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Viscoelastic fluids are a common subclass of rheologically complex materials that are encountered
in diverse fields from biology to polymer processing. Often the flows of viscoelastic fluids are
unstable in situations where ordinary Newtonian fluids are stable, owing to the nonlinear coupling
of the elastic and viscous stresses. Perhaps more surprisingly, the instabilities produce flows with
the hallmarks of turbulence—even though the effective Reynolds numbers may be O(1) or smaller.
We provide perspectives on viscoelastic flow instabilities by integrating the input from speakers at a
recent international workshop: historical remarks, characterization of fluids and flows, discussion of
experimental and simulation tools, and modern questions and puzzles that motivate further studies
of this fascinating subject. The materials here will be useful for researchers and educators alike,
especially as the subject continues to evolve in both fundamental understanding and applications
in engineering and the sciences.

I. INTRODUCTION

Authors: S.S. Datta and H.A. Stone

Viscoelastic instabilities often occur during the flow,
at sufficiently strong forcing, of polymer solutions and
other viscoelastic fluids—driven by the strong coupling
between the (viscous) fluid flow and the material’s elas-
ticity. A classic example of a molten polymer entering
a planar contraction is shown in Fig. 1; beyond a crit-
ical flow rate, the flow field is dramatically disrupted,
even though inertial effects are negligible. The dynam-
ics of these complex fluids is both fundamentally inter-
esting and technologically important, and continues to
be studied by researchers around the world. In some
cases, such flow instabilities lead to elastic turbulence—
a chaotic, strongly fluctuating regime of fluid flow, such
as Fig. 1(e)—which, amazingly, occurs at low Reynolds
number. The statistical features of the flow in this regime
have been suggested to be universal, insensitive to the
details of the viscoelastic fluid. Although some flow con-
figurations are well studied, perhaps surprisingly there
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remain poorly understood aspects of the flows, and these
questions lead to many open fundamental and applied
problems in the dynamics of complex fluids.

S.S. Datta and H.A. Stone organized a virtual work-
shop of the Princeton Center for Theoretical Sciences
in January 2021 to bring together researchers to discuss
problems related to viscoelastic flow instabilities, assess
successes as well as examples of the lack of predictability
in current theory, models and simulations, identify theo-
retical pathways linking tools of statistical and polymer
physics to mean field models of the flows, and highlight
applications of these instabilities. The ultimate goal was
to bring this community together and clarify, as well as
identify, unifying/open questions for future research to
address. We had nearly 500 registered participants from
institutions in academia and industry from all over the
world. This Perspective, which includes contributions
from the invited speakers, summarizes some of the re-
search presented and discussions generated at the work-
shop. Indeed, the participants expressed the viewpoint
that the discussions were particularly enlightening as
they crystallized poorly understood topics, offered ideas
where theory and experimental findings diverged, and
highlighted where mechanistic understanding was poor
or even lacking.
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FIG. 1. Flow induced birefringence of a viscoelastic polymer melt flowing into (a) and exiting (b) a channel die; note that the
shapes of the corners are slightly different between the two. The fringe patterns show lines of constant retardance and constant
principal stress difference in the flowing melt. As the flow rate into the die increases, the elastic stress differences increase
rapidly and fringes become increasingly numerous and closely spaced (c), (d). Beyond a critical imposed pressure drop the
flow becomes unsteady and time-dependent (e) as reflected in the chaotic fringe pattern, which is an apparent signature of a
phenomenon named elastic turbulence. Adapted from [1].

A. This Article: A Summary and Perspective

The goal of this article is to provide a short record of
the main themes of the workshop, including, where pos-
sible, some of the spirit of the discussions that occurred
between the talks. A wide range of topics are discussed
briefly, with the hope that a researcher new to the field, or
even an established researcher in one corner of the sub-
ject, will find introductory ideas that can launch them
into a new research topic if they are so enthused.

This article is organized similar to the structure of
the talks in the workshop. Any study of the subject
of the flow of complex fluids necessarily touches on im-
portant ideas in fluid mechanics, from the geometry of
a wide range of (steady) base flows that are possible to
the nature of constitutive equations that are needed to
close the equations of motion. Even though the latter
treats the fluids as continua, it must include the fact
that the microstructure of the fluid is deformable, which
changes the mechanical, i.e., elastic, response. In ad-
dition to reversible deformations, various irreversible ef-
fects take place in the form of relaxation and viscous
dissipation. Experimental observations have been cru-
cial to identifying the rich nature of the dynamics that
can occur, and it should not be forgotten that often the
experts were surprised when many of the observations
were first made. Furthermore, in some cases, elementary
models have been helpful in rationalizing observations, at
least qualitatively, in the field of complex fluids generally
and polymer solutions in particular, e.g., the bead-spring
model suggested in 1953 by Rouse [2] and improved three
years later by Zimm [3] and then used by de Gennes [4]
and Hinch [5] to propose the coil-stretch transition as
responsible for some viscoelastic flow responses.

Hence, by means of introduction to this field, we pro-
vide a discussion of these complex fluid dynamics in § II,
with emphasis on the dimensionless parameters needed to

characterize the flow, and with historical developments in
the field highlighted. We introduce viscoelastic flow in-
stabilities and provide a discussion of the different kinds
of kinematics that both characterize different flow config-
urations and indicate their potential as a trigger for flow
instability. Also, we highlight how in the case of insta-
bilities in common flows with curved streamlines, Pakdel
and McKinley [6] provided an insightful characterization
that has proven to be helpful quite broadly. Most of the
discussion here and elsewhere is thinking about polymeric
fluids (but see § VIII below).

Numerical simulations using macroscopic, necessarily
approximate, constitutive equations linking the state of
stress to the strain and rate of strain in these viscoelastic
materials have proven to be increasingly insightful in un-
raveling (no pun intended) the dynamics of these flows
with deformable microstructure. Hence, § III provides
background on constitutive models and numerical tools,
including open-source code, for studying viscoelastic fluid
flows. This discussion can also serve as an introduction
to flow modeling more generally.

The subject of viscoelastic flow instabilities in model
(canonical) geometries and the connections to turbu-
lent dynamics is introduced in § IV. The discussion in-
cludes a review of the main observations as well as new
ideas, related to mechanisms, that have come from two-
dimensional (2D) and three-dimensional (3D) numerical
simulations. Elastic flow instabilities in more complex
geometries, such as the flow between a pair of cylinders,
or flow in ordered or disordered porous media, are dis-
cussed in § V. Section VI deals with the combined effects
of elasticity and inertia in engendering novel instabilities
in rectilinear shearing flows. The role of these instabil-
ities vis-a-vis transition from the laminar state, and in
reducing drag in the fully developed turbulent regime
(the maximum drag-reduced regime, in particular), is
discussed. Connections between the different turbulent
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regimes – elastic, inertial and elastoinertial – are high-
lighted. Flow instabilities in simplified free-surface flows
are discussed in § VII. Some of the flow instabilities that
are observed in other non-polymeric complex fluids are
indicated in § VIII and the article closes in § IX with
future outlooks across this fascinating subject. We hope
the reader enjoys this tour of instabilities in the flow of
complex fluids.

II. VISCOELASTIC FLUIDS AND FLOWS

Author: G.H. McKinley, with input from
S.S. Datta, R.J. Poole, E.S.G. Shaqfeh, H.A. Stone

As introduced in undergraduate classes, ordinary
small-molecule liquids are viscous and Newtonian: the
stress is a linear function of the shear rate (also known
as the strain rate), with the coefficient of proportional-
ity given by the dynamic shear viscosity. By contrast,
ordinary solid materials are elastic: the stress is a linear
function of the strain, and the coefficient of proportion-
ality is the elastic modulus. Conceptually it is useful to
imagine an elastic material as made up of simple springs
with a restoring force linear in displacement, e.g., Hooke’s
law derives from Robert Hooke’s observation, in latin, in
the mid-late 1600s that “ut tensio, sic vis” or “as the
extension, so the force.” The materials we are concerned
with have elements of both: they are viscoelastic, so that
the state of stress depends on both the strain and the
strain rate. Conceptually, such a material has some re-
sponses expected of a matrix of damped linear springs,
e.g., the Maxwell or Voigt linear viscoelastic models have
this character and can be used to characterize such fluids
in the small amplitude limit.

Polymer solutions are a common and industrially rele-
vant example of a viscoelastic fluid. Thus, a wide variety
of industrial processes such as molding, extrusion, coat-
ing, spraying etc. that involve polymer solutions give rise
to the challenge of modeling and controlling viscoelastic
flows. The polymer solutions can be dilute or concen-
trated (and in the latter case they also share many prop-
erties with polymer melts), and have very different con-
stitutive relations [7, 8]. Other viscoelastic fluids include
micellar surfactant solutions, emulsions, liquid crystals,
etc.

A. Typical Flows and Kinematics

As in all areas of fluid dynamics, flows can be driven
by the motion of boundaries or by a pressure difference.
Thus, the two prototype flows that are characterized
most are Taylor-Couette flow, which refers to the wall-
driven flow in the annular gap between two concentric

cylinders, and pressure-driven (or Poiseuille) flow in a
channel or circular pipe. The former has curved stream-
lines, whereas the latter flow is rectilinear far from the
inlet when the flow is fully-developed—although stream-
line curvature can also be introduced when the channel or
pipe has a curving centerline (often termed “Dean” flow)
or when a boundary-driven flow is forced to recirculate
in a closed cavity.

Early in the 20th century, in an experimental and the-
oretical study of a Newtonian fluid in a concentric cylin-
der device, G.I. Taylor characterized the instability ex-
perimentally and numerically: above a critical rotation
rate (Reynolds number) the flow is unstable when the in-
ner boundary is rotated with the outer boundary fixed,
but the opposite case (inner boundary fixed and outer
boundary rotating) is always linearly stable [9]. Over the
next few decades there were hints that viscoelastic fluids
had a qualitatively different response—but the definitive
work on the topic, clarifying elastic instabilities, and the
fact that they could occur for low-Reynolds-number flows
when the inner boundary was fixed and outer boundary
rotating would not occur until the late 1980s and early
1990s.

In addition, to understand the motion of fluids that
contain a deformable microstructure, it is important to
recognize the distinction between shear-dominated and
extension-dominated flows. For steady flows, in the for-
mer case, because of the presence of a finite rate of rota-
tion, material points separate algebraically in time, and
orientable objects tumble at a rate nominally tied to the
vorticity in the flow. By contrast in the latter flow type,
because of the absence of rotation, material points sep-
arate exponentially in time. It should not be surprising
that exponential stretching can cause large changes in
the stress in a viscoelastic material.

B. Rheology and Rheological Parameters

The field of non-Newtonian fluid mechanics, with its
unfamiliar notation and specific terminology/jargon, can
be initially bewildering to newcomers. This is, in some
sense, unavoidable because of the vast range of fluids that
fall into the class of what used to be called generically
non-Newtonian fluids and that are now increasingly de-
fined by the catchall phrase complex fluids. These materi-
als may range from dilute polymer solutions and melts to
dense suspensions with high volume fractions of particles,
surfactant solutions that self-assemble into long ‘worm-
like’ micellar structures to soft swollen polymer micro-
gels, liquid crystalline dispersions and beyond. The key
feature of interest in understanding viscoelastic flow in-
stabilities is the presence of an underlying deformable mi-
crostructure in the fluid that can be affected by the flow,
and which, in turn, can modify the underlying equations
of motion – as a consequence of the generation of ad-
ditional non-Newtonian contributions to the total stress
field that arise from changes in the microstructural con-
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Symbol Meaning

ρ Density
σ Interfacial tension
v Velocity vector
V Velocity scale
t Time
` Flow length scale
γ Shear strain
τ Stress (shear or extensional, as defined in the text)
η Shear viscosity (dynamic)
ν Shear viscosity (kinematic)
λ Stress relaxation time
γy Yield strain
τy Yield stress
N1 First normal stress difference
N2 Second normal stress difference
Ψ1 First normal stress coefficient
Ψ2 Second normal stress coefficient
G Shear modulus
G∗ Complex shear modulus
G′ Storage modulus
G′′ Loss modulus
ε Extensional Hencky strain
ηE Extensional viscosity

TABLE I. Due to the use of different symbolic conventions by
different communities, here we summarize the choices of the
symbols used most commonly in this article along with their
meanings. Where relevant, the mathematical definitions are
presented in the text as the symbols are introduced. Other
symbols are also introduced in the text as needed for specific
other quantities. Note that an overlying dot represents a time
derivative, e.g., γ̇ denotes the shear rate.

figurational distribution. It is the nonlinear feedback be-
tween these two features of flow and fluid that give rise to
entirely new instabilities not present in Newtonian fluids
that are characterized by a linear relationship between
stress and deformation rate.

It is not possible in a short perspective article to cover
this entire zoology of fluids (for more details the reader
is directed to [8]), but it is possible to summarize five of
the key phenomena and the corresponding material prop-
erties that are displayed by prototypical complex fluids.
These involve:

1. Fluid viscoelasticity, as parameterized by a stress
relaxation time, commonly denoted λ (but also of-
ten defined as τ in the physics literature) and a
complex (shear) modulus G∗(ω) = G′(ω)+ iG′′(ω),
where ω is the frequency of the time-varying strain
field in small amplitude oscillatory shear (SAOS).
Here the storage modulus G′ characterizes the elas-
tic response of the material and the loss modulus
G′′ characterizes the viscous response of the ma-
terial. The elastic and viscous stresses resulting
from this deformation grow linearly with the strain
amplitude and are, respectively, in phase and 90
degrees out of phase with the imposed sinusoidal
strain oscillation.

2. The development in steady simple shear of large
normal stresses along the principal axes of the flow
characterized by two nonzero normal stress differ-
ences, commonly denoted by material functions N1

and N2.

3. Shear rate-dependence in the viscometric material
functions that are measured in steady shearing flow
with shear rate γ̇; e.g., a shear-thinning viscosity,
η (γ̇) = τ/γ̇ and normal stress coefficients Ψ1 (γ̇) =
N1/γ̇

2 and Ψ2 (γ̇) = N2/γ̇
2.

4. Time and rate-dependence, often corresponding to
strain-hardening and tension-thickening (e.g., flexi-
ble linear polymers in dilute solution) respectively,
in the time-dependent extensional viscosity func-
tion, η+E (ε̇, t), where ε̇ is the local extension rate in
an extensional flow.

5. The possible appearance of a yield stress τy (and
a corresponding yield strain γy) at sufficiently high
concentrations of the microstructural constituents.

Just as in the case of a communicable disease, such as
the flu (or COVID-19!), the list of symptoms described
above may be present or absent to different extents in a
particular fluid, or constitutive model, and care must be
taken to understand these limitations. For example, the
Oldroyd-B model, which is discussed extensively in the
rest of this paper, predicts some of the phenomena in the
above list; specifically items #1, 2 (but only partially as
N2 = 0), and 4, but does not predict rate-dependency
of the viscometric functions. To compare experimental
observations and theoretical predictions, the rheological
material response of a given fluid needs to be carefully
characterized in several different flow fields, e.g., at mini-
mum, SAOS, as well as a large deformation shearing flow
such as steady simple shear flow at large shear rates (i.e.,
γ̇ � 1/λ) or large amplitude oscillatory shear (LAOS) as
well as an extensional flow of some kind, so that accurate
model parameters can be extracted from experimental
data. Highly elastic dilute polymer solutions, or ‘Boger
fluids’ [10, 11] were formulated to exhibit an approxi-
mately constant shear viscosity but significant elasticity.
Early fluid formulations used corn syrup as the viscous
base solvent and were subject to pronounced bacterial
degradation (and even fermentation!) issues; however
these issues were overcome by the formulation of purely
synthetic hydrocarbon-based Boger fluids based on high
molecular weight polymers such as (polydisperse) poly-
isobutylene [12] or, later, (monodisperse) polystyrene
[13]. The rheological response of these ‘Boger fluids’ cor-
respond quite closely to the predictions of the Oldroyd-B
model so that quantitative comparisons between the pre-
dictions of linear stability analysis and careful experimen-
tal observations could be performed without the compli-
cations of the interplay between viscoelasticity and shear
thinning in the viscosity.

Additional, more-complex rheological phenomena
arising from complications such as finite extensibil-
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ity of the polymer chains or coil-overlap in semi-
dilute/concentrated solutions can be incorporated by in-
cluding additional physics in the microstructural descrip-
tion of the complex fluid. This invariably gives rise to ad-
ditional (often dimensionless) model parameters, such as
the finite extensible, nonlinear elastic (FENE), parame-
ter L that describes the finite extensibility of solvated
polymer chains [14] or the Giesekus mobility parame-
ter α [15] describing anisotropic drag on the underlying
flow-aligned microstructural elements, detailed further in
§ III. Incorporating these additional microscopic effects
into the constitutive model typically lead to nonlinear
responses such as shear-thinning in the viscometric ma-
terial functions [16] as well as a bounded stress growth
in steady homogeneous elongational flows, which agree
even more closely with experimental data [13, 16]. Im-
portantly, this nonlinear response, even in an ‘ideal’ elas-
tic liquid makes the characteristic relaxation time of the
fluid, defined typically (in shear) as λ(γ̇) ≡ Ψ(γ̇)/2η(γ̇)
rate-dependent. Consequently great care must be taken
in calculating the magnitude of the Deborah or Weis-
senberg number (which are formally defined in Section
II C below).

A useful estimate of the relative importance of elastic
effects in a given flow characterized by a typical shear
rate γ̇c can often be obtained by evaluating the stress
ratio [7] defined by SR ≡ N1(γ̇)/2τ(γ̇). In real fluids
this ratio can evolve non-monotonically with shear-rate
due to the different levels of shear-thinning occurring in
the first normal stress difference and the shear stress of
the fluid; it is of course identically zero for a Newtonian
fluid. An extensive review of the current state of the
art in the constitutive modeling of polymer melts and
solutions is given by Larson and Desai [17]. For more
complex materials, such as particle-filled viscoelastic flu-
ids, in which a yield stress also appears, suitable frame-
invariant tensorial constitutive models are just beginning
to appear [18, 19], but very few stability analyses have yet
been performed for this class of materials, which can be
conveniently described as elastoviscoplastic (EVP) ma-
terials. The reader is referred to a recent review that
discusses these rheological complexities further [20].

C. Dimensionless Parameters for Complex Fluids

For fluid mechanicians it is natural to aim to quanti-
tatively compare experimental observations and numer-
ical computations of steady flows and flow stability in
terms of appropriate dimensionless quantities. However
the number of material parameters or functions required
to describe a specific complex fluid can lead to a rapid
increase in the dimensionality of the problem as well as
some non-uniqueness in the definitions of material pa-
rameters.

For a fluid of density ρ and shear viscosity η, in a
canonical flow with a typical velocity scale V and length
scale `, in addition to a Reynolds number Re = ρV `

η pa-

rameterizing the relative importance of inertial stresses
O
(
ρV 2

)
to viscous stresses O (ηV/`), it is essential to

also quantify the level of non-Newtonian effects in the
flow. This is commonly done through a Deborah number,
De, or a Weissenberg number, Wi. The preferred usage of
each term has evolved over time and formal definitions of
these dimensionless parameters are subtly different from
each other (see [21] for additional discussion). Neverthe-
less, they both represent a dimensional relaxation time
(which may itself be rate-dependent) compared with re-
spect to a characteristic time-scale for the flow. In the
Deborah number, the characteristic time for the flow is
represented directly by an estimate of the time over which
the flow changes, whereas in the Weissenberg number,
the time-scale is parameterized indirectly using an in-
verse shear rate. Alternatively, a dimensionless stress
ratio, SR(γ̇), defined in terms of the ratio of the first
normal stress difference to the shear stress, can also be
used to directly quantify the level of non-Newtonian ef-
fects in the flow (as seen using the Oldroyd-B model,
described further in §III, in the limit of negligible solvent
viscosity).

Careful inspection of any particular research paper is
required to ensure that one understands clearly the defi-
nition being used; but a simple example can suffice here.
In the steady viscometric flow of a viscoelastic fluid in a
cone-and-plate rheometer, where Ω is the steady rotation
rate of the conical fixture and θ0 � 1 is the (very small)
conical angle of the domain within which the fluid is con-
fined, the conical fixture generates a homogeneous defor-
mation rate γ̇φθ = Ω/θ0. The Deborah number would be
properly defined in terms of a ratio of time scales between
the stress relaxation timescale and the characteristic flow
time scale, Tflow ≈ 1/Ω, so that De = λΩ. However the
magnitude of the normal stress differences and the shear
stress developed in the viscometric shearing flow estab-
lished by the rotating cone (typically) have magnitudes
that scale with γ̇2 and γ̇, respectively, so that the dimen-
sionless Weissenberg number parameterizing this stress
ratio is properly defined as Wi = λγ̇ = λΩ/θ0.

These two non-Newtonian dimensionless groups, De
and Wi, are of course not completely independent and
their ratio is given simply by a dimensionless geometric
factor characterizing the flow; for example, in the cone-
and-plate example above Wi/De = 1/θ0. Similar defi-
nitions and distinctions apply in all flow domains, from
viscometric flows such as a Taylor-Couette geometry –
with inner and outer radii Ri and Ro, respectively, where
the gap ratio (Ro −Ri) /Ri plays the corresponding role
to θ0 – to more complex geometries such as viscoelas-
tic flow past a cylinder or sphere, or through a contrac-
tion/expansion. One possible taxonomy, based on kine-
matic distinctions, of the different viscoelastic flow insta-
bilities that have been documented to date is suggested
in Fig. 2.

Because of this indeterminacy and variability between
different approaches and geometries, it is good practice
– particularly in stability analyses where one seeks to
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FIG. 2. A map of the different viscoelastic flow instabilities that have been documented to date, with references to selected
works exemplifying the different kinematics. Please note that the numbered references shown here are numbered with respect
to the papers in this Perspective article.

compare experiments and predictions – to use only one
dimensionless group as a dynamical parameter measuring
the flow strength and then report dimensionless ratios of
material and geometric parameters that are independent
of kinematics to fully specify the flow situation being
considered. For example, a dimensionless elasticity num-
ber El = De/Re = λη/

(
ρ`2
)

conveniently represents the
relative magnitude of viscoelastic and inertial effects in
a flow (or the ratio of the time scale of the fluid to the
time for vorticity to diffuse across a distance `) and is con-
stant for a particular fluid and geometry. Unfortunately,
in many computational studies the Deborah number and
Reynolds number may be systematically varied indepen-
dently to explore the dynamical response of a system; for
an experimentalist this corresponds to having to perform
experiments with a range of different fluids and/or flow
geometries, which can be very challenging! Another point
to keep in mind is that in numerical simulations, one can
“turn off” the influence of inertia, whereas experiments
typically have some finite degree of inertia.

This problem of flow characterization is further com-
pounded when a free surface is present due to the ad-
ditional introduction of a surface or interfacial tension

coefficient (which we denote here by σ). We neglect
more complex interfacial effects such as surface diffu-
sivity or viscoelasticity, which would result in yet more
dimensionless parameters. It is then natural to discuss
a capillary number, Ca = ηV/σ. In principle, for vis-
coelastic free surface flows the locus of a particular pro-
cess, e.g., a fiber-spinning or inkjet printing or spray-
ing/atomization operation, can then be represented in
a three-dimensionless space constructed from the Debo-
rah number, Reynolds number, and capillary number as
sketched in Fig. 3. Taking ratios of the dimensionless
parameters plotted on each axis gives rise, respectively,
to the elasticity number El = De/Re and the Ohnesorge

number Oh2 = η2

ρσ` = Ca/Re. Additional dimensionless

parameters can be defined in specific problems, such as
the Weber number We = ReCa, which is commonly en-
countered in analyses of jet stability. The (un-named)
dimensionless ratio of the elastic stresses and capillary
pressure is also of importance in the stability analysis of
such problems and can be conveniently parameterized by
the ratio of the Deborah number and capillary number,
which we suggest should be referred to as an elastocapil-
lary number, Ec = De/Ca = λσ/(η`).
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FIG. 3. A three-dimensional representation of the parameter
space accessed in processing flows of complex fluids. Taking
ratios of each pair of axes results in new dimensionless ma-
terial parameters that are independent of the kinematics of
the flow [75]. Note that here we have defined De as a ratio
of stresses instead of the ratio of time scales presented in the
text.

With these ideas and scalings it becomes natural
to represent experimental measurements and theoretical
analyses of the critical conditions for onset of viscoelas-
tic flow instabilities in terms of stability diagrams such as
the one sketched generically in Fig. 4; detailed results for
pipe and channel flows, respectively, are provided below
in Figs. 21 and 22. The characteristic Reynolds number
of the flow is plotted on the abscissa and the correspond-
ing Deborah number of the complex fluid, or alternatively
the Weissenberg number, is represented on the ordinate.
The stability boundaries for each given wavenumber or
perturbation type correspond to bounding curves in this
parameter space. A set of exploratory experiments with
a given fluid in a fixed geometry correspond to a se-
quence of points that traverse along a line of constant
slope El = De/Re that eventually intersects with a sta-
bility boundary marking the critical conditions for onset
of an observable instability. All experiments with New-
tonian fluids can explore only the abscissa of this plot
and a purely inertial instability corresponds to a criti-
cal point along this horizontal line. In macroscale flows,
weakly-elastic fluids, such as dilute aqueous polymer so-
lutions, move along lines of small slope and explore the
lower right of this parameter space. Highly elastic mate-
rials, such as gels and polymer melts, explore the upper
left portions of the plot.

Although every flow geometry and instability mode
studied represents a unique stability locus in a stabil-
ity diagram such as Fig. 4, some general remarks are
possible. Elasticity can either strengthen or weaken in-
ertial mechanisms of instability, with the precise results
depending on the geometric details of the flow geometry
as well as the magnitudes of rheological parameters such
as the first and second normal stress differences (see for
example the seminal studies by [76, 77]). In Fig. 4 we
show schematically a case in which weak elastic effects
destabilize an inertial mode of instability (as for exam-
ple in viscoelastic flow in the Taylor-Couette geometry)

FIG. 4. Sketch of a canonical stability diagram for represent-
ing the onset of viscoelastic flow instabilities in a complex
fluid.

i.e., the critical Re required for the instability is reduced
by increasing elasticity, thus inclining the stability locus,
indicated schematically by the blue line, as shown. Con-
versely, small levels of inertia often stabilize viscoelastic
base flows against purely elastic instabilities, which cor-
respond to critical loci that intersect the ordinate axis,
leading to trajectories as indicated by the red line; nev-
ertheless, we note that Joo and Shaqfeh have shown,
for viscoelastic Taylor-Couette flow, that the purely elas-
tic instability is destabilized (for nonzero inertia) when
the inner cylinder is rotating, while it is stabilized when
the outer cylinder is rotating [44]. The spatiotemporal
characteristics of these purely elastic and inertio-elastic
modes often differ very substantially.

At large levels of both flow inertia and fluid elastic-
ity (corresponding to the upper right of this plot) more
exotic ‘beasts’ and complex dynamical modes of insta-
bility such as ‘codimension two’ bifurcations exist; see
for example the seminal work of Renardy et al. [78].
With the definitions introduced in this section it be-
comes self-evident that because the elasticity number
El = λη/

(
ρ`2
)

depends inversely on the length scale of
the geometry, it is possible to experimentally access such
regimes using microfluidic devices in which the character-
istic length scale is very small. Indeed for microfluidic re-
searchers handling complex microstructured fluids, such
as blood, DNA suspensions or protein solutions, flow in-
stabilities are to be expected in such devices whenever

they have smallest dimensions `� (λη/ρ)
1/2

.
Finally, with respect to this representation of param-

eter space, we note that in inertio-elastic flow fields
the speed of viscoelastic shear waves is given by cs =

(G/ρ)
1/2

, where G ≡ |G∗| is the magnitude of the com-
plex shear modulus of the viscoelastic fluid [79]. It is
important to note that these viscoelastic shear waves are
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distinct from the sound modes associated with the bulk
modulus of the fluid, and instead are associated with the
transmission of perturbations through the entropic elas-
ticity of the underlying microstructure in the complex
fluid. Since the elastic modulus may only be of order
102 − 106 Pa, the resulting viscoelastic shear wave speed
may therefore be quite modest. If we neglect the role of
the solvent viscosity and identify G ≈ η/λ (in which case
η is dominated by the polymer contribution), then in di-
mensionless form we can construct a viscoelastic Mach
number MaV = V/cs = (Re De)

1/2
, and lines of con-

stant Mach number correspond to hyperbolae in Fig. 4,
as indicated by the green dashed lines. Flows at high vis-
coelastic Mach number result in a change of type in the
underlying constitutive equations, from parabolic (sim-
ilar to a diffusion equation) to hyperbolic (similar to a
wave equation), and give rise to many anomalous phe-
nomena in the inertio-elastic flow of complex fluids [80].
Examples include finite upstream propagation of vortices
ahead of a blockage such as a cylinder in a channel [81, 82]
as well as the development of traveling waves of elastic
stress that are analogous to the Alfven waves observed
in magnetohydrodynamic flows [83]. We note that this
topic was an active topic of discussion at the workshop,
with multiple perspectives presented; the perspective put
forward by V. Steinberg is presented in §IX.

Analogous stability diagrams may also be constructed
for free surface instabilities of complex fluids, for exam-
ple in terms of the Deborah number and Ohnesorge num-
ber [84] or a capillary and Weber number [85]. For com-
plex problems, in which multiple dimensionless material
parameters control the constitutive response of a complex
fluid, the stability loci correspond to surfaces in three- or
higher-dimensional diagrams, which can be difficult to
represent graphically. However, simpler two-dimensional
‘slices’ of this space are still useful graphically to rep-
resent the sensitivity of the stability diagrams to other
effects, such as the magnitude of second normal stress
differences, changes in the finite extensibility of the dis-
solved macromolecules, or sensitivity to the effects of vis-
cous heating for example [86, 87].

A particularly common, and indeed almost unavoid-
able, example of this kind is the role of fluid shear-
thinning which becomes increasingly important at pro-
gressively higher shear rates (except for the case of care-
fully formulated highly-elastic constant viscosity fluids
such as ‘Boger fluids’ [11]). Understanding the central
role of shear-thinning in viscoelastic flow instabilities is
critical because both the fluid relaxation timescale and
the viscosity typically decrease in most complex fluids
(with the important exception of shear-thickening mate-
rials; see for example [88]). A convenient way to graphi-
cally represent these effects is by defining a (dimension-
less) function S(γ̇) = 1 − (d ln τ/d ln γ̇), which is eval-
uated from the flow curve measuring the shear stress τ
at a steady shear rate γ̇ [89–91]; thus, S = 0 corre-
sponds to no shear-thinning (i.e., the Oldroyd-B limit)
and S → 1 corresponds to the upper limit of a strongly

FIG. 5. A stability diagram for viscoelastic flow of dilute
solutions of poly(ethylene oxide) (PEO) and hyaluronic acid
(HA) through an OSCER (Optimized Shape Cross-slot Ex-
tensional Rheometer) device. The elasticity number of each
fluid (shown by the colored lines of constant Wi/Re are var-
ied by changing the polymer concentration or solvent viscos-
ity. Two distinct modes of instability can be observed at high
Weissenberg and Reynolds numbers. Modified from [90].

shear-thinning fluid such as an elastoviscoplastic mate-
rial near its yield stress, or a shear-banding wormlike
micellar solution. It is clear from the definition of the
elasticity number given above that the slope (given by
El = De/Re) of a specific fluid’s trajectory through the
{Re, De} stability diagram becomes progressively shal-
lower under increasingly strong shearing deformations,
and this can dramatically constrain the range of param-
eter space that can be explored.

To briefly illustrate these ideas we show in Fig. 5 the
results of a detailed study of the types of viscoelastic
flow instabilities observed in the flow of a range of dilute
polymer solutions through a microfluidic cross-slot device
that has been optimized to generate a strong and homo-
geneous extensional flow [55]. The trajectories through
{Re,Wi} space followed by each fluid as the imposed
flow rate is increased are shown by colored lines. These
pathlines are almost straight (corresponding to the limit
El = Wi/Re = constant) but the weakly varying effects
of shear thinning in the fluid rheology slowly modulate
this (corresponding to evolving values of the function
S(γ̇)). A fully three-dimensional representation of this
kind of stability diagram in {Re, Wi, S} space can also
be constructed [90]. However, it is clear even in this
2D projection that two distinct modes of instability are
observed: a steady two-dimensional symmetry-breaking
purely-elastic mode (corresponding to a transcritical bi-
furcation) at high levels of fluid elasticity, as well as an
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oscillatory inertio-elastic mode (corresponding to a Hopf
bifurcation) that is dominant at higher levels of fluid in-
ertia. In each case, the onset of these viscoelastic insta-
bilities disrupt the homogeneous elongational kinemat-
ics that are desired for an extensional rheometric device.
Understanding, exploring and predicting these kinds of
instabilities was a major focus of this workshop.

D. Some (Pre)History

Although the term elastic turbulence has grown into
relatively common usage in the 21st century, the ori-
gins of the term date back to the very beginnings of
research in complex fluids. As early as 1926, Ostwald
and Auerbach [92] remarked on the anomalously high
pressure drops (and enhanced fluctuations) that were re-
quired to pump certain complex microstructured fluids
through cylindrical tubes at low flow rates where lami-
nar flow conditions were to be expected. As they noted
“... it is thus a peculiarity of ammonia oleat and similar
sols to exhibit, in addition to normal turbulence also a
structural turbulence”. Some 40 years later Hanswalter
Giesekus [93], in his pioneering studies on nonlinear ef-
fects of viscoelastic flows through converging nozzles and
slits, carefully documented the apparently turbulent, i.e.,
strongly time-varying and highly chaotic, flow conditions
that could be achieved in non-dilute polyacrylamide solu-
tions even at moderate concentrations of 3-4 wt.% poly-
mer.

In the years between these two papers the more ap-
plied polymer processing literature is full of many docu-
mented instances of unstable flow fields arising from the
viscoelastic nature of the molten plastics being used in
injection molding and other processing operations. The
systematic analysis of these empirical observations by
Pearson and colleagues, as well as Denn and colleagues,
is particularly impactful in this regard; see, for example,
the extensive reviews by these authors [94, 95]. Much
of the work on polymer processing instabilities is nicely
captured in the path-breaking book by Vinogradov and
Malkin [1] published first in the Soviet Union in 1977
and subsequently in English in 1980. The term elastic
turbulence appears explicitly in the index of this work
multiple times, and beautiful flow visualization images of
the stress field (using crossed polarizing optical elements
to reveal flow-induced birefringence) in a molten poly-
mer entering a planar contraction (reproduced in Fig. 1)
show the dramatic disruption in the flow field that oc-
curs beyond a critical flow rate, even though the relevant
Reynolds number is Re� 1.

Quantitative study of such flow instabilities and the
term “purely elastic instability” first appeared in 1989
through the work of Muller, Larson and Shaqfeh in a
paper on viscoelastic Taylor-Couette flow [23] that was
dedicated to Giesekus on his retirement as editor of Rhe-
ologica Acta. In particular, in the late 1980s and early
1990s, these researchers at Bell Labs, MIT and later

at Stanford focused on discovering and understanding
purely elastic instabilities, i.e., those elastic instabilities
for which inertial forces play a negligible role, in visco-
metric flows. These flows were marked by curved stream-
lines and the associated elastic instabilities prevented
rheological measurements in certain parameter regimes.
In all instances there existed a separation of scales: a
thin gap across which there was shear, characterized for
elastic fluids by the shear Weissenberg number, Wi, and
a significantly larger radius of curvature, where the ratio
of gap to radius of curvature was denoted by ε. These
flows included Taylor-Couette flow, and torsional shear-
ing flows between parallel plates, and in a cone-and-plate
flow [24, 30, 32]. Measurements in Boger fluids (where
the viscosity remains approximately constant and the
elasticity number is high) demonstrated that beyond a
certain critical Weissenberg number, the flows were un-
stable, thus bifurcating from axisymmetric shear flows to
cellular three-dimensional flows.

The linear stability of a number of canonical shearing
flows and the dependence of the spatiotemporal wave-
forms of the resulting three-dimensional flow fields was
studied in the subsequent years and is summarized in
a 1996 review by Shaqfeh [22]; see also Steinberg [96].
In particular, the linear stability analysis and resulting
eigenvalue problems that were developed to describe the
experiments demonstrated that such instabilities could
be driven by the nonlinearities associated with the upper-
convected Oldroyd derivative acting on the stress and the
rate-of-strain tensors. In a small ε expansion, these crit-
ical conditions generally scaled with εWi2, which is the
elastic equivalent of the Taylor number to use the lan-
guage common to the Taylor-Couette literature, or equiv-
alently, DeWi, where De is a Deborah number based on
the time it takes a fluid element to be advected a distance
corresponding to the radius of curvature of the flow.

Although the initial Taylor-Couette studies probing
the conditions for instability exhibited qualitative agree-
ment between experiments and the first linear stability
calculations, and had recognized the physical mechanism
underlying the elastic instability, there was quantitative
disagreement, which took some time to explore and un-
derstand. In particular, the initial linear stability the-
ory assumed that the observed unstable mode was ax-
isymmetric and resulted in a time-dependent response,
but reality proved more complex: Beris and colleagues
showed numerically that, in fact, the largest growth rate
corresponds to a non-axisymmetric mode [97, 98]. Care-
ful experiments by Baumert and Muller [99–101] and
Groisman and Steinberg [102–104] found good agree-
ment with isothermal theory based on identifying the
most unstable non-axisymmetric mode. Investigating
the underlying mechanisms further, Al-Mubaiyedh et
al. [105] showed theoretically and by numerical simu-
lations that viscous heating can also play a significant
role, influencing the nature of the instability and af-
fecting conclusions regarding flow stability based on ax-
isymmetric versus non-axisymmetric modes. The rel-
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ative magnitude of non-isothermal effects in a highly
elastic fluid depend on the magnitude of the viscosity
and relaxation time, as well as their (typically expo-
nential) sensitivity to temperature, through a thermoe-
lastic number [87]. In detail, an isothermal analysis of
the Oldroyd-B model yields non-axisymmetric and time-
dependent modes, while a non-isothermal (energetic)
analysis, yields a time-independent (stationary) but ax-
isymmetric instability. While these finer details are in-
consistent with the interpretation offered for the origi-
nal experimental results of Larson, Muller and Shaqfeh,
they are fully consistent with later more detailed exper-
imental work by White and Muller [106–108], see also
[96]. This understanding then sheds light on the de-
tailed “polymer-scale” mechanism coupling radial per-
turbations and polymer stretch in driving instability in
the Taylor-Couette geometry, as discussed more below.

This class of elastic instabilities was broadened by
other researchers to include the Taylor-Dean (cylindrical
Couette flow with an additional pressure-driven flow in
the axial and azimuthal directions) and Dean flows (flows
in curved channels) [43] as well as lubrication bearing
flows [61], which are generally not used for viscometric
measurements but contain the same kinematic elements,
i.e., shear-dominated flow along curved streamline, as
those in the original Taylor-Couette studies. Researchers
again demonstrated through experiment and eigenvalue
analysis that the instabilities were characterized by a crit-
ical value of the product (De Wi). An examination of the
mechanisms of all of these instabilities demonstrated at
least three separate modes and mechanisms of instability,
all of which involved the interaction of the base state (ei-
ther the kinematics or existing hoop stress field) with a
velocity fluctuation to locally enhance hoop stresses and
further drive the fluctuation.

All mechanisms leading to unstable conditions scaled,
in the small gap limit, with DeWi. Thus, McKinley
et al. [74] suggested a scaling approach to the critical
conditions, now known as the Pakdel-McKinley scaling,
namely that if one writes the Weissenberg number more
generally as Wi = τ11/ (ηγ̇), where τ11 is the primary
normal stress component along the streamlines and η
the total fluid viscosity, then the dimensionless magni-
tude defined as M2 ≡ DeWi could be developed into a
general criterion whose critical value signaled the onset
of elastic instabilities in many curvilinear shear flows. In
particular, the onset of elastic instability is related to the
characteristic curvature of the flow and stress along the
streamlines, and is given by

λU

R
N1

|τ |
≥M2, (1)

where λ is the relaxation time of the fluid, U is the char-
acteristic streamwise fluid velocity,R is the characteristic
radius of curvature of the streamline, N1 is the first nor-
mal stress difference of the fluid, and τ is the total shear
stress in the fluid.

As summarized by Poole in Fig. 2, now an enormous

plethora of flows have been demonstrated to be elasti-
cally unstable, primarily by experimental observations
and measurements. Most of these flows involve curved
streamlines and thus their instability is attributed to
hoop-stress driven instabilities. As such, they are typ-
ically characterized, in some manner, by the M parame-
ter. The geometric scaling has been enormously success-
ful, as, for example, it has been shown that instability
during flow in a serpentine channel is directly related to
the Dean instability [50]. Remarkably, and perhaps sur-
prisingly, the dependence of the instability threshold in
Taylor-Couette flow predicted by the Pakdel-McKinley
criterion is in a better agreement with the experimental
values than the results of linear stability analysis care-
fully tailored to the fluid’s rheology [109].

As the instability develops in time, or conditions be-
yond the critical conditions are considered, the dynamics
of these purely-elastic instabilities become increasingly
complex, even at very small Reynolds numbers. In the
late 1990s, Baumert and Muller [99–101] and Groisman
and Steinberg [102–104] reported a series of experimen-
tally observed transitions in Taylor-Couette flow involv-
ing axial vortices developing into localized “diwhirls” and
“flame” patterns followed by oscillating states and finally
disordered oscillations. Kumar and Graham [110, 111]
studied Taylor-Dean flow and computed stationary non-
trivial solutions with the FENE-P model that strongly
resemble some of the experimentally observed diwhirls,
showing that they arise in a nonlinear transition scenario.
The self-sustaining mechanism is related to the mecha-
nism of instability in viscoelastic Dean flow [43], arising
from a finite-amplitude perturbation giving rise to a lo-
cally parabolic profile of the azimuthal velocity near the
upper wall. The more complex time-dependent states
were later simulated, at least qualitatively, by Khomami
and coworkers [112–114]. These ideas of self-sustaining
nonlinear interactions between the velocity field and the
state of stress in the flow form a robust mechanistic basis
for a transition to elastic turbulence [48].

As described further in § IV, the first two decades of
this century have focused on achieving a deeper under-
standing and progressively unraveling the complex vis-
coelastic dynamics for a range of different flow geome-
tries and fluid rheologies. Furthermore, in more recent
work, Khomami and coworkers have focused on examin-
ing through direct numerical simulations the connection
between inertial and elastic turbulence, as well as the
connection to curvature and curvature-induced elastic in-
stabilities (of the type described by the Padel-McKinley
criterion) in strengthening large-scale Taylor vortices at
the expense of small-scale Görtler vortices as the cur-
vature in the flow is increased while keeping the same
Reynolds and Weissenberg numbers [115]. Additional
work exploring these connections is described in § IV-VI.
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Model ξ λ(c) α f(c) Remarks/References

Maxwell 0 λ0 0 1 Hookean or linear
dumbbell model [7];

Oldroyd-B Oldroyd-B includes
viscous stress

Johnson- 0 ≤ ξ ≤ 2 λ0 0 1 [120]
Segalman

FENE-P 0 λ0 0 L2−3
L2−tr(c) L represents the dimensionless maximum chain

extensibility; 3 < L2 <∞ [7]
Giesekus 0 λ0 0 < α < 1 1 α is an anisotropic mobility parameter [15]

Phan-Thien 0 ≤ ξ ≤ 2 λ0
1+εtr(c−I)

0 1 This is the linear PTT model [122];

& Tanner for a nonlinear version use λ = λ0e
−εtr(c−I); ε > 0

Extended
White-Metzner 0 λ0

(
1
3
tr(c)−k

)
0 1 k > 0 [127]

TABLE II. List of commonly used models along with the corresponding expressions with respect to the conformation tensor,
c, or values for materials parameters in Eq. 2. The chain length parameter b = L2/

(
L2 − 3

)
is also used in some modeling

studies.

III. CONSTITUTIVE MODELS AND
NUMERICAL SIMULATIONS OF ELASTIC

FLOW INSTABILITIES

Author: A.N. Beris, with input from
G.H. McKinley, R.J. Poole, H.A. Stone

In addition to experimental characterization, many re-
searchers are seeking insight into this large class of in-
stabilities via large scale numerical simulation. As an
example, during the workshop M. Alves presented re-
sults from RheoTool (a numerical library based on the
open-source OpenFOAM®) on cross slot [116] and con-
traction flow instabilities that are purely elastic. Even
though the flows have a large region of extensional flow,
there is evidence that these instabilities are again driven
by elastic hoop stresses. However, the evidence comes
from calculating local fields of the M parameter in a flow
and demonstrating that the flows break symmetry and/or
become time dependent when the maximum value of M
becomes sufficiently large, e.g., M > 4 − 5. In this con-
text, there is a lack of linear (or energy) stability analyses
for these extension-dominated flows such as the cross-slot
geometry.

What are the underlying models used in the-
ory/numerical simulations? For the analysis of flow in-
stabilities and/or simulation of highly elastic viscoelastic
flows, differential models are typically used that connect
the stress and its time and space derivatives to the ve-
locity gradient and its time derivatives [7, 117]. The sim-
plest of these models is the Upper Convected Maxwell
(UCM), or Oldroyd-B model (when a Newtonian sol-
vent viscosity contribution is added). This model orig-
inates from a simple mechanical analog of polymer so-
lutions corresponding to a spring and dashpot in series,
with the upper convected time derivative expressing the

second-order (contravariant) tensor generalization of the
material time derivative of the stress tensor, as beauti-
fully shown first in the pioneering work of Oldroyd [118].
Most importantly, some time later, a formal connection
was made to an idealized Hookean dumbbell polymer
structure [119]. This image of a solution’s microstruc-
ture has allowed a number of considerable generaliza-
tions to be obtained, like the Finitely Extensible Non-
linear Elastic dumbbell with the Peterlin approximation
(FENE-P dumbbell) that allows for a finite polymer ex-
tensibility [14, 119]. Other notable generalizations of the
Oldroyd-B model are: the Johnson-Segalman model [120]
involving a non-affine correction to the upper convected
time derivative, first proposed by Gordon and Schowal-
ter [121]; the Giesekus model involving a nonisotropic
drag controlled by a mobility parameter [15]; and the
Phan-Thien and Tanner (PTT) model involving a de-
pendence of the relaxation time on the stress [122].

All of these models can be described conveniently using
a time-evolution equation in terms of the stress tensor, τ .
However, given the connection of microstructural models
to kinetic and network theories the stress is assumed to
be related to an internal structural parameter, c, which
is typically identified as the second moment 〈RR〉 of the
end-to-end distance R vector if macromolecular chains
are involved [7]; an elastic deformation strain [123, 124]
can also be described in terms of c. An advantage of
this representation is that it allows for a connection to
the theories of nonlinear elasticity [124], while provid-
ing for a nonlinear thermodynamics foundation [125, 126]
that allows for both a straightforward extension/mixing
of models (like the extended White-Metzner model [127])
and an evaluation for their thermodynamic consistency
and Hadamard-type instabilities [123].

Indeed, all of the above-mentioned models can be con-
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cisely represented as [126]:

Dc

Dt
− (∇v)

T · c− c · ∇v + ξ (D · c + c ·D) =

− 1

λ(c)

(
τ+ + ατ+ · τ+

)
; τ+ = f(c)c− I, (2)

where D/Dt is the material derivative, ξ is a dimen-
sionless non-affine motion parameter with 0 ≤ ξ ≤ 2,

D = 1
2

(
∇v + (∇v)

T
)

represents the rate of deforma-

tion tensor, λ(c) represents the relaxation time (which
may be a function of c), τ+ is the dimensionless polymer
extra stress, τ+ = τ/ (G0(1− ξ)), with G0 a character-
istic elastic modulus, and f(c) is a model-dependent pa-
rameter representing finite polymer extensibility effects.
The left-hand side of Eq. (2) corresponds to the Johnson-
Segalman derivative [120]. For most polymeric systems
ξ = 0, in which case the left-hand side of Eq. (2) reduces
to the Oldroyd upper-convected time derivative, as is ap-
propriate for a structural material parameter connected
to the Cauchy elastic strain tensor [124].

As discussed, Eq. (2) can represent all the above-
mentioned constitutive models, with suitable choice of
the model parameters, as shown in Table II. We note
that the highest elasticity (as for example determined
by the magnitude of the normal stresses in shear flows)
is obtained with the Maxwell/Oldroyd-B model. Alter-
natively, ξ → 0, L → ∞, α → 0 (see Eq. (2) and Ta-
ble II), limits for which we recover the Maxwell/Oldroyd-
B models, are values often selected in numerical simula-
tions/analyses seeking to maximize the effects of elastic-
ity, such as, for example, simulations of highly elastic,
viscoelastic turbulent flow [128–131].

Another advantage of the conformation tensor repre-
sentation is that it allows checking for numerically in-
duced instabilities as, from theory and its physical in-
terpretation, c is a positive definite tensor [126]. Con-
sequently, numerical schemes have been devised so that
they guarantee that c always remains positive definite,
such as the log-conformation tensor methodology pro-
posed by Fattal and Kupperman [132, 133] or the matrix
decomposition proposed by Vaithianathan and Collins
[134]. As such, when used, the approach significantly im-
proves the numerical stability and allows reaching sub-
stantially higher values of elasticity (i.e., higher Wi or
De numbers) [135]. Different types of stabilization tech-
niques commonly used in computational rheology were
reviewed recently by Alves and co-workers [136].

How successful have studies using these rather ideal-
ized single relaxation mode viscoelastic models been in
describing highly elastic, viscoelastic flows? One could
say fairly successful, judging from several important ac-
complishments. First and foremost, these include the ca-
pability of reproducing the polymer-induced drag reduc-
tion phenomenon in direct numerical simulations (DNS)
of turbulent flows using the above-mentioned single re-
laxation viscoelastic models, when the elasticity in the
flow was high enough [128–131], e.g., see the discussion

of elastoinertial turbulence in § VI. The drag reduction
is observed experimentally when high molecular weight
polymers are added, usually in small concentrations, to a
Newtonian solvent [137]. The DNS results, typically car-
ried out in a channel geometry, showed, in addition to the
drag reduction that increased with increasing elasticity in
the flow, all of the main kinematic effects accompanying
it, such as the increase in the extent of the buffer layer,
the widening of the streaky structure, and the enhance-
ment of the larger, more coherent turbulent structures at
the expense of the smaller scales, etc. [128–131].

Second, the detailed results and sensitivity analysis to
the model parameters allowed one to deduce the main
mechanism behind the drag reduction, namely the weak-
ening of the vortical structures (eddies) due to the en-
hancement of the resistance to extensional deformations
induced by viscoelasticity [128, 129], as originally pro-
posed by Seyer and Metzner [138] and Lumley [139].

Third, in the most recent of these works [130, 131] the
analysis of the underlying mechanism revealed further de-
tails of the reasons for the experimentally observed max-
imum drag reduction [140]. In this respect, worth men-
tioning are the results of a recent linear stability analysis
of a highly elastic viscoelastic pipe flow that showed it
to be linearly unstable for a certain range of the param-
eters of the Oldroyd-B fluid model [141, 142]. Moreover,
linear stability analysis and direct numerical simulations
of a highly elastic viscoelastic channel flow demonstrated
the presence of an “arrowhead” two-dimensional wave in-
stability for a certain range of parameters of a FENE-P
model [143, 144] – see the relevant discussion in § VI A.

The successes just described in extracting new physics
out of highly elastic but rather idealized models raise
the question as to how accurately the models, in the
limit of high elasticity, can predict real polymer flow be-
havior. Of course, this depends on the complexity of
the polymeric system. Research along these lines, in-
volving much more accurate (but also much more highly
time-consuming from a computational stand point) mi-
croscopic models, along with a comparison to dilute poly-
mer solutions [145, 146], has shown that it may be pos-
sible to make quantitative predictions if some modifica-
tions are implemented to the description of the friction
drag on the individual beads in the microscopic multi-
bead models used. Thus, the fact remains that micro-
scopic multi-bead models still need to be used, which is
not very hopeful from a macroscopic, continuum mechan-
ics, viewpoint. However, some early work on a modified
FENE-P model (using two conformation tensor parame-
ters instead of one) has shown that it may still be pos-
sible to capture those nonlinear effects, which arise pri-
marily due to the non-Gaussian microscopic distribution
of the deformation of the polymer chains and which are
reflected in hysteresis phenomena [147]. This is there-
fore an avenue that still remains to be exploited. Still,
for more complex physics, such as presented by concen-
trated polymer solutions and melts [148, 149], or micellar
solutions [150, 151] or under confinement [152] and espe-
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cially in the presence of entanglements [149], additional
components in the models may be needed as outlined
in the referenced papers. A particular outstanding chal-
lenge for these models are correct pressure-drop predic-
tions for well-characterized dilute polymer solutions in
mixed kinematics flows [68].

IV. TRANSITION TO ELASTIC TURBULENCE

We have seen that even relatively “simple” polymeric
flows at low Reynolds numbers can become unstable. Be-
yond the instability we expect the flows to be more com-
plicated; indeed, features consistent with “turbulence”
have been identified. Here, we describe some of the chal-
lenges and puzzles raised by recent research on elastic
turbulence in two- and three-dimensional flows, espe-
cially parallel shear flows, such as pressure-driven flows
in channels and pipes.

A. Taylor-Couette Flow

Author: H. Stark

One archetypical geometry for studies of purely elas-
tic instabilities in flows with curved streamlines is the
Taylor-Couette geometry. In simulations of this config-
uration, what is especially surprising is that all unsta-
ble modes that have been computed so far rely on the
three-dimensional character of the flow. This topic was
addressed during the workshop by H. Stark, who pre-
sented numerical simulations of two dimensional (i.e.,
zero axial wave number) elastic Taylor-Couette flow us-
ing RheoTool. At large enough Wi, the elastic turbulence
that had been reported by Steinberg and coworkers in ser-
pentine channel flow and plate-plate flows [50, 87, 96, 153]
appeared.

In particular, using the Oldroyd-B model for numer-
ical simulations, van Buel and Stark reported the on-
set of the elastic instability towards elastic turbulence
in the two-dimensional Taylor-Couette flow with a wide
gap [154]. They locate the instability by an order param-

eter Φ = S(t), which is the time average of the secondary-
flow strength S(t) that measures the overall deviation
from the Taylor-Couette base flow. The upper inset of
Fig. 6 shows a typical example for S(t) beyond the critical
Weissenberg number Wic ≈ 10 and reveals the irregular
nature of the secondary flow. The continuous increase of
the order parameter with Wi in Fig. 6 indicates a super-
critical instability that is accompanied by an increase in
the flow resistance.

Furthermore, for the spatial power spectrum of the
secondary flow along the azimuthal direction, a power
law decay m−ζ with exponent ζ > 3 for all Wi > Wic

FIG. 6. Order parameter Φ = S(t) versus Weissenberg num-
ber Wi. The dashed line indicates the fitted scaling law
beyond the elastic instability. Upper inset: Secondary flow
strength S(t) plotted versus t for Wi = 16.3. Lower inset:
Flow resistance quantified by the azimuthal stress on the outer
cylinder plotted versus Wi. Adapted from Ref. [154] with per-
mission from EPL; copyright (2018).

FIG. 7. Active control of elastic turbulence. Order param-
eter versus inverse Deborah number, De−1, for different Wi;
here, De is defined as the product of the outer cylinder re-
versal frequency and the fluid stress relaxation time, while
Wi is defined as the product of the outer cylinder maxi-
mum angular velocity and the fluid stress relaxation time.
Insets: Secondary-flow strength versus time for different De
at Wi = 21.4. The time-modulated driving is switched on at
t = 250. Adapted from Ref. [162].

was reported [154]. This result is consistent with a the-
oretical bound on the exponent ζ [155]. Note that we
do not expect the Kolomogorov scaling k−5/3 of inertial
turbulence since elastic turbulence is initiated by elastic
stresses. Also, the exponent α of the temporal power
spectrum was found to be generally smaller than ζ [154],
hence, does not obey Taylor’s hypothesis for inertial tur-
bulence that demands that the exponents are equal [156].
Only for small Wi was the exponent α > 3, which is
considered to be a signature for turbulent flow and was
measured in several experiments [48, 157]. Groisman and
Steinberg suggested that the reduced value of the expo-
nent α found in three-dimensional Taylor-Couette flow
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indicates that the flow is transitional [153], and not fully
in the elastic turbulence regime, due to the large shear
strain component in Taylor-Couette flow with a small gap
and a possible increase in the Wi needed to generate the
coil-stretch transition of individual polymers [158].

Typically, changes to the flow geometry or bound-
ary conditions are used to passively control the onset
of the elastic instability and elastic turbulence [87, 159–
161]. In this spirit, van Buel and Stark realized active
open-loop control in simulations of the two-dimensional
Taylor-Couette flow [162]. They apply a time-modulated
shear stress by periodically reversing the rotational ve-
locity of the outer cylinder. The modulation frequency
is quantified by the Deborah number, the product of fre-
quency times stress relaxation time. The insets of Fig. 7
show how the secondary-flow strength of the turbulent
velocity field decreases with increasing De until a modu-
lated laminar flow remains. For high modulation frequen-
cies the elastic stresses cannot fully build up in order to
generate turbulent flow. The transition from laminar to
turbulent flow is again supercritical (Fig. 7) and for larger
Weissenberg numbers a larger critical frequency (or Dec)
is needed to suppress elastic turbulence. Note that the
different curves in Fig. 7 collapse onto a master curve

when plotting Φ/Wi3/2 versus De−1 −De−1c .

B. Parallel Shear Flows

In the sections that follow we discuss both experimen-
tal observations, including instabilities and later fully de-
veloped turbulence, and associated theoretical attempts
to describe these flows in channels and pipes. The field
has come a long way. In a prior version of this workshop
that was held at the Princeton Center for Theoretical Sci-
ence in 2018, the mere existence of sustained fluctuations
in viscoelastic flows in straight channels was in doubt.
Three years later, their existence is now well established,
and researchers are now working on understanding the
origins and mechanisms governing these observed insta-
bilities. Even after much effort, however, there are dif-
ferent interpretations offered.

1. Theoretical analyses

Author: A. Morozov, with input from
P.E. Arratia, M.D. Graham, G.H. McKinley, V.

Shankar, G. Subramanian

Modal linear stability analysis. As we have
discussed above, low-Reynolds-number, polymeric fluid
flows with curvilinear streamlines are characterized by
an elastic hoop stress that generates a bulk (body) force

acting on the fluid in the direction of the center of cur-
vature, which leads to an elastic instability and subse-
quently to elastic turbulence. This instability mecha-
nism ceases to be effective at zero curvature in flows with
straight streamlines, such as parallel channel shear flow,
i.e., based on the criterion given in Eq. (1), purely elas-
tic hoop stress-driven instabilities are not possible as the
curvature of the streamlines decreases to zero (R → 0).
Thus, a common assumption is that parallel or rectilinear
shear flows of viscoelastic fluids, such as plane Couette
and Poiseuille flows, are linearly stable in the absence of
inertia [163]. This form of stability is described using lin-
ear stability analysis, which decomposes a perturbation
in the flow into normal modes, familiar from studies of
Fourier series. For solutions with the time dependence
assumed to be of the form eiωt, eigenvalues ω with neg-
ative imaginary parts correspond to perturbations that
grow exponentially in time, thus leading to a linear in-
stability in the limit t→∞.

There are a number of directions that have been pur-
sued to examine the possible linear stability of viscoelas-
tic flows. Motivated by the polymer extrusion instability
and the problem of “melt fracture,” Ho and Denn exam-
ined the stability of plane Poiseuille flow of a UCM fluid
and concluded, based on an eigenvalue analysis, that the
flow is stable to infinitesimal perturbations [164]. The au-
thors did acknowledge the possibility of the flow becom-
ing unstable to finite amplitude perturbations, but it was
deemed unlikely. Similar results were found by Lee and
Finlayson for Poiseuille and planar Couette flows [165],
by Renardy and Renardy for Couette flow using spec-
tral methods [166], and by Gorodtsov and Leonov [163]
for plane Couette flow. A rigorous proof that such rec-
tilinear viscoelastic flows are indeed linearly stable was
provided by M. Renardy [167], who studied the stability
of plane Couette flow of a UCM fluid. Importantly, the
author cautioned that artificial instabilities could arise
from numerical discretization in simulations of viscoelas-
tic flows.

Taken together, these results suggested that parallel
shear flows of model viscoelastic fluids are indeed
linearly stable [22, 168], with the exception of fluids with
strongly shear-thinning material properties [169, 170].
So, it came as a surprise when Khalid et al. [171] recently
reported a linear instability in purely elastic channel
flows of Oldroyd-B fluids — described further in the
next section. Although only found in the part of the
parameter space that might be difficult to access exper-
imentally (Wi = O(103) and the ratio of the solvent to
the total shear viscosity β > 0.9), these results suggest
that the linear stability analysis of parallel shear flows
of simple viscoelastic model fluids needs to be revisited.
The recent work of Buza et al. [172] used the FENE-P
model to show that the instability predicted by Khalid
et al. extends down to Wi = O(100), thereby mak-
ing this instability potentially observable in experiments.

Transient non-modal growth of non-normal per-
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turbations. While the linear stability analyses dis-
cussed above rule out the existence of a linear instabil-
ity for a broad class of viscoelastic parallel shear flows,
they do not automatically imply that such flows remain
laminar. Indeed, there are several mechanisms that can
potentially lead to flows that are very different than the
corresponding laminar ones, even in the absence of a lin-
ear instability. One of such mechanisms was uncovered
in the early 1990s in the field of Newtonian hydrody-
namics. It relies on the observation that the dynamics of
infinitesimal perturbations introduced to a laminar flow
are governed by linear equations that often involve non-
self-adjoint (non-normal) operators [173–176]. Although
the real parts of the associated eigenvalues can all be
negative, the associated eigenmodes may not be ‘orthog-
onal’ to each other, i.e., they do not represent unique,
independent flow perturbations. Instead, some of the
modes become almost parallel to each other, especially
for sufficiently large Reynolds numbers [174]. For addi-
tional discussion of the transition to turbulence in iner-
tially dominated flows, see § VI.

This non-normality has a profound implication for the
short-time evolution of flow perturbations: an initial
state, prepared as a combination of several such eigen-
modes (in other words, a general random perturbation of
the form expected to be experimentally relevant) will see
its kinetic energy increase algebraically in time, reaching
values that are many times larger than the initial value;
in the framework of constant coefficient differential equa-
tions with repeated roots, there are solutions te−at, where
a is (in general) a complex constant with positive but
small in magnitude real part, which grow at early times
t. The solutions then decrease exponentially in time, as
predicted by the modal linear stability analysis of the pre-
vious subsection. It was shown that the maximum energy
amplification that can be achieved through this mecha-
nism in plane Couette and channel flows is O(Re2) [173].
For sufficiently large Reynolds numbers, such strong am-
plification can lead to perturbations becoming sufficiently
large so that their dynamics are no longer described by
the linearized equations on which the analysis is based.
Thus, if a particular linearly stable flow is unstable to
finite-amplitude perturbations (in other words, there ex-
ists a ‘bifurcation from infinity’), as is the case with plane
Couette and pipe flows of Newtonian fluids, non-normal
growth can amplify small experimental noise helping to
tip the system over the instability threshold.

The corresponding theory for viscoelastic non-normal
growth was developed by M. Jovanovich, S. Kumar, and
colleagues during 2008-2018 [177, 178] and T. Zaki and
colleagues [179, 180] in 2014-2018. Specifically, it was
demonstrated that even in the absence of inertia, in-
finitesimal perturbations in plane Couette and channel
flows can be significantly amplified [177]. Perturbations
of the streamwise velocity achieve growth by a factor of
O(Wi), while the streamwise component of the polymer
stress tensor can be amplified up to O(Wi2) compared
to its initial value; the time to reach the maximum val-

ues scales as tmax ∼ λWi, where λ is the relaxation
time of the fluid. Similar to its Newtonian counter-
part, the purely elastic non-normal growth theory pre-
dicts that the most amplified initial flow structures com-
prise (almost) streamwise-independent vortices, leading
to streamwise-independent streaks [177], although other
forms of stress amplification have also been examined
more recently [181].

The non-normal growth mechanism provides a pow-
erful pathway to significantly amplify small-amplitude
experimental noise until it becomes large enough to
ignite some non-linear process that would sustain turbu-
lent flow. However, the non-normal growth mechanism
does not provide any insight into the non-linear process.
As a linear theory, it cannot predict a critical Weis-
senberg number at which an instability might set in. We
should also mention that although streamwise vortices
and streaks are naturally produced by this theory, their
experimental observation is not a proof that non-normal
amplification is at play in that particular flow: as
discussed by Waleffe [182], these flow structures may
also be produced by other, non-linear mechanisms.

Weakly nonlinear analysis. As already discussed
above, linear stability does not imply global stability.
One of the classical examples of such behaviour is Newto-
nian pipe flow that is linearly stable for all Reynolds num-
bers but is unstable when a sufficiently large perturbation
is added to the flow [183]. In the early 2000s, Bonn, van
Saarloos, Morozov, and collaborators [184, 185] proposed
that viscoelastic parallel shear flows exhibit analogous
behaviour. Using weakly nonlinear analysis, the authors
in [184] tackled an interesting observation, namely that
the fracture instability in polymer melts, which occurs
when the solution flows out of a slit or “die”, seems to
occur at an approximately constant value of Wi. Using
the UCM fluid model, it was then shown that viscoelas-
tic Poiseuille flows could exhibit a nonlinear “subcritical”
instability due to normal stress effects; the flow was pre-
dicted to become unstable at Wic ≈ 5. This analysis was
followed by experiments [185] that showed melt fracture
instability at Wi values that are quantitatively similar to
those predicted by the nonlinear expansion theory [184].

Subsequent analysis by Morozov and van Saarloos [186,
187] for plane Couette and Poiseuille geometries showed
that the viscoelastic flows could be unstable to finite-
amplitude perturbations without curved streamlines or
inertia. They developed a novel amplitude-equation tech-
nique that constructs a non-linear solution as power se-
ries in its amplitude (relative to the laminar flow), with
the lowest-order term being the least-stable eigenmode of
the linear stability analysis. Morozov and van Saarloos
found that plane Couette and channel flows of Oldroyd-
B fluids exhibit sub-critical instabilities for Wi ' 3 and
Wi ' 5, respectively. The non-linear flow structures pre-
dicted by this analysis are travelling-wave solutions, sim-
ilar to their Newtonian counterparts [183, 188]; for chan-
nel flows their spatial profiles are reported in [187]. Their
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origin can be understood as a two-step process. While
the underlying laminar flow has straight streamlines, and
is thus linearly stable according to the Pakdel-McKinley
criterion [6] (Eq. 1), a slowly decaying perturbation with
curvature in its streamlines can drive an instability. This
perturbation of a perturbation scenario then leads to a
finite-amplitude threshold.

To understand the relevance of these solutions to
purely elastic turbulence in parallel shear flows, Moro-
zov and van Saarloos yet again drew an analogy with
Newtonian turbulence in pipes and rectilinear channels
[183, 188]. Our current understanding of the transition
in these flows is centered on the exact solutions to the
Navier-Stokes equations discovered by Nagata [189], Wal-
effe [190], Hof [191], and others. These solutions, often
referred to as exact coherent structures or exact coherent
states (ECS), are either travelling waves or periodic or-
bits that comprise streamwise streaks and vortices, and
instabilities connecting them; they are generated through
a self-sustaining process uncovered by Waleffe [190, 192].
Importantly, ECS are linearly unstable: their vicinity in
the phase space contains many attractive and a few repul-
sive directions [183, 188], and a typical turbulent trajec-
tory is performing a pin-ball-type motion among those
coherent structures. While each of them is regular in
space (i.e., they visually appear to be relatively simple),
an instantaneous snapshot of the flow caught in-between
many ECS does look turbulent. This scenario is at the
frontier of the current research in Newtonian turbulence
and there are strong early indications that it persists suf-
ficiently far away from the transition [193]; the role of
ECS in the Newtonian transition is discussed further in
Sec. VI below, in the context of elasto-inertial insta-
bilities. Morozov and van Saarloos proposed [187] that
the solutions found in [186] are the viscoelastic counter-
parts to Newtonian ECS, and, while not being directly
observable, they play a role in organising the phase space
dynamics of purely elastic turbulence in parallel shear
flows.

It is important to note that the weakly non-linear anal-
yses presented above are the only theoretical results on
non-linear structures in purely elastic channel and pipe
flows currently available, to our knowledge. Although
suggestive, they are obtained by an approximate tech-
nique; also their linear stability is currently unknown. A
significant amount of new research in this area is needed
before the analogy with Newtonian turbulence, as pro-
posed by Morozov and van Saarloos [187], can be made
more exact. Indeed, to our knowledge, even for planar
Couette flow, there are currently no results available be-
yond the work by Morozov & van Saarloos cited above.

2. Experimental results of Arratia and colleagues

Author: P.E. Arratia, with input from
M.D. Graham, G.H. McKinley, A. Morozov, V.

Shankar, G. Subramanian

Experimental evidence of nonlinear instability has
been hard to come by. While the hysteretic behavior pre-
sented in [185] is consistent with a nonlinear instability,
it was unclear whether the instability originated inside
or outside of the flow domain. A subsequent experimen-
tal study on the stability of viscoelastic flows inside a
cylindrical straight pipe did find unusually large velocity
fluctuations far downstream for the initial perturbation,
but the subcritical nature of the instability was not es-
tablished and no hysteretic behavior was reported [194].

Thus, it was particularly notable when in 2012, Arra-
tia and co-workers [26] provided experimental evidence
of such nonlinear subcritical instability in a straight mi-
crofluidic channel. A linear array of upstream posts pro-
vided the initial (finite amplitude) perturbation, and the
researchers found large and sustained velocity fluctua-
tions far downstream from the initial perturbation; no
fluctuations were found without perturbations, indicat-
ing that viscoelastic flows are indeed linearly stable. In
addition, the transition to this nonlinear state was found
to be hysteretic upon the increase or decrease of the flow
rate, which is a typical behavior of a subcritical bifur-
cation. The flow became unstable at Wic ≈ 5, in ap-
parent agreement with the theory of Morozov and van
Saarloos [186]. Subsequent work has shown that the non-
linear state possesses features of elastic turbulence [195],
and a flow resistance law (pressure drop as a function of
flow rate) that is nonlinear with Wi, followed by drag
reduction [196] (which, intriguingly, seems to occur in
other geometries as well [197, 198]). However, experi-
ments have yet to report the existence of traveling wave
solutions predicted by Morozov and van Saarloos [186].

An important question is whether the evidence
provided by Arratia and colleagues results conform to
the picture of non-normal transient growth. Such a
scenario predicts that a non-modal perturbation should
first grow algebraically before decaying exponentially in
time. In the Lagrangian view, the scenario translates
into a spatial region with large perturbations followed
by a region where they decay. Experimental data, on the
other hand, show that the velocity fluctuation levels re-
main essentially constant while moving downstream [26].
Nevertheless, one expects non-normal growth to be a
part of the mechanism that sustains elastic turbulence,
but perhaps not the cause of it. This, however, is still
an open question as the new results by Steinberg and
colleagues suggest, as discussed next.

3. Experimental results of Steinberg and colleagues



18

FIG. 8. Nonlinear elastic instability in a microfluidic chan-
nel flow. (a) Experimental setup showing the initial linear
array of cylinders followed by a long parallel shear flow re-
gion. (b,c,d) Space-time dye patterns for the case with 15-
cylinders for Newtonian and polymeric fluids measured far
downstream. (e) Normalized velocity fluctuations as a func-
tion of initial perturbation (n) and Wi showing the appear-
ance of two branches. (f) Hysteretic behavior, a hallmark of
nonlinear sub-critical instabilities, found for polymeric fluids.
Modified from [26].

Author: V. Steinberg

N. Jha and V. Steinberg undertook experiments sim-
ilar to the Arratia group but with a somewhat different
geometry. The experiments of Steinberg and colleagues
were conducted in a long channel with the width/height
ratio = 7 and length/height ratio = 950 using channels
with a height of 0.5 mm, i.e., of a large aspect ratio com-
pared with a square channel cross-section used in the
Arratia group’s experiment. It is possible that this dif-
ference is one of the reasons for the difference in some
of the unexpected flow states observed both at transi-
tion and beyond, such as in the observed coherent states
(CSs), such as stream-wise rolls and streaks, and self-
sustained cycling processes (SSPs). We note that CSs
are equivalent to the ECS introduced later in this arti-
cle; however, in this subsection we retain the term CSs
given their use in the references cited here. Also, ‘elas-
tic waves’ (described further in § IX) were found already
at the onset to the elastically-driven flow transition and
up to the highest Wi that varies from Wi = 7 up to Wi
= 3500 defined as Wi = λU/h (instead of Wi = Uλ/w,
where h and w are the channel height and width, respec-
tively) with a critical value Wic = 140 [83]. The CSs
are evident in PIV measurements of velocity fluctuations
reported in a reference frame moving with the average
fluid velocity, as shown in Fig. 9, which, remarkably, re-
semble those observed numerically and experimentally in
Newtonian turbulence of a channel shear flow [198].

We next make remarks about the continuous transition
and the manner in which the friction factor for the pres-
sure drop in pipe flow varies with the flow speed (here
quantified by Wi). The first key observation at Wi � 1
and Re � 1 (i.e., El � 1) is the small magnitude of the
exponent characterizing the power-law growth of the fric-
tion factor with the order parameter (Wi−Wic), which
appears to have a value of 0.125 (in contrast to 0.5 for
the normal mode instability) as shown in the data re-
ported in Fig. 10. This distinguishes the elastically driven
transition in a straight channel flow from the continuous
transition via the most unstable normal mode.

Moreover, the velocity power spectra just above the in-
stability threshold reveal the presence of a peak of elastic
waves on the top of a continuous spectrum with the de-
cay exponent -1.7 [198]. These new results indicate that
the continuous transition cannot be described by the sin-
gle, most unstable fastest growing normal mode, which
would also support an instability mechanism based on
the hoop stress picture [22, 24, 96]. Thus, another possi-
bility of a non-normal mode instability—which was first
introduced in §IV B 1) [177–181], and whose application
to Newtonian parallel shear flows is further described in
§VI—should be considered.

Steinberg and colleagues characterize their experimen-
tal observations as weakly unstable non-normal modes
selected by the flow from strong perturbations at the
inlet, which are further amplified due to nonlinear
self-interactions to generate CSs. The latter are self-
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FIG. 9. A cycle of coherent structures in ET at Wi = 185
and downstream distances l/h = 36 − 41. The normalized
time t∗ = tfel, where fel is the elastic wave frequency. The
quantities reported here are from PIV measurements of veloc-
ity fluctuations reported in a reference frame moving with the
average fluid velocity. Fluctuating streamwise velocity (u′),
vertical vorticity (ω′), and spanwise gradient of spanwise ve-
locity (∂ω′/∂z) are shown in each column with their scales
shown on the right as marked in the plot [198].

organized into cycling SSP in particular in elastic turbu-
lence, where CSs, namely stream-wise rolls and streaks,
are clearly identified (Fig. 9). The SSPs are synchronized
by the elastic wave frequency, and consequently the SSP
cycling frequency is equal to the elastic wave frequency.
The synchronization is critical for the existence of CSs
and SSP, which is interpreted as the pumping of energy
into CSs and supporting the SSP [198]. This feature
distinguishes the CSs and SSP from those found in New-
tonian turbulence in shear flows.

A surprising novel ingredient is the development of
elastic waves above the flow transition, which are further
amplified in ET and decay in the drag reduction regime.
Moreover, elastic waves also pump energy into a sec-
ondary instability, whose dynamics destroy the counter-
propagating streaks (compare the second and third rows
in Fig. 9) and bring to mind the Kelvin-Helmholtz insta-
bility [KHI] in the flow of Newtonian fluids. However,
in spite of the similarity of this KH-like instability to
the conventional KHI, the instability mechanism is strik-
ingly different for the purely elastic case, where the main
destabilizing factor results from interaction of transverse
elastic waves with wall-normal vorticity generated by per-
turbations of the streaks [199].

FIG. 10. Dependence of the normalized friction factor
Cf/C

lam
f on Wi for three values of non-dimensional distance

from the third layer of cylinders (at l/h = 0) l/h: (i) -30 to 16
(inset), (ii) 26 to 82 (filled circle), (iii) 200 to 250 (open cir-
cle), and (iv) Newtonian solvent 26 to 82 (filled black square).
Inset shows Cf/C

lam
f versus Wi across three rows of cylinders

[198].

Finally, it should be pointed out that CSs and cycling
SSP are localized only in a finite spatial range inside the
channel flow. Further downstream, only chaotic velocity
power spectra with power-law decay in frequency were
observed. The reason for the finite spatial range of the
existence of these structures is the spatial attenuation of
the elastic waves; estimates of the attenuation length of
the elastic waves show an agreement with the observa-
tion [198].

4. Perspective

Author: A. Morozov, with input from P.E. Arratia,
M.D. Graham, G.H. McKinley, V. Shankar, G.

Subramanian

One might think that understanding fluid flow in
straight channels and pipes is easy. This is not the
case at higher Reynolds numbers for Newtonian fluids,
which produces inertial turbulence approximately when
Re > 2000. As described in this section, it is also not
the case for low-Reynolds-number flows of highly elastic
(Wi� 1) polymeric fluids.

To summarize, the early experimental observations of
Arratia and colleagues demonstrate the existence of an
elastically driven transition in a straight channel flow due
to strong perturbations at the inlet [26]. Furthermore,
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FIG. 11. (a) Space-time plots at −0.4 < z/W < 0.4 of
the stream-wise velocity fluctuations, u′(z, t) exhibiting elas-
tic wave structures for three values of Wi. The time series
are filtered via a band-pass Butterworth filter centered on
the spectral peaks to remove background noise. (b) Stream-
wise velocity, phase averaged at the elastic wave frequency for
Wi = 407 [200].

their results suggest the existence of a sub-critical insta-
bility, which can be viewed as the viscoelastic analogue
of turbulence in classical Newtonian pipe flows, except
that it is controlled by the elasticity of the fluid and not
by inertia. On the other hand, the experimental results
of Steinberg and colleagues, also for a rectilinear chan-
nel flow—but with different cross-sectional dimensions
and distinct form of imposed perturbations—suggest that
strong perturbations at the inlet are not a necessary con-
dition to generate the elastic instability and subsequent
ET in a straight channel flow [198, 200]. Instead, their ex-
periments provide evidence for an elastic instability even
in a straight channel with a smoothed inlet and a small
hole on the top plate at the middle of the channel for
pressure measurements. As a result, the transition at
Wic = 125 is observed with well-characterized ‘elastic
waves’ (described further in § IX) at the onset, which
are continued further into the ET and drag reduction re-
gions with the same elastic wave velocity dependence on
Wi−Wic on the top of continuous velocity and pressure
spectra in the transition; the latter include ET and drag

reduction regions with decay of the velocity spectra hav-
ing an exponent with a magnitude smaller than 3. More-
over, in this case they were able to visualize elastic waves
propagating in the span-wise direction towards the cen-
ter by presenting them in spatio-temporal plots for three
Wi values (Fig. 11). These features are consistent with
the elastic instability occurring due to non-normal modes
similar to the channel flow with the strong perturbations
at the inlet, though the critical Weissenberg number Wic
is about twice as large (taking into account the approxi-
mately 2× smaller value of the longest relaxation time).
These results once more suggest a similarity to dynam-
ics of Newtonian parallel shear flow; see also e.g., [143],
discussed further in § VI.

With reference to the generic flow stability diagram
sketched in Fig. 4, it is worth noting that the Weis-
senberg number values are quite different between these
two experimental studies; while Arratia and co-workers
focused on a regime where Wi = O(10), Steinberg and
co-workers, using the same polymeric materials, focused
on much higher values, Wi = O(103). Some part of the
discrepancy may be due to significant differences in the
reported (typically longest) polymer relaxation times, as
different characterization methods were used (again high-
lighting challenges with understanding even relatively
simple flows of complex fluids such as dilute polymer so-
lutions). Taking these results together, as well as the
results of the theoretical analyses described in the previ-
ous sub-sections, it is possible that viscoelastic flows in
pipes and channels are non-linearly unstable at low Wi,
as suggested by Morozov and van Saarloos, but linearly
unstable at moderate to high Wi. Recent linear stability
analysis by V. Shankar and collaborators [171] seem to
suggest such a possibility — but as summarized in this
section, this question (and many others) remains unre-
solved.

V. ELASTIC INSTABILITIES IN MORE
COMPLEX GEOMETRIES

A. Flow Past Cylinders

Authors: S.J. Haward and A.Q. Shen

A circular cylinder is arguably the most fundamental
shape of an object that can be used for studying flows
around obstacles. We note that extensive work has also
focused on the related problem of flow past a sphere, e.g.,
[202–209]; here, we focus on the case of cylinders, since
it was discussed at the workshop. Further discussion of
flow past a sphere is given in §VIII B. In viscoelastic fluid
flows, circular cylinders are used frequently as building
blocks to create complex geometries such as regular or
random arrays that model aspects of porous media flows
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FIG. 12. Transitions to steady asymmetric flow states in various geometries constructed from microscale cylinders as the
Weissenberg number is increased beyond a critical value Wic. (A) Flow past a single cylinder positioned on the flow axis.
Reproduced from [222] with permission from the Royal Society of Chemistry. (B) Velocity fields for flow past side-by-side
cylinders with different dimensionless intercylinder gap, G = L1/(L1 + L2), where L1 and L2 are the cylinder-cylinder, and
cylinder-wall gaps, respectively. Reproduced from [223] with permission. (C) Velocity fields for flow past two axially-aligned
cylinders. Reproduced from [218] with permission from John Wiley & Sons, Inc. (D) Retardation fields for flow through a
hexagonal array of cylinders (unpublished data, S. Haward). All cases show the flow from left to right of a shear-thinning
viscoelastic WLM solution.

in 2D [64, 161, 210–216], although recent experiments
have also explored aspects of these flows using sphere
packings in 3D, as described in §V B. Recently, there has
also been interest in viscoelastic fluid-structure interac-
tions, where elastic instabilities at high Wi (but negligible
inertia, or small enough Re) drive the motion of flexible
or cantilevered circular cylinders [217, 218].

Our discussion thus far in this article has focused on
polymer solutions; however, useful and related insights
also arise from studies using viscoelastic wormlike mi-
cellar (WLM) solutions. Thus, we first describe work
using WLMs to study flow past cylinders here; addi-
tional studies of WLMs are described in § VIII B. In
particular, using a model WLM solution consisting of
100 mM cetylpyridinium chloride (CPyCl) and 60 mM
sodium salicylate (NaSal) [219, 220], Haward, Shen, and
co-workers examined flows past several different configu-
rations of slender circular cylinders confined within mi-
crofluidic channels (see Fig. 12), with much larger depth
aspect ratios than explored in previous studies. At 24◦C
(ambient laboratory temperature), the entangled WLM
solution has a zero shear viscosity η0 ≈ 47 Pa.s, exhibits a
stress-plateau (shear-banding region [221]), and in small-
amplitude oscillation is well-described by a single-mode
Maxwell model with relaxation time λ ≈ 1.7 s. The di-
mensions of the microfabricated glass geometries (chan-
nel height, H = O(1 mm) � width, W � cylinder

radius, R = O(10 µm)) ensure that inertia is always
negligible, and that the flows are approximately uniform
(or two-dimensional, 2D) along the length of the cylin-
der. The Weissenberg number of the flow is defined by
Wi = λU/R, where the average flow velocity in the chan-
nel U is controlled by a syringe pump.

For flow around a single rigid cylinder located in the
center of the microchannel (Fig. 12A), a flow bifurcation
occurs as the Weissenberg number exceeds a critical value
Wic ≈ 60 [222]. For Wi = 37.5 < Wic, the fluid passes
the cylinder symmetrically, with the same flow velocity
profile on either side of the cylinder, and a straight elas-
tic wake is observed along the flow axis downstream of
the cylinder (as seen in the retardation field). However,
for Wi = 93.8 > Wic, the fluid selects a preferred path
around the cylinder, with a higher average velocity on
one side than the other, and the elastic wake becomes
correspondingly distorted downstream. This symmetry-
breaking transition has been characterized as a supercrit-
ical pitchfork bifurcation [222].

The bifurcation at one cylinder influences (and is in-
fluenced by) the bifurcation occurring at neighboring
cylinders positioned adjacently (Fig. 12B) [223] or down-
stream (Fig. 12C) in the channel [218]. In a hexagonal
array of circular cylinders, the bifurcation at each ob-
stacle results in a regular pattern of asymmetric wakes
where the handedness of the asymmetry alternates be-
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FIG. 13. Influence of shear-thinning and elasticity on the onset and development of asymmetric flow states around a single
cylinder. (A) Flow asymmetry only occurs when characteristic shear rates near the cylinder correspond to the shear-thinning
region of the flow curve. (Inset) The onset of instability is consistent with the scaling predicted by McKinley et al., indicating
that elasticity and curved streamlines in the downstream wake provide the initial perturbation to destabilize the flow [74, 225].
(B) Stability diagram constructed from simulation results with the l-PTT model examining the interplay between shear-thinning
and strain-hardening (ε) [225]; in this literature shear-thinning in the l-PTT model is denoted β (the label of the horizontal
axis). (A-B) are reprinted from [225] with the permission of AIP Publishing. (C) Experimental measurements with polymer
solutions over a range of concentration also show that the asymmetric flow around a cylinder (characterized by the magnitude
of I plotted on the ordinate axis) requires both shear-thinning and elastic effects in the fluid. Reproduced from [91] with
permission.

tween rows (Fig. 12D).

We note that in all the cases illustrated in Fig. 12, the
flow becomes time-dependent and apparently chaotic as
Wi becomes sufficiently large. However, instability pro-
gresses from an initial transition to a steady asymmetric
flow around each cylinder. These flows all appear to be
governed primarily by the bifurcation that occurs at each
obstacle for Wi > Wic. Therefore, to correctly interpret
phenomena observed in more complex flows, e.g., path
selection through arrays of cylinders representing porous
media, we consider it crucial to first understand how in-
stability develops around a single cylinder.

Accordingly, Haward, Shen and colleagues have in-
vested significant efforts in this direction, employing rhe-
ologically diverse fluids and a combination of experiments
and numerical simulations [91, 222, 224, 225]. The com-
prehensive studies indicate that the instability is initiated
by random fluctuations in the downstream wake due to a
combination of high elasticity and streamline curvature
close to the downstream stagnation point, i.e., a purely-
elastic instability of the type described by Pakdel and
McKinley [6, 74, 225] (Eq. 1). As shown in the inset to
Fig. 13A, from numerical simulations with the simplified
linear Phan-Thien and Tanner (l-PTT) model (Table II
with ξ = 0), the onset Weissenberg number for asym-
metric flow scales with the blockage ratio, BR = 2R/W ,
in excellent agreement with the prediction of McKinley
et al. [74, 225]. However, from the same set of simula-
tions, performed by varying BR at fixed Wi, asymmetric
flows are only supported when the characteristic shear-
rate near the cylinder lies on the shear-thinning region of
the flow curve (Fig. 13A). As the shear rate approaches
the high-shear-rate plateau region, symmetry is recov-
ered.

By fixing the blockage ratio BR = 0.1 and varying

the degrees of strain-hardening, ε, and shear-thinning,
denoted β, in the l-PTT model, a stability diagram is
obtained in Wi–β parameter space, where the bound-
aries marking the onset of asymmetric flows can be fol-
lowed along lines of constant ε (Fig. 13B). The insta-
bility is clearly affected by an interplay between the
shear-thinning and the elasticity of the fluid: if strain-
hardening is reduced, more shear-thinning is required to
induce the asymmetric flow state (and vice-versa) [225].

These observations are paralleled in experimental mea-
surements using polymer solutions with a range of rheo-
logical characteristics (i.e., by varying the shear-thinning
and elasticity, see Fig. 13C). Here, to understand the
role of shear-thinning, Haward, Shen and colleagues em-
ploy the “shear-thinning parameter” defined in §II C,
S = 1 − (d ln τ/d ln γ̇), which is evaluated from the flow
curve measured in steady shear [89–91]. The quantity “I”
reported in Fig. 13C is a measure of the degree of asym-
metry in the flow obtained from the difference in flow
velocity on either side of the cylinder [91, 222]. Elastic-
ity in the wake of the cylinder is considered to depend on
the magnitude of Wi. Note that both S and Wi depend
on the imposed flow velocity through the microchannel.

The colored lines in Fig. 13C show the trajectories
of fluids with different polymer concentrations through
the three-dimensional space, while the fitted surface is
formed from a combination of sigmoidal curves in S and
Wi [91]. From Fig. 13C, it can be observed that fluids
with low polymer concentrations (e.g., 50 or 100 ppm)
never show significant flow asymmetry (I ∼= 0); shear-
thinning is high only when elasticity is low. Fluids with
higher polymer concentrations (e.g., 200 or 300 ppm)
show the onset of asymmetry as Wi is initially increased,
but the flow recovers symmetry at very high Wi due to
the loss of shear-thinning in the high shear-rate plateau.
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Fluids of very high polymer concentration (e.g., 1000 or
3000 ppm) develop strong flow asymmetries (I → 1),
which can persist up to high Wi since the degree of shear
thinning S remains significant.

The development of the steady flow asymmetry in the
cylinder geometry depends on both the degree of shear-
thinning and the elasticity of the fluid in question, and
the two rheological properties share an interplay whereby
strong shear-thinning can compensate for weak elastic-
ity (and vice-versa). In light of these results, it may be
worthwhile revisiting the role of shear-thinning in other
instances of steady viscoelastic flow asymmetries (for in-
stance in the cross-slot geometry [52, 53, 90, 226]), where
the initial onset of instability gives rise to regions in the
flow field with disparate shear rates.

FIG. 14. Experimental images of two distinct unstable flow
states observed for elastic polymer solution flow through or-
dered one-dimensional arrays of pore constrictions. Images
show fluid pathlines and are adapted from [65] with permis-
sion.

B. Flow in Porous Media

Authors: A. Ardekani, S.S. Datta, J.S. Guasto

Studies of the flow of a polymer solution through an
isolated constriction or across a single cylinder give some
insight to the pore-scale flow dynamics in porous me-
dia [91, 225, 227, 228]. However, the higher connectiv-
ity and elevated disorder inherent in natural porous me-
dia introduce new complexities to such flows [229, 230].
Being able to predict and control viscoelastic fluid flow
through porous media has several important industrial
applications, as reviewed previously in [231]. Notable

examples are enhanced oil recovery (EOR) [232] and
groundwater remediation [233, 234], in which addition of
polymers to a displacing fluid leads to enhanced recovery
of a trapped non-wetting fluid [235–237]. Several mecha-
nisms for this phenomenon have been proposed: adding
polymers is thought to (i) increase the viscous drag on
trapped immiscible fluid droplets [238, 239]; (ii) suppress
viscous fingering instabilities during fluid displacement
[240]; (iii) impart strong spatial and temporal velocity
fluctuations induced by elastic instabilities [63, 241–243];
(iv) reduce the permeability of the medium locally due to
polymer retention at solid surfaces, leading to large and
heterogeneous local changes in flow [244]. However, sys-
tematic studies in porous media of varying geometries are
needed to parse the influence of these different possible
instability mechanisms.

The accumulation of stresses as polymers traverse suc-
cessive pores can produce spatial variation in the dom-
inant flow features [161, 197, 225, 245–249]. For ex-
ample, when flowing around closely-separated obstacles,
polymer chains can be advected from an upstream to a
downstream obstacle faster than they can relax. This
interaction leads to a bifurcation of the unstable poly-
meric fluid flow into two coexisting flow states in between
the two obstacles [214]. More recent work has shown
that in tightly-ordered (lower porosity) one-dimensional
(1D) arrays of multiple pores, with resemblance to natu-
ral porous media, this interaction can produce an unex-
pected bistability in the unstable flow in which the flow
in each pore switches stochastically between two distinct
primary structures: an eddy-dominated structure, and
an eddy-free structure [65] (Fig. 14).

Numerical simulations have corroborated these exper-
imental results, showing that even more patterns (i.e.,
multi-stability) can arise above a critical Weissenberg
number: (i) eddy on both the top and bottom of the
pore, (ii) eddy-free pore, (iii) eddy-free top of the pore,
and (iv) eddy-free bottom of the pore [197] (Fig. 15a-
c). This multi-stability reflects the formation of different
regions of high polymeric stress in the pores (Fig. 15b):
the accumulation of stresses as the polymeric chains cross
successive pores creates streaks of high polymeric stress
that are closely coupled to the flow structures inside
the pores. Polymeric chains are highly stretched in the
regions of high polymeric stresses, preventing the flow
crossing these streaks and inducing eddy formation in
different parts of the pore. Intriguingly, the simulations
suggest that this multistability can actually reduce the
pressure drop across the channel [197] (Fig. 15d) because
the eddies do not contribute to the net volumetric flow
through the channel; therefore, an eddy-free pore has a
larger apparent width to allow the net volumetric flow
than the pore with eddies, which leads to a smaller pres-
sure drop across the eddy-free pore. Further experimen-
tal tests of this behavior will be an interesting direction
for future work.

Beyond porosity, recent experiments have shown that
disorder may also play a fundamental role in the stability
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FIG. 15. (a) Multistability of the unstable flow of polymeric fluid through the pores of a converging-diverging channel. (b)
Trace of polymeric stress tensor inside the pores. (c) Probability density function (PDF) of the ratio of eddies to pore area
(Aeddy/Apore) at different Wi for a channel of 10 closely located pores. Aeddy represents the total area occupied by eddies in an
individual pore and Apore is the total area of the pore. Above a threshold Wi, multistability occurs, and the eddy areas take on
a broad range of values. (d) Time- averaged pressure drop (〈∆p〉) across the channels at different Wi. Images are reproduced
from [197].
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FIG. 16. Experiments in which disorder reduces chaotic fluctuations in viscoelastic flows through porous media. (Top row)
Normalized, time-averaged speed field in a microfluidic pillar array for a range of geometric disorders (Wi ≈ 4). Scale bar,
150 µm. (Bottom row) Local, normalized speed fluctuations as a function of increasing disorder, corresponding to speed fields
above. Images are reproduced from [161].

of viscoelastic flows through porous media [161]. Similar
to single obstacles, viscoelastic flow through an ordered
2D array of cylinders readily transitions to chaos at a
critical Wicr = O(1). However, the introduction of small
deviations from crystalline order in the porous medium
can delay the transition to higher Wicr, and strongly dis-
ordered media can have largely suppressed random ve-
locity fluctuations (Fig. 16). The mechanism by which
disorder may promote stability is by causing a shift in
the flow type [250] from extension- to shear-dominated
flow. In the work of Walkama et al. [161], as geometrical
disorder increases, stable preferential flow paths emerge

and promote shear, which weakly stretches polymers in
comparison to extensional flow [251, 252]. This work also
emphasizes the importance of Lagrangian stretch that is
accrued along a polymer’s flow path in triggering vis-
coelastic instability.

Exploring how insights developed in 1D and 2D sys-
tems relate to flows in more complex 3D porous media
[229, 232–234] is an active frontier of current research.
In the stable creeping flow regime considered here, spa-
tial correlations of velocity and pore-space have been
shown to be almost identical between 2D and 3D me-
dia [229]. However, pore scale flow instabilities in 3D
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geometries can exhibit different patterns than 2D insta-
bilities [62, 81, 253], inducing differences in macroscopic
flow and transport as well [254–256].

FIG. 17. The occurrence of elastic turbulence is spatially het-
erogeneous throughout a porous medium, reflecting “porous
individualism.” Images show the normalized magnitude of
root mean square flow fluctuations in different pores and at
different flow rates, parameterized by a characteristic Weis-
senberg number WiI . Applied flow is from left to right. Pore
A becomes unstable at the lowest flow rate, as shown by the
red line in the first row. Pore B becomes unstable at the
next highest flow rate, shown by the red line in the second
row. Pore C becomes unstable only at even higher flow rates.
Note that flow velocity magnitude is denoted by u instead of
v as in the rest of the text. Modified from [263].

Indeed, given the observation that disorder can sup-
press the transition to elastic turbulence in 2D porous
media [161], it has been unclear whether and how this
transition manifests in disordered 3D media — though
elastic turbulence has been speculated to underlie the
long-standing observation that the macroscopic flow re-
sistance of an injected polymer solution can abruptly in-
crease above a threshold flow rate in a porous medium,
but not in bulk solution [243, 257–262]. By directly visu-
alizing the flow in a transparent, disordered, 3D porous
medium, [263] directly verified that elastic turbulence
does arise within a disordered 3D porous medium, and
used flow velocimetry to link chaotic pore-scale flow fluc-
tuations to the macroscopic flow resistance. In particu-
lar, the authors found that the transition to unstable flow
in each pore is continuous, arising due to the increased
persistence of discrete bursts of instability above a crit-
ical value of the characteristic Wi; however, the onset
value varies from pore to pore.

This observation that single pores exposed to the same
macroscopic flow rate become unstable in different ways
provides a fascinating pore-scale analog of “molecular in-
dividualism” [264], in which single polymers exposed to
the same extensional flow elongate in different ways; the
authors therefore termed it “porous individualism”, al-
though it is important to note that here, this effect is

still at the continuum (not molecular) scale. Thus, un-
stable flow is spatially heterogeneous across the different
pores of the medium, with unstable and laminar regions
coexisting (Fig. 17). Guided by these findings, and in-
spired by the analysis of recent simulations [265], the
authors quantitatively established that the energy dis-
sipated by unstable pore-scale fluctuations generates an
anomalous increase in flow resistance through the entire
medium that agrees well with macroscopic pressure drop
measurements.

Thus, by linking the onset of unstable flow at the pore
scale to transport at the macroscale, such research is be-
ginning to yield generally-applicable guidelines for pre-
dicting and controlling unstable flows of polymer solu-
tions in porous media. Indeed, experimental develop-
ments using confocal microscopy in model 3D porous me-
dia [210, 230, 266], defocusing particle tracking velocime-
try [267], holographic particle tracking velocimetry [268],
and fast synchrotron-based X-ray computed microtomog-
raphy in real porous rocks [269, 270] provide access to
flows in situ that will likely continue to refine our under-
standing of these complex systems.

VI. ELASTOINERTIAL FLOW INSTABILITIES

Authors: M.D. Graham, V. Shankar, G.
Subramanian, with input from A. Morozov

Ever since the iconic experiments of Osborne Reynolds
in 1883 [271], it has been well-known that Newtonian
pipe flow undergoes a laminar-turbulent transition when
the eponymous dimensionless parameter (the Reynolds
number, Re) exceeds a threshold. The complexity of
this transition was already understood by Reynolds, as
evidenced by the following remark in Ref. [271]: “...it
was observed that the critical velocity was very sensitive
to disturbance in the water before entering the tubes.”
Later experiments have indeed shown that the laminar
state in Newtonian pipe flow can be maintained up to
Re ≈ 105 [272]; this behavior is consistent with the cur-
rent consensus that Newtonian pipe flow is linearly stable
at all Reynolds numbers [273]. The Newtonian pipe flow
transition from laminar to turbulent flow is therefore very
different from that observed in the Taylor-Couette geom-
etry (with the inner cylinder rotating) discussed earlier
in § II. In the latter case, the transition is marked by
a sequence of reasonably well-defined bifurcations start-
ing from the initial linear instability, and leading to a
gradual increase in the spatio-temporal complexity [274].
In stark contrast, in Newtonian pipe flow (and indeed
in the other canonical shear flows such as plane Cou-
ette and Poiseuille flows), transition is abrupt, and is
marked by the appearance of localized structures known
as turbulent puffs and slugs (or turbulent spots in the
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aforementioned plane shear flows) that already exhibit
the full spatio-temporal complexity of the ensuing tur-
bulent state [183, 188]. Indeed, the original paper by G.
I. Taylor [9] on the centrifugal instability in the geome-
try that now (partly) bears his name involved a success-
ful comparison between theory and experimental obser-
vations of the transition from the base-state azimuthal
flow. However, as discussed below, more than a century
was required after the original paper of Reynolds for the
emergence of a rigorous theoretical understanding of the
Newtonian pipe flow transition.

Transition to turbulence in canonical rectilinear shear-
ing flows, e.g., plane Couette, and plane- and cylindrical-
Poiseuille flows, of a Newtonian fluid, beyond a thresh-
old Re is a complicated process [275, 276], largely due to
the absence (plane Couette and pipe flow) or irrelevance
(plane Poiseuille) of an underlying linear instability [277].
Note that Re here is the Reynolds number based on the
half-height/pipe radius, maximum velocity of the lam-
inar flow, and the total solution viscosity and density.
The Weissenberg number, Wi, is based on the polymer
relaxation time, maximum velocity of the laminar flow
and the half-height/pipe radius. Nevertheless, the New-
tonian transition is now regarded as well understood from
a dynamical systems perspective, with the eventual tran-
sition being presaged by the appearance of non-trivial
three-dimensional solutions (the so-called exact coherent
states or ‘ECS’ in short, which were first introduced in
§ IV B 1 by way of analogy to the possibility of nonlinear
elastic structures in the inertialess limit) of the Navier-
Stokes equations [278–281]. These are disconnected from
the trivial laminar state, and serve as a scaffold, in an ap-
propriate phase space, for the turbulent dynamics after
transition [130, 282, 283]. These ECSs contain the ba-
sic self-sustaining ingredients of transitional Newtonian
turbulence, i.e., quasi-streamwise vortices and streaks. A
comprehensive review of ECS can be found in [130, 188].

While the transition to inertial turbulence in New-
tonian pipe and plane Poiseuille flow is now relatively
well understood as described above, recent experimental,
theoretical and computational studies have shown that
the transition scenario in viscoelastic counterparts of the
above flows may be markedly different. Both linear and
nonlinear mechanisms, with no analogues in the Newto-
nian realm, have been proposed for viscoelastic rectilin-
ear shearing flows. Thus, while the focus in § IV was
on instabilities of rectilinear shearing flows pertaining to
the low-Re regime, this section emphasizes the crucial
role played by both fluid inertia and elasticity in desta-
bilizing the laminar base state, and the focus is on what
may be appropriately referred to as ‘elastoinertial’ insta-
bilities. In § VI A below, we begin with the well known
drag-reducing effect of polymers on fully developed New-
tonian turbulence, before moving on to the mechanistic
underpinnings of turbulent drag reduction in § VI B. We
then summarize in § VI C various transition scenarios for
viscoelastic pipe and plane Poiseuille flows for different
fixed values of the ratio between solvent and total viscos-

ity, denoted β.

A. Turbulent Drag Reduction and Elastoinertial
Turbulence (EIT)

Author: M.D. Graham, with input from V. Shankar
and G. Subramanian

The addition of long chain polymer molecules to a fluid
has tremendous effects on wall-bounded turbulence, the
most dramatic being the substantial reduction of the fric-
tion factor [140, 284, 285], which is proportional to the
pressure drop for a given flow rate (or Reynolds number).
This phenomenon has found wide use in various applica-
tions that seek energy efficiency in flow processes [286–
288]. Not surprisingly, there is also a large literature
seeking to understand and/or exploit this phenomenon.

In this section, we now broaden our perspective and fo-
cus on situations in which fluid inertia is non-negligible.
We focus on high-Reynolds-number channel flow of a
dilute solution of high molecular weight polymer, so
the ratio between solvent and total viscosity, β satisfies
1 − β � 1, and the Trouton ratio (i.e., the ratio be-
tween extensional and shear viscosities) Tr� 1. For the
FENE-P constitutive model with chain length parame-
ter b(≡ L2), this requires that b(1− β)� 1. This is the
regime of primary relevance for drag reduction, where as
a practical matter it is desired to keep the shear viscos-
ity of the fluid low (i.e., 1− β � 1), but the extensional
viscosity high (i.e., b(1−β)� 1). The Reynolds number
regime considered is Re ∼ 103−104, i.e., near transition.

Important features of turbulent flow when the degree
of polymer-induced drag reduction is large include a very
small Reynolds shear stress and a mean velocity profile
that closely approaches the so-called Virk maximum drag
reduction (MDR) asymptote [140]. It is interesting that
this profile is nearly independent of the composition or
concentration of the polymer.

With respect to mechanism, it is well-known that vis-
coelasticity suppresses the near-wall streamwise vortices
that dominate Newtonian turbulence [289, 290]. A num-
ber of studies have captured this phenomena by study-
ing the effect of viscoelasticity on the aforementioned
ECS solutions [291–297]. In particular, Li and cowork-
ers [293, 295] found that the ECS are so weakened by
viscoelasticity that they are no longer self-sustaining and
so should fail to exist. However, recognizing that, in
general, viscoelasticity is not experimentally observed to
drive relaminarization of the flow, these authors sug-
gested the possibility of new viscoelastic mechanisms for
sustaining turbulence and becoming unmasked as the
Newtonian structures are suppressed [295].

Indeed, instead of complete relaminarization of the
flow (except in narrow parameter ranges at transitional
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(a)

(b)

FIG. 18. Snapshots of simulations of EIT in (a) channel
flow [300] and (b) pipe flow [299]. In (a) color contours indi-
cate polymer stretching and lines indicate the magnitude Q
of the second invariant of the velocity gradient tensor; repro-
duced with permission from [300]. In (b) isosurfaces indicate
Q; ; licensed under a Creative Commons Attribution (CC
BY) license.

Re as detailed later), recent studies have unearthed
a polymer-driven chaotic flow state dubbed elastoiner-
tial turbulence (EIT), which dominates high-Reynolds-
number flows at high levels of viscoelasticity [298]. In
this parameter regime EIT displays multilayered sheets
of polymer stretch emanating from near the walls (see
Fig. 18a) and very weak, spanwise-oriented vortices,
which is in sharp contrast to the 3D quasi-streamwise
vortex structures of Newtonian wall turbulence. Simi-
larly, near-wall localized, nearly-axisymmetric vortex and
stress structures (Fig. 18b) have been reported in pipe
flow simulations of EIT [299].

Using computations in channel flow at Re = 1500,
Shekar et al. [301] observed a narrow zone of Wi, roughly
10 − 18, where the only attractor was the laminar base
state. This zone separated drag-reduced Newtonian tur-
bulence at lower Wi and EIT at higher Wi, corroborating
the experimental observations of [302]. In this case, the
laminar flow remains linearly stable in the EIT regime,
but only very small (but finite) perturbations are re-
quired to drive the flow to EIT. This observation suggests
that extreme care must be taken in interpreting experi-
mental observations of a transition to a very weak EIT
state: what appears to be a linear instability may not be.

Before discussing the theory to understand these ob-
servations, as well as others described below, it is first
useful to recall the known structure, and the associated
features, of the Newtonian eigenspectrum for plane- and
pipe-Poiseuille flows [310]. The spectrum has a charac-
teristic ‘Y’-shaped structure, with the two arms of the Y
comprising the wall modes (the so-called A branch with
modal phase speeds and decay rates approaching zero)
and the center modes (the so-called P branch with phase
speeds approaching the centerline maximum and decay

rates approaching zero) for Re ∼ 1000 and higher. The
(lower) stem of the Y-structure corresponds to the S-
branch that consists of a denumerable infinity of modes
that propagate at two-thirds of the base-flow maximum,
and with progressively increasing decay rates down the
stem. Note that, with increasing Re, the underlying Y-
template remains unchanged, while there is a progres-
sive increase in the number of modes along each of the
three branches. This Y-template characteristic of the
Newtonian spectrum is henceforth referred to as the ‘A-
P-S’ template. The Tollmien-Schlichting (TS) mode in
Newtonian plane-Poiseuille flow corresponds to a wall
mode belonging to the A branch that becomes unstable
at Re ≈ 5772; Newtonian pipe-Poiseuille flow, in con-
trast, is known to be stable for all Re.

For large Re, the stream-wise velocity eigenfunction for
the TS mode displays a sharp localization at wall-normal
locations called ‘critical layers’, near the top and bottom
walls (thus the term ‘wall mode’), where the base-flow ve-
locity equals the phase speed. A balance of inertial and
viscous effects shows that the thickness of the critical
layer decreases as Re−1/3, consistent with the aforemen-
tioned localization. Critical layers can be thought of as
the most favorable positions for energy exchange between
the mean flow and the fluctuations, because they are the
positions where both the fluctuations and the base flow
have the same speed.

Returning to the observations of [301], EIT in this pa-
rameter regime displays polymer stretch fluctuations lo-
calized near the wall. In particular, a resemblance was
noted between the EIT structure and the viscoelastic ex-
tension of the classical TS mode, which at the chosen pa-
rameters is the slowest decaying mode from linear stabil-
ity analysis. This viscoelastic TS mode displays polymer
stretch fluctuations that are sharply localized to critical
layers near the top and bottom walls. Similarly, resolvent
analysis predicts strong amplification of this structure
in the presence of viscoelasticity. This strong amplifica-
tion implies, consistent with the fully nonlinear results,
that even very weak disturbances may be sufficient to
trigger EIT. We note that Page and Zaki [304] present
computations, and Haward et al. [303, 305] present cor-
responding experiments for viscoelastic flow over a wavy
wall that illustrate amplification of perturbations in the
critical layer.

Building on the above observations, Shekar et al. [306]
performed direct simulations of two-dimensional plane
channel flow with the FENE-P constitutive equation at
Re = 3000, revealing the existence of an attractor family
denoted the ‘viscoelastic nonlinear Tollmien-Schlichting
attractor’ or VNTSA, whose structure is virtually iden-
tical to the linear TS mode, and in particular exhibits
strongly localized stress fluctuations at the critical layer
position of the TS mode, as illustrated in Fig. 19. At
the parameter values chosen, this solution branch is not
connected to the nonlinear TS solution branch found for
Newtonian flow, and thus represents a solution family
that is nonlinearly self-sustained by viscoelasticity: The
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FIG. 19. Snapshot of the finite amplitude Tollmien-
Schlichting wave solution at Re = 3000, Wi = 10 [306]. White
contours are wall-normal velocity, colors are deviations of xx
polymer stretch from laminar values. Reproduced with per-
mission from [306].

laminar state remains linearly stable, though again, as
in [301], only an extremely small perturbation is required
to drive the solution away from the laminar state. This
attractor loses stability subcritically, and edge-tracking
can be used to show that it connects through an unsta-
ble solution family to two-dimensional EIT.

The results of [306] strongly suggest, but do not di-
rectly indicate, the existence of a continuous path in pa-
rameter space between the Newtonian TS wave and EIT
in channel flow. To clarify this issue, Shekar et al. [307]
used DNS to continue the VNTSA solution branch of
[306] from Re = 3000 up to Re = 10000, and then down
to Wi = 0, to recover the Newtonian nonlinear Tollmien-
Schlichting attractor. Conversely, starting with the New-
tonian TS attractor at Re=10000, the Newtonian TS at-
tractor evolves continuously and without hysteresis into
EIT as Wi is increased from zero to about 13—the two
flows are part of the same solution family. Figure 20 il-
lustrates the evolution of the flow and stress fields as Wi
increases. Note the resemblance between Fig. 20d and
Fig. 18a. The simple sheet structures that originate with
the TS critical layer structure evolve into the multilay-
ered structure of EIT through a process that has been
denoted “sheet-shedding”: Individual sheets associated
with the critical layer structure break up, with the frag-
ments further sheared as they travel downstream.

The linear instability to Tollmien-Schlichting waves
does not arise for pipe or plane Couette flow, so the
scenario described here does not directly apply to those
geometries. On the other hand, in these geometries elas-
toinertial turbulence with very similar features does arise
in simulations in the same general parameter regime:
namely, fluctuations localized in a layer near the wall,
with a sheet-like stress structure and little to no activ-
ity in the center of the flow as illustrated in Fig. 18b
[308, 309]. Furthermore, while linearly stable, wall modes
analogous to the TS wave do exist in these other geome-
tries [310], and may be subject to nonlinear critical layer
excitation, and subsequent evolution into EIT, just as the
TS mode is in the channel flow case. Indeed, Zhang [311]
performed resolvent analysis for pipe flow in the same
parameter regime considered here, demonstrating that

(a) Wi=0

(b) Wi=4

(c) Wi=8

(d) Wi=13

FIG. 20. Snapshots of the finite amplitude Tollmien-
Schlichting wave solution at Re = 10000 and (a) Wi = 0,
(b) Wi = 4, (c) Wi = 8, (d) Wi = 13 [307]. White contours
are wall-normal velocity and colors are deviations of xx poly-
mer stretch from laminar values.

the most amplified mode has strong stress fluctuations
localized in a critical layer near the wall, just as is found
by Shekar et al. [301]. See [306] for further discussion of
these issues.

The work described here demonstrates a direct connec-
tion between a wall mode (the TS mode) and EIT struc-
tures. At the same time, in more strongly viscoelastic
regimes, typically El & 10−1 and extremely high molec-
ular weight (L2 & 105), Garg et al. [141], Chaudhary
et al. [142] and Khalid et al. [312] have found a linear
center-mode instability for pipe flow and channel flow re-
spectively, as described in §VI C. In channel flow Page et
al. [143] computed the finite amplitude nonlinear trav-
eling wave solution that originates in the center-mode
instability, finding that at finite amplitude it exhibits an
“arrowhead” structure of polymer stretching. Dubief et
al. [144] study this state with direct numerical simula-
tions. In an experimental study, Choueiri et al. [313] also
note the appearance of “chevron” shaped velocity fluctu-
ation structures resembling the unstable center mode in
pipe flow up to Re = O(100) before being taken over
by near-wall modes at higher Re. These results open up
the possibility that other states unrelated to the nonlin-
ear excitation of a wall mode may play a role in elastic
and/or elastoinertial turbulence, with Reynolds numbers
in the aforementioned range. Section VI.C extensively
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elaborates on this point.

B. Linking Back to Drag Reduction

Author: M.D. Graham

Next, we return to the issue of the maximum drag re-
duction phenomenon (MDR). Based on the results above,
the following scenario can be hypothesized: In the MDR
regime, the flow cannot stay classically turbulent because
streamwise vortices are so strongly suppressed by vis-
coelasticity that they cannot persist, but on the other
hand the flow cannot fully laminarize either, because vis-
coelastic TS waves (or something else) are nonlinearly
excited by small but finite perturbations even when the
laminar flow is linearly stable. Nevertheless, weak quasi-
streamwise vortex and streak structures are experimen-
tally observed to exist at MDR [290]. Based on these
points, MDR may be a marginal state where weak critical
layer (or other) excitations keep the flow from laminar-
izing and provide sufficient perturbations to the flow for
the mean shear to generate weak quasistreamwise vor-
tices.

We provide two further comments on this hypothesis.
First, for Newtonian and viscoelastic channel flows, Xi
and Graham [314] computed “edge states”, which are
dynamical trajectories that are marginal in the sense that
they lie on the state-space boundary between laminar and
turbulent flow. Near transition, these states display a
mean velocity profile very close to the Virk MDR profile.
Furthermore, very recent computations by Zhu and Xi
[315] indicate the presence of an intermittent process in
viscoelastic channel flow involving quasi-2D structures
with near-wall critical layer characteristics and 3D quasi-
streamwise structures, again with a mean velocity profile
that lies on or above the Virk MDR profile.

C. Elasticity-induced Transition Scenarios in
Re-Wi Space

Authors: V. Shankar and G. Subramanian, with
input from M. D. Graham

In this section, we focus on the role of polymer on
the incipient transition from the laminar state. Transi-
tion for viscoelastic fluids such as polymer solutions, even
within the framework of the simplest constitutive equa-
tions (the Oldroyd-B equation, for instance), is charac-
terized by at least two additional parameters — Wi and
β [142, 316]. Transition from the steady laminar base

state, to states characterized by non-trivial spatiotempo-
ral dynamics, can occur along multiple pathways in the
Re-Wi-β space; for example, the work on purely elastic
instabilities described in § IV and the opening of this
section, § VI, explored pathways characterized by Re =
0.

The recent prediction of a linear center-mode instabil-
ity for both viscoelastic pipe and channel flows (alluded
to above) [141, 142, 312] is qualitatively different from the
Newtonian scenario, where pipe flow is linearly stable at
all Re, while plane Poiseuille flow becomes unstable to the
TS mode at Re = 5772, a value that is much higher than
the observed threshold for transition. It is important to
note that this center mode does not bear a direct relation
to the Newtonian center mode, and this in turn is due
to the elastoinertial spectrum being very different, and
significantly more complicated, than its Newtonian coun-
terpart (which has the A-P-S template described earlier
in §VI A). One of the reasons for this is the presence
of continuous spectra, which happen to be branch cuts,
and discrete eigenmodes can appear and disappear out of
the branch cut with variation in the different parameters.
The structure of the elastoinertial spectrum in plane- and
pipe-Poiseuille flows has been discussed, in some detail,
in Refs. [142, 312].

The discovery of a linear instability in viscoelastic pipe
flow, in particular, marks a radical departure from the
earlier literature, which had assumed this flow to be
stable in the Re-Wi-β parameter space [26, 186, 317].
The existence of a linear pathway to transition was also
strongly suggested by the earlier experiments of Samanta
et al. [298], where the threshold Reynolds number was in-
dependent of whether the flow was forced at the inlet or
not, beyond polymer concentrations of 200 ppm. Both
recent computations of Page et al. [143] and experiments
of Choueiri et al. [313] have pointed to the connection of
the center-mode eigenfunction to the eventual nonlinear
state (a novel EIT coherent structure in the computa-
tions) that emerges above threshold.

We now attempt to bring together the ideas described
above, both in this section that deals with elastoinertial
transition and turbulence, and the earlier sections that
focused on elastic instabilities and transition in rectilin-
ear shearing flows, via Figs. 21 and 22, which attempt
to summarize the transition scenarios for pipe and plane
Poiseuille flows, respectively, in the Wi-Re plane for dif-
ferent fixed values of β. The linearly unstable regions
in the interior of the Wi-Re plane, corresponding to the
center-mode instability, are marked by thick black lines
(solid, dashed or dash-dotted) for specific values of β,
while those for other values of β are depicted by light
gray lines. In both figures, regions adjacent to the Re and
Wi axes correspond to the onset of predominantly iner-
tial and elastic instabilities, respectively, with the former
underlying the sub-critical Newtonian transition.

We begin with a brief discussion of the features com-
mon to both figures, before going on to describe those
unique to Fig. 22, which make the transition in plane
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FIG. 21. Schematic representation of various transition scenarios for viscoelastic pipe flow in the Re-Wi plane. The laminar
flow is characterized by the Poiseuille velocity profile with rectilinear streamlines. The linearly unstable regions in the interior
of the Wi-Re plane, corresponding to the center-mode instability, are marked by a thick black line (solid) for one specific values
of β, while those for other values of β are depicted by light gray lines.

Poiseuille flow a potentially richer playground for both
linear and nonlinear transition mechanisms. The 3D
ECS-driven mechanism that triggers the Newtonian tran-
sition becomes less relevant for weakly elastic flows on
account of the Newtonian ECSs being suppressed by in-
creasing elasticity [292, 318–321]. While this suppression
has been demonstrated specifically for plane Poiseuille
flow, it is reasonable to conjecture that a similar scenario
should prevail for pipe flow on account of the similar-
ity of the underlying ECSs [142]. The suppression and
eventual disappearance of the ECSs is thought to be re-
sponsible for a delayed transition to, and eventual dis-
appearance of, the Newtonian turbulent state. In both
Figs. 21 and 22, the Newtonian-turbulent-like state is
therefore confined to a region between the Re-axis and a
curve that corresponds to a Re-dependent critical value
of the Weissenberg number Wic. At higher levels of elas-
ticity, the aforementioned linear center-mode instability
becomes operative.

Although the extent of the linearly unstable region
depends sensitively on flow-type and β, the unstable

regions for both pipe and channel flows, Figs. 21 and
22 respectively, bear a close resemblance in the range

0.5 < β < 0.98, with Wic ∝ Re1/3 along the lower branch
of the unstable region, while Wic ∝ Re along the upper
branch (the latter corresponds to a constant elasticity
number El, and represents an experimental path for a
given flow geometry and polymer solution). For both
geometries, the center-mode eigenfunction likely gives
way to supercritical nonlinear structures that, either di-
rectly, or via secondary instabilities, might underlie the
observed EIT dynamics. In this sense, the center-mode
instability, for both pipe and channel flows, provides a
continuous pathway from the laminar state to the EIT
(and the eventual MDR) regime. Although not shown,
the EIT and Newtonian turbulence domains overlap at
higher Re, where the original center mode gives way to
a wall mode – indeed, this overlap has been found by
several authors [131, 309, 322] – implying that the latter
transitions in a continuous manner to the former, with-
out an intervening relaminarization. This was believed
to always be the case in earlier literature. The vertical
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path shown on the right in Fig. 21 corresponds to the one
in Ref. [302], which first accessed an intermediate quasi-
laminar state with increasing Wi at a fixed Re (=3600),
thereby contradicting the aforesaid long-held belief. A
vertical path at fixed Re in the Wi–Re plane implies an
increase in elasticity number El = λν/R2, introduced
earlier in § II C, but defined here with the pipe radius R
as the relevant length scale and ν ≡ µ/ρ. In this context,
it is useful to note that in the dilute limit, strictly speak-
ing, both the relaxation time λ and ν are independent of
polymer concentration. Thus, in this regime, an increase
in El can be accomplished only by decreasing the pipe
radius R. However, in the experiments of Choueiri et
al. [302], the pipe radius R is fixed; instead, the authors
increase the polymer concentration in the vicinity of the
overlap value, which results in an increase in both λ and
ν, and thence El (while, presumably, adjusting the flow
rate to keep Re fixed).

Despite the above similarities, there remain significant
differences between the instabilities of pipe and plane
Poiseuille flows outside of the aforementioned range of

β. The center-mode instability disappears for β < 0.5
for channel flow, while it persists down to β ≈ 10−3

for pipe flow. The opposite limit of β → 1, discussed
above in the drag reduction context, is also of particu-
lar interest from the linear stability viewpoint. While
the center-mode instability appears to be restricted to
Re > 63 for pipe flow (Fig. 21), remarkably, it morphs
into a purely elastic instability for channel flow, contin-
uing to arbitrarily small Re for β > βc ≈ 0.9905 [171].
As a result, the ‘nose’ of the original unstable region in
Fig. 22 begins to broaden for β → βc, eventually opening
out into a plateau that extends right up to the Wi-axis
for β > βc. Rather intriguingly, for β close to βc, the

lower branch (Wic ∝ Re1/3) and the small-Re plateau
are separated by an intermediate asymptotic regime with
Wic ∝ Re−1 (this corresponds to a constant viscoelas-
tic Mach number, Mav = V/Vshear = O(1 − β)−1, with

Vshear =
√

(1−β)η
ρλ being the shear wave speed). However,

the implied shear-wave signature may not be relevant to
the recent observation of ‘elastic waves’ in sheared dilute



32

polymer solutions [83, 171]. Considerations of continu-
ity imply that the crossover from the intermediate scaling
regime to the creeping-flow instability must pass through
a special β = βc for which the scaling Wic ∝ Re−1 should
persist down to Re→ 0! (the dash-dotted line in Fig. 22).
Importantly, the aforementioned transformation of the
original center-mode instability into a purely elastic one
(that in turn might give way to a turbulent state) high-
lights the existence of an EIT-ET connection for channel
low (via an underlying modal pathway). This might serve
as a novel template in a search for purely elastic coherent
structures.

In regions of the Re-Wi-β space where the center mode
is linearly stable, novel subcritical mechanisms likely
dominate the transition process. In this regard, and as
discussed in § VI A, recent work [301, 306] has identified
a nonlinear mechanism closely related to the stable New-
tonian Tollmein-Schlichting mode (although still discon-
nected from it in phase space until a Re of 104). The fact
that there is no analog of the TS-instability in Newtonian
pipe-flow, and no evidence of a corresponding nonlinear
solution branch in the Newtonian limit, suggests that the
TS-mode-based subcritical mechanism could be specific
to plane Poiseuille flow. On the other hand, as noted
in § VI B, the direct simulations of EIT by Lopez et
al. [299] display strong localization of fluctuations near
the wall, and the resolvent analysis of Zhang [311] demon-
strates strong linear amplification of a mode with near-
wall critical-layer stress fluctuations. Both of these ob-
servations are fully consistent with those described by
Shekar et al. [301, 306] in channel flow, wherein subcrit-
ical transition to EIT is driven by the amplification of
fluctuations with near-wall critical layer structure, sug-
gesting a similar mechanism for EIT in pipe and channel
flows. Indeed, in the work of [301], the Reynolds num-
ber is so low that no subcritical TS branch exists in the
Newtonian limit. Returning to the case of channel flow,
the recent subcritical continuation of the unstable cen-
ter mode to a nonlinear EIT structure [143] implies that
subcritical mechanisms based on the center mode might
also be operative in certain regions of Re-Wi-β space, and
thus the relevance of the center mode might extend out-
side of the linearly unstable regions indicated in Figs. 21
and 22.

In the opposite limit of Re � 1, viscoelastic pipe and
Poiseuille flows are linearly stable for Wi = O(1) and
when β is not very close to unity [142, 323]. One of
the proposed transition scenarios is that of a subcriti-
cal 2D nonlinear instability [186, 187], although this has
been demonstrated only for Wi = O(1) and β → 0. The
existence of a linear instability at the other extreme –
Wi = O(1000) and β → 1 [171] – implies the possibility
of a bifurcation to a distinct elastic turbulent state. It
is therefore possible to envisage (at least) two different
ET states (labeled ET1 and ET2 in Fig. 22), in iner-
tialess plane Poiseuille flow, depending on Wi. Even in
this limit, however, there is a wide intermediate range of
β (0 < β < βc) for which the nature of the subcritical

transition remains an open question.
It is worth summarizing, in a succinct manner, the

implications of the findings detailed in this section with
respect to transition to EIT in pipe and channel flows
of polymer solutions. For moderate-to-strongly elastic
polymer solutions (El > 0.1, β ∼ 0.5− 0.9), where tran-
sition to EIT occurs directly from the laminar state,
both experiments and theory point to the relevance of
the center mode at onset [141–143, 312, 313]. On the
other hand, for weakly elastic dilute polymer solutions
of the type investigated in the context of drag reduc-
tion (El < 0.02, β → 1), when the primary transition
to turbulence is akin to the Newtonian one, the eventual
EIT state is dominated by wall modes that appear to
be closely related to the nonlinear travelling-wave solu-
tions identified in [301, 306]. It is worth noting that there
are vast tracts of the viscoelastic parameter space that
remain to be understood from the transition perspec-
tive. For instance, for dilute solutions (with β = 0.97)
at higher El (0.02 < El < 0.5), it is the continuous spec-
trum that is the least stable (see Fig. 19b of Ref. [312]),
and may perhaps be expected to play a dominant role
in the (subcritical) transition dynamics. Future research
will be necessary to disentangle the roles of wall- and
center-mode-based structures, and perhaps other struc-
tures (e.g., modes belonging to the continuous spectrum)
as well, for EIT in various geometries and parameter
regimes.

D. Non-modal Scenarios

Authors: V. Shankar and G. Subramanian, with
input from A. Morozov

As explained in § IV B 1, ‘non-modal’ scenarios refer
to non-exponential, algebraic growth of perturbations at
relatively early times when the flow is linearly stable—
implying that the perturbations will decay exponentially
at large times. The above discussion of transition scenar-
ios is restricted to either new modal pathways induced by
elasticity, or the elastic modification of essentially New-
tonian non-modal pathways. There also exist efforts that
have highlighted novel non-modal pathways due to elas-
ticity alone [177, 178], or due to a non-trivial interplay
of elasticity and inertia [324]. The non-modal pathways,
in the inertialess limit in particular, point to the impor-
tance of spanwise varying disturbances (much like the
Newtonian case) that are amplified by an elastic analog
of the lift-up effect, and by an amount that increases with
increasing Wi. The significance of the essentially 3D non-
modal pathways [177, 178] relative to the aforementioned
2D nonlinear modal mechanism [186, 187] requires more
detailed examination; in light of this, Figs. 21 and 22 in-
dicate both non-modal and modal pathways leading to
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FIG. 23. Free surface instabilities in edge fracture. (a)
Schematic of a cone and plate device where the interface un-
dergoes an instability. (b) Snapshots from simulations of the
Giesekus model between rigid walls. Note that in this figure,
Γ is used to denote interfacial tension, while in the corre-
sponding text we use σ instead, and G is the elastic modulus;
reproduced with permission from [342].

the ET state (ET1 for channel flow).

The experiments reported so far [195, 196] cannot reli-
ably be used to emphasize either pathway especially be-
cause the nonlinear elastic state accessed is for a channel
with a cross-sectional aspect ratio of unity; the sensitiv-
ity of this state to the precise form (‘shape’) of the inlet
disturbance, including the relative significance of stream-
wise vis-a-vis spanwise variations, remains to be estab-
lished. Although the ET state has been reasonably well
characterized statistically in the aforementioned experi-
ments, recent experiments [198] have, in channels with
higher aspect-ratio cross-sections, begun exploring the
underlying structural motifs that might help identify the
elastic analogs of the Newtonian ECSs. In contrast to
the above, the EIT state accessed in both pipe and chan-
nel geometries only exhibits minor spanwise variations,
and this essential two-dimensionality is consistent with
the underlying modal picture [142, 312, 325].

VII. FREE SURFACE INSTABILITIES IN
POLYMERIC FLUIDS

The previous sections described flow instabilities
within bounded domains. In this section, we address
flow instabilities that arise at the free surface between a
polymeric fluid and the outside air. We do not attempt
a comprehensive review, but instead focus on three spe-
cific instabilities. The first, often termed ‘edge fracture’,
is widely observed when a highly viscoelastic polymeric
fluid is sheared in a torsional (cone-plate or plate-plate)
flow device (Fig. 23). The second concerns the necking
of a filament of viscoelastic polymeric fluid in which the
constituent polymer chains are highly entangled, in the
regime where the bulk viscoelastic stresses dominate sur-
face tension (Fig. 24). The third concerns the breakup of
a thread of high molecular weight elastic polymer in the
regime where surface tension dominates (Fig. 25).

A. Edge Fracture in Sheared Complex Fluids

Author: S.M. Fielding

Measurements of a fluid’s shear rheology are commonly
performed in a torsional rheometer, often using either
a cone-plate or plate-plate flow cell. In the linear vis-
coelastic regime, measurements are generally well con-
trolled and reproducible. The measurement of stronger
flows is often hindered by flow instabilities. For example,
above a critical value of the imposed rate of shear, γ̇,
the free surface where the fluid sample meets the outside
air can destabilize towards a more complicated profile,
e.g., Fig. 23, despite having been neatly trimmed ini-
tially, forming an indentation of the interface that can
then invade the bulk. Part of the sample can even be
ejected from the flow cell, leading to unreliable data. This
phenomenon is known as ‘edge-fracture’ [326–333]. Sev-
eral experimental strategies have been developed aimed
at mitigating its effects [326, 334–339].

From a theoretical viewpoint, an early insightful
work [340, 341] argued that edge fracture must be driven
by the second normal stress difference N2 in the fluid,
positing instability to arise above a critical magnitude
|N2(γ̇)| > σ/R, where σ is the surface tension of the
fluid-air interface and R a pre-assumed surface inden-
tation radius. Experimental work later confirmed this
important role of N2 in driving edge fracture [328, 341].

More recent theoretical studies have revisited this phe-
nomenon [342–345]. By means of linear stability analy-
sis, an updated criterion for the onset of edge fracture
was put forward (note that the notation has been ad-
justed slightly to be consistent with usage in this paper)
[342, 343],

1

2
∆τ

d|N2(γ̇)|
dγ̇

/
dτ

dγ̇
=

1

2
∆τ

d|N2|
dτ

>
2πσ

Ly
, (3)

where τ = τ(γ̇) is the shear stress in the fluid, ∆τ the
jump in shear stress between the fluid and outside air
(∆τ ≈ τ , given the low viscosity of air), and Ly the
gap size in the rheometer. This updated criterion was
shown to agree with the instability threshold found in
direct nonlinear simulations at low shear rates (which is
the regime in which it was developed) [342, 343].

In the limit of low shear rates, in fluids in which the
shear stress scales linearly with shear rate and N2 scales
quadratically, the criterion (3) predicts the same scaling
as that of the earlier Refs. [340, 341], if the pre-assumed
indentation radius in the earlier work is now instead iden-
tified as the rheometer gap size. It is however worth not-
ing that the updated criterion correctly predicts the pref-
actor and identifies the important role of shear stresses
in contributing to instability. Importantly, the new crite-
rion also departs markedly from the early ones in stronger
shear.
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The linear stability analysis of Refs. [342, 343] also elu-
cidated for the first time the basic physical mechanism
of edge fracture, which can be understood as follows.
Were the interface between the fluid and air to remain
flat, the jump in shear stress across it would be consis-
tent with force balance. It is helpful to recognize that,
with x as the flow direction, were the interface oriented
with its normal in the flow-gradient direction y, then the
shear stress τxy would have to be continuous across it.
However, this perturbed interface has its normal in the
vorticity direction (z) so the shear stress τxy can jump
across it. (This structure is actually the same as allow-
ing vorticity bands with layer normals in the vorticity
direction, with a jump in shear stress τxy between the
bands, which has been discussed in the literature [346].)
So imagine that a small disturbance from a planar state
now develops in the interfacial profile. This exposes the
jump in shear stress, potentially disturbing the force bal-
ance across the interface. To recover local equilibrium,
a perturbation is needed in the shear stress, and so in
the shear rate. This in turn perturbs the second normal
stress, which must be counterbalanced by a perturbation
to the extensional stresses in the vicinity of the interface.
The imbalance then requires a perturbation to the ve-
locity gradient and therefore velocity near the interface,
which can be shown to enhance the original interfacial
disturbance, giving the runaway positive feedback of the
edge fracture instability. The mechanism just described
resembles that of other interfacial instabilities between
layered viscoelastic fluids [347–349].

The work of Refs. [342, 343] also suggested a possible
route to mitigating edge fracture experimentally. In par-
ticular, the left-hand side of Eq. (3) contains the term
∆τ , which is the jump in shear stress between the fluid
and outside medium. By immersing the flow cell in an
immiscible Newtonian fluid with a viscosity more closely
matched to that of the original fluid, the jump ∆τ will
be reduced, thereby potentially mitigating the instability.
Another strategy could be to engineer a larger interfacial
tension σ, again by suitable choice of the (Newtonian)
bathing medium.

In addition, the interplay of edge fracture with the
bulk flow instability known as shear banding has been
considered [344, 345, 350]. These works show that mod-
est edge disturbances that constitute a precursor to edge
fracture can lead to a noticeable apparent shear banding
effect that can penetrate far into the bulk, for a fluid with
a relatively flat underlying constitutive relation of shear
stress as a function of shear rate [344]. Conversely, shear
banding can lead to edge fracture [350]. More generally,
a complicated interplay is expected to exist between the
two effects [345], potentially informing the long standing
debate concerning whether bulk shear banding occurs in
entangled polymers [330, 331, 351–355].

Notable challenges in understanding edge fracture re-
main. For example, the work of Refs. [342–345] con-
sidered only fluids with a negative second normal stress
difference; it would be interesting in future studies to

FIG. 24. Extensional necking. (a) Experiments of exponential
elongation of a filament of a viscoelastic fluid (0.31 wt % poly-
isobutylene in polybutene) [357]. Modified from [Sridhar],
with permission from Elsevier. (b) Numerical simulations of
the so-called pom-pom model for an imposed strain rate ε̇,
with the color scale indicative of the tensile stress [377]; see
figure 9 of the reference for the time of each image. Modified
from [377], with the permission of the Society of Rheology.

consider the case of a positive N2. Furthermore, these
works considered only fluids with a finite terminal relax-
ation time, λ, for which the shear stress τ ∼ γ̇λ and
second normal stress N2 ∼ −(γ̇λ)2 for low shear rates,
γ̇λ� 1. Future work should consider non-Brownian sus-
pensions [356], in which N2 scales linearly with shear
rate.

The criterion discussed above also assumes an underly-
ing base flow of steady shear, while edge fracture is widely
seen in transient rheological protocols, the modelling of
which would require a time-dependent underlying base
state. Finally, the phenomenon of wall slip arises widely
in strongly sheared entangled polymers, and is therefore
likely often to occur alongside edge fracture. The inter-
play of these two widely occurring phenomena remains
to be considered theoretically.

B. Extensional Necking in Entangled Polymeric
Fluids

Author: S. M. Fielding

Extensional flows provide a key benchmark for the de-
velopment of rheological constitutive models of highly en-
tangled polymeric fluids, with many nonlinear flow fea-
tures being apparent only in extension. A common ex-
perimental protocol consists of stretching out in length
an initially cylindrical filament of material in a filament
stretching rheometer, e.g., Fig. 24. Such experiments
can be performed by switching on a Hencky strain rate
ε̇, which is held constant thereafter; or a tensile stress
τE [359–362]; or a tensile force F (which provides a closer
model of some industrial processes, such as fibre spin-
ning [363, 364]). In many such experiments, the region
of the filament furthest from the sample ends will often
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thin more quickly than the sample as a whole, forming
a ‘necked’ region and finally even causing the filament
to fail [365–371]. This necking instability has been ob-
served at constant tensile stress [372], constant Hencky
strain rate [367, 373], and during the process of stress
relaxation after an initial Hencky strain ramp [374].

From a theoretical viewpoint, recently criteria for the
onset of necking have been developed [375–379], sepa-
rately for the flow protocols of constant imposed tensile
stress, tensile force, and Hencky strain rate, and con-
sidering necking during stress relaxation after an initial
extensional strain ramp. These criteria were initially de-
rived analytically within a constitutive model written in
a highly generalised form, then checked to indeed apply
in numerical calculations performed in several different
widely used polymer constitutive models [380] (the Ol-
droyd B, Giesekus, FENE-CR, Rolie-poly [381] and pom-
pom [382] models). The focus throughout these studies
was on the case of highly viscoelastic filaments of suffi-
cient radius that bulk stresses dominate surface tension.

For a filament subject at time t = 0 to the switch-on
of a constant tensile stress τE, the Hencky strain rate
ε̇ quickly attains its value prescribed by the underlying
steady state extensional constitutive curve before any ap-
preciable necking develops. The criterion for a neck sub-
sequently to develop was then found to be [378]

dτE
dε̇

> 0. (4)

This shows that, in fact, any highly viscoelastic material
with a positively sloping extensional constitutive relation
τE(ε̇) must ultimately be unstable to necking in filament
stretching.

For a filament subject instead to the switch-on of a con-
stant tensile force F , a filament was predicted to become
unstable to necking in any regime where the extensional
creep curve ε(t) simultaneously has positive slope and
positive curvature [378]:

d2ε

dt2
/
dε

dt
> 0. (5)

A filament subject to the switch-on of a constant
Hencky strain rate was shown to be unstable to necking
if the tensile stress response shows negative curvature as
a function of the accumulating Hencky strain [375],

d2τE
dε2

< 0. (6)

A full discussion of these criteria can be found in
Refs. [375–379]. They were derived within a so-called
‘slender filament’ approximation, in which the wave-
length of necking variations along the filament’s length is
assumed long compared with the filament radius. They
furthermore ignore any effects of the endplates, beyond
their role in seeding an initial heterogeneity in the way
that the filament starts to deform. In future work, it
would be interesting to perform fully 3D simulations in

microscopically motivated rheological models, move be-
yond the slender filament approximation, and incorpo-
rate endplate effects.

C. Instabilities in Polymeric Pinching

Author: J.G. Eggers

The breakup of a solution of high molecular weight,
elastic, polymers, driven by surface tension, is very dif-
ferent from its Newtonian counterpart, even at concen-
trations as low as 10 ppm in weight [383, 384]. Polymers
are stretched by the extensional flow leading to breakup
and resist it, resulting in a strong increase of the exten-
sional viscosity ηE (the extensional stress τzz−τrr divided
by the elongation rate ε̇). What would have been two or
a whole series of isolated drops in the Newtonian case,
are now connected by thin threads of highly stretched
material of almost uniform radius. This is known as the
“beads-on-a-string”, (BOAS) structure, characterized by
a strong buildup of stress inside the threads, the exten-
sional viscosity growing by several orders of magnitude in
the process. Since the capillary pressure inside a thread is
much higher than inside a drop, the thread empties into
the drop and thins further [385], limited by the buildup of
stress. In a regime where inertia is important, it is known
from the Newtonian case that so-called satellite drops of
smaller size are formed between two main drops [386].
The same is true in the elastic case, but with threads
connecting the main and satellite drops [387–389].

Taking into account stress relaxation, an analysis of
the Oldroyd-B viscoelastic equations [390] with a single
relaxation time λ shows that the thinning of the thread
(radius hthr) is exponential [391]:

hthr = h0e
−t/(3λ). (7)

Although even monodisperse polymer solutions are
known to exhibit a spectrum of relaxation times rather
than a single λ [392], (7) works remarkably well for a wide
range of flexible polymer systems, in both low- and high
viscosity solvents. The reason is that (7) is dominated
by the longest relaxation time [393], which can be esti-
mated as the Zimm time [394]. Good agreement between
λ found from fitting Eq. (7) to experimental data, and
the Zimm time is found for dilute solutions [394–396],
but the case of higher concentrations is often more com-
plicated. For example, [395, 397] found a strong (power-
law) dependence of λ on polymer concentration, with an
exponent that depends on the quality of the solvent.

In order to relate the prefactor h0 in (7) to the stress,
one needs to match the thread to the drop into which it
is emptying [398], as has recently been done on the ba-
sis of the full three-dimensional, axisymmetric Oldroyd-B
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equations [397, 399]. Thus one can determine the exten-
sional viscosity by measuring the thread radius alone,
knowing the surface tension σ:

ηE ≡
τzz − τrr

ε̇
=

3σλ

hthr
= − σ

ḣthr
. (8)

The remarkable feature of (8) is that it is independent of
the history of the filament (for example any pre-stretch),
or the geometry (a dripping geometry or a free jet). Of
course, this is true only in an asymptotic sense, such
that the regime of exponential thinning is long. However,
eventually the polymer reaches full stretch, and crosses
over to a faster thinning law, which is observed to be
linear instead of exponential, with ηE saturating at a
constant value [394, 400, 401].

The physical idea is that at full stretch of the polymer,
the viscosity can grow no longer, and the polymeric solu-
tion behaves once more like a Newtonian fluid, but with
an elevated value of the elongational viscosity. Indeed, a
theoretical analysis [402, 403] of the FENE-P model [390],
which incorporates finite extensibility, predicts an insta-
bility of the uniform thread, leading to localized pinch so-
lutions of the same self-similar form as for a Newtonian
thread [404], but with an effective viscosity that grows
linearly with the length of the polymer. By observing the
minimum radius of the localized pinch hmin(t), the exten-

sional viscosity can be inferred from ηE = −3ασ/ḣmin,
where α = 0.0709 for symmetric pinching (inertia sub-
dominant), and α = 0.0304 for asymmetric pinch solu-
tions (the asymptotic case for small hmin) [404].

The latter case predicts an extensional viscosity more
than a factor of 10 smaller than (8), which indeed is for a
uniform thread, which is at best an unstable solution once
finite extensibility comes into play. In order to interpret
thread radius data correctly, it therefore seems important
to monitor the radius of the thread in space, which can
no longer be assumed uniform. A theoretical analysis
of the crossover between a uniform thread and localized
pinching remains to be done.

However, as first reported in [405], uniform polymeric
threads are frequently subject to a more complicated,
delocalized instability, leading to the sudden growth of
many small droplets all along the thread. The instability
can proceed through several generations [405, 406], pro-
ducing drops of different sizes, but the initial instability
was observed to follow an exponential growth law [407],
indicative of a linear instability. While there is a super-
ficial resemblance to the original BOAS structure, the
physical process is the opposite: a localized relaxation
of stress, leading to droplets. To differentiate between
the two processes, ”blistering instability” has been pro-
posed as a name for the instability of a highly stretched
polymeric thread.

The blistering instability cannot be understood as
the linear (Rayleigh-Plateau) instability of a Newtonian
thread, but with an elevated elongational viscosity: the
growth rate is at least an order of magnitude faster than a
Newtonian instability would predict [407, 408]. Instead,

FIG. 25. The late stages of the blistering process of an aque-
ous 1000 ppm PEO solution [408]. The first image is at t =
250 ms after the formation of the cylindrical filament; subse-
quent images are taken every 30 ms. A thin fiber with the
small beads is drawn out of the large droplet (red box). The
width of the image is about 300 µm. Image is from R. Sattler,
S. Gier, J. Eggers, and C. Wagner, Phys. Fluids 24, 023101,
(2012); licensed under a Creative Commons Attribution (CC
BY) license.

[406] proposed an instability localized at the end of the
thread, resulting in a relaxation of stress, followed by
elastic recoil, and triggering the formation of a thinner
filament. While such localized instabilities have also been
seen by others [408], they are distinct from the linear in-
stability leading to quasi-simultaneous growth along the
entire thread.

To explain the observed linear instability, it has been
proposed [409] that the coupling between stress and the
local polymer density [410, 411] has to be taken into ac-
count. Density fluctuations are automatically part of the
description when deriving continuum models using ki-
netic theory [412], but are usually neglected in continuum
descriptions. The stress-density coupling results in a flow
of polymers toward regions of high stress (this is true in-
dependent of the flow type [410]), leading to further stress
relaxation in polymer-poor parts of the thread, driving
an instability. The idea of a non-uniform polymer den-
sity is consistent with the observation that for polymer
concentrations of above 1000 ppm, threads eventually so-
lidify and never break [407, 408, 413, 414].

Based on the linear stability analysis of a uniform
thread in the exponentially thinning regime (7) [409],
a transition is expected to take place when the thread
radius is smaller than the “blistering” radius

hbl ≈
√
Dλ, (9)

where D = kBT/(6πηsa) is the diffusion constant of
the polymer [392]. Here ηs is the solvent viscosity and

a ∝ M
1/2
w the polymer radius, so that D decreases

strongly with molecular weight Mw. The prediction (9)
has been confirmed experimentally in [396], varying D
and λ independently. This was achieved using two dif-
ferent polymers, whose relaxation times have a different
dependence on temperature.

It is however worth pointing out that as nonlinear
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effects become more important, and phase separation
progresses, the blistering dynamics can become remark-
ably complicated, as illustrated by the sequence shown in
Fig. 25. As the thread evolves, droplets of widely varying
size are created on the thread, in a manner that seems
difficult to predict. However, there are also some orga-
nizing features, like the sequence of smaller and smaller
drops highlighted in the red box, which a partially solid-
ified thread draws out of a drop. Relating such small-
scale features to a fundamental description of polymer
solutions appears to be a daunting yet worthy challenge!

VIII. FLOW INSTABILITIES IN
NON-POLYMERIC SYSTEMS

The previous sections focused on flow instabilities of
polymeric fluids (with a brief discussion of some instabil-
ities exhibited by viscoelastic wormlike micellar solutions
in §V A). In this section we discuss briefly some features
of the flow and instability of three other classes of materi-
als with complex rheological characteristics: yield stress
fluids, wormlike micelle solutions, and liquid crystals.

A. Yield Stress Fluids

Author: S. Hormozi

In many industrial and natural settings, we often deal
with yield stress fluids. Examples include natural muds,
cement pastes, injectable hydrogels, biological fluids, and
hygiene products. Yield stress fluids have a threshold in
stress, namely the yield stress, above which they flow like
a nonlinear viscous fluid. In the past, the main research
activities have been focused on yield stress fluids with in-
elastic properties (e.g., natural muds). Therefore, ideal
yield stress models or visco-plastic models, such as Bing-
ham and Herschel-Bulkley, have been used by researchers
to address flows involving a yield stress [415]. In the ideal
yield stress models the shear rate is set to zero when the
second invariant of the deviatoric stress tensor falls be-
low the yield stress. In these flow regions, the effective
viscosity becomes infinite, the material is unyielded, and
the state of stress is undetermined. We refer the reader
to the recent book edited by Ovarlez and Hormozi [416],
which includes several lectures on theoretical, computa-
tional, and experimental approaches in visco-plastic fluid
mechanics.

However, recent experimental studies show that even
a slight elasticity in polymer-based yield stress test fluids
has an essential role in the flow dynamics. For example,
in the absence of inertia, the loss of the fore-aft symmetry
and the formation of the negative wake are observed when
a sphere settles in a yield stress fluid (see e.g., [417, 418]).

Also, Firouznia et al. showed an asymmetric disturbance
velocity field around a neutrally buoyant sphere in Car-
bopol gels (i.e., an accepted model yield stress test fluid)
subjected to linear shear flows. Additionally, the authors
showed that the trajectories of two spheres are asymmet-
ric in the absence of contact [419]. None of the aforemen-
tioned observations can be explained via ideal yield stress
models that produce symmetric flow solutions. However,
the loss of symmetry and reversibility can be explained
by including viscoelastic effects in modelling flows of yield
stress fluids around obstacles [420, 421]. In addition, ap-
plications in industry frequently utilize yield stress flu-
ids for rheological innovation, e.g., designing injectable
hydrogels and engineering inks for additive manufactur-
ing, which are advantaged as these materials are self-
supporting and hence preserve their shape. These new
polymer-based gels have substantial elasticity as well as
yield stress.

It is only relatively recently that soft matter scientists
have begun to incorporate elastic effects into constitutive
equations for yield stress fluids. For example, Saramito
proposed a constitutive law in which the material be-
haves as a nonlinear viscoelastic fluid above the yield
stress and as a nonlinear viscoelastic solid below the yield
stress [422]. Modeling practical yield stress fluids via this
constitutive description results in an unrealistic zero loss
modulus below the yield stress since an ideal Hookean
solid remains in-phase with the imposed strain. This is-
sue has been resolved in recent models where McKinley
and co-workers have developed a class of elastoviscoplas-
tic constitutive models adapted from ideas in the nonlin-
ear plasticity literature, collectively known as isotropic
and kinematic hardening (IKH) [423, 424]. The evolution
of the yield stress is captured through an internal tenso-
rial back stress, which describes the residual stresses that
develop in the microstructure as it is deformed elasto-
plastically prior to yield. This framework results in a set
of Oldroyd-type evolution equations that contain up to
nine material constants, which can be determined using
a sequence of steady and time-varying viscometric flows.
The aforementioned constitutive laws can be used in nu-
merical simulations to predict non-viscometric flow fields.
The comparison of the results with experimental obser-
vations then provides a basis for further improvement of
such constitutive laws.

To our the best of our knowledge, the stability analy-
sis of elastoviscoplastic fluids has not yet been performed.
As far as the yield stress property is concerned, the first
study of the hydrodynamic stability of a Bingham fluid
came more than a century after the Newtonian equiva-
lent, and even plane channel flow was studied only re-
cently [425]. The primary assumption in these efforts
is that yielded surfaces remain invariant as instabilities
develop, which is an approximation that leads to mathe-
matical anomalies [426]. There is a dearth of literature in
this area, with only a few weakly nonlinear and nonlinear
(energy) stability results [427–430]. The difficulty arises
because, for yield stress fluids, the nonlinearity of the
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problem is not only in the inertial terms, if the Reynolds
number is finite, but also in the shear stress/shear rate
relationship and in the existence of unyielded regions,
which are defined in a non-local fashion even for simple
flows. Therefore, the gap between linear and nonlinear
theories is much broader and more complex than with
Newtonian fluids. Therefore, it is essential to study how
the knowledge of the stability of the ideal yield stress
models can be extended to practical elastoviscoplastic
fluids. To further our ability to design, predict, and opti-
mize flows of elastoviscoplastic fluids, we must first build
new scientific knowledge regarding the behavior of these
fluids.

B. Wormlike Micellar Solutions

Author: J. Esteban López-Aguilar

Wormlike micellar solutions (WLMs) are materials of
wide use in industrial and technological applications due
to their versatile rheological properties, i.e., they are
thixotropic, shear-thinning, strain hardening, and soft-
ening viscoelastic fluids, capable of displaying shear-
banding and plasticity [431–434]. WLMs are utilized
in home-care and health-care products, such as sham-
poos, soaps, detergents, pharmaceuticals, and biocom-
patible drug-delivery systems; in the oil-industry, WLMs
are used as drilling and reservoir stimulation fluids, drag-
reducing agents in pipelines and lubricants, and emulsi-
fiers, among other numerous uses [431–433]. The rheolog-
ical properties and applications of WLMs are promoted
by their time-dependent internal structure, which may
be broken-down and rebuilt under deformation. Accord-
ingly, WLMs are also referred to as ‘living polymers,’
since they can relieve stress, in addition to undergoing
reptation, with a mechanism of dynamic construction-
destruction of their internal structure [433, 435]. Indeed,
wormlike micellar fluids appear as one example of soft
matter that intimately links the internal structure of the
fluid with its macroscopic response [435].

Instabilities in wormlike micelles. These complex
fluids display a large variety of instabilities ranging
from classical flow segregation in the form of shear
banding in simple shear flow [434] to complex spatio-
temporal instabilities accompanying complex deforma-
tions [431, 435]. Here, the interplay between viscoelastic-
ity (common with polymeric systems) and the complex
internal-structure dynamics triggers fascinating macro-
scopic responses when using typical surfactants, e.g.,
cetyltrimethylammonium bromide (CTAB), cetylpyri-
dinium chloride (CPyCl), cetyltrimethylammonium to-
sylate (CTAT), combined with salts, such as sodium sal-
icylate (NaSal) or sodium chloride (NaCl), in water [431–
435].

The following benchmark non-Newtonian fluid me-
chanics flows have been studied experimentally and the-
oretically for WLM solutions:

(i) Sphere sedimentation. Experimental studies of the
sedimentation of smooth spheres in WLM solutions re-
port a common phenomenology of sphere oscillations be-
yond a critical speed threshold and strong negative wakes
behind the sphere [206, 207]. Such observations have
been attributed to complex dynamics in the construction
and destruction of the fluid’s internal structure and its
viscoelasticity, measured through an extensionally-based
Deborah number, which permits consistent steady-to-
unsteady flow classification [209, 436–441]. These fea-
tures have been little explored computationally, with
the first studies provided by Sasmal [442], using the
Vasquez-Cook-McKinley (VCM) [443–446] and Giesekus
models, and by López-Aguilar et al. for the BMP+ τp
model [447].

(ii) Flow past a cylinder. This benchmark flow has at-
tracted attention in single and multiple-unit arrays, in
which transitions occur from liquid-like symmetric flow
regimes at relatively low flow rates or cylinder veloci-
ties up to gel-like tearing responses, which have been ob-
served experimentally by Gladden and Belmonte [448].
Moss and Rothstein [449] performed experiments keep-
ing the cylinder fixed in a channel and the WLM so-
lutions flowing around it with pressure-drop measure-
ments revealing three distinct phases: (a) at low Deb-
orah numbers, a constant normalized pressure-drop is
recognised; (b) at intermediate Deborah numbers, shear
thinning provokes a reduction in pressure drop driven by
the WLM solution’s shear-thinning response; and (c) an
elastic instability is observed in the wake of the cylinder,
promoted by the extensional features of the micellar solu-
tions. As discussed in §V A, for geometries at the micro-
scale, the studies of Haward and co-workers [450, 451]
recorded different instabilities with an increase in Wi,
where (a) symmetric flow fields occur at relatively small
Wi, whilst (b) an increase in flow rate to moderate lev-
els triggers an asymmetric flow regime in which the fluid
takes a preferential path around the cylinder, to finally
(c) development of a time-dependent flow at larger flow
rates. Numerically, some features of these elastic insta-
bilities have been captured using the VCM model [452].

(iii) Contraction-expansion geometries. Different con-
traction and contraction-expansion flow settings have
been studied experimentally for planar and axisymmetric
geometries with sharp and round corners, and for hy-
perbolic profiles [453–456]. In a circular sharp-corner
contraction flow of tube-to-capillary aspect ratio 10.7-
to-1, Hashimoto et al. [453] identified four different flow
regimes with (i) a Newtonian-like response appearing as
symmetrical salient-corner vortices, (ii) a steady vortex
regime, in which growth and strengthening of such vor-
tices occurred, (iii) a periodic oscillatory flow, in which
time-dependence of size and strength of the vortices was
recorded, and (iv) an unstable flow, where a chaotic re-
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FIG. 26. Dimensionless fluidity and first normal-stress difference N1 in flow past a sphere (sphere-to-tube aspect ratio 1:2) of
a WLM solution; solvent-fraction β = 5 × 10−3 and moderate hardening features, Wi=10; see López-Aguilar et al. [447] for
further details of the rheology used.

sponse was obtained; for the two last phases, a turbid
appearance of the fluid was observed. For a planar con-
figuration of a contraction slit channel, a detailed flow-
structure study based on Small Angle Neutron Scattering
(SANS), particle image velocimetry (PIV) and birefrin-
gence visualisation provided by Lutz-Bueno et al. [454]
revealed a complex interaction between micellar struc-
ture and deformation in the flow field, with development
of various vortex-formation phases that evolved depend-
ing on the solute concentration and the solution rheologi-
cal properties. More recently, Salipante et al. [455] stud-
ied the WLM flow structure in hyperbolic contraction-
expansion geometries of aspect ratio 3.7-to-1 and 8.5-to-
1 and reported an instability from steady to unsteady
flow beyond critical flow rates in the form of fluctuations
of pressure drop linked to jetting flow-rate jumps that
happened at similar dimensionless extension-rate condi-
tions across experiments, and for which the characteristic
scale is given by the micelle relaxation time. Matos et
al. [456] used a micro-scale configuration with a planar
sharp-corner and tapered contraction-expansion settings
to study the flow of typical WLM solutions under aspect
ratios of 2:1:2, 4:1:4 and 8:1:8. Their findings reveal flows
that evolve from (a) symmetric steady behaviour at low
flow rates, followed by (b) asymmetry about the contrac-
tion plane at intermediate shear rates, and (c) unstable
time-dependent response with further flow rate increases.

In computations, the variety of settings is also wide.
For example, the work by Sasmal [457] uses the VCM
model to simulate the response of WLM solutions in
expansion-contraction configuration, perhaps representa-
tive of a porous medium. Taking the Bautista-Manero

family of fluids as a base, a series of simulation ex-
ercises by López-Aguilar and collaborators [447, 458–
463] proposed modifications of a group of constitutive
equations to predict the response of WLMs in differ-
ent contraction-expansion settings. Here, axisymmetric
rounded and sharp-cornered and hyperbolic geometries
under the benchmark 4:1 and a more stringent 10:1 as-
pect ratio have been studied. In line with experimental
findings, a complex kinematic evolution is recorded, with
(a) a Newtonian-like symmetric salient-corner vortex re-
sponse at small flow rates that evolves into (b) coexis-
tence of lip-to-salient-corner vortices at intermediate flow
rates, to finally reach (c) an elastic-corner vortex phase
at large flow rates, driven by a competition between vis-
coelasticity and thixotropy. Such vortex phasing corre-
lates with normal-stress fields in the recess zones and, for
highly concentrated WLM solutions, where a yield stress
may be displayed by the WLMs, asymmetric yield fronts
are predicted.

(iv) Flow through cross-slot geometries. Building on
earlier work [464], studies from Shen, Haward and col-
leagues [465, 466] in microfluidic cross-slots display a
extensionally dominated deformation that provokes an
intricate relationship between the flow field and WLM
rheology, reporting flow transitions with increases in
flow rate: the first transition happens from a symmet-
ric stable to an asymmetric flow, with strong alignment
of the micelles along the shear-free line in the geome-
try; the second flow transition appears at higher flow
rates and is characterised by a three-dimensional time-
dependent response. Numerical predictions using the
VCM model have been put forward recently by Kalb et
al. [467, 468], which capture qualitatively the main fea-
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tures and flow phases observed experimentally, such as
asymmetry about the stagnation point and the forma-
tion of lip vortices at the walls of the inlet arms.

(v) Extensional deformation under Filament Stretch-
ing Extensional (FiSER) and Capillary Break-Up Exten-
sional Rheometers (CaBER). The extensional response
of WLM solutions has been extensively studied [469–
475]. For example, Rothstein and co-workers recorded
the evolution of the filament in both FiSER and CaBER
configurations, and found that the filament rupture ap-
peared related to a micellar-scission process, in contrast
to the elasto-capillary thinning observed in polymer so-
lutions [469, 470, 475]. Yesilata et al. [471] studied
the WLM response in shear and extensional CaBER de-
formations, for which they found a highly non-linear re-
sponse of such materials in extension (with Trouton ra-
tios increasing up to two orders-of-magnitude) and re-
vealed relaxation times in extension smaller than those
in their shear tests; the results were confirmed recently
by Omidvar et al. [474]. In subsequent work, Kim et
al. [472] used a CaBER apparatus to evaluate the ef-
fect of the end-plate diameter and concluded that this
configuration is appropriate to measure the fluid’s relax-
ation time and transient extensional viscosity. More re-
cently, Sachsenheimer et al. [473] performed CaBER ex-
periments on typical WLM fluids and found the forma-
tion of extension-induced structures that correlate with
the linear or branched structure of the wormlike micelles.
Computational modelling by Cromer et al. [476] using the
VCM model confirmed the experimental observations of
the fast rupture of the WLM filaments as being related
to a scission mechanism of entangled micelles.

(vii) Shear banding. Shear banding is an important in-
stability observed in concentrated WLM solutions under
simple shear flow. Typically, two or more bands with dif-
ferent viscosity coexist for a fixed shear rate. A second
modality of such a flow-segregation phenomenon, iden-
tified as vorticity banding, occurs when the sample is
subjected to a given shear rate and arranges itself spon-
taneously into bands with different stress in the vorticity
direction [434, 478]. Due to the growing interest on shear
banding in the 1990s, wormlike micellar flows started
to be scrutinized with an increasing degree of precision.
This led to the discovery of unexpectedly large fluctua-
tions, in particular of the stress at an imposed shear rate
within the banding plateaued-regime. These fluctuations
were first interpreted as the result of an instability of the
banded state due to coupling with structural variables.
Basically, the fluctuations were thought to be connected
with changes in the microstructure of the fluids.

A different, more hydrodynamic, perspective eventu-
ally emerged, interpreting the fluctuations as the result
of flow instabilities [435]. At first, the hydrodynamic per-
spective focused on instabilities due to jumps in normal-
stress differences (N1 or N2) at the interface between the
bands [479]. The instability mechanisms due to jumps
in normal stresses are analogous to the elastic version of
the Kelvin-Helmoltz instability [345]. Using a novel vi-

sualization technique, Lerouge et al. [480] showed that
the interface between the bands of a wormlike micellar
solution exhibited clear undulations, displaying different
spatio-temporal dynamics. The hypothesis that these un-
dulations could be the result of an underlying vortex flow
was first formulated by Lerouge and co-workers [481],
whilst the presence of a vortex flow in the high shear-
rate band was demonstrated in [482]. The existence of a
turbulent state analogous to elastic turbulence was found
shortly after [483].

In theory, the vortex flow could be due to a Taylor-like
bulk elastic instability of the high shear rate (induced)
band, or to a Kelvin-Helmoltz-like instability of the in-
terface between bands. Fielding [484] and Nicolas and
Morozov [485] showed that the bulk mode dominates ex-
cept for very thin bands, where the effective curvature is
too small to produce a Pakdel-McKinley-type instability.
By taking this point into consideration and realizing that
the interface between bands can act as a soft boundary,
it was shown that shear-banding flows could follow three
instability scenarios according to the Pakdel-McKinley
criterion, as demonstrated theoretically in [486] and ex-
perimentally in [487]. The experimental studies cited
above showed that elastic instabilities could be at play
for shear banding of semi-dilute solutions of wormlike
micelles. Finally, it was shown that elastic instabilities
could also be present for dilute shear-thickening solu-
tions [488], non-shear-banding semi-dilute solutions [489]
and concentrated shear-banding solutions [490].

Constitutive models for wormlike micelles. There are
two main streams of constitutive modelling for WLM rhe-
ology, i.e., models based on a microstructural description
of the dynamic construction-destruction of micelles, and
the other based on a evolution of a structural parame-
ter. In the first classification, one of the first modelling
paradigms stands on the grounds of chemical-like inter-
actions between micelles put forward by Cates and co-
workers [491]. Another approach based upon the mi-
crostructural evolution is the VCM model, proposed by
Vázquez et al. [443–446], which uses a two-species mech-
anism intended to describe the rheology of concentrated
solutions and successfully predicts key shear and exten-
sional features of such complex fluids in steady and tran-
sient flows. More recently, the reactive-rod model (RRM)
of Graham and collaborators [492, 493] was proposed to
model the rheological response of dilute WLMs based
on a construction-destruction mechanism given by sus-
pended rigid Brownian rods that link across alignment
undergoing reversible scission and growth.

On the side of structure-parameter-based models,
the Bautista-Manero-Puig (BMP) family of fluids,
whose novel BMP+ τp model-variant was proposed re-
cently [447], brings in the interaction of the wormlike
micellar network dynamics in a viscoelastic framework.
The BMP+ τp model is embodied in a generalized dif-
ferential equation of the Oldroyd-B type in stress-split
form that feeds the thixotropic internal structure into
the polymeric viscosity ηp via an evolution equation for
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a dimensionless fluidity f =
ηp0
ηp

; here, ηp0 represents the

polymeric first Newtonian-plateau level. Such a struc-
ture equation considers rates of internal-structure con-
struction and destruction of wormlike micelles involving
viscoelasticity in such dynamics, where destruction of
structure is promoted by the energy dissipated by the
solute in flow. This constitutive equation reflects a rheo-
logical response of shear-thinning, finite strain hardening
and softening, alongside a non-linear first normal-stress
difference in shear [447], which are all common features
of WLM systems [431–433].

In addition, the BMP+ τp model predicts flow seg-
regation, such as shear banding and an apparent yield
stress [447, 494]. Such flow-segregation features, i.e.,
shear banding, are imbued in the BMP family of fluids
in the form of a deformation-rate-dependent structure-
destruction coefficient that, in simple shear flow, has a
non-monotonic flow curve [494–496]. Here, the shear-
banding instability has been studied in ideal simple shear
flow [495, 496], and in complex contraction-expansion
flow [494], being this the first instance of a complex flow
where shear-banding has been studied. Such efforts in
modelling shear banding were followed by Germann and
co-workers for flow in a tube [497] and in complex flow for
planar contraction flow [498] with WLMs characterised
under the VCM paradigm. In addition, shear-banding
has been modelled through different mechanisms, as in
the diffusive Johnson-Segalman model [499], with its
stress-diffusion extra term, and the Giesekus model, with
its ability to trigger banding through its anisotropy pa-
rameter [500]. To motivate banded flow regimes, the
Germann-Cook-Beris (GCB) model proposes a structure
breakage rate depending explicitly on the trace of the
conformation tensor [501, 502], whilst the soft glassy rhe-
ology (SGR) model has been proposed to model shear
banding under LAOS [503, 504].

In the workshop, López-Aguilar presented numerical
solutions of complex flows of WLMs in an axisymmet-
ric contraction-expansion flow and flow past a sphere,
produced with an in-house hybrid finite-element/volume
algorithm ([447] and references therein). Particular at-
tention was paid to the flow structure and its correla-
tion with the rheological properties of WLMs charac-
terized by the BMP+ τp model [447]. In an axisym-
metric abrupt 10:1 contraction-expansion setting, dis-
tinct flow transitions are observed for WLMs (study-
ing extension-hardening and solute-concentration varia-
tions [447]). Strong correlation is recorded between vor-
tex evolution and the normal-stress distribution in the
recess zones. Here, for solutions with solvent fraction
β ≤ 1/9 and high flow rates, strong-hardening WLM
flow-structures evolve to have upstream elastic-corner
vortex phases, which is a step before there is strong time-
dependence of the numerical solutions with further in-
crease of the flow rate (see [505] and references therein).
In contrast, for dilute solutions, upstream lip vortices are
captured at intermediate deformation rates.

For flow past a sphere, the BMP+ τp dimensionless flu-

idity f is used to analyse the internal structural changes
that suffered by extremely concentrated WLMs in the
wake of a sphere. In the 3D plots of Figure 26, for
β = 5× 10−3, moderate hardening features and Wi=10,
coinciding maxima are captured in N1 and f , and are
located on the symmetry line downstream of the sphere.
In the companion 2D representation, a highly unstruc-
tured fluid (red fringe level of high f values) is recorded
on the sphere wall, reflecting a shear-thinned material
with relatively small N1 values. Such a red fringe of
fluid connects to the centreline downstream of the sphere,
where extensional deformation prevails and the fluid de-
velops a N1-hardening peak. This N1 peak coincides
in location with a fluidity maximum, which, under ex-
tensional deformation and the BMP+ τp formalism, re-
flects an evolution in the increase of Wi that follows the
strain-hardening/softening of extensional viscosity [447].
Such a complex interplay between the change in a lo-
calized material property and mixed deformations may
take a role in further understanding the instabilities ob-
served experimentally when a sphere settles in WLMs
[206, 207, 209, 431, 436–441] and polymer solutions [506].

C. Liquid Crystals

Author: I. Bischofberger

Nematic liquid crystals are a class of fluids with intrin-
sic orientational order. In equilibrium, nematics tend to
uniformly align their anisotropic constituents as a means
to minimize energy, which annihilates topological defects.
When driven away from equilibrium by an externally ap-
plied flow, the continual injection of energy can destabi-
lize the defect-free alignment. The primary control pa-
rameter for the effect of shear on the orientation of the
director field is the Ericksen number Er = ηγ̇L2

K , which
denotes the ratio between the viscous torques and the
elastic ones. Here, η is the dynamic viscosity, γ̇ the shear
rate, L the typical scale of deformation (often the thick-
ness of the liquid crystal layer), and K the Frank elastic
constant. The condition Er ≈ 1 is typically reached
for corresponding Reynolds numbers of order 10−6; thus,
hydrodynamic instabilities in the usual inertially-driven
sense are not expected to take place in nematic liq-
uid crystals. However, the emergence of shear-induced
structures has attracted significant attention in studies
of nematic thermotropic liquid crystals and liquid crys-
tal polymers [8, 507–510], and was therefore a topic of
discussion at the workshop.

Most nematic thermotropic liquid crystals are shear-
aligned nematics, in which the director evolves towards
an equilibrium polar angle. The shear-alignment in the
bulk flow leads to an irreconcilable alignment of the direc-
tors with those in the surface-anchored region. The high
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elastic stresses of the director gradient at the boundary
between the two regions are released through the forma-
tion of defects beyond a critical Ericksen number. Liq-
uid crystal polymers, by contrast, are typically tumbling
nematics characterized by a nonzero viscous torque for
any orientation of the director. Their tumbling charac-
teristics facilitate the nucleation of singular topological
defects. Recently, topological structures and their dy-
namics have been described in three-dimensional active
nematics, where disclination loops undergoing complex
dynamics and recombination events are identified as the
primary unstable structure [511].

The flow behavior of lyotropic chromonic liquid crys-
tals has so far remained largely unstudied. Lyotropic
chromonic liquid crystals (LCLCs) are aqueous disper-
sions of organic, disk-like molecules that self-assemble
into cylindrical aggregates, which form nematic and
columnar phases beyond a certain concentration [512].
Due to their bio-compatibility, they have opened paths
for controlling assembly and dynamics of biological sys-
tems when used as a replacement for isotropic fluids in
microfluidic devices [513, 514]. At rest, LCLCs exhibit
unique properties distinct from those of thermotropic liq-
uid crystals and liquid crystal polymers. In particular,
LCLCs have significant elastic anisotropy and their twist
elastic constant, K2, is much smaller than the bend and
splay elastic constants, K1 and K3 [515]. The resulting
relative ease with which twist deformations occur can
lead to a spontaneous symmetry breaking and the emer-
gence of chiral structures in static LCLCs under spatial
confinement, despite the achiral nature of the molecules
[516, 517].

A recent study by Baza et al. has revealed a variety of
complex textures that emerge in Couette flow in the ne-
matic LCLC disodium cromoglycate (DSCG) [518]. The
liquid crystal tends to tumble, which leads to a high sensi-
tivity to shear rate; with increasing shear rate the materi-
als transitions from a log-rolling state, where the director
realigns perpendicular to the flow direction, to polydo-
main textures and finally to periodic stripes in which the
director is predominantly along the flow direction.

For pressure-driven flow of nematic DSCG, during the
workshop Bischofberger discussed the emergence of pure-
twist disclination loops for a certain range of shear rates,
which form as a consequence of the smallness of the twist
elastic constant K2. Their characteristic size is governed
by the balance between the nucleation force and the anni-
hilation force acting on the loop [519]. Remarkably, chiral
domains spontaneously form at lower shear rates, sug-
gesting that not only topological confinement, but also
weak shear can induce chiral structuring in achiral ma-
terials. These observations hint towards the wealth of
phenomena that are still awaiting to be discovered in
flows of lyotropic chromonic liquid crystals.

IX. OUTLOOK AND OPEN QUESTIONS

With contributions from all authors

A reader who has even read only one or two sections
of this wide-ranging perspective will note that, in spite
of substantial progress in the field over the past thirty
years, including advances in experimental measurements,
theory, and detailed numerical simulations by computa-
tional rheologists, where each brings their own insights,
there remain important areas where the integration of
ideas is needed and new discoveries remain to be made.
This is true for the flow transition that occurs in chan-
nel and pipe flows of polymeric fluids (§IV, §VI) and
worm-like micelle solutions (§VIII). It is also the case
for more complex configurations, such as the cross-slot
geometry [52, 53, 90, 226]), where shear-thinning appar-
ently triggers flow asymmetries so that the initial onset
of instability gives rise to regions in the flow field with
disparate shear rates. Similar issues are at the heart of
unstable flows at the pore scale for a wide range of het-
erogeneous and porous media; recent experimental devel-
opments seeking to provide in situ access to these flows
are mentioned in §V. Not surprisingly, observations of
other microstructurally complex fluids §VIII, such as ly-
otropic chromonic liquid crystals, or free-surface flows of
complex fluids that are impacted by surface tension §VII,
hint at a wealth of discoveries that are yet to be made.

Models of viscoelastic flows. Throughout the work-
shop there was discussion surrounding the fact that elas-
tic instabilities are typically discovered at “high Weis-
senberg number” in polymer solutions – where the verac-
ity of constitutive equations at the requisite shear rates
always comes into serious question. Indeed, when model-
ing highly elastic viscoelastic flows, the Oldroyd-B model
is almost never quantitative at high Weissenberg number
either in shear flows or extensional flows of polymer so-
lutions. This can also be said of nonlinear extensions of
this model, including the FENE models as well as the
Giesekus and PTT (see §III). In particular, detailed
molecular studies have demonstrated that internal de-
grees of freedom cannot be neglected in these flows if one
wants to capture the extra polymer stress. Thus, progress
in understanding elastic instabilities must almost, by the
definition of the phenomena, be made hand-in-hand with
advancements in the rheological modelling of elastic flu-
ids.

Spectral properties of elastic turbulence. There was also
significant discussion surrounding the fact that the eigen-
spectrum of elastic two-dimensional Taylor-Couette flow
was essentially unstudied. Many of the attendees thought
that such a study deserved attention in an effort to fur-
ther understand the work described in §IV, especially
since the beginnings of instability at values of Wi ∼ 10,
albeit at large gap ratio, had been found.
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Importance of a Lagrangian perspective. Remarkably,
shear plays an important role in all detailed mechanisms
worked out for purely elastic instabilities so far. This is
despite the fact that purely elongational flows can have
a dramatic effect on single molecules, with a strong de-
pendence on individual histories, as exemplified by the
coil-stretch transition of a single polymer, which can be
sharp and hysteretic. Moreover, typically a dependence
on the history does not play any role in the currently
understood instability mechanisms, as most of the flows
considered have been viscometric, e.g., the flows have
been such that each infinitesimal fluid element sees effec-
tively a steady shear; the extensional necking described
in § VII B is an example of other possibilities that exist.

Consequently, the history of the flow and stress expe-
rienced by a fluid element should enter considerations for
flows that are Lagrangian unsteady; see e.g., Ref. [521]
for a description of 3D particle tracking experiments ex-
ploring elastic turbulence from such a Lagrangian per-
spective.. In particular, even the notion of extension- or
shear-dominated flow may depend on Lagrangian proper-
ties such as the residence time of fluid elements. Beyond
classification, it would be interesting to see if new, purely
Lagrangian, instability mechanisms could be found, e.g.,
using insights from bead-spring models to inform the ex-
pected stresses and the coupling to the base flow. A
Lagrangian perspective might be useful also at the next
level of complexity, when conceptually the flow is made
up of many coupled flow units, e.g., see §V on flows in
different porous systems. Indeed, stress correlations over
the path of a fluid element can play a nontrivial role in
coupling the flow units and determining the overall sta-
bility of the flow, which largely remain to be understood.

Another perspective on elastic waves. Because the
topic of elastic waves was actively discussed at the work-
shop, here we include another perspective put forward
by V. Steinberg. Three main features characterize the
elastic waves observed by Varshney and Steinberg [83],
as described by the group of Steinberg: (i) The waves
are transverse and manifest as a peak in the power spec-
trum of span-wise velocity fluctuations; (ii) The veloc-
ity of wave propagation depends on (Wi −Wic)

β with
β = 0.73; (iii) The measured wave dispersion relation
is linear [200]. Given these three features, and given the
apparent agreement with the predictions of [520], the au-
thors propose that such waves are indeed elastic waves.
Moreover, they note that they observed these waves ex-
clusively in random flows: either in chaotic flows above
the non-normal mode bifurcation and further in ET in a
straight channel with and without strong perturbations
[198, 200, 201] or only above the transition to ET in
a flow past an obstacle or between two obstacles hin-
dering a channel flow [83, 522]. In addition, the elastic
waves were not found in flow geometries with curvilinear
streamlines including ET.

Because of these apparent similarities as the elastic
waves predicted in [520], the authors use the expression
for the wave velocity c2el = τ/ρ to estimate an elastic

stress, τ , which depends on the flow, in the direction of
wave propagation. In the experiments of [83], cel var-
ied from 2 to 17 mm/s, yielding an estimate for τ rang-
ing from ∼ 5 × 10−3 to 0.375 Pa, and a corresponding
Mach number Ma = u/cel of the order 0.3 < 1. In a
later paper [198], the Steinberg group reported reaching
cel ≈ 45 mm/s corresponding to τ ≈ 10 Pa, whereas in
[200], much smaller wave velocities close to the onset were
measured from 0.05 to 0.2 mm/s corresponding to τ be-
tween 3×10−6 and 5×10−5 Pa. Thus, summarizing these
experiments, the range of the elastic stress derived from
cel is ∼ 3×10−6 up to 10 Pa — considerably smaller than
the values noted in §II C, where the shear wave speed is
tied to a flow-independent material property. Clarifying
the underlying physics will be an important direction for
future research.

Open questions regarding EIT. Substantial progress
has been made, both experimentally and computation-
ally, in understanding the nature of the turbulent drag
reduction phenomenon, and more broadly in nonlinear
viscoelastic dynamics in straight pipes and channels. The
mechanism by which viscoelasticity suppresses near-wall
coherent structure are understood, and the discovery of
elastoinertial turbulence helps explain why flows remain
turbulent even when the Newtonian near-wall structures
are strongly suppressed. Many questions about EIT re-
main, however. In channel flow, it is directly connected
to the Tollmien-Schlichting instability mode and corre-
sponding near-wall critical layer, and is known to sub-
critically excite this mode, driving flow away from the
laminar state even when that state is linearly stable. A
simple mechanistic explanation of this viscoelastic exci-
tation of the TS mode does not yet exist. Simulations re-
veal similar near-wall critical layer fluctuations in plane
Couette and pipe flows, even though they do not display
a linear instability of Tollmien-Schlichting type – per-
haps, in analogy to channel flow, wall modes are highly
susceptible to amplification, driving bypass transition.

Additionally, a new mode of linear instability, with a
critical layer near the centerline, arises in both pipe and
channel flows. This mode also appears to be strongly sub-
critical, leading to flows with substantial polymer stretch
fluctuations near the centerline. This may be the dom-
inant mode at low Reynolds numbers and high Weis-
senberg numbers, helping explain experimental observa-
tions in this regime.

In addition, the maximum drag reduction asymptote
may be a marginal flow regime in which Newtonian and
elastoinertial flow structures coexist, perhaps in an inter-
mittent fashion. These issues are ripe for future study.

Controlling and using flow instabilities. Finally, an
interesting research direction for the future will be to
connect this emerging understanding of the physics un-
derlying elastic instabilities and turbulence to applica-
tions of viscoelastic fluids. For example, one of the most
fundamental descriptors of such flows in applications is
the relationship between the overall pressure drop and
the volumetric flow rate, often described using an “ap-
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parent viscosity” ηapp that quantifies macroscopic flow
resistance; however, prediction and control of this quan-
tity remains challenging, despite its central importance
in applications. Recent work has made progress in doing
so for flows in porous media [263], and further research
along these lines will be important in the rational appli-
cation of viscoelastic flows in diverse settings.

Another important direction for future work will be in
exploring ways to control elastic instabilities and turbu-
lence as well as engineer spatio-temporal flow patterns in
viscoelastic fluids. So far, mostly geometric control has
been employed such as the flow between two cylinders
[214], in a cross-slot geometry [160], in disordered obsta-
cle arrays [161], or in designed porous media [65, 263].
An attractive alternative is to employ time-dependent or
modulated shear rates for active open-loop control of vis-
coelastic fluid flow. As demonstrated in Ref. [162], this
allows tuning or control of the occurrence of elastic tur-
bulence and therefore, for example, the mixing of com-
plex fluids. Exploring this and other approaches (e.g.,
employing deformable structures [523]) will be a useful
direction for future work.

In terms of direct applications of elastic turbulence, a
number of different research groups have shown that, in
addition to enhancing passive scaling mixing as was orig-
inally demonstrated in the earlier works of Steinberg and
collaborators [49, 96, 524, 525], these kinds of viscoelastic
chaotic flows can also be used to effectively enhance heat
transfer at low Reynolds numbers both in macro-sized
“von Karman flow” [526] and also at the microscale in
serpentine and wavy channel geometries [527–529]. Fi-
nally, elastic turbulence has been used to create emul-
sions from immiscible viscous liquids in a simple shear
mixing device [530]. In the absence of elasticity, but at
identical viscosity ratio, Reynolds and capillary numbers,
no mixing was observed and the immiscible liquids re-
main separated. Elastic turbulence thus offers a unique
pathway to create dispersions in viscous liquids at low
Reynolds numbers in nominally shear-dominated flows.
Further studies of these phenomena, and other potential
applications, would be a fruitful avenue for additional
research.

In conclusion. Any reader that has gotten this far
will hopefully agree that the subject is fascinating, both
from the standpoint of fundamentals, but also because
the materials that make up the complex fluids field find
a wide range of applications. Thus, we hope this article
serves future researchers as a basis for next steps in
advancing research and understanding of the flows and
instabilities of complex fluids.
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