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Abstract

The deformation of a dense carpet of hair due to Stokes flow in a channel can be described

by a nonlinear integro-differential equation for the shape of a single hair, which possesses several

solutions for a given choice of parameters. While being posed in a previous study and bearing

resemblance to the pendulum problem from mechanics, this equation has not been analytically

solved until now. Despite the presence on an integral with a nonlinear functional dependence on

the dependent variable, the system is integrable. We compare the analytically obtained solution

to a finite-difference numerical approach, identify the physically realizable solution branch, and

briefly study the solution structure through a conserved energy-like quantity. Time-dependent

fluid-structure interactions are a rich and complex subject to investigate and we argue that the

solution discussed herein can be used as a basis for understanding these systems.
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I. INTRODUCTION

Beds of hair-like structures interacting with fluids are prevalent in organisms on both

micro and macro length scales. Their ubiquity in complex and simple organisms is an

indication of their versatility. Indeed, there is great diversity in the functionality at either

of these length-scales.

For example, geckos utilize hair-like setae on their feet to promote adhesion to surfaces

[1], cricket filiform hairs play a mechanosensitive role [2], and the papillae on hummingbird

tongues are used as a “nectar mop” [3]. They serve important roles in nutrient absorption

[4, 5], surface protection and flow control [6–9], surface adhesion [1, 10–12], and fluid en-

trainment [3, 13, 14]. They function as mechanosensors, detecting fluid flows [2, 7, 15–19],

predators [20, 21], and electric fields [22].

With the improvement of existing manufacturing techniques and the creation of new

protocols [23–29], studies have investigated a diverse assortment systems involving artificial

hairs. For example, recent studies have investigated the design potential of hair beds: Hairs

placed in a microfluidic channel have been shown to function as pumps [27, 30, 31], rectifiers

[32, 33], and micro-mixers [34–36] making them a design consideration in lab-on-chip devices.

Earlier work [32] used the theory of Kirchoff rods to describe the bending of hairs in a

channel when subject to shear flow. These authors assumed that the hairs possess linear,

isotropic material properties, but undergo finite displacements. The latter consideration

makes the problem nonlinear [37] and, as a result, in [32] the problem was solved numerically.

While there are many numerical methods to deal with such nonlinearities, numerical

approaches will only go so far. Biological-scale simulation of hair-beds has yet to be achieved

efficiently [38]. There are several reasons for this. Such systems involve many hairs [33] that

are free to respond to the ambient fluid flows generated by both external forcing and their

neighbors. Additionally, consideration of the hair’s inertia makes the governing system of

equations stiff [37]. Despite this, large-scale simulation of hairs has been achieved in the

graphics community by application of an assortment of optimization techniques [39, 40].

However, these techniques have the trade-off of realism [41].

To further understand these systems, we focus on and solve just the time-independent

problem posed in [32] for the profiles of a cantilevered hair-bed subject to shear flow through

a channel. We investigate both physical and nonphysical classes of solutions and how to
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consistently single out the former from the latter.

The paper is organized as follows. In Section II, we introduce the basic model and examine

how our problem differs from previous studies. We see that the problem arises naturally as a

boundary value problem, for which a method for analytical solution is described and imple-

mented in Section III. Next, we examine the phase space and discuss how a self-consistency

condition associated with the problem influences the solution-structure in Section IV. It is

here we also consider the case of angled hairs. We discuss common numerical approaches

to solving this class of problem in Section V, comparing one such implementation to our

solution. We conclude our work with a summary in Section VI.

II. PROBLEM FORMULATION

We consider the problem of a cantilevered hair, attached at a flat horizontal boundary,

subject to Stokes flow. In this formulation the hair is represented as a plane curve in Carte-

sian coordinates with R = x(s)x̂+ z(s)ẑ, where x̂ and ẑ are unit vectors. The unit tangent

is given by T̂ = sin θ(s) x̂+ cos θ(s) ẑ, so that T̂ · ẑ = cos θ, and with this parameterization

the curvature is given by dθ/ds. The quantity h(s) =
∫ s
0

cos θ(s′) ds′ represents the height

of the hair at position s with h(L) being the total height.

Let us next focus on the configuration of a hair obtained from moment balance in equi-

librium. For an infinitesimal cylindrical section of the hair, this balance yields

M(s+ ds)−M(s) + dr× Fint(s) = 0 , (1)

where M(s) = EIθ′(s)ŷ is the bending moment, dr = dsT̂(s), and Fint(s) is the net internal

force on the rod segment. For the purpose of this model, the hairs are packed sufficiently

dense such that the internal force is derived solely from the fluidic shear stress at the hair-tip.

By assuming Stokes flow with a no slip boundary condition at the hair-tips, the shear

stress is found to be ηv
H−h(L) x̂, where H, η, and v is the channel height, viscosity, and

boundary velocity, respectively. For an illustration of the system, see Fig. 1. The internal

force is this stress times an area:

Fint =
πa2

φ

ηv

H − h(L)
x̂

The first term, πa2

φ
is a characteristic control area covering both the hair-tip and the neigh-

boring fluid. Next, the stress exerted on the hair by the fluid depends on the hair height, or
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FIG. 1. Illustration of how the fluid-hair system is modeled. Dashed and solid profiles show hairs

in an undeformed and a deformed configuration, respectively. The model assumes the fluid velocity

becomes zero at the hair-tip, exerting a shear stress ηv
H−h(L) on the hair.

more specifically, the clearance length between the hair-tip and upper channel wall, which

is the reason for the denominator H − h(L): a vertical hair would be impacted by a maxi-

mum force, while the force is diminished as it entrains in the horizontal direction. A most

interesting feature of this formulation is that the relaxed state that results is self-referential

because of this denominator; i.e., the solution depends on itself and, as we will see, this gives

rise to a self-consistency condition.

From equation Eq. (1) and the definition of M, we “divide” by ds to obtain

EI
d2θ(s)

ds2
= −πa

2

φ

ηv cos θ(s)

H −
∫ L
0

cos θ(s′) ds′
, (2)

which is the equation that will be solved in the course of this paper. We refer the reader to

[32, 37] for further details regarding its derivation.

Equation (2) can be transformed into the compact nondimensional form

d2θ̂

dσ2
= −ω2

ε cos θ̂, (3)

by introducing

θ̂(σ) = θ(s) , σ =
s

L
, ε =

L

H
, and ω2 =

πa2L2ηv

EIHφ
, (4)
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TABLE I. Important system parameters and their associated units

H Channel height [L]

L Hair length [L]

a Hair radius [L]

φ Packing fraction

δ Hair-hair centerline spacing [L]

E Elastic modulus [M ][T ]−2[L]−1

I 2nd area moment of hair’s cross-section [L]4

η Dynamic viscosity [M ][L]−1[T ]−1

v Imposed fluid velocity [L][T ]−1

θ Angle between the local tangent and the vertical

s Arc length measured from the base of the hair [L]

and

ω2
ε =

ω2

1− ε
∫ 1

0
cos θ̂(σ) dσ

. (5)

The natural boundary conditions for (3) are the following:

θ̂(0) = θ̂0 and
dθ̂

dσ

∣∣∣∣∣
σ=1

= θ̂′1 = 0 , (6)

where θ̂0 is the angle of attachment of the hair and θ̂′1 = 0 means that the hair at its tip has

zero curvature. The latter condition can be obtained from the moment balance in Eq. (1).

At the end of the hair, there is no upstream (s > L) contribution to the balance implying

that M̂(1) ≡ EIθ̂′1ŷ is infinitesimally small. With these definitions, we see that our system

has only two dimensionless parameters, ε and ω, in addition to the choice of θ̂0. We will

drop the ‘hats’ moving forward to avoid clutter.

This system differs in some ways from the standard pendulum problem of mechanics. For

example, we have the trivial difference that there is a shift in the definition of the angle –

instead of having sin θ on the righthand side of (3) we have cos θ. However, there are two

essential differences: first, instead of the usual initial value problem, in light of (6), we have

a boundary value problem and second, the system has the self-referential feature mentioned

above, i.e., in order to know the effective frequency ωε of (5) one must first obtain the

entire “orbit” θ(σ) to get a self-consistent solution. Although these differences significantly
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FIG. 2. The hair boundary value problem is mathematically equivalent to that of a pendulum if θ

is shifted by π/2 and σ → t.

complicate the problem, we will see that the problem remains integrable. We will see that

the self-consistency condition together with the boundary value nature of the problem lead

to a sort of quantization and a further reduction of parameters.

A “potential” for (3) can be obtained by setting d2θ/dσ2 = −dV/dθ, where V (θ) =

ω2
ε sin θ. The Hamiltonian of this system, which we will call E , takes the form

E =
1

2

(
dθ

dσ

)2

+ ω2
ε sin θ . (7)

Because ωε does not depend explicitly on σ, the time-like variable, conservation of energy,

dE/dσ = 0, follows immediately. Observe that the curvature, dθ/dσ, determines a quantity

analogous to the pendulum kinetic energy for this system.

As noted above and indicated in Fig. 2, the potential in the pendulum problem is − cos θ

and the pendulum oscillates about θ = 0. However, the boundary value problem for the

hair is different because the pendulum potential − cos θ is shifted by π/2 from the hair’s

potential, sin θ. Thus, the hair problem is analogous to a pendulum starting at θ = θ0,

a distance up the potential well, that is then projected further up the well with an initial

velocity that is enough for it to hit its turning point at dθ/dσ = 0. Therefore, the goal is to

determine the initial value of dθ/dσ corresponding to a time (length) for this to occur. To

transform our problem to the pendulum problem we will shift θ by π/2, i.e.,

θ̄ = θ +
π

2
⇒ sin(θ) = − cos(θ̄) , (8)
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and therefore

E =
1

2

(
dθ̄

dσ

)2

− ω2
ε cos θ̄ . (9)

This angle shift is convenient because it allows us to write the solution in the standard

form for the pendulum in terms of elliptic integrals, which is a first step toward showing

integrability.

III. SOLUTION-INTEGRABILITY

Given the formulation of Section II, we may begin by following the elementary procedure

for reducing the pendulum to quadrature. Using the double-angle formula, cos θ = 1 −

2 sin2(θ/2), solving (9) for dθ̄/dσ, and integrating gives

±ωε
k
σ =

∫ θ(σ)/2+π/4

θ0/2+π/4

dχ√
1− k2 sin2 χ

, (10)

where χ = θ/2 and

k2 =
2ω2

ε

E + ω2
ε

. (11)

The choice in sign in (10) determines whether θ′0 is positive or negative. While we are

primarily interested in hairs with positive base-curvature (corresponding to the positive

sign), we include both possibilities for completeness. This quadrature, analogous to that of

the pendulum, is the first step toward obtaining integrability of our hair problem.

Before proceeding, there is one issue that must be checked, viz. that
√

1− k2 sin2 χ does

not become imaginary; that is, we want to check that k2 sin2 χ < 1 for χ within the limits of

integration, and that this is maintained as the upper limit of the integral of (10) extends all

the way to θ(1), which we will denote by θ1. For the most part, we expect physical solutions

to have

0 ≤ θ1 ≤ π/2 , (12)

which we can verify after the solution is obtained, so that according to (7), E > 0. Thus,

upon writing ξ = E/ω2
ε , (11) becomes k2 = 2/(1 + ξ) with ξ ≥ 0. Consequently,

1 ≤ k2 ≤ 2 , (13)

and this by itself is insufficient to guarantee k2 sin2 χ < 1, However, because of the second

boundary condition of (6) and conservation of the energy of (9)

ξ = sin θ1 ⇒ 0 ≤ ξ ≤ 1 . (14)
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Next, using (12) and the fact that sin2 χ achieves its maximum when θ = θ1, we obtain

sin2
(
θ1/2 + π/4

)
=
(
1 + sin θ1

)
/2 , (15)

which follows from elementary trigonometry identities. Therefore with (14), we have

k2 sinχ ≤ 2

1 + ξ

1

2

(
1 + sin θ1

)
=

1

1 + ξ

(
1 + ξ

)
= 1 . (16)

Thus the quadrature integral of (10) is well behaved even with k2 > 1, which is consistent

with what we would physically expect.

Proceeding, we can invert and obtain the explicit solution by writing the integral of (10)

in terms of elliptic integrals. First, we split the integral as follows:

±ωε
k
σ =

∫ θ(σ)/2+π/4

0

dχ√
1− k2 sin2 χ

−
∫ θ0/2+π/4

0

dχ√
1− k2 sin2 χ

, (17)

and notice that the second integral of (17) is an incomplete elliptic integral of the first kind,

which we move to the lefthand side, yielding

±ωε
k
σ + F

(
θ0
2

+
π

4

∣∣∣∣ k2) = F

(
θ(σ)

2
+
π

4

∣∣∣∣ k2) . (18)

Equation (18) can be inverted by utilizing Jacobi elliptic functions. In particular, the

Jacobi amplitude function (see e.g. [42]) is the inverse of F , i.e.,

am
(
F
(
φ | k2

) ∣∣ k2) = φ . (19)

From now on we will drop the k2 from the arguments and write am(φ) for am (φ | k2) and

F(φ) for F (φ | k2), unless a different parameter is used. Using (19), (18) can be inverted to

obtain the following solution:

θ(σ) = 2 am

(
±ωε
k
σ + F

(
π

4
+
θ0
2

))
− π

2
. (20)

Evaluation of the Hamiltonian of (9) at σ = 0 gives

E =
1

2
(θ′0)

2
+ ω2

ε sin θ0 , (21)

where θ′0 = dθ(0)/dσ. Using (11) and (21) we see that (20) gives θ(σ, θ0, θ
′
0, ωε), as expected

for the solution of the initial value problem. To solve the boundary value problem where

θ′1 = 0 we use the identity d am(u)/du = dn(u) and hence,

dθ(σ)

dσ
= ±2

ωε
k

dn

(
±ωε
k
σ + F

(
π

4
+
θ0
2

))
, (22)
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and therefore the boundary condition gives

θ′1 = ±2
ωε
k

dn

(
±ωε
k

+ F

(
π

4
+
θ0
2

))
= 0 . (23)

Because elliptic integrals and functions usually consider the range 0 ≤ k2 ≤ 1, while we have

(13), we use the identity

dn
(
u | k2

)
= cn

(
ku | k−2

)
(24)

to write the boundary condition of (23) in the form

cn

(
±ωε + kF

(
π

4
+
θ0
2

∣∣∣∣ k2) ∣∣∣∣ k−2) = 0 . (25)

Equation (25) gives a condition relating θ′0 to ωε for fixed θ0. Because of the periodic nature

of cn(u), these are quantized according to

±ωε + kF

(
π

4
+
θ0
2

∣∣∣∣ k2) = (2n+ 1)K(k−2) , n ∈ Z , (26)

where K(k−2) = F (π/2 | k−2).

To summarize we collect all our parameters together,

k2 =
2

1 + ξ
, ξ =

E
ω2
ε

, E =
1

2
(θ′0)

2 + ωε
2 sin θ0 ,

and observe, we have shown for fixed and given ωε and θ0 the above analysis tells us what

θ′0 must be to hit our boundary condition θ′1 = 0.

So far we have followed a conventional and straightforward path leading to the solution

of (20). Except for the shift in phase and the boundary value nature of this solution, it is

standard for a one degree-of-freedom Hamiltonian system: it depends on two parameters

related to possible initial conditions θ0 and θ′0 via E and one parameter ωε, which we have

treated as a given constant. We proceed now by examining in general terms the boundary

value nature of our problem with the imposition of the self-consistency constraint of (5).

Consider a general system of differential equations of the form

d2θ

dσ2
= f(θ, λ) , (27)

where λ is a parameter. Often one uses a shooting method to solve the boundary value

problems for equations of this type, i.e., a sequence of initial conditions are integrated

numerically for choices of the parameter λ until the desired boundary condition is reached.
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This procedure usually selects out discrete values for λ, which for linear systems would be

eigenvalues. However, if one has an analytical solution to the initial value problem, as we

do, this can be used to relate initial and final values. A condition that relates derivatives

at the endpoints, here taken to be σ = 0 and σ = 1, follows immediately upon integrating

(27), i.e.

θ′1 − θ′0 =

∫ 1

0

f(θ, λ) dσ . (28)

Self-consistency means that the parameter λ depends functionally on the solution θ(σ). For

our problem at hand, the role played by λ is ωε and this self-consistency requires the solution

of (20) be consistent with the ωε as calculated from (5) with the insertion of (20). As a first

step toward imposing this self-consistency constraint, analogous to (28) we integrate (3) to

obtain an expression for the height of the hair in terms of an initial condition, viz.,

θ′0 = ω2
ε

∫ 1

0

cos θ(σ) dσ = ω2 h1
1− εh1

=
1

ε
(ω2

ε − ω2) , (29)

where θ′0 = dθ(0)/dσ and h1 is the dimensionless height of the hair, the dimensional height

being h1L. The last equality of (29) follows upon eliminating h1 using (5). The hair

problem is complicated because the quantity ω2
ε depends on the solution of the boundary

value problem (5) to give (29). Fortuitously, this quantity only depends on h1. For general

problems of this nature of the form of (28), these two quantities would not in general depend

on a single parameter like this.

Evidently, we must calculate h1. In fact, we can explicitly calculate h(σ) the height of

the hair at parameter value σ (see Appendix fappendix),

h(σ) =

∫ σ

0

cos θ(σ′) dσ′

=
2

kωε

[√
1− k2 sin2(π/4 + θ0/2)− dn

(
±ωε
k
σ + F (π/4 + θ0/2)

)]
. (30)

Next, we write ωε in terms of ω and ε by inserting the last equality of (29) into (21), giving

ω2
ε ∓ ε

√
2E − 2ω2

ε sin θ0 = ω2 . (31)

Thus the self-consistent solution of our boundary value problem is fully determined by

following:

θ(σ; θ0, ε, ω) = 2 am

(
±ωε

√
ξ + 1

2
σ + F

(
π

4
+
θ0
2

∣∣∣∣ k2)
∣∣∣∣∣ k2

)
− π

2
, (32)

10



where 0 ≤ σ ≤ 1 is our dimensionless parameter and

0 = ±ωε + kF

(
π

4
+
θ0
2

∣∣∣∣ k2)− (2n+ 1)K(k−2) , (33)

ω2
ε = ω2± εωε

√
2ξ − 2 sin θ0 , (34)

k2 =
2

ξ + 1
. (35)

Note, kF (ϕ | k2) = F ( ϕ̄ | k−2), where sin ϕ̄ = k sinϕ, (see equation (8.127) of [43]) can be

used when evaluating (33). Here (33) with (35) determines ωε as a function of θ0 and ξ,

which with (34) determines ξ as a function of θ0, ε, and ω. We note in passing that the

variable ξ is related to the physically perspicuous variable h1 according to

ξ =
ω2

2

h1

(1− εh1)2
+ sin θ0 .

In Section IV we will evaluate (32) for various cases. We will see that for physically

realizable solutions of interest, we must set n = 0 in (33) and select the + branch. In

practice we use root finding to solve (33) and (34).

IV. PHASE SPACE INTERPRETATION

Because (3) is isomorphic to the differential equation for a pendulum, it is helpful to

interpret our analytical solutions in terms of motion in the pendulum phase space. In this

section we do this, first for hairs with θ0 = 0 and then for θ0 6= 0.

A. Vertical hairs: θ0 = 0

Figure 3 shows several different trajectories, corresponding to different values of ξ, for

the case where θ0 = 0. Here, only the solutions that stop when they intersect θ′1 = 0 once

are shown, but we do observe other solutions corresponding to trajectories completing one

or several orbits, especially at higher values of ξ.

Observe, ξ = E/ω2
ε and E are both measures of the system’s energy (Hamiltonian) since

they only differ by a proportionality constant, once self-consistency is enforced. We prefer

to use ξ in the following figures and analysis because −1 ≤ ξ ≤ 1, while E is unbounded. In

addition, our analytic solution is written more concisely in terms of ξ. Figure 3 shows the

phase space with energy surfaces parameterized by ξ. Note, because ξ is used and because
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FIG. 3. Phase portraits for a selected set of 0 ≤ ξ ≤ 1, a scaled measure of the energy, and their

corresponding profiles. ξ = 1 corresponds with the separatrix. Trajectories start at θ(0) = 0 and

end at θ′(1) = 0.

the ordinate is θ′/ω2
ε , the energy surfaces are not nested as usual. In Fig. 3, as ξ → 1

the orbit approaches the separatrix and ξ = 0 corresponds to the undeformed hair where

θ(σ) ≡ 0.

Within the pendulum analogy, ωε acts as a natural frequency. The boundary conditions

θ0 = 0 and θ′1 = 0 describe a pendulum trajectory starting at θ = 0 and ending when θ̇ = 0

in a time T . The largest possible initial velocity that satisfies these conditions corresponds

to a phase-space trajectory entirely confined to the first quadrant. At a threshold natural

frequency, other starting velocities can also satisfy the “initial” conditions, but they must

correspond to orbits that exit the first quadrant.

Figure 4 depicts two orbits for a given choice of parameters. The first (black) starts

at θ0 = 0 with some θ̇0 6= 0 and the trajectory evolves until θ̇1 = 0. On the other hand,

the red orbit reaches its first maximum when θ̇(t = 1/3) = 0 and it oscillates the other

direction until finally reaching θ̇1 = 0. When not equal to zero, the branch index, n (shown

in Eq. (32)) selects out these lower period orbits. In addition to these two solutions in our

example above, there are two more with an opposite sign in θ̇0. This choice in direction is

reflected by the ± sign in our solution. Lastly, note that for the sake of clarity, we have

drawn Fig. 4 without the π/2 angle shift that is present, but the principles discussed in
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FIG. 4. The problem of a cantilevered hair with a point load at its end is isomorphic to the

equation of motion for a pendulum with the initial conditions θ(t = 0) = 0 and θ̇(t = 1)=0.

Because multiple different orbits can satisfy these conditions for a given choice in parameters (e.g.,

the blue and black orbits of the figure), both the cantilevered hair and pendulum problem posed

above are not unique.

this paragraph are unchanged when accounting for this shift (the orbits of interest remain

bounded whether or not there is an angle shift).

For the hairs, choices of n 6= 0 and/or negative curvature branches correspond to

“twirling” profiles (see Fig. 5). These orbits are not physically realizable for simple shear

flow experiments for either of two reasons:

• Hair profiles intersect the surface they are mounted on (or also themselves). This is

possible because the model does not consider hair-surface interactions.

• The assumption that shear stress is concentrated at the hair tip breaks down because

the hair-tip is no longer the portion exposed to shear flow.

These solutions are an important consideration nevertheless because numerical algorithms

can be susceptible to converging to them.

All accessible solutions for a discrete list of ε values and a range of ω2 are plotted in Fig. 5.

In panel (a) we plot the energy E (a measure of θ′0) vs. ω2 for the values of ε color coded

in panel (c). The blue curve corresponds to ε = 0, the case where self-consistency vanishes,

while the orange curve shows the distortion caused as ε approaches unity. This plot makes

it clear that the pendulum analogy alone is insufficient to capture predictions of the basic
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model. Panel (b) shows that the solutions of the self-consistent boundary value problem are

completely collapsed when the similarity variable ξ is used instead of E . In this plot of ξ

vs. ω2
ε there is only a single curve. The black lines on this plot depict representative hair

profiles: for small ω2
ε the hair only slightly bends while there is a scaling change for ω2

ε & 1

as the hair bends significantly. In addition, for larger ω2
ε we obtain the twirling profiles

where the solid and dashed lines of panel (b) indicate positive and negative base curvature,

respectively. Panel (c) shows that the physically realizable branch can be partially collapsed

by plotting ξ vs. ω2/(1−ε). In the case of the physically realizable solutions, the dependence

on ε is most apparent for small forcing where the hair height is maximal. For this case (e.g.

small imposed fluid velocity v << 1) h1 → 1, i.e., the hair is nearly vertical with θ ≈ 0.

Thus from (29), θ′0 ≈ ω2
ε , which with (21) gives

ξ =
θ′2

2ω2
ε

+ sin θ ≈ θ′2

2ω2
ε

≈ ω2
ε

2
. (36)

This explains the linear dependence and slope observed in panel (b) of Fig. 5 for small ω2
ε .

For large forcing where ω2 →∞, the height of the hair asymptotically approaches zero, i.e.,

θ1 ≈ π/2 and ξ ≈ sin θ1 ≈ 1, which explains the asymptote of panel (b) of Fig. 5. In this

limit ω2
ε → ω2 and the ε-dependence vanishes. Finally, one expects the crossover between

weak and strong forcing behavior to occur near ω2
ε/2 ≈ 1, and indeed this is the case.

The self-consistency condition captures the fact that hairs deform to reduce drag. This

effect is controlled by the hair length to channel height ratio, ε. Figure 5a reveals that

increasing ε corresponds to an increase in the system’s Hamiltonian, E . Through rearrange-

ment of Eq. (31) to ω2
ε = ω2+ε

√
2E (here, the physically realizable branch has been selected),

we see that as ε grows the forcing parameter ω2
ε must also increase.

B. Angled hairs: θ0 6= 0

Next, we plot ξ vs. ωε for different values of θ0 in Fig. 6. For negative θ0, shear flow is

against the grain. As the forcing increases, hairs reorient to align with the fluid velocity

until θ1 = 0 which corresponds to ξ = 0. Further increasing the forcing parameter brings

the system into the flow alignment regime, scaling the same for all θ0.

On the other hand, increasing θ0 results in flow with the grain. Flow alignment can be

achieved with a smaller forcing parameter (compared to θ0 = 0) and the dependence of ξ on
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FIG. 5. Plots of solutions of the boundary value problem posed in Section II for the case θ0 = 0

depending on the two parameters, ω2 and ε. (a) Uncollapsed dependence of the energy (Hamilto-

nian) E on the two input parameters. (b) Fully collapsed solution space in terms of the similarity

variables ξ = E/ω2
ε vs. ω2

ε , with representative hair profiles. Here, solid and dashed lines indicate

positive and negative base curvature, respectively. Note, ω2
ε is a quantity that depends transcen-

dentally on ω2 and ε. For weak and strong forcing we see the predicted scalings of ξ ≈ ω2
ε /2 and

ξ → 1, respectively, with the crossover occurring near ω2
ε /2 ≈ 1. (c) Partial collapse of the solution

space is seen using the abscissa ω2/(1− ε), showing physically realizable branches with an explicit

function of the input parameters. To avoid clutter, only the first three branches (and their negative

curvature counterparts) are plotted in this panel.
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FIG. 6. ξ vs ωε plotted using Eq. (32) for different values of θ0. Hairs with a negative base-angle

have negative energy at low ω, and transition to positive energy as ω increases. Figure created

with ε = 0.61

ω2/(1− ε) approaches a horizontal line.

V. HAIR PROFILES, DISCUSSION, AND COMPARISONS

Recall from Section II, the unit tangent is given by R′ = T̂ which implies x′(σ) = sin θ(σ)

and z′(σ) = cos θ(σ). Thus, given our solutions of Section III for θ(σ), we can plot z vs. x for

the hair profiles. In this section we compare hair profiles obtained by our analytic solutions

with those obtained by direct numerical integration. A standard numerical method for

nonlinear boundary value problems is to use a shooting code, whereby initial values are

incremented until the desired boundary value is obtained. In [32] such a shooting code with

a standard ordinary differential equation algorithm was used to integrate the pendulum

equations of (2), with an adaptation allowing for the θ-dependence in ωε. Another approach

is to make a central difference approximation to the second derivative of (2), representing

θ along the centerline of the hair by a mesh of N segments with values θi (i = 1, 2, ..., N).

This gives a sequence of algebraic equations with the boundary conditions built into the

first and last equation. Coupling of the equations is provided by both the differencing and

the self-consistency through ωε. An example of this procedure is given in [44], where the

more complicated problem of a filament subject to three dimensional dynamical behavior is
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solved by discretizing in both space and time. Associated with this method is a root finding

problem, which for the time-independent case involves solving N equations for each mesh

value θi. Because there isn’t a concise description of how each of θi asymptotically scales

with the forcing parameter, ω, convergence to physical solutions is not always guaranteed.

In Fig. 7 a set of profiles is shown, comparing our analytic solution with numerical

solutions obtained by using the mesh discretization described above. At low forcing, both

approaches converge to the same, physical solution. At high forcing when the hair becomes

more streamlined, the numerical solution fails to converge accurately. The reason for this

discrepancy is currently unknown. As shown in Fig. 8a, increasing mesh segment number

further does not significantly reduce the error in hair height. In Fig. 8b, we see that error is

most concentrated towards the base of the hair for strongly deformed configurations.

Even though there is a root finding problem associated with our analytic solution, it is a

single equation (compared to N for the numerical approach). Because of this, and the fact

that we know how E scales in both deformed and undeformed regimes, our analytic method

is both simpler to implement and faster to computed than numerical approaches.

We have observed that the analytic solution is about two orders of magnitude faster

(0.005 s vs. 0.5 s for a finite-difference simulation with a mesh-size of 80) than the numerical

procedure. There is not much difference in obtaining a single solution using either approach

in terms of speed. However, problems that involve solving (3) iteratively can benefit signif-

icantly from the analytic approach. For example, optimization of the system’s rectification

properties and solving weakly time-dependent problems (ωε → ωε(t)) are potentially com-

putationally expensive tasks.

Given a shear stress, what are the profiles of bed of hairs, which can be dense yet nonin-

teracting? Our solution presented in (32) provides an answer to this question. The inverse

problem, where the profiles are used to infer the shear stress, is utilized in a recently devel-

oped imaging technique. In [45, 46], a bed of flexible micropillars is used to detect near-wall

shear stress and velocity fields in turbulent flow. The pillars act as wave guides allowing

the tip deflection to be measured when illuminated from below. Our analytic method could

be used to derive simple expressions for tip-deflection, which can be utilized in the linear,

low deformation regime. Greater flow-detection sensitivity can be achieved by increasing

the flexibility of the pillars and operating them in the nonlinear regime [46].

Lastly, we argue that our analytic solution can be used as a basis for understanding

17



-0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. Comparison of numerical and analytic solutions for a variety of E . Solid and dashed curves

indicate numerical and analytic solutions, respectively. A discretization method was used for the

numerical routine with an initial estimate of θi = 0 for the outer figure and θi = −0.1 for the inset.

problems where the fluid flow has a slow time dependence. In this regime, a hair cycles

through its steady-state profiles, and fluid flows within the hair bed can be neglected.

VI. SUMMARY

In this work, we obtained a solution to a differential equation describing the profile

of a hair bed immersed in shear flow. This problem differs from previous treatments of

cantilevered rods in that the forcing parameter has functional dependence on the dependent

variable, θ(σ). This aspect of the model captures the fact that hairs deform to reduce the

fluid induced drag. As interesting as they are, many of these solutions are not physically
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FIG. 8. Convergence of the finite difference approach to the analytical solution, where ∆θ ≡

θanalytic − θnumeric, ∆h(L) ≡ hanalytic(L)− hnumeric(L) and legend labels correspond to the value of

ω2/(1− ε). In panel b, solid and dashed lines are solutions with N=20 and N=80 mesh segments,

respectively. Error due to the discretized nature of the numerics is most apparant at the base of

the hair (i.e. small σ), dropping off as the curvature decreases towards the hair-tip. Increasing

mesh segment number has a marginal effect on improving convergence.

realizable and an advantage of our analytic work is that we can select the desired branch.

To contrast this, shooting codes and other numerical approaches cannot be guaranteed to

converge to this class of solution.

We then compare the analytic solution to a central difference based numerical scheme that

performs reasonably well for the range of loading tested, but can encounter a convergence

issue when the curvature at the base is large.

Future work could explore an adiabatic extension of this model to describe time-

dependent channel flows.

ACKNOWLEDGMENT

PJM was supported by U.S. Dept. of Energy Contract # DE-FG05-80ET-53088.

Appendix A: Calculation of h(σ)

We wish to calculate h(σ) of (30). To this end, let

θ(σ) = 2 [am (u)− π/4] with u :=
ωε
k
σ + F

(
π

4
+
θ0
2

)
. (A1)
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Using elementary trigonometry identities we obtain

cos θ(σ) = cos
[
2
(
am(u)− π/4

)]
= 1− 2 sin2[am(u)− π/4] , (A2)

sin
(
am(u)− π/4

)
=

√
2

2

(
sn(u)− cn(u)

)
, (A3)

with the identities sn(u) = sin
(
am(u)

)
and cn(u) = cos

(
am(u)

)
. Thus,

2 sin2
(
am(u)− π/4

)
=
(
sn(u)− cn(u)

)2
= 1− 2cn(u)sn(u) , (A4)

using sn2(u) + cn2(u) = 1. So 1− 2 sin2(u) = 2cn(u)sn(u), which with

cn(u)sn(u) = − 1

k2
d

du
dn(u) (A5)

we obtain ∫ σ

0

cos θ(σ′) dσ′ = − k

ωε

2

k2

∫ u

u0

d

du′
dn(u′) du′ =

2

kωε

(
dn(u0)− dn(u)

)
(A6)

using dσ = k du/ωε, where u0 = F (π/4 + θ0/2). Finally we use

dn
(
F
(
φ | k2

) )
=

√
1− k2 sin2 φ (A7)

to obtain the result of (30).

[1] Kellar Autumn, Metin Sitti, Yiching A. Liang, Anne M. Peattie, Wendy R. Hansen, Simon

Sponberg, Thomas W. Kenny, Ronald Fearing, Jacob N. Israelachvili, and Robert J. Full,

“Evidence for van der Waals adhesion in gecko setae,” Proceedings of the National Academy

of Sciences 99, 12252–12256 (2002).

[2] Bree Cummins, Tom°° Gedeon, Isaac Klapper, and Ricardo Cortez, “Interaction between

arthropod filiform hairs in a fluid enviroment,” Journal of theoretical biology 247, 266–280

(2007).

[3] Cally J. Harper, Sharon M. Swartz, and Elizabeth L. Brainerd, “Specialized bat tongue is a

hemodynamic nectar mop,” Proceedings of the National Academy of Sciences 110, 8852–8857

(2013).

[4] Naama Reicher and Zehava Uni, “Intestinal brush border assembly during the peri-hatch

period and its contribution to surface area expansion,” Poultry Science 100, 101401 (2021).

20



[5] Ying-Ning Zou, De-Jian Zhang, Chun-Yan Liu, and Qiang-Sheng Wu, “Relationships between

mycorrhizas and root hairs,” Pakistan Journal of Botany 51 (2019).

[6] Mitul Luhar and Heidi M. Nepf, “Flow-induced reconfiguration of buoyant and flexible aquatic

vegetation,” Limnology and Oceanography 56, 2003–2017 (2011).

[7] Sheldon Weinbaum, Limary M. Cancel, Bingmei M. Fu, and John M. Tarbell, “The Gly-

cocalyx and Its Role in Vascular Physiology and Vascular Related Diseases,” Cardiovascular

Engineering and Technology 12, 37–71 (2021).

[8] S. Chateau, J. Favier, S. Poncet, and U. D’Ortona, “Why antiplectic metachronal cilia waves

are optimal to transport bronchial mucus,” Physical Review E 100, 042405 (2019).

[9] Hugo Angleys and Leif Østergaard, “Krogh’s capillary recruitment hypothesis, 100 years on:

Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during

exercise?” American Journal of Physiology-Heart and Circulatory Physiology 318, H425–H447

(2020).

[10] G. Walker, A. B. Yulf, and J. Ratcliffe, “The adhesive organ of the blowfly, Calliphora

vomitoria: a functional approach (Diptera: Calliphoridae),” Journal of Zoology 205, 297–307

(1985).

[11] James M. R. Bullock and Walter Federle, “Beetle adhesive hairs differ in stiffness and stick-

iness: in vivo adhesion measurements on individual setae,” Naturwissenschaften 98, 381–387

(2011).

[12] Robert B. Suter, Gail E. Stratton, and Patricia R. Miller, “Taxonomic variation among spiders

in the ability to repel water: Surface adhesion and hair density,” The Journal of Arachnology

32, 11–21 (2004).

[13] Wonjung Kim, Tristan Gilet, and John W. M. Bush, “Optimal concentrations in nectar

feeding,” Proceedings of the National Academy of Sciences of the United States of America

108, 16618–16621 (2011).

[14] Alice Nasto, P.-T. Brun, and A. E. Hosoi, “Viscous entrainment on hairy surfaces,” Physical

Review Fluids 3, 024002 (2018).

[15] P. Guo, A. M. Weinstein, and S. Weinbaum, “A hydrodynamic mechanosensory hypothesis for

brush border microvilli,” American Journal of Physiology. Renal Physiology 279, F698–712

(2000).

21



[16] Kaitlyn Hood, M. S. Suryateja Jammalamadaka, and A. E. Hosoi, “Marine crustaceans with

hairy appendages: Role of hydrodynamic boundary layers in sensing and feeding,” Physical

Review Fluids 4, 114102 (2019).

[17] Jean-Baptiste Thomazo, Javier Contreras Pastenes, Christopher J. Pipe, Benjamin
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