer above the
cubes (occurring at y = kc) are encircled in the contour of Quavg.

the event type (vortex or strain-dominated) or location (upstream or downstream of the elements). That is why the
net Fν contributes a non-negligible 22.1% to the rough wall drag.

We next address the question whether the drag is dominated by the Q parameter associated with the mean flow or
by the turbulence. In Fig. 6 we show time-averaged contribution to drag by Q = −0.5ui,juj,i, Quavg = −0.5ui,juj,i

and Qurms = −0.5u′i,ju
′
j,i, with their respective Q-induced forces fQ, fQ,uavg and fQ,urms. There are three peaks

(two positives and one negative) in the figure, the negative one happening around y ≈ 0.5kc while the others are
near the crest y ≈ kc and very near the bottom surface. The negative peak is possibly attributed to the head-down
U-shape structures described by Talapatra and Katz [36] that wrap around roughness elements, while the peak near
the top may be attributed to roller mechanism [37] that happens right on the crest before the flow is detached from
the surface or due to turbulence generated in this region of strong shear. The one near the bottom surface is likely
due to the strong shear existing there as well. These flow patterns are persistent in time and thus contribute to the
time-averaged velocity field, leading to about 56% of FQ attributed to Quavg. Signatures of these patterns may be
found in the time-averaged contour plots of Quavg and fQuavg in Fig. 7. Also, from contours of Qurms and fQurms in
Fig. 7 one notices generation of turbulent motions in the wake of roughness elements and their contribution to the
total drag, which has been quantified to be 46% of the total FQ.

B. Sandgrain

The sand-grain roughness topography and the associated φ-field are shown in Fig. 8 (a) and (b), respectively. In
total 117 sandgrain elements, 13 rows in x and 9 rows in z directions, are mounted on the bottom wall. Each element
is a randomly oriented semi-ellipsoid with semi axes of 0.7kc, kc and 0.5kc in streamwise, wall-normal and spanwise
directions, respectively. Similar to the cube case, for the sandgrain roughness elements kc = 0.2δ is chosen. As
expected, the φ iso-surfaces in Fig. 8(b) are more distorted than their cube counterparts, due to inherent randomness
in the sand-grain roughness geometry. Note that the iso-surfaces shown are less concentrated for elements near the
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FIG. 8. Sand-grain roughness elements (a), and iso-surfaces of φ (b), φ = +0.02 (red surfaces) and φ = −0.02 (blue surfaces).

inlet and outlet due to the fact that the distance between elements along the streamwise direction implied by the
periodic boundary condition is slightly larger. This issue does not affect any of the analysis and results presented.

Most of the conclusions made for the cube roughness are also true for the sand-grain one, with subtle differences
due to different topographies. Fig. 9 shows the instantaneous contours of u, Q, φ (constant in time), fQ and fν for
the sand-grain roughness. Similar to the cube case in Fig. 3 a vortex filament (Q > 0) upstream of and close enough
to the roughness elements (φ > 0) annihilates drag while a strain-dominated region (Q < 0) increases drag in the
same location. Their roles are reversed downstream of the roughness elements where φ < 0. The contribution of each
component to the total drag is listed below

Total drag =

Q-induced pressure drag on roughness elements (FQ)(=25.51, 52.7% of total drag on bottom wall)

+ Viscous diffusion induced pressure drag on roughness elements (Fν) (=11.16, 23.1% of total drag on bottom wall)

+ Shear drag on surfaces of roughness elements (=8.50, 17.5% of total bottom drag)

+ Shear drag on bottom wall, non-roughened parts (=3.24, 6.7% of total bottom drag)

+ Shear drag on top wall (=18.45)

= 66.86 (on average)

The average source driving the flow in the streamwise direction is −∂P∂x V = 63.31, thus the FPM error for the force
budget for the sand-grain surface is 5.6%. The relative significance of the Q-induced force FQ is quite similar to its
cube counterpart, contributing more than 50% of the total rough-wall drag also for the sand-grain case.

Fig. 10 shows the conditional averages of FQ and Fν based on the same four events as used in the decomposition
shown in Fig. 5. The same conclusions as those in Fig. 5 are applicable here too, with one major difference in
qualitative trends: there is no sharp peak in the conditional profiles of FQ at the roughness crest location y = kc. The
more smoothed behavior of the conditional averages is due to the fact that the roughness element top surface is not
at a single height but is distributed. Also, the fact that the profile peaks happen at y = 0.5kc suggest that there are
less incidences of roll-over turbulent structures for the sandgrain case as opposed to the cube case, leaving U-shaped
structures to dominate drag generation for the sand-grain roughness.

The foregoing analysis shows that the major contributions to pressure drag arise from regions with φ > 0 and that
significant cancellations occur within those regions. The total pressure drag depends on the preponderance of positive
or negative values of Q within those regions. Since the values of Q there depend on the flow and cannot be deduced
or assumed without detailed solutions and simulations of the entire flow field, prediction of total drag based only on
the distribution of φ would appear to be quite challenging. However, some important trends can be expected: The
larger the values of φ in certain regions near the surface the larger the drag force. Also, the larger spatial variability
of φ across the domain, the more likely large drag forces can be obtained. In Sec. IV we explore various statistical
features of the spatial distribution of φ and aim to correlate these to roughness length characterizing the drag force.
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FIG. 9. Contours of instantaneous u, Q, φ (constant in time), fQ and fν .

FIG. 10. Weighted conditional averages of FQ (a) and Fν (b) for sand-grain. Legends same as Fig. 5.
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IV. PREDICTION OF EQUIVALENT SANDGRAIN HEIGHT ks BASED ON φ

It is established that in equilibrium flows with sufficiently high Reynolds numbers for them to be fully rough, the
ks value (representative of the drag-producing capability of a rough surface) depends on the surface geometry only.
However, it has been a long-standing challenge to find generally applicable surface parameters and functional forms
to describe the dependence of hydrodynamic drag on these parameters. One can describe the roughness function as
∆U+ = 1

κ ln(k+s )− 3.5, which characterizes the hydrodynamic drag in fully-rough, fully-developed turbulent channel
flows over a rough surface. Equivalently, the roughness length z0 can be determined according to z0 = ks exp(−8.5κ)
if the equivalent sandgrain roughness is known [10]. However, how these quantities can be related to the actual surface
geometry is still an open research topic.

FIG. 11. Roughness database to predict ks, reproduced with permission from [35].

There are extensive studies in the literature that aim to predict ks based on empirical functions of various roughness
geometric parameters that can be defined based on the surface geometry [24, 25, 27]. Recently, Aghaei-Jouybari et al.
[35] assembled an extensive database (45 surfaces from both new DNSs and existing experiments) to apply Machine
Learning techniques such as Deep Neural Networks and Gaussian Process Regression to predict ks based on a series
of surface parameters as inputs. They were able to predict ks with an average error of less than 10% and a maximum

FIG. 12. Calculated φ field for 4 sample cases from [35]. Only a portion of the domain is shown on a representative x-y plane.
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FIG. 13. Scatter plots of the parameter ψ1 =
∫∞
0
〈|φ|〉dy/k2r against surface geometric parameters: surface porosity Po (a) and

spanwise effective slope Ez (b).

error of less than 30%. The surface characteristics used in prior studies include quantities such as the surface porosity

Po = 1
Atkc

∫ kc
0
Afdy and spanwise effective slope Ez = 1

At

∫
x,z

∣∣∣∂k∂z ∣∣∣dA (see e.g. discussion in [35]). Here we seek to

answer the following question: can models for the equivalent sandgrain roughness height be augmented and improved
by using characteristics of the φ-field? Recall that the φ-field depends only on the surface geometry and is relatively
easy and numerically cheap to compute using any simple Laplace equation solver. As the contours of φ in Fig. 3 and
9 show, the distribution of φ appears to contain important additional information about the roughness topography.
For instance, depending on how close roughness elements are located from each other, the magnitude of φ will
decrease more or less quickly as one moves away from the surface into the flow domain. Faster decrease can thus
be indicative of flow sheltering phenomena behind roughness elements which could thus be associated with reduced
average magnitude of φ. In general, φ contains non-local information about how the surface affects flow in its vicinity.
Besides the average magnitude of φ, we will identify two additional quantities that can be defined based on volume
integration that provide meaningful additional information that can be used to model ks. By showing that we can
establish a correlation between ks and these three parameters that depend only on φ, we aim to provide empirical
evidence that these φ-field properties could be added to traditional parameters (such as surface porosity, effective
slope and skewness) for improved modeling of ks.

In order to provide data for our analysis, we use a subset of the DNS database of Aghaei-Jouybari et al. [35] in
the fully rough regime to explore the prediction of ks using φ dependent variables. Twenty one of these surfaces,
replotted with permission in Fig. 11, were shown to have k+s > 70 (i.e., assumed to be fully rough here) and will
be used in the present analysis. Readers are referred to Ref. [35] for in-detail information about the simulations,
roughness geometries and calculated ks values.

We calculated the φ field for the 21 surfaces. As examples, contour plots of φ for four samples are shown in Fig. 12.
Nominally the φ-field has zero mean when integrating over the flow volume, while the average of its absolute value is
non-trivial and may therefore provide useful additional information on which to base models of ks. We first show that
while φ depends solely on the geometry of the surface, it provides information that somewhat differs from traditional
geometric parameters even if it displays some correlation with those parameters. For example, consider the L1-norm
type dimensionless parameter

ψ1 ≡
1

k2r

∫ ∞
0

〈|φ|〉dy,

where 〈·〉 represents intrinsic averaging over horizontal planes inside the fluid volume. Note that φ has unit of length,
thus we use the first-order moment of surface height fluctuations kr = 1

At

∫
x,z
|k − kavg|dA as characteristic height

to normalize all length-scales, similarly done in Ref. [35]. The parameter ψ1 is plotted against the surface porosity
Po and spanwise effective slope Ez in Fig. 13 For moderate and large values of Po and Ez, one notices an overall
decreasing trend of ψ1 versus Po (Fig. 13a) and increasing trend of ψ1 versus Ez (Fig. 13b). Both of these trends are
expected: as Po increases the elements are farther from each other, which leads to a drop of |φ| in the inter-element
regions, and as Ez increases the surface spanwise variation intensifies and results in an increase of |φ|. At low values
of Po (i.e. sparse roughness) and Ez (toward a 2D geometry as Ez approaches zero) the significant scatter seen for
ψ1 shows that the φ field contains additional information regarding the surface not contained simply in the porosity
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FIG. 14. Normalized sandgrain roughness length as function of the three parameters ψ1 in (a), ψ2 in (b), and ψ3 in (c), and
results from three-parameter curve-fitting for which Erravg = 10.5% and Errmax = 26% in (d).

or slope parameters.
The following additional two parameters have shown promising results among a pool of several other candidates

considered and tested:

ψ2 =
1

k2r

∫ ∞
0

〈|y∇φ|〉dy, (4a)

ψ3 = kr

∫ ∞
0

〈Qφ〉 dy, (4b)

where

Qφ ≡ −
1

2

∂(∂φ/∂xi)

∂xj

∂(∂φ/∂xj)

∂xi
= −1

2

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj
≤ 0.

While as described before, ψ1 is the simple normalized average of the absolute value of φ (using kr as the normalization
length scale) the other two parameters depend upon the spatial gradient of the φ-field. We note that the geometry-
dependent vector field up = U0−∇φ = i−∇φ is the potential flow solution with no-penetration boundary condition
for an arbitrary roughness topography (because ∇ ·up = 0, and up ·n = 0 at the solid boundaries, and U0 = i is the
unperturbed velocity of unit magnitude). Thus |∇φ| represents the magnitude of the potential flow velocity deviation
from uniform flow caused by the roughness elements. Therefore, the parameter ψ2 is proportional to the average
angular momentum flux y U0 ∇φ about the underlying surface at y = 0 associated with the potential flow velocity
perturbation ∇φ. For a recent analysis of the importance of angular momentum flux in analysis of skin friction in
boundary layers, see Ref. [44] (although there it is the real velocity that is used to define the angular momentum flux
which here we cannot use but must use instead potential flow velocity perturbation that can be obtained from the
φ-field). Non-dimensionalization with the magnitude of the unperturbed velocity U0 yields the definition as provided
in Eq. 4. The parameter ψ2 will be seen, empirically, to correlate well with the drag on the surface.

The third parameter ψ3 is simply the average value of the Q parameter defined based on the potential flow field
over the rough surface. It is noted that there is no vortical motion for this potential field, therefore Qφ is strictly
non-positive and indicative of a pure strain-dominated flow. A number of additional options for ψis were considered
such as norms based on root-mean-squared of φ, unweighted |∇φ| and others, but they led to less satisfactory results
compared to those obtained based on ψ1 to ψ3 above.

Next, a linear and bi-linear relationship is tested, as a simple functional dependence of ksp in terms of the three ψi
parameters:

ksp
kr

= a1ψ1 + a2ψ2 + a3ψ3 + a4ψ1ψ3 + a5ψ2ψ3, (5)

where ksp is the model-predicted value of ks and ai (i = 1, · · · , 5) are the empirical coefficients to be obtained via
fitting the data. This functional form, comprising 3 linear and 2 bilinear terms, is the simplest polynomial form that
yields desirable prediction of ks. The simplicity of this form, with only 5 tuneable coefficients, will prevent the risk of
an over-fitted result, however it does not guarantee a positive ksp value in case of extrapolating beyond the training
range, in which case a more complex expression must be employed. The empirical coefficients obtained by the curve
fitting are a1 = −197.0, a2 = 65.85, a3 = −7.358, a4 = 102.0 and a5 = 5.709.

Figure 14 shows scatter plots of ks/kr with respect to ψis in subplots (a-c) and also the curve-fitting results in
subplot (d). The average and maximum errors of the prediction are 10.5% and 26%, respectively. Here only 5 free
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variables were used for 21 fully rough surfaces, yet the prediction accuracy is of the same order of the designed DNN
introduced in Ref. [35]. This result strongly suggests that the surface parameters based on φ are promising to develop
drag models for rough surfaces using only geometrical information. The concept of using geometry-dependent fields
to help predict ks could be further generalized. For example, a family of φ fields could be envisioned, each obtained
by using boundary conditions different from those in Eq. (1). These could be chosen to reflect particular properties
of the roughness. Also, predictions based on combining the current approach with earlier ones, such as using inputs
from the φ field together with standard statistical features of the roughness geometry (e.g. skewness, slope, porosity,
etc..), are interesting and worth examining but are beyond the scope of the present study.

V. CONCLUDING REMARKS

Identifying sources of the hydrodynamic drag in rough-wall turbulent flows is important for drag prediction, tur-
bulence modeling and control. We employed the force partitioning method to quantify the effect of vortex-dominated
(Q > 0) and strain-dominated (Q < 0) regions on the total drag. The φ field, which is an important part of the FPM
analysis, depends solely on the roughness geometry, and is a signed potential field around roughness elements. A
vortex (Q > 0) or a strain-dominated region (Q < 0) can generate or annihilate the hydrodynamic drag depending on
its location in the respective φ field. As shown in Eq. (3), the pressure drag is decomposed into two terms– Q-induced
force FQ and the viscous momentum diffusion induced force Fν . For a stationary channel flow with cube roughness
elements arranged on the bottom wall and smooth top wall at Reτ = 500, it was shown that FQ contributes to the
majority of the rough wall drag (52.6%), with other important contributors being Fν (22.1%), and the shear forces
exerted on both the roughness elements and the smooth portions of the bottom wall (25.3%). The last two factors
are expected to contribute less to the total rough wall drag at higher Reynolds numbers. For the same setup but
with randomly oriented sand-grain roughness elements, these contributions are 52.7% for FQ, 23.1% for Fν and 24.2%
for the bottom-wall shear forces, confirming the importance of Q-induced motions in rough-wall drag generation for
different types of surface topography.

Conditional averages of the Q-induced force density, fQ = −2ρQφ, revealed that most of FQ is generated by the
imbalance of strain-dominated regions (contributing to the force) and vortex-dominated regions (opposing the force)
upstream of a roughness element, while they cancel each other’s effect downstream of a roughness element. Conditional
averages of fν = µ∇2u · ∇φ showed a net positive contribution to Fν by all events (vortex or strain-dominated)
irrespective of their emergence location (upstream or downstream), which was also expected due to irreversible nature
of molecular diffusion. We also decomposed fQ based on its mean and turbulence components fQuavg and fQurms for

the cube roughness. The results indicated that for the cube roughness case, about 56% of FQ originates from the

time-mean motions (i.e. contribution from Quavg = −0.5ui,juj,i). These motions may include head-down U -shape
structures that occur around y = 0.5kc and roller structures that occur right on the crest y = kc. The other 44% is
due to small-scale turbulent motions i.e. contribution by fQurms (where Qurms = −0.5u′i,ju

′
j,i).

Considering that the φ field depends solely on the roughness geometry and contains also non-local effect caused by
the roughness elements on the flow, we explored different parameters associated to the spatial distribution of φ and
attempted to build an empirical correlation to predict the roughness equivalent sandgrain height ks. Our prediction,
based on three φ-dependent parameters, offers an accuracy of about 10.5% of the average error and maximum error of
26%. These results were obtained from a database consisting 21 fully rough flows. The model correlation introduced
in this study (Eq. 5) employs 5 free parameters (obtained by curve fitting) yet offers an accuracy that is of similar
order to that of the deep neural network proposed in [35]. Altogether, this is an indication that information embedded
in the φ-field can be used to predict the hydrodynamic drag of rough-wall turbulent flows and can be included in
addition to other traditional parameters such as porosity, surface slope and skewness. It must be kept in mind that
while such procedures require solution of a Partial Differential Equation (PDE) in the flow volume for each surface,
the PDE is a simple Laplace equation, far simpler and inexpensive to solve than performing costly DNS, LES or
experimental measurements.
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