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Abstract12

Despite the well known limitations of linear stability theory in describing nonlinear and turbu-13

lent flows, it has been found to accurately capture the transitions between certain nonlinear flow14

behaviour. Specifically, the transition in heat flux scaling in rotating convective flows can be well15

predicted by applying a linear stability analysis to simple profiles of a convective boundary layer.16

This fact motivates the present study of the linear mechanisms involved in the stability proper-17

ties of simple convective setups subject to rotation. We look at an idealised two-layer setup, and18

gradually add complexity by including rotation, a bounded domain, and viscosity. The two-layer19

setup has the advantage of allowing for the use of wave interaction theory, traditionally applied20

to understand stratified and homogeneous shear flow instabilities, in order to quantify the various21

physical mechanisms leading to the growth of convective instabilities. We quantitatively show22

that the physical mechanisms involved in the stabilization of convection by rotation take two dif-23

ferent forms acting within the stratified interfacial region, and in the homogeneous mixed layers.24

The latter of these we associate with the tendency of a rotating flow to develop Taylor columns25

(TCs). This TC mechanism can lead to both a stabilization or destabilization of the instability,26

and varies depending on the parameters of the problem. A simple criterion is found for classifying27

the influence of these physical mechanisms.28

I. INTRODUCTION29

This paper provides a new view on understanding the stabilizing effects of planetary30

rotation on convection. It resulted from discussions of the influence of planetary rotation,31

i.e., a rotating frame of reference arising from the Earth’s rotation, on the flux of heat32

through oceanic double diffusive staircases. This influence can be well described through33

the application of linear stability analysis to the diffusive boundary layer of a double diffusive34

interface [1].35

The stabilizing effect of rotation on convection was first studied theoretically by Chan-36

drasekhar [2] and Nakagawa and Frenzen [3] using a linear stability analysis; and by Veronis37

[4] using a finite-amplitude stability analysis. The authors found that rotation inhibits the38

onset of convection by increasing the critical Rayleigh number required to initiate instability,39

∗ jeff.carpenter@hereon.de

2



which depends on the rotation rate. This was later confirmed in the fully nonlinear regime40

through the seminal tank experiments of Rossby [5], where the convective heat flux was41

found to be inhibited in the presence of strong rotation. Later studies focused on the effect42

of rotation on flow pattern formation [e.g., 6–11] and heat flux scaling laws [e.g., 11–15],43

with a review by Stevens et al. [16].44

Despite this large body of work devoted to rotating convection, little attention has been45

given to further elucidating the physical mechanisms of the stabilizing effect of rotation.46

The most commonly cited physical explanation for the stabilization is a single paragraph in47

Chandrasekhar [2]. This, however, offers only a qualitative description of the special case48

of a linearly stratified, vertically bounded, viscous, layer of rotating fluid. Such a setup is49

not generally present in the case of a convective boundary layer (either double diffusive, or50

purely thermal), where a relatively thin gravitationally unstable stratification is bounded on51

one side with a large expanse of homogeneous fluid in the adjacent mixed layer [e.g., 15, 17].52

Here we examine the physical mechanisms responsible for the stabilization of convection53

by planetary rotation in an idealised model of a convective boundary layer. Our goal is to54

construct a quantitative analysis of different physical mechanisms that are operating, rather55

than to present new linear stability results. The focus is on gaining physical insight into56

the stabilization of convection by rotation. Specifically, by approximating the boundary57

layer as an infinitely thin interface with a finite change in buoyancy across it, we are able to58

provide analytical insight to the instability physics that is also qualitatively similar to the59

full stability analysis (requiring a numerical solution) that was found to accurately describe60

the heat flux dependence on rotation from a double diffusive interface[1]. It is also a similar61

configuration as the laboratory study of Baldwin et al. [18], where two homogeneous layers62

of constant buoyancy are separated by a sharp convectively unstable interface and subjected63

to varying levels of rotation. We start with the simplest setups, adding levels of complexity64

stepwise, to see how each added feature (rotation, viscosity, a semi-bounded domain) of the65

setup affects the stability and the physical mechanisms involved.66

To aid in our physical interpretation, we borrow heavily from the wave interaction theory67

(WIT) that is often used to provide a physical mechanism for various features of shear68

flow instabilities [e.g., 19, 20] such as the presence of different instability types [21–23],69

optimal transient growth [24], the general stability conditions [25], and the structure of the70

eigenvalue spectrum [26]. This technique generally uses the vorticity field and its relation71
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to the vertical velocity and interface displacement fields in order to construct a visual, and72

mathematical, description of the relevant interacting interfacial waves. Strict application of73

WIT requires that the flow be described by distinct interfaces, and allows for a quantification74

of the influence of various mechanisms on the stability of the convection so that the most75

important effects can be isolated. As we will show, this leads to a new description of76

the physical mechanisms by which rotation stabilizes convection, and their dependence on77

various parameters.78

The paper is organised as follows. In the following section we outline the general linear79

stability problem and the simplifications that arise when a two-layer setup is adopted, as80

well as a brief introduction to the wave interaction theory. In section III a number of simple81

setups are examined when the flow is taken as inviscid. The essential physical mechanisms82

are described for the simplest case of nonrotating, inviscid, convection and its alteration by83

rotation and by a bounded domain. In section IV we look at the viscous case, demonstrating84

that the inviscid mechanisms identified in the previous section carry over. A summary and85

conclusions are presented in the final section.86

II. LINEAR STABILITY ANALYSIS87

A. Derivation88

A general derivation of the linearised equations, and the linear stability problem, is first89

derived for the full viscous, rotating, two-layer setup (see Fig. 1 for a visual guide). The90

basic equilibrium, or background, state consists of a motionless hydrostatic balance with a91

vertical buoyancy profile specified by B(z). We will neglect diffusion of the buoyancy scalar92

field throughout, compatible with our two-layer model. This approximation is valid in the93

case of immiscible fluids (wherein a neglected surface tension between the layers may arise),94

as well as in the limit of large Prandtl numbers, ν/κ, where ν is the kinematic viscosity and95

κ the buoyancy diffusivity. The latter can be seen through a non-dimensionalization of the96

equations by ν and a length scale, whereas non-dimensionalization by κ and a length scale97

leads to a different (slow time) limit [27].98

The linearised equations of motion for perturbations to this stratified, nondiffusive,99
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FIG. 1. Sketch of the relevant elements in the two-layer convection setup used.

Boussinesq fluid from the equilibrium state are100

ut − fv = −πx + ν∇2u (1)101

102

vt + fu = −πy + ν∇2v (2)103

104

wt = −πz + b+ ν∇2w (3)105

in addition to continuity106

ux + vy + wz = 0 (4)107

and buoyancy advection (without diffusion)108

bt + wBz = 0. (5)109

They consist of (in order) the three components of momentum, continuity, and an advection110

equation for the buoyancy, b ≡ −gρ/ρ0, with density perturbations represented by ρ, g111

the gravitational acceleration, and ρ0 a representative fluid density. We use a Cartesian112

coordinate system ~x = (x, y, z) with z the vertical coordinate, opposing g, with velocities ~u =113

(u, v, w). Other variables used are time, t, a density-scaled pressure, π ≡ p/ρ0, with pressure114

p, and f is twice the local vertical rotation rate, commonly called the Coriolis frequency.115

Subscripts denote partial differentiation. The only equilibrium (also called basic state or116

background) variable to appear in the equations is the vertical gradient of the buoyancy117

profile Bz(z), and all other quantities represent a perturbation from the equilibrium.118

It is helpful to immediately simplify these equations by first taking the divergence of the

momentum equations to give

−fζ = −∇2π + bz,
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and to substitute this into the Laplacian of the vertical momentum equation to eliminate119

the scaled pressure,120

∂

∂t
∇2w = −fζz +∇2

Hb+ ν∇4w. (6)121

Here we have defined the vertical relative vorticity (perturbation) as ζ ≡ vx − uy, and the122

horizontal Laplacian ∇2
H ≡ ∂2/∂x2 + ∂2/∂y2. Second, the curl of the horizontal momentum123

equations can be taken to give124

ζt − fwz = ν∇2ζ. (7)125

These steps have reduced the equation set to three equations (6,7,5) in the three variables126

{w, ζ, b}.127

In order to make analytical progress we take all perturbation quantities to be represented128

by the normal mode form, as in w(x, y, z, t) = ŵ(z)eσt+i(kx+`y) for the vertical velocity, with129

the real part of this expression implicitly intended. We can then write our equation set as130

(σ − νL)L(ŵ) = −f ζ̂ ′ − k̃2b̂ (8)131

132

(σ − νL)ζ̂ = fŵ′ (9)133

134

σb̂ = −Bzŵ, (10)135

where we have defined the operator L ≡ d2/dz2 − k̃2, with k̃2 ≡ k2 + `2 the squared136

amplitude of the wavenumber vector, ~k = (k, `). For all hatted normal mode variables the137

primes denote ordinary differentiation with respect to z. It is possible to eliminate b̂,138

σ(σ − νL)L(ŵ) = −σfζ̂ ′ + k̃2Bzŵ (11)139

which can be combined with a differentiated (9) to give a single equation for ŵ of140

σ(σ − νL)2L(ŵ) + σf 2ŵ′′ = k̃2(σ − νL)(Bzŵ). (12)141

In the following sections, we will consider solutions to this equation, and various simpli-142

fications thereof. In addition, we will apply the boundary conditions143

ŵ = 0 at z = +∞, zb (13)144

in all variations of the setup. Two choices for the location of the lower boundary will145

be examined, zb ∈ {−∞,−H}, corresponding to infinite and semi-infinite (bounded from146

below) domains, respectively.147
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B. Two-layer formulation148

We simplify (12) immediately by substituting in our two-layer background buoyancy149

profile with Bz = −|∆B|δ(z), where δ(z) is the Dirac delta function, and ∆B < 0 the150

buoyancy difference across the layers for a convectively unstable profile. This splits the151

problem up into one for the layers (i.e., where z 6= 0), and one for the interface (at z = 0),152

since in the layers we have eliminated the RHS of (12), so153

(σ − νL)2L(ŵ) + f 2ŵ′′ = 0. (14)154

At the interface, the delta function singularity on the RHS of (12) requires that we integrate155

across the interface, and apply a series of ‘jump’ conditions on the solution across it [see156

e.g., 20]. These correspond to the following physical principles, with the interfacial jump157

denoted
[[
X
]]
0
≡ X(0+)−X(0−):158

• (i) Continuity in vertical velocity:
[[
ŵ
]]
0

= 0.159

• (ii) Continuity in vertical stress, which can be expressed as
[[
π̂
]]
0

= 0. However,160

in practise this condition is not explicitly used. Instead, we integrate (12) across the161

interface in each case. The appendix describes the equivalence of these two approaches.162

• (iii) Continuity in horizontal velocity (for viscous flows):
[[
û
]]
0

= 0 and
[[
v̂
]]
0

= 0163

implies
[[
ŵ′
]]
0

= 0.164

• (iv) Continuity in horizontal stress (for viscous flows, see [28]):
[[
û′ + ikŵ

]]
0

= 0 and165 [[
v̂′ + i`ŵ

]]
0

= 0 implies
[[
ŵ′′
]]
0

= 0.166

• (v) Continuity of vertical vorticity (for viscous, rotating flows):
[[
ζ̂
]]
0

= 0. In practise,167

this condition (and the following one) is used in combination with (9) relating ŵ to ζ̂.168

• (vi) Continuity of the vertical derivative of vertical vorticity (for viscous, rotating169

flows):
[[
ζ̂ ′
]]
0

= 0.170

C. Application of wave interaction theory171

To understand the physical mechanism, we will adopt a WIT-type approach; by formu-172

lating the interaction between the horizontal vorticity, vertical velocity, and vertical dis-173

placement of the buoyancy interface. In past studies, this approach is used to quantify the174

7



interactions between interfaces that support stable wave motions, such as gravitationally175

stable buoyancy interfaces (supporting internal gravity waves) and vorticity interfaces (sup-176

porting interfacial Rossby/vorticity waves) [20, 21, 29]. Each wave has a vertical velocity177

field that can affect the growth and propagation of the other wave, thus, when conditions178

are right, they are able to cause each other to propagate in phase and experience mutual179

growth. Despite the setup considered herein, namely, that of a single (gravitationally un-180

stable) buoyancy interface, the techniques of WIT are used to quantify how the interface181

interacts with itself, and other sources of vertical velocity (e.g., the presence of a boundary).182

Describing this self-interaction consists of quantifying the interplay of the vertical velocity,183

interfacial vorticity, and vertical displacement fields, their relationship to each other, and184

their relative orientations responsible for instability growth. Note that this self-interaction185

has also been discussed in the context of stratified shear layer instabilities [23].186

For an infinitely thin interface in an inviscid flow, it is not the vorticity, but rather

the vortex sheet strength, that is relevant. The sheet strength is defined as the integrated

horizontal vorticity perturbation across the interface, i.e.,

~γ ≡
∫ 0+

0−
~qH dz ⇒ ~̂γ = (−

[[
v̂
]]
0
,
[[
û
]]
0
, 0).

Here we use ~qH ≡ (wy − vz, uz − wx, 0), and the last expression is the normal mode form of187

the sheet strength. However, we will often refer to ~γ as the “interfacial vorticity” since it is188

less cumbersome than the “interfacial vortex sheet strength”.189

Using the horizontal momentum equations in (1-3), we can derive a modal interfacial190

vorticity equation, namely191

σ~̂γ = f~̂γ⊥ + i|∆B|η̂~k⊥. (15)192

Here we have denoted the vertical displacement of the interface as η, and used the normal193

mode form of the relation, b = −Bzη, given by b̂ = |∆B|δ(z)η̂. In addition, we have194

defined the perpendicular vector to ~X = (X1, X2) as ~X⊥ ≡ (X2,−X1), and have neglected195

the viscous term since viscosity eliminates the vortex sheet at the interface. The physical196

meaning of the various terms in this equation will be discussed throughout the text below.197

The last mathematical tool that we will need in our physical interpretation is to un-198

derstand the effect that the interfacial vorticity distribution has on the vertical velocity.199

Once this is known, we can directly assess the changes in interface displacement through200
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the linearised kinematic condition201

Dη

Dt
= w ⇒ ση̂ = ŵ(0). (16)202

The relationship between the interfacial vorticity and the vertical velocity at the interface,203

must be found in each particular setup considered, as is outlined below.204

III. INVISCID SOLUTIONS AND THEIR PHYSICAL MECHANISMS205

A. Inviscid, unbounded, non-rotating convective instability206

We begin with the simplest case of an inviscid, unbounded, non-rotating two-layer setup,207

as discussed in Smyth and Carpenter [20]. The equation governing the mixed layers is found208

by setting ν = f = 0 in (14), i.e., L(ŵ) = 0. Note that this equation is simply an expression209

of the fact that, in this case, the mixed layers are irrotational, since L(ŵ) is closely related210

to the horizontal vorticity through L(ŵ) = i~k⊥ · ~̂qH . A simple solution can be found taking211

ŵ(z) = Ae−k̃|z|, with A an arbitrary constant amplitude. Here we have applied both jump212

condition (i), and the boundary conditions (13). The dispersion relation for the growth rate213

is then found using jump condition (ii), obtained by integrating (12) with ν = f = 0 across214

the interface, giving215

σ2
[[
ŵ′
]]
0

+ k̃2|∆B|ŵ(0) = 0, (17)216

and substituting for ŵ(z), finally217

σ = ±
( |∆B|k̃

2

)1/2
(18)218

as in [20, 30].219

A couple features of this solution are worth noting. First, the entire range of k̃ has an220

unstable (convective) mode, and the growth rate increases with increasing k̃, as well as the221

buoyancy forcing |∆B|. This situation is often referred to as an ultra-violet catastrophe,222

and, as will be seen, is not realistic in viscous fluids. Second, the spatial decay of the vertical223

velocity away from the interface has a length scale proportional to k̃−1. This is a very general224

result of motion in an unbounded layer of fluid that is irrotational. The same result is also225

found in, for example, the depth dependence of ocean surface waves in deep water [31], or226

in interfacial Rossby waves (also called vorticity waves) in shear flows [32, 33].227
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present in crests (troughs) of the interface displacement, inducing a growth of the interface.

Physical mechanism228

The growth of the instability can be understood physically through a consideration of229

the interfacial vorticity equation (15), which in this case reduces to230

σ~̂γ = i|∆B|η̂~k⊥. (19)231

This describes the unsteady growth of interfacial vorticity (left hand side, lhs) through the232

baroclinic production (rhs) that arises from any horizontal gradients in buoyancy. The233

interfacial vorticity generation is proportional to the buoyancy jump, and is strongest at234

the nodes of the displacement (due to the i present, which causes a π/2 phase shift, see235

Fig. 2) where slopes, k̃η̂, are strongest. The relationship between the displacement and the236

interface vorticity is sketched in Fig. 2, where we also note that the generation of interfacial237

vorticity is in the direction of ~k⊥.238

To understand the effect that this interfacial vorticity distribution has on the growth239

of the interface displacement (through the kinematic condition in (16)), we quantify the240

connection to the vertical velocity at the interface, ŵ(0). This can be done by using the241

definition of ~̂γ, and its component in the ~k⊥ direction, to give242

~̂γ · ~k⊥ = −i
[[
ŵ′
]]
0
. (20)243

Substituting from the solution for ŵ, this produces the result that i~̂γ ·~k⊥ = −2k̃ŵ(0), which244

allows us to solve for the vertical velocity at the interface245

ŵ(0) = − i
2
~̂γ · ~e(k)⊥ , (21)246
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where ~e
(k)
⊥ denotes the unit vector in the ~k⊥ direction. This is an important result that shows247

it is the component of the interfacial vorticity that is perpendicular to ~k that is responsible for248

generating vertical velocity at the interface. If, for whatever reason, the interfacial vorticity249

were oriented entirely along ~e(k) then no vertical velocity would be produced. However, in250

the present case, ~̂γ is oriented in the optimal configuration along ~e
(k)
⊥ . This can be verified251

by taking the dot product of (19) with ~k. Also note that the dispersion relation can be252

recovered by taking the dot product of (19) with ~k⊥, multiplying by σ, and substituting253

both the kinematic condition and (21).254

In summary, we can construct the following chain of events to understand the growth of255

the interface displacement (and other fields), with reference to Fig. 2. A small perturbation256

of the interface with wavenumber vector ~k, will generate interfacial baroclinic vorticity that257

is maximum at the nodes of the displacement, and in the direction of ~k⊥. In this optimum258

orientation, the interfacial vorticity produces a vertical velocity that is in phase with the in-259

terface displacement, and thus the displacement grows, creating a positive feedback between260

displacement, interfacial vorticity, and vertical velocity. Although this physical explanation261

is considerably more indirect than the much more common “heavy fluid tends to fall, and262

lighter fluid tends to rise” approach, it will be helpful in subsequent sections when quantify-263

ing the effects of rotation and boundaries. A similar physical explanation has been described264

previously by Roberts and Jacobs [34].265

B. Inviscid, unbounded, rotating convective instability266

By now adding rotation while maintaining an inviscid, unbounded setup, we seek solutions267

for (14) with ν = 0, i.e.,268

σ2L(ŵ) + f 2ŵ′′ = 0. (22)269

These take the form of ŵ(z) ∝ erz, leading to a characteristic equation for the inverse length

scale, r, with solutions of

r = ± σ

(σ2 + f 2)1/2
k̃.

By defining the dimensionless growth rate as σ∗ ≡ σ/f this can be written as

r = ± σ∗
(σ2
∗ + 1)1/2

k̃.
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We now choose the correct sign of r to satisfy the boundary conditions that w should vanish270

as |z| → ∞ to give ŵ(z) = Ae−r|z|, with r taken positive from now on. Note that there are271

two regimes of r: (i) r ∼ σ∗k̃ for σ∗ � 1 so that for conditions where rotation dominates the272

growth rate (i.e., small σ∗) we recover “Taylor column”-like behaviour, where the vertical273

velocity extends far beyond the interface level, and (ii) r ∼ k̃ for σ∗ � 1 to give the standard274

exponential decay with wavenumber that is present in the non-rotating case.275

The dispersion relation is found through jump condition (ii) by integrating across the276

interface, to give277

(σ2 + f 2)
[[
ŵ′
]]
0
− k̃2∆Bŵ(0) = 0. (23)278

Substituting in our solution above we find the following dimensional equation for the growth

rate

σ(σ2 + f 2)1/2 +
∆Bk̃

2
= 0,

in agreement with Chandrasekhar [30]. This can be written in dimensionless form as279

σ∗(σ
2
∗ + 1)1/2 − k∗ = 0, (24)280

where k∗ = LRk̃ with LR ≡ |∆B|/(2f 2) a length scale. Note that k∗ can be thought of as the281

square of the ratio of two inverse time scales; the buoyant growth rate σbuoy ≡ (|∆B|k̃/2)1/2,282

and the Coriolis frequency f , with k∗ = (σbuoy/f)2. There are again two limits: (i) σ∗ � 1283

so that rotation is dominant and σ∗ ∼ k∗, and (ii) σ∗ � 1 so that rotation is negligible and284

σ∗ ∼ k
1/2
∗ , just as in the case where f = 0 above. These two regimes can be seen in the285

solution of the full dispersion relation shown in Fig. 3(a), with a transition region centred286

around σ∗ ≈ 1. Note that we can rewrite the limits in terms of the length scale, LR, based287

on whether or not k̃ � LR (non-rotating) or k̃ � LR (rotating).288

Physical mechanism289

It is clear from Fig. 3(a) that by including rotation the growth of the instability has290

been damped for σ∗ . 1 (or k∗ . 1). We now examine the physical mechanisms behind291

this damping, which can be seen to arise from two competing effects: (i) a new source of292

vorticity in the layers that leads to increases in vertical velocity at the interface, and (ii)293

a misalignment of the interfacial vorticity and ~k⊥ vectors that arises from rotation effects294
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FIG. 3. (a) Plot of the dispersion relation for inviscid, unbounded, rotating convection in the two-

layer setup. (b) The effects of including a boundary at a dimensionless distance of H∗ ≡ H/LR

from the interface. The different colored solid curves in (b) represent growth rates at differing

values of H∗. The dashed curves in both panels are the rotating and non-rotating scalings.

within the interface, and leads to reduced vertical velocities. Each effect is examined in295

turn, and referenced to the various processes sketched in the visual aid of Fig. 4.296

Layer mechanism : New sources and sinks of perturbation vorticity must be considered

in a rotating frame of reference due to the presence of planetary vorticity, f . This effect

manifests itself first, in the layers, through a stretching/compression of (vertical) planetary

vorticity term, i.e., fŵ′ in (9), rewritten here for convenience

σζ̂ = fŵ′.

This equation describes production of vertical vorticity in the layers due to vertical gradients297

in vertical velocity leading to stretching/compression of planetary vorticity, f . A sketch of298

this process is shown in Fig. 4(a,b); in the crests (troughs) of the interface displacement there299

is a compression (stretching) of planetary vorticity. This results in horizontal velocities in300

the layers (Fig. 4a). Due to the decay of ŵ(z) away from the interface (i.e., such that301

ŵ′′ 6= 0), vertical gradients of ζ̂ are present in the layers. This has important consequences302

because it leads to the production of horizontal vorticity in the layers through (11) modified303
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for this particular case to304

σL(ŵ) = −f ζ̂ ′ (25)305

in the layers. To see this, we substitute the following relations involving the horizontal306

(layer) vorticity ik̃~̂qH · ~e (k)
⊥ = L(ŵ), and the vertical vorticity ζ̂ = −ik̃~̂uH · ~e (k)

⊥ . This results307

in a rewritten (25), namely308

σ~̂qH · ~e (k)
⊥ = f~̂u′H · ~e (k)

⊥ , (26)309

showing that horizontal vorticity is generated in the ~k⊥ direction through the tilting of310

vertical planetary vorticity by the vertical shear. This vertical shear arises due to the hor-311

izontal velocities (along ~k⊥) that accompany the stretching/compression process, as shown312

schematically in Fig. 4(c). It is the phase of the horizontal vorticity produced that leads to313

upwards (downwards) velocities at crests (troughs) of the displacement field, which acting314

alone, causes an increase in the vertical velocity compared to the non-rotating case (Fig. 4d).315

The increase in vertical velocity at the interface arising from vortex tilting in the layers316

can be quantified using (20), and substituting the solution for the rotating case,317

~̂γ · ~k⊥ = 2irŵ(0) ⇒ ŵ(0) = − i
2
~̂γ · ~e (k)

⊥ (1 + σ−2∗ )1/2. (27)318

Thus, by comparing to (21), we see that the vertical velocity at the interface is increased by319

the factor (1 + σ−2∗ )1/2 above the non-rotating case. Acting alone, rotation would then lead320

to an increase in growth rate above the non-rotating case which is not found. The reason is321

due to the action of the interfacial vorticity, which we now describe.322

Interface mechanism : From inspection of the interfacial vorticity equation (15), we

can see that vorticity is produced by the baroclinic term in the direction of ~k⊥, while the

effect of rotation (in the term f~̂γ⊥) is to rotate the vorticity vector away from this direction.

The angle, θ, that ~̂γ makes with the direction of the baroclinic source term along ~k⊥, can

be found through taking ·~e (k) of (15). We find that ~̂γ is perpendicular to σ~e (k) + f~e
(k)
⊥ , and

the angle that it departs from ~k⊥ is

θ = tan−1(σ−1∗ ),

as sketched in Fig. 4(e). This shows that for conditions where rotation is dominating the323

growth rate, σ∗ � 1 and θ → π/2 so that ~̂γ is aligned with ~k. Therefore, rotation shifts ~̂γ to324

a position where it generates a reduced vertical velocity at the interface level, via (27). On325
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FIG. 4. Illustration of the mechanisms acting in rotating convection that lead to increased vertical

velocities at the interface, as well as the misalignment of the interfacial vorticity with the ~k⊥-

direction of baroclinic vorticity production. For brevity, only the interface and upper mixed layer

are shown. Colors are used to group the vorticity sources with their associated velocities.

the other hand, as we saw in the non-rotating case, when buoyancy-driven growth dominates326

rotation σ∗ � 1, θ → 0, and ~̂γ is closely aligned with the baroclinic forcing direction, along327

~k⊥. The source of this rotationally-driven misalignment of ~̂γ from the baroclinic forcing328

direction of ~k⊥ can be seen to arise from the vortex tilting process that is occurring at the329

interface (Fig. 4f). This comes directly from the definition of ~̂γ⊥ ≡ (
[[
û
]]
0
,
[[
v̂
]]
0
, 0), so that330

the term f~̂γ⊥ describes the tilting of planetary vorticity integrated across the interface.331

The final reduction in growth rates from the effects of rotation can be seen by comparing

the relative magnitudes of the layer- and interface-based vorticity mechanisms described

above. This can be done by writing the interfacial vorticity equation (15) into components

that are in the basis {~e (k), ~e
(k)
⊥ }, and substituting the ~e (k) equation into that for ~e

(k)
⊥ , giving

(1 + σ−2∗ )σ2~̂γ · ~k⊥ = i|∆B|k̃ŵ(0).

We can then compare this directly to the non-rotating counterpart, found by multiplying
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(19) by σ and using the kinematic condition ση̂ = ŵ(0), to give

σ2~̂γ · ~k⊥ = i|∆B|k̃ŵ(0).

Thus, the misalignment in the interfacial vorticity equation due to rotation causes a factor332

1 + σ−2∗ reduction in the effective vorticity (in the ~e
(k)
⊥ direction), which can be directly333

compared to an increase in vertical velocity due to the layer-based mechanism by the factor334

(1 + σ−2∗ )1/2. Overall growth rates are therefore reduced by rotation effects, as seen in335

Fig. 3(a).336

We also provide a heuristic interpretation of this interface mechanism that does not appeal337

to the methods of wave interaction theory in the appendix.338

C. Inviscid, bounded, rotating convective instability339

By placing a solid boundary a distance H, below the interface, it is possible to introduce

an explicit length scale into the problem. This is an idealization to a convective boundary

layer in which both a solid boundary condition and length scale are present. A solution

for ŵ(z) can immediately be written, once it is recognised that the boundary condition of

ŵ(−H) = 0 can be satisfied by using the method of images [35]. An identical interface is

placed equi-distant from the boundary with opposite strength, i.e., the solution takes the

form

ŵ(z) = A(e−r|z| − e−r|z+2H|), for z > −H.

The resulting dispersion relation is found through the jump condition in (23), which is340

altered only in the value of the vertical velocity at the interface level, ŵ(0), giving341

σ∗(σ
2
∗ + 1)1/2F(σ∗, k∗, H∗)− k∗ = 0. (28)342

Here we have defined the dimensionless distance to the boundary as H∗ ≡ H/LR, and the

function

F(σ∗, k∗, H∗) ≡
1

2

{
1 + coth

[
k∗H∗

σ∗
(σ2
∗ + 1)1/2

]}
.

It is worth comparing (28) with the dispersion relation found above in (24) without a343

boundary. They differ only in how F differs from unity. Since coth(x) → 1 as x → ∞, we344

recover the unbounded case when H∗ becomes large (with the other variables held fixed).345

The results are plotted as a series of curves for different values of H∗, shown in Fig. 3(b).346
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The presence of a boundary provides a complete stabilization of the lowest wavenumbers,347

but otherwise does not alter the growth rates away from the low-k∗ cutoff. For fixed values348

of f and |∆B| (and therefore LR), as the boundary is moved closer to the interface, shorter349

and shorter wavelengths are stabilized. This can be seen in Fig. 3(b) as the relatively sharp350

cutoff in growth rate shifts to larger k∗ as H∗ decreases.351

It may appear that the rotational regime can be completely eliminated by a boundary352

that is sufficiently close. In this scenario, the lowest wavenumbers are stabilized before a353

transition to the rotational scaling regime is reached. However, the location of the cutoff354

wavenumber can be found by taking the limit σ∗ → 0+ of the dispersion relation, and solving355

to give kc∗ = (2H∗)
−1/2. Note that this limit is not independent of rotation, and the rotational356

regime (i.e., σ∗ < 1) must be crossed to reach stabilization due to the boundary. This can357

be compared to the non-rotating, bounded, case where there is an exponential decrease in358

the growth rate with σ∗ = k
1/2
∗ (1 − e−2k∗H∗)1/2 versus the unbounded result of σ∗ = k

1/2
∗359

from (18).360

Physical mechanism361

The stabilization of the convective instability by the proximity of the boundary has a362

simple physical explanation. As was apparent from the mathematical analysis, the presence363

of the boundary altered the vertical velocities with the inclusion of the image source. This364

image has the effect of reducing vertical velocities at the interface level, which in turn reduces365

the growth of the instability directly through the kinematic condition, ση̂ = ŵ(0). Therefore,366

for a given interface displacement (η̂) there will be a lower growth rate (σ) associated with367

the reduced vertical velocity at the interface. In addition, as the boundary is moved closer368

to the interface, so too is the image source, thus resulting in a stronger stabilization due369

to the monotonically increasing vertical velocities with distance to the source. This effect370

will be more pronounced with increasing rotation rates (decreasing σ∗) due to the reduced371

vertical decay of ŵ.372

We note that the mechanism identified in the previous section, consisting of horizontal

vorticity production in the layers through tilting, and its reinforcing of the vertical velocity

field, leads to the reduced vertical decay of ŵ(z) from the interface. It may be interpreted

as the mechanism for the formation of a flow with vertical “rigidity”, which in the strongly
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rotating limit gives rise to a Taylor-column (TC) structure with vanishing ŵ′(z). Although

we showed that this mechanism will lead to increased ŵ at the interface in the case of an

unbounded flow, this is not necessarily the case in a bounded flow since ŵ must vanish at

the boundary. The influence that each of these two processes has on the convection can be

quantified by solving for ŵ(0), as done previously:

ŵ(0) = − i
2
~̂γ · ~e(k)⊥ (1 + σ−2∗ )1/2

{
1− exp

[
− 2k̃H

σ∗
(σ2
∗ + 1)1/2

]}
.

Here we see that the presence of a boundary modifies the equivalent unbounded expression373

in (27) by the factor in the curly braces[36], i.e., ŵ(0)bounded = ŵ(0)unbounded(1− e−2rH).374

Therefore, there are two competing effects that we will group together into a “Taylor-

column (TC)” mechanism: (I) layer-based tilting of planetary vorticity that results in an

increased ŵ(0) and is destabilizing (when acting alone), and, (II) the need to satisfy the

boundary condition of ŵ(−H) = 0 which reduces the ŵ(0) and stabilizes the convection.

These two processes are related: since (I) results in less decay of the image source with

vertical distance, it will have larger amplitudes at the interface. Hence the boundary has a

greater influence on the growth of the interface through (II). Whether the TC mechanism is

leading to an increased or decreased vertical velocity at the interface, and therefore, is either

helping or hindering the growth of the interface displacement in the presence of a boundary,

depends on whether

(1 + σ−2∗ )1/2
{

1− exp
[
− 2k̃H

σ∗
(σ2
∗ + 1)1/2

]}
≶ 1.

This can be rearranged to yield a condition for the stabilizing effect of the TC mechanism:375

k̃H < −(σ2
∗ + 1)1/2

2σ∗
ln
[
1− σ∗

(σ2
∗ + 1)1/2

]
. (29)376

Waves that are longer than this condition (k̃H smaller) have layer vorticity that stabilizes the377

growth of the interface, whereas shorter waves (k̃H larger) destabilize. This condition is plot-378

ted in gray in Fig. 5, where it is now convenient to non-dimensionalise usingH as independent379

length scale with k̃H the non-dimensional wavenumber. This non-dimensionalization results380

in dependence of σ∗ ≡ σ/f on the parameter Π ≡ |∆B|/(2f 2H), rather than experiencing a381

collapse as in Fig. 3(b). Note that as the convection stabilizes asymptotically with σ∗ → 0+
382

neither of (I) or (II) dominates, rather (I) increases ŵ(0) as rapidly as (II) decreases ŵ(0)383

(with other quantities held fixed) such that their product is constant. This results in the384
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FIG. 5. Growth rates in bounded rotating convection using an alternate non-dimensionalization

withH as length scale. The different colored curves represent growth rates at differing values of Π ≡

|∆B|/(2f2H) = (0.100, 0.316, 1.00, 3.16, 10.0). The gray region corresponds to conditions where

the Taylor-column (TC) effect leads to a stabilization of convection, with destabilized convection

at larger k̃H outside.

TC stabilization boundary (dashed line separating the gray region in Fig. 5) approaching a385

constant limit k̃H = 1/2 as σ∗ → 0+. Therefore, we find that whether the TC mechanism is386

stabilizing or destabilizing depends on if Π can be large enough for long waves to penetrate387

into the gray region with k̃H < 1/2. This occurs for values of Π & 2, which is a simple388

condition for assessing the potential role of the TC mechanism.389

IV. THE EFFECTS OF VISCOSITY390

In this section we now include the viscous terms in the mixed layer differential equation391

(14), while considering only unbounded domains. This is a sixth order ordinary differential392

eigenvalue problem for {σ, ŵ(z)}, and we can take eigenfunction solutions of the form ŵ(z) ∝393

erz, resulting in a characteristic equation for R ≡ r2 that is cubic with394

a3R
3 + a2R

2 + a1R + a0 = 0, (30)395
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and coefficients given by

a3 = ν2, (31)

a2 = −(2σν + 3ν2k̃2), (32)

a1 = σ2 + 4σνk̃2 + 3ν2k̃4 + f 2, (33)

a0 = −(σ2k̃2 + 2σνk̃4 + ν2k̃6). (34)

It is helpful to non-dimensionalise using the inverse time scale νk̃2, and defining R∗ ≡ R/k̃2396

to give397

a∗3R
3
∗ + a∗2R

2
∗ + a∗1R∗ + a∗0 = 0, (35)398

with coefficients given by

a∗3 = 1, (36)

a∗2 = −(2σ∗ + 3), (37)

a∗1 = σ2
∗ + 4σ∗ + 3 + Ẽk

−2
, (38)

a∗0 = −(σ2
∗ + 2σ∗ + 1), (39)

after dividing by ν2k̃6. Here we have also defined σ∗ ≡ σ/(νk̃2) and a dimensionless number399

that has a similar form to an Ekman number, Ẽk ≡ (νk̃2)/f . Note that this definition of400

the dimensionless growth rate, σ∗, differs from that used in the previous section for inviscid401

flows.402

A. Viscous, non-rotating convective instability403

The roots of the characteristic equation can easily be found for the non-rotating case404

with Ẽk = ∞. These are R∗ = 1 and the double root R∗ = σ∗ + 1. However, through405

inspection of (11), with the right hand side equal to zero, we see that one of the two σ∗ + 1406

roots is spurious, and this results in r = ±k̃, ±
√
σ∗ + 1k̃, with ŵ(z) ∝ erz forming a general407

solution. Most of these solutions can be eliminated based on the boundary conditions that408

ŵ → 0 as |z| → ∞, so the solution is409

ŵ(z) =

A1e
−k̃z + A2e

−(σ∗+1)1/2k̃z , z > 0

B1e
k̃z +B2e

(σ∗+1)1/2k̃z , z < 0.
(40)410
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We now can solve for the four unknown coefficients using the four jump conditions. The411

condition for the continuity of vertical stress is equivalent to integrating (11) across the412

interface, and gives413

σν
[[
ŵ′′′
]]
0
− k̃2|∆B|ŵ(0) = 0. (41)414

It is useful to work with the dimensionless form of this jump condition

σ∗

[[
ŵ′′′
]]
0

k̃3ŵ(0)
= R̃a,

where we have defined a Rayleigh number like quantity R̃a ≡ |∆B|/(ν2k̃3).415

These four conditions allow us to solve for the four unknown coefficients in (40) and lead

to a dispersion relation. In short, we use condition (i) and (iii) to give A2 = B2 and therefore

also A1 = B1. Then (ii) results in A1 = −(σ∗ + 1)1/2A2 so that the (normalised) solution

becomes

ŵ(z) = e−(σ∗+1)1/2k̃|z| − (σ∗ + 1)1/2e−k̃|z|.

The dispersion relation reduces to

G(σ∗) = R̃a with G(σ∗) ≡
2σ2
∗(σ∗ + 1)1/2

(σ∗ + 1)1/2 − 1
,

a result previously found by Chandrasekhar [30, 37] once the Boussinesq limit is taken.416

For σ∗ � 1 we can identify the inviscid buoyant growth regime, since G(σ∗) ≈ 2σ2
∗, again417

giving σ = (|∆B|k̃/2)1/2. On the other hand, the effects of viscosity are felt at low σ∗,418

and to describe this regime, we expand G(σ∗) about σ∗ = 0 to give G(σ∗) ≈ 4σ∗, so that419

σ = |∆B|/(4νk̃). This shows that the “roll-off” of σ with k̃ is proportional to k̃−1. It is420

interesting to note that viscosity does not lead to completely stabilized perturbations at large421

k̃, as it does for convective systems with thermal variations over a finite vertical domain and422

non-zero diffusivity [e.g., 20].423

As a specific example, we take the conditions used in the experiments of Davies-Wykes424

and Dalziel [38], where careful effort was undertaken to produce convection in the two-layer425

configuration. The results of the stability analysis for this setup are shown in Fig. 6. They426427

show both the inviscid buoyant growth scaling, as well as the viscous roll-off, and this results428

in a maximum growth wavelength of 0.63 cm. Based on the width of their experimental tank,429

we would therefore expect to observe approximately 32 developing wavelengths in the initial430

instability, and this appears to be consistent with their Fig. 5(a) for the initial onset of the431
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FIG. 6. Plot of the dispersion relation for viscous, non-rotating convection in the two-layer setup.

Dimensional parameters are chosen to match the experiments of Davies-Wykes and Dalziel [38],

namely |∆B| = 0.0137 m s−2, ν = 1.0× 10−6 m2 s−1. The two asymptotic scalings corresponding

to inviscid buoyant growth [i.e., as in (18)], and the viscous damping are shown as the indicated

dashed lines.

instability. However, as they note, this wavelength may be influenced by the initial gate432

removal.433

Physical mechanism434

As the growth rate curve follows the inviscid buoyant scaling with a viscous roll-off, the435

physical mechanism is identical to the inviscid case, but with a wavenumber of maximum436

growth set by the onset of viscous damping. This damping is responsible for lower growth437

rates than would otherwise occur in the absence of viscosity.438

B. Viscous, rotating convective instability439

By including the rotation term in the cubic equation (35), it can be shown that the roots440

are no longer purely real; rather they consist of one real number, and two complex conjugate441
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FIG. 7. Plot of the dispersion relation for viscous, rotating convection in the two-layer setup. Panels

(a) and (b) correspond to rotation rates of f = 0.3, 10 s−1, respectively. All other dimensional

parameters are chosen as in Fig. 6. The three asymptotic scalings corresponding to inviscid buoyant

growth [i.e., as in (18)], the viscous roll off, and rotation-dominated convection are shown as the

indicated dashed lines.

roots. Solutions in the mixed layers then take the form of442

ŵ(z) =



A1e
−r1k̃z + A2e

−ak̃z cos(bk̃z)

+ A3e
−ak̃z sin(bk̃z), z > 0

B1e
r1k̃z +B2e

ak̃z cos(bk̃z)

+B3e
ak̃z sin(bk̃z), z < 0

(42)443

where r1 denotes the real root, and a and b the real and imaginary parts of the complex444

conjugate roots, respectively. Note that we have eliminated half of the terms in each layer445

that have unbounded signs in the exponential function. Unfortunately, we were unable to446

derive closed form analytical solutions for the roots, and dispersion relation. These are447

therefore computed numerically, with example solutions plotted in Fig. 7 for two different448

rotation rates, f . As far as we are aware, this setup appears not to have been solved449

previously, except through approximate methods [39].450451

The growth rates that result from the viscous, rotating convection setup essentially mirror452

the individual results from the cases examined so far. Depending on the choice of parameters453
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(i.e., R̃a and Ẽk) all three scalings can be observed as k̃ is varied: a region at low k̃ where454

rotation is limiting growth, a region of essentially inviscid buoyant growth at intermediate455

k̃, and the viscous roll off at high k̃. All of these regions can be seen in Fig. 7(a). In this456

case, we note that although rotation alters growth rates it will not affect the fastest growing457

mode that is expected to give rise to nonlinear convection. At larger rotation rates (more458

precisely, smaller Ẽk) however, the rotating growth scaling moves towards the k̃ of the fastest459

growing mode, and the stabilizing effects of rotation will be felt during nonlinear convection;460

k̃ of the fastest growing mode shifts to larger values, and growth rates are diminished. The461

mechanism by which growth rates are reduced is essentially inviscid, and follows the same462

scaling as described in section III B. The mechanism described there also holds for the463

viscous case, but with viscosity responsible for limiting high k̃ growth, and setting a fastest464

growing mode. Note that this is in contrast to a linearly stratified, vertically bounded layer465

of rotating fluid, where viscosity has been found to destabilize convection [2].466

V. SUMMARY AND CONCLUSIONS467

Stimulated by the close agreement between linear stability results and nonlinear convec-468

tive heat transports [1], in this paper we have taken a new look at quantifying the physical469

mechanisms involved in the linear stabilization of convection by rotation. We do this using470

an idealised two-layer setup where we add increasing complexity stepwise, i.e., rotation, a471

semi-bounded domain, and viscosity. This setup has the advantage of allowing for the quan-472

tification of different effects on the growth of the instability using wave interaction theory473

from the stability of stratified shear flows [25].474

Application of this methodology to the inviscid, unbounded, rotating convection problem475

quantifies two principle effects that contribute to altering the growth rates of convection476

by rotation: (i) a source of planetary vorticity in the mixed layers that can contribute to477

an increase in growth that is, (ii) more than compensated by decreasing growth due to a478

misalignment of the interfacial vorticity with the interface displacement caused by the tilting479

of planetary vorticity by interfacial shear. The effect in (i) is related to the development of480

Taylor columns (TCs) in the layers, and is altered when one of the layers is bounded in the481

vertical. In this bounded case, the need to satisfy the rigid lid boundary condition causes an482

additional stabilization, and an approximate condition of Π ≡ |∆B|/(2f 2H) > 2, was devel-483
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oped to determine whether this TC mechanism was acting to stabilize convection. Finally,484

by including viscosity into the problem, we find unsurprisingly that the high wavenum-485

bers are stabilized, giving rise to a wavenumber of maximum growth, k̃max. However, the486

mechanisms of stabilization by rotation, and rotational effects on k̃max, are essentially set487

by the inviscid mechanisms (i,ii) discussed above, with viscosity only serving to limit high488

wavenumber growth.489

We can therefore summarise the central general result of this study: that assessing the490

physical mechanisms responsible for the linear stabilization of convection by rotation are491

not straight forward, can be of various types, and depend on the parameters of the problem.492

For more realistic cases with continuous buoyancy profiles with boundary and mixed layers,493

the simple setup of a linearly stratified and vertically bounded layer, as in the often-cited494

paper of Chadrasekhar [2], cannot be used as an idealised guide for a full understanding of495

the stability mechanisms. A more careful approach is required that accounts for the physical496

mechanisms identified herein, and their dependence on parameters.497

ACKNOWLEDGMENTS498

Support of JRC by the Helmholtz Association through the PoF-IV programme and499

through the German Research Foundation (DFG) is gratefully acknowledged. MLT ac-500

knowledges support from the National Science Foundation Division of Polar Programs under501

Award 1950077. EH is grateful to the Israeli Science Foundation (grant number 1645/19) and502

to the PAZY Foundation (grant number 324-2/22). This paper is a contribution to project503

T2 of the Collaborative Research Centre TRR181, “Energy Transfers in Atmosphere and504

Ocean´´ funded through DFG grant 274762653.505

Appendix A: Derivation of the continuity of vertical stress jump condition506

In this appendix we demonstrate that the jump conditions obtained by integrating equa-507

tion (12) across the singularity at the buoyancy interface are equivalent to requiring a con-508

tinuous vertical stress. In general, the vertical stress across a horizontal interface is given by509

−π + 2ν∂w/∂z, and in normal mode form by −π̂ + 2νŵ′. In both the inviscid and viscous510

cases the second term vanishes, since either ν = 0 or
[[
ŵ′
]]
0

= 0, respectively. Therefore,511
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continuity of vertical stress across the interface reduces to
[[
π̂
]]
0

= 0. We now use this con-512

dition to recover the jump conditions obtained in the main body of the paper by integrating513

(12) across the interface.514

The divergence of the momentum equations in (1 - 3) gives515

L(π̂) = b̂′ − f ζ̂ (A1)516

which can be used to solve for the pressure by using the Green’s function, G(z, s), for the517

linear operator L, via518

π̂(z) =

∫ ∞
−∞

G(z, s)F̂ (s) ds (A2)519

where G(z, s) = −e−k̃|z−s|/2k̃ for an unbounded domain, which has been assumed here. The520

right hand side of (A1) is represented by F̂ (z), and is composed of the vertical derivative of521

a singular term with b̂ = −Bzη̂ and Bz = ∆B δ(z). We only consider this singular buoyancy522

term in F̂ since it appears in the jump condition. It is possible to solve for the pressure523

contribution of this term, which we will denote with the i subscript due to its interfacial524

jump. It can be written using integration by parts as525

π̂i(z) = ∆B

∫ ∞
−∞

∂G

∂s
δ(s)η̂(s) ds, (A3)526

and results in527

π̂i(z) =
∆B η̂(0)

2
sgn(z)e−k̃|z| (A4)528

giving a jump in pressure across the interface of
[[
π̂i
]]
0

= ∆B η̂(0).529

In addition to this hydrostatic pressure jump across the interface, there is also a contri-530

bution from the layers, which will be denoted with the ` subscript. This can be found by531

taking the horizontal divergence of (1,2) to find π̂` as a function of ŵ and ζ̂, i.e.,532

π̂`(z) =
(−σ + νL)ŵ′ − f ζ̂

k̃2
. (A5)533

Setting the total pressure jump across the interface to zero, i.e.,
[[
π̂i
]]
0

+
[[
π̂`
]]
0

= 0, gives a534

general jump condition of535

σ
[[

(−σ + νL)ŵ′ − f ζ̂
]]
0

+ k̃2∆B ŵ(0) = 0, (A6)536

where we have used the kinematic condition ση̂(0) = ŵ(0) from (16). It is possible to use537

this jump condition to recover all cases examined in the body of the paper.538
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• Inviscid convection: Setting ν = 0, and using (9) to write ζ̂ = fŵ′/σ recovers the jump539

condition in (23) from (A6). This contains the inviscid, non-rotating jump condition540

as a special case with f = 0.541

• Viscous convection: For this case, we use
[[
ŵ′
]]
0

=
[[
ζ̂
]]
0

= 0, and the fact that542 [[
L(ŵ′)

]]
0

=
[[
ŵ′′′
]]
0

to recover the jump condition (41) from (A6).543

Appendix B: Heuristic interpretation544
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FIG. 8. Sketch of the heuristic interpretation of the interfacial mechanism of stabilization by

rotation. Labels (a,b,c) refer to various aspects of the sketch that are referenced in the text, and

colors indicate the alterations that are present when rotation is included.

We have largely based our physical interpretations on the interplay of the vorticity, verti-545

cal velocity and displacement fields, using wave interaction theory. However, in this section546

we offer a heuristic physical interpretation of the interfacial stabilization mechanism that is547

not intended to be as formal and quantitative. It describes the stabilization at the stratified548

interface that comes from including rotation into the inviscid, unbounded setup.549

With reference to the sketch in Fig. 8, we see that at an interface growing from a convective550

instability that is free from rotation, there are overturning circulation cells that are formed551

(Fig. 8a). These transport mixed layer fluid horizontally away from crests and towards552

troughs, and are confined to the ~e(k) direction. This can also be thought of as the signature553

of the alignment of the interfacial vorticity vector with the ~e
(k)
⊥ direction. However, when554

rotation is included, these horizontal motions are subject to the Coriolis force, that will555

cause a deflection to the right (for f > 0, Fig. 8b). This has the effect of weakening the556

overturning circulation, by creating a component along the interface crests and troughs in557
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the ~e
(k)
⊥ direction (Fig. 8c). Again, this reflects the fact that the interfacial vorticity vector is558

misaligned with ~e
(k)
⊥ . This weakening of the overturning circulation reduces the growth of the559

interface displacement by weakening the vertical velocities associated with the circulation560

(due to the requirement of satisfying continuity).561

Note that in this explanation we have discussed in terms of velocities and forces, and have562

neglected to specify the effect of the pressure gradients. This is an advantage of vorticity-563

based formulations, which eliminate the pressure gradient terms. For this reason we refer to564

the explanation as heuristic.565
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tionality to the interfacial vorticity component ~̂γ ·~e(k)⊥ . This quantity serves as a normalisation641

that is needed when comparing different cases (e.g., bounded and unbounded domains).642

[37] S. Chandrasekhar, The character of the equilibrium of an incompressible heavy viscous fluid643

of variable density, Math. Proc. Cambridge Phil. Soc. 51, 162 (1955).644

[38] M. Davies-Wykes and S. Dalziel, Efficient mixing in stratified flows: experimental study of645

a Rayleigh-Taylor unstable interface within an otherwise stable stratification, J. Fluid Mech.646

756, 1027 (2014).647

[39] R. Hide, The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid648

30



of variable density II: two special cases, Quart. J. Mech. App. Math. 9, 35 (1956).649

31


