
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Capillary driven fragmentation of large gas bubbles in
turbulence

Aliénor Rivière, Daniel J. Ruth, Wouter Mostert, Luc Deike, and Stéphane Perrard
Phys. Rev. Fluids 7, 083602 — Published 30 August 2022

DOI: 10.1103/PhysRevFluids.7.083602

https://dx.doi.org/10.1103/PhysRevFluids.7.083602


Capillary driven fragmentation of large gas bubbles in turbulence

Aliénor Rivière1, Daniel J. Ruth2, Wouter Mostert2,3, Luc Deike2,4 and Stéphane Perrard1,5
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The bubble size distribution below a breaking wave is of paramount interest when quantifying mass
exchanges between the atmosphere and oceans. Mass fluxes at the interface are driven by bubbles
that are small compared to the Hinze scale dh, the critical size below which bubbles are stable,
even though individually these are negligible in volume. Combining experimental and numerical
approaches, we report a power law scaling d−3/2 for the small bubble size distribution, for sufficiently
large separation of scales between the injection size and the Hinze scale. From an analysis of
individual bubble break-ups, we show that small bubbles are generated by capillary effects, and
that their break-up time scales as d3/2, which physically explains the sub-Hinze scaling observed.
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I. INTRODUCTION

Bubble fragmentation drives gas dissolution by drastically increasing the exchange surface between phases. For
instance, up to 40% of the total CO2 uptake by the ocean is due to bubble-mediated gas transfer [1–3]. More
specifically, it is the bubble size distribution that controls gas transfer [4, 5] and spray production as bubbles burst at
the surface [6–9]. Bubbles also play a major role in industrial applications like oil and gas transportation from remote
wells [10] or oil spill mitigations [11, 12].

As a consequence, the fragmentation of bubbles has been extensively studied in model experiments [13–16] as well
as under breaking waves both experimentally [17–20] and numerically [21–23]. For large bubbles, a consensus has been
reached on the bubble size distribution, described as N (d) ∝ d−10/3 with d the bubble volume equivalent diameter.
This law originates from a self-similar cascade of break-ups [24], in which each bubble produces a fixed number of
equally sized child bubbles, on a time given by the typical velocity fluctuations correlation time at the bubble scale
d. This correlation time scales with the eddy turnover time tc(d) = ε−1/3d2/3 where ε is the averaged dissipation rate
of kinetic energy by viscous dissipation, used to characterize turbulent flows [25].

The N (d) ∝ d−10/3 scaling holds down to the Hinze scale dh, the size at which kinetic energy balances surface
tension energy. The ratio of inertial and surface tension effects defines the Weber number, We = ρU2d/γ, where γ is
the liquid-gas surface tension, ρ the liquid density, and U a characteristic velocity driving the interface deformation.
For a bubble immersed in a turbulent flow, the characteristic velocity U is chosen as the averaged velocity difference
at bubble bubble diameter scale. If the bubble is within the inertial range, i.e. where the turbulent fluctuations
are scale invariant, the velocity increment is given by 〈(∆u)2〉 = 2ε2/3d2/3 [26], where 〈〉 denotes the average over
realisation, often call the ensemble average operation. The average velocity increment at the bubble scale defines the
Weber number for a bubble in a turbulent flow,

We =
2ρε2/3d5/3

γ
. (1)

Concomitantly, the Hinze scale dh [27] separates stable bubbles (d < dh) and those that will fragment (d > dh),

dh =

(
Wec

2

)3/5(
γ

ρ

)3/5

ε−2/5, (2)

with Wec the critical Weber number for break-up, which is typically an order one constant [14, 28, 29]. Note that due
to the inherent stochasticity of turbulent flows, the Hinze scale dh is a soft break-up limit.

The sub-Hinze bubble size distribution (d � dh) always exhibits a gentler slope than N (d) ∝ d−10/3, although
there is variability among the experimental studies [17–20], and the observations lack a physical explanation [18]. The
difficulty arises from the large scale separation between sub-Hinze bubbles and their parent size bubbles: the sub-Hinze
distribution cannot be explained by a self-similar cascade process, so a different physical argument is required.

In this article, we describe the physical mechanism leading to the sub-Hinze size distribution resulting from the
break-up of large super-Hinze bubbles. We decompose the bubble fragmentation dynamics by sequences of binary
events and consider two concomitant processes: break-up events, akin to the inertial self-similar process [24] which
lead to the formation of two bubbles of similar sizes, and splitting events, which creates one sub-Hinze and one super-
Hinze bubble, largely separated in size. For large separation of scales between the initial cavity and the Hinze scale,
the turbulence induces strong deformation, creating elongated structures, which will fragment on a time scale set by
capillarity, much faster than the surrounding turbulence time scales. Figure 1 sketches the succession of the typical
break-up and splitting events. Considering these two types of processes within a population balance equation and
their associated time scale, we recover the two power law scalings for the bubble size distribution with N (d) ∝ d−10/3

for d > dh originating from self-similar break-up controlled by the eddy-turnover time at scale d, and N (d) ∝ d−3/2

for d < dh controlled by capillary break-up time of ligaments of diameter d. To test the validity of our model, we
analyze individual splitting events using three-dimensional two-phase direct numerical simulations (DNS) of bubble
break-up in turbulence. Next, we present an experiment that achieves a large scale separation between an initial large
bubble and the Hinze scale, which produces a clear sub-Hinze bubble size distribution power law N (d) ∝ d−3/2, in
accordance with the theoretical model and the numerical simulations.

II. MODEL OF SUB-HINZE BUBBLE PRODUCTION

Let consider the fragmentation dynamics as a succession of binary events and we neglect the correlation between
successive events. Let T (∆, δ) denotes the lifetime of the parent bubble, of equivalent diameter ∆, which produces
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FIG. 1. (a) Sketch of a break-up process, involving inertial deformations, followed by a capillary splitting event. (b) Schematic
of a bubble of size ∆ splitting into a small bubble of size δ in a time T (∆, δ) and subsequent splittings.

two child bubbles of equivalent diameters δ and 3
√

∆3 − δ3 ≥ δ (from volume conservation), as sketched in figure 1.
For equal-size child bubbles we have δ = c∆ with c = 2−1/3 ≈ 0.79 a numerical constant.

The mean bubble flux Φ(∆, d, t) is the production rate of bubbles of diameter d from the break-up of a bubble of
size ∆, and is decomposed into the product of a break-up rate ω(∆) and a child size probability density f(∆, d) per
unit of diameter and can be written as [30, chapter 4, equation 2.1],[31],

Φ(∆, d, t) = 2f(∆, d)ω(∆)N (∆, t), (3)

where N (∆, t) is the number density of bubbles of size ∆ at time t, and the factor 2 comes from the assumption of
binary events, which is discussed in greater details in [14, 16, 28, 32]. The break-up rate ω(∆) is the average number
of break-up events of bubble of size ∆ per unit of time, also called break-up frequency. The probability density f is
often referred to as the child bubble size distribution and is the probability density function for a child of size d given
the break-up of a bubble of size ∆.

From Eq. 3, we obtain the temporal evolution of the bubble size distribution from the fragmentation of an initial
bubble of size d0 as the difference between a birth term and a death term [14]:

∂N (d, t)

∂t
=

∫ d0

d

Φ(∆, d, t)d∆− ω(d)N (d), (4)

considering the total bubble size distribution in a spatially homogeneous configuration, henceforth neglecting the
spatial advection terms. Equation (4) is the starting point of numerous population balance models.

For super-Hinze bubbles d > dh, we recall the argument from [24]. Considering break-up rates controlled by the
eddy turn-over time at the scale of the parent bubble, using (4) at steady state leads to N (d) ∝ d−10/3 [23, 24]. In this
self similar model, a bubble of size d breaks, in a time given by tc(d) = ε−1/3d2/3, into m fragments of equal diameter
m−1/3d. Each of these child bubbles then breaks in a time ε−1/3(m−1/3d)2/3. We obtain an increasing number of
m×m−2/9 = m7/9 bubbles per unit of time, which yields the bubble density N (m−1/3d) = m1/3m7/9N (d). Assuming
N (d) ∝ dα, we have −α/3 = 1/3 + 7/9 which gives α = −10/3 [24]. For d < dh, the self-similar argument cannot be
applied anymore since surface tension must be important at this scale.

Here we propose a scaling for the sub-Hinze bubble size distribution, i.e. for d < dh. In equation (3) the rate ω(∆) at
which a bubble breaks up does not distinguish between processes which produce equally sized child bubbles or highly
asymmetrically sized child bubbles, for which at least one child bubble is smaller than the Hinze scale. These two
types of events, however, may occur on very different timescales. Here, we consider that the fragmentation statistics
depends on both the parent size ∆ and smallest child size δ, a framework that has been used previously for models
based on bubble-eddy interactions [33]. We assume that the production of small bubbles (d < dh) is controlled by
bubble splitting events, in which elongated filaments become unstable under a Rayleigh-Plateau-like mechanism [34].
These elongated structures result from the deformation of larger bubbles due to the turbulent fluctuations, which
occur at time scale controlled by the turbulence (as sketched in figure 1). Then, the time for such elongated filaments
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to rupture will be controlled by capillarity, at the scale of the filament. This stems from the ”freezing” in place of the
turbulent flow relative to the accelerating collapse dynamics in the final moments before rupture, which was shown
experimentally in Ruth et al. [35]. A cascade of splitting events leads to the formation of sub-Hinze bubbles, whose
size δ are comparable to the diameter of the filament, and one larger bubble. The exact geometry of the filament and
the splitting time varies from one realization to the other, but considering an ensemble average, the splitting time
T (∆, δ) will be given by the capillary time T2(δ) at size small δ:

〈T (∆, δ)〉 = T2(δ) =
1

2
√

3

(
ρ

γ

)1/2

δ3/2, (5)

where the capillary time T2(δ) is the inverse of the angular frequency of oscillation of the principal mode of oscillation
of an inviscid bubble in a quiescent fluid [36], and also correspond to the growth rate of Rayleigh Plateau instability
of a bubble filament [34]. When the capillary mechanism dominates, the bubble lifetime T scales as δ3/2, with δ
the size of the smallest child bubble, is independent of the parent size and will control the shape of the bubble size
distribution.

While the two break-up mechanisms we consider are happening concomitantly, O(10-100) splitting events follow a
single break-up event for d� dh, so that the capillary time-scale dominates the production of sub-Hinze bubbles. We
integrate the splitting events within the population balance framework, and use flux conservation to express ω and f
from equation (3) in terms of the newly introduced timescale:

f(∆, d)ω(∆) =
F (∆, δ)

〈T (∆, δ)〉 =
F (∆, δ)

T2(δ)
, (6)

with δ = d if the child bubble considered is the smaller one of the two produced (that is, if d < c∆ ) and δ = 3
√

∆3 − d3

if it is the larger of the two (that is, if d > c∆), since the production is controlled by the faster of the two timescales.
Note that a bubble lifetime that depend on both the parent and the child bubble size was introduced by Wang et
al. [33]. F (∆, δ) is the weight associated to each break-up frequency and can be interpreted as the likelihood of
break-up of a bubble of size ∆ into a bubble of size δ. We use DNS of bubble break-up in homogeneous and isotropic
turbulence to estimate F and will find that F (∆, δ) ≡ F (∆) is independent of δ. Proving the independence of the
weight factor F (∆) on δ would require a complete analysis of the filament geometry, which is not accessible with our
numerical dataset. The independence of F on δ could be attributed to the absence of a characteristic length scale
in a turbulent flow, such that no specific filament size is selected. We will work with the assumption F (∆) in the
remaining of the theoretical discussion.

For d < dh, using equation (6) into equation (4), we split the birth term into two parts, one term taking into
account breaking for δ < c∆ and one for δ > c∆, and we obtain:

∂N (d, t)

∂t
=

∫ d0

d/c

2
F (∆)

T2(d)
N (∆, t) d∆ +

∫ d/c

d

2
F (∆)

T2( 3
√

∆3 − d3)
N (∆, t) d∆− ω(d)N (d, t) (7)

where d0 is the largest bubble size in the system. Assuming that bubbles smaller than dh do not break implies that
the second integral and the death term vanish, and that the lower bound of the first integral is dh leading to:

∂N (d, t)

∂t
=

∫ d0

dh

2
F (∆)

T2(d)
N (∆, t) d∆ (8)

Integrating over time, we obtain for d < cdh

N (d, t) = d−3/2

∫ t

0

IN (d0/dh, s)ds, (9)

with,

IN (d0/dh, t) =

∫ d0

dh

4
√

3F (∆)

(
ρ

γ

)−1/2

N (∆, t)d∆. (10)

The integral IN does not depend on the child bubble size d, so that the bubble size distribution for d < cdh follows

N (d, t) ∝ d−3/2. (11)

The details of the break-up cascade above the Hinze scale and its the temporal evolution only affects the total number
of sub-Hinze bubbles produced while the scaling exponent d−3/2 is not affected and is independent of time.
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a) !0.7tc(d0) b) !0.8tc(d0) c) !1.0tc(d0) d) !1.1tc(d0)

e) !1.4tc(d0) f) !1.6tc(d0) g) !1.7tc(d0) h) !1.8tc(d0)

FIG. 2. DNS snapshots of a typical break-up sequence, with the initial bubble size d0/dh = 2.9. The bubbles’ interface is
represented in white. The first images (a,b) show large scale deformation due to turbulence, happening over the eddy turn over

time at the size of the initial bubble scale d0, tc(d0) = ε−1/3d
2/3
0 , leading to the formation of thin filaments (c,d). Successive

splitting events of the filament are visible (e,f,g,h) leading to multiple child bubbles. The filaments quickly break creating a
wide range of bubble sizes, the smallest being orders of magnitude smaller than the initial one.

III. DIRECT NUMERICAL SIMULATIONS

To evaluate the validity of the physical arguments leading to N (d, t) ∝ d−3/2, we perform DNS of a single initial
bubble larger than the Hinze scale in a turbulent flow using the free software Basilisk [37, 38]. A detailed description of
the numerical configuration can be found in Rivière et al. [39]. We first create a homogeneous and isotropic turbulent
flow at Taylor Reynolds number Reλ = 38, following the method introduced by Rosales and Meneveau [40]. We then
introduce a spherical bubble of diameter d0 within the inertial range of the Kolmogorov cascade [26], i.e. at a scale
where turbulence is scale invariant. The density ratio is ρ/ρg = 850 and the dynamical viscosity ratio is µ/µg = 25
where the subscript g refers to the gas phase located inside the bubble. We vary the ratio d0/dh and we have verified
that the velocity statistics at the scale of the parent bubble are typical of turbulent flows [41] (although the Taylor
Reynolds number is smaller than that in typical experimental conditions). We perform at least ten simulations per
value of the initial bubble size d0/dh (2.9, 4.1, 5.2) with a spatial resolution of 135 points per diameter. We analyse
the lifetime of all bubbles of diameter larger than 4 grid points.

Figure 2 presents snapshots of a large bubble (giving an initial separation of scales d0/dh = 2.9) subject to large
deformations, described in detail in Rivière et al. [39]. The initial break-up, which occurs within one eddy turnover
time at the bubble scale tc(d0) [39], is followed by a rapid succession of splitting events, occurring on a much faster
time scale and producing dozens of sub-Hinze scale bubbles.

As previously, we decompose the dynamics into binary events and associate a lifetime T (∆, δ) to each parent bubble
of size ∆ producing a small child bubble of size δ. We compute the values of the equivalent diameters ∆ and δ from
parent and child bubble volumes. All individual bubbles are tracked from birth to death to determine T (∆, δ) using a
reconstruction process of the full event sequence for each simulation. To do so, all individual bubbles are first tracked
in space and time using the Python package trackpy [42] based on the Crocker-Grier algorithm [43]. Using volume
and momentum conservation during break-up events, we reconstruct the breakage tree event by event. Each criterion
has been manually adjusted and tested on simple situations to validate the algorithm robustness. The processing
is systematically applied to the entire data set, and leads to the identification of 4329 breaking events for d0/dh
ranging from 2.9 to 5.2, using 78 different 3D DNS realizations of bubble break-up. In the following, we focus on the
sub-Hinze bubble production, corresponding to δ < dh and t < 4tc(d0), during which most of the sub-Hinze bubbles
are generated [39]. Given the low volume fraction of air, the coalescence events are statistically negligible.

Figure 3a shows the splitting times T (∆, δ) as a function of the size of the smallest child bubble they produce, δ.
Each individual event is color coded by the parent size ∆, highlighting a broad distribution of splitting times, almost
all smaller than the eddy turn-over time at the small child bubble’s scale, tc(δ). This suggests that these splitting
events are not primarily instigated by turbulent deformations at the small child scale. To estimate the ensemble aver-
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FIG. 3. Lifetime of bubbles as a function of the size of the smallest bubble they split apart into. The size of the parent bubble
is given by the color. Most splitting events occur on a time scale faster than the eddy turn-over time tc(δ), shown in dotted line,
suggesting that the splitting events are not primarily instigated by turbulent deformations at the small child bubble size. The
ensemble averaged time 〈T (∆, δ)〉∆ is shown in black squares and follows the capillary timescale of the small child bubble T2(δ)
without any adjusting parameters (shown in dashed line). Diamonds and circles denote two levels of resolution, associated to
a grid size of ` = 0.0075d0 and ` = 0.015d0 respectively, with d0 the initial bubble size.

age 〈T (∆, δ)〉 over multiple realizations, we compute the ensemble average over ∆-values given δ, denoted 〈T (∆, δ)〉∆,
which is shown in black squares. It matches the capillary time scale T2(δ) i.e. the typical capillary time at the length
δ (shown in black dashed line), up to δ = dh, without any adjustable parameters. However, a broad distribution of
time scale is observed, and the standard deviation of the bubble lifetime is barely defined, which cannot be explained
by a simple Rayleigh Plateau instability of a single bubble filament of diameter δ. The dispersion of the individual
splitting times can be attributed to the various shapes induced by the turbulent flow, and more generally to the
inherent stochasticity of the break-up events. To our knowledge, the Rayleigh Plateau instability dynamics for a gas
filament in presence of an external noise has never been investigated. A recent study on liquid filament [44] has shown
that indeed, initial noise on the filament shape induces a widening of the satellite drop size distribution. The velocity
fluctuations associated to the turbulent flow around the bubble could also play a crucial role, by inducing various
filament shapes. However, a recent study by the same authors [35] showed that for the final stage of evolution, i.e.
the pinch-off of a single bubble in a turbulent flow, the shrinking dynamics of the bubble neck is only slightly modified
compare to the quiescent case. Determining how the growth rate of RP instability would be modified by the variety
of filament shapes and by the presence of the flow will require further investigations. For δ > dh, the break-up time
seems to converge to a value independent of δ. We have also separately verified that, 〈T (∆, δ)〉 being a function of
two variables, the ensemble average of over δ values for a given ∆, 〈T (∆, δ)〉δ is independent of ∆. This confirms the
scaling proposed in equation (5).

IV. EXPERIMENTAL VALIDATION

We now aim to verify that an initial large separation of scales, namely for which d0/dh � 1, indeed leads to a
universal N (d) ∝ d−3/2 in the sub-Hinze scale regime. We will analyze laboratory and numerical data of bubble
size distribution under breaking waves from previous work [18, 22]. On top of this, we compare the results to a
more idealized configuration consisting of a single large bubble injected in a turbulent flow, both numerically [39] and
experimentally.

We design an experiment to inject a unique large air cavity (bubble) of initial size much larger than the Hinze scale
dh. Using a thin latex membrane, we pressurise an underwater air cavity of diameter d0 = 40 mm, as shown in figure
4a. In the water phase, a turbulent flow is generated in an horizontal middle plane located above the initial air pocket,
similarly to [35]. It is done by arranging and running four pumps pointing toward the center. The resulting velocity
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FIG. 4. (a) Sketch of the experimental set-up. (b-e) Successive snapshots of the release of a large bubble into a turbulent
background flow. b) Before the crack opening, an air pocket is trapped within a extended thins rubber sheet. c) Just after the
membrane piercing, the membrane moves away, generating locally a high shear situation, but on a timescale much shorter than
the typical turbulence time at the bubble scale (0.2 ms). The small wavelength disturbances are then dissipated by viscosity
while the interface deforms at larger scale under the action of the background turbulence (d). Eventually the bubble interface
experiences multi breaking events, generating a broad distribution of bubble size (e). (f-h) Zoom in view of a typical breaking
dynamics of a gas filament during the process. The time between images is 2ms. The red rectangle highlights the region where
ligament collapsed creating many sub-Hinze bubbles.

field is characterized using a Particle Image Velocimetry algorithm [45], which gives u′ = 0.25 m/s, Lint = 15 mm,
ε = 0.7 m2.s−3 and Reλ = 340±40, where u′ is the root mean squared (rms) velocity, Lint the integral length scale and
Reλ is the Taylor Reynolds number that characterizes the turbulent velocity fluctuations. These set the Hinze scale to
dh ≈ 4.8 mm with γ = 50 mN/m and ρ = 103 kg/m3. The ratio between the initial cavity diameter d0 = 40 mm and
the Hinze scale is therefore d0/dh = 8.3, which defines a Weber number We = Wec(d0/dh)5/3 ≈ 100, corresponding
to a large separation of scales. Note that in the literature Wec varies between 1 and 5, depending on the details of
the turbulence setup [13–15]. We consider Wec = 3 for consistency with the DNS [39]. The air pocket is released by
piercing the membrane, which triggers a rapid crack opening. After a transient regime of interface deformations by
interfacial instabilities, the bubble rises and deforms under the combined action of buoyancy and turbulent background
flow. A comparison with the quiescent case shows that the bubble fragments are mainly produced by the turbulent
background flow. In the main turbulent region located between the four pumps, a broad range of bubble sizes is
eventually generated, as illustrated by the successive snapshots of fig. 4b-e. The large air bubbles are highly deformed
and lead to the formation of tiny air filaments, breaking down in small bubbles as illustrated in fig. 4f-h. To measure
the size distribution quantitatively, we move the pumps 20 cm above the air pocket. We then process images taken
with a high speed camera with a resolution of 15µm per pixel filming at 1000 fps to compute the distribution of bubble
sizes in the region of the most intense turbulence. We compute the bubble size distribution averaged over 2 runs and
1.2 s ≈ 20Tint each after the first break-up, with Tint = Lint/u

′ the integral time scale associated to the correlation
time of the largest eddies.
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FIG. 5. Bubble size distribution obtained both experimentally and numerically in two different geometries: a breaking wave
(�, •) and a single bubble breaking (�, F). The distribution exhibits two power laws: for d > dh, N (d) ∝ d−10/3 (dashed

line), while N (d) ∝ d−3/2 for d < dh (dotted line).

Figure 5 shows the bubble size distributions N (d) obtained under breaking waves [18, 22] and from a single large
bubble breaking in a turbulent flow, both experimentally and numerically. Within all four data sets, for d > dh,
the distributions exhibit N (d) ∝ d−10/3 scaling, in agreement with other previous experimental measures below a
breaking wave [17, 19, 20] and in agreement with the classic break-up cascade argument from Garrett et al. [24].

For d < dh, all four dataset also exhibit N (d) ∝ d−3/2 accross a large range of scales. The bubble size distribution
measured under breaking waves is in close agreement with the data obtained from single bubble break-up in turbulence,
suggesting that the same underlying mechanisms are at play for the sub-Hinze bubble production outside if laboratory
experiments. This result also justifies that F (∆, δ) = F (∆). Indeed, since N (d) ∝ d−3/2, the left hand side of equation
(8) is proportional to d−3/2 and since, from the time analysis the d-dependency of the right hand side is d−3/2F (∆, δ),
one gets a posteriori that F (∆, δ) must be independent of δ.

V. CONCLUSION

The observed size distribution, considered alongside the mechanism we present for sub-Hinze bubble production,
suggests that for these experimental cases, the production rate of sub-Hinze scale bubbles is controlled by surface
tension, through the breaking dynamics of gas filaments. It extends to sub-Hinze bubble production the framework
of Villermaux [34], who stated that for liquids, ligaments may universally control fragmentation processes. Contrary
to many fragmentation processes in which a physical length scale sets the average fragmentation size, there is no
such specific length scale, and a power law distribution is observed instead. These capillary effects only dominate
the production of sub-Hinze bubbles, since for larger bubbles, the dynamics, and thereby the lifetime, of the parent
bubbles can also be controlled by the eddy turnover time.

To summarize, the scaling for d > dh [18] reads:

N (d, t) = Qε−1/3d−10/3, for d > dh (12)

where Q is the volume of air injected to the breaking cascade per volume of water per second, and can be evaluated
from the breaker geometry and energetics [21, 22]. The prefactor for the sub-Hinze distribution can then be evaluated
using the continuity of N at dh, and

N (d, t) = Q

(
Wec

2

γ

ρ

)−11/10

ε2/5d−3/2for d < dh. (13)

In summary, when d0 � dh, large-scale inertial break-ups and small-scale capillary splitting events occur concur-
rently. The background turbulence sets the geometry of each break-up event over a time tc(∆) and then freezes
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relative to the capillary time scale [35], over which a cascade of small-scale splitting events occur. The classic turbu-
lent inertial break-up scenario (eq. (12)) combined with the capillary driven fragmentation regime (eq. (13)) provides
a physical explanation for the entirety of the bubble size distribution when large air cavities break apart under the
action of turbulence.
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