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Abstract: 

This study investigates the acoustic streaming phenomena in a standing surface acoustic wave 

(SAW) driven microfluidic channel filled with second-order fluids. We have developed a 

multiple-timescale-based theoretical model where a perturbation technique was adopted to 

separate the fast and slow timescales associated with the oscillatory flow field (i.e., acoustic 

field) and the mean flow field (acoustic streaming), respectively. The governing equations have 

been expressed in non-dimensional form to effectively show the dependence of the acoustic 

streaming fields on Reynolds number (Re), Deborah number (De), and the ratio of material 

constants related to normal stress coefficients (b). Contrary to our intuition, we observed that 

with increasing Deborah number (which is a measure of the extra stress present in the second-

order fluids), acoustic streaming first increases, and thereafter, a further increase in Deborah 

number leads to a gradual suppression of streaming. Our study also reveals that the acoustic 

field and the acoustic radiation force show negligible dependence on the fluid rheology. For the 

following ranges: 0.08 0.32Re  , 0 1De  , and 0 100b  , the maximum variation of 

the acoustic streaming is observed to be ~ 161.3% whereas the variation in the acoustic field 

stays within just 0.15%. This significant finding can help design efficient acoustofluidic 

systems that can manipulate acoustic streaming without affecting the acoustic radiation forces, 

as strong acoustic streaming can impair the acoustofluidic devices.  
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I. INTRODUCTION 

The use of ultrasound in fluids has garnered significant attention over the past few decades due to its 

various applications in biomedical and nanotechnology-based fields. The interaction of acoustic 

wave and fluid causes a fast oscillatory fluid motion (called acoustic field) and in addition to that, a 

steady flow (called acoustic streaming) is slowly evolved over time. The discovery of this acoustic 

streaming traces back to the early nineteenth century when Ørsted (1809) and Savart (1827) 

observed different granular motions of fine and coarse powders over a vibrating Chladni plate. Later, 

Faraday[1], in his Chladni plates experiments, demonstrated acoustic streaming caused by air. The 

preliminary understanding of acoustic streaming is extended further when Dvorák (1876) noticed 

acoustic streaming in a Kundt tube actuated via a standing sound wave. Following these works, 

several theoretical and experimental studies have been performed to broaden the understanding and 

the applicability of the acoustic streaming phenomena. The steady flow adjacent to any oscillating 

solid boundary is termed as Schlichting streaming[2] and above that, a counter-rotating flow (called 

Rayleigh streaming[3]) is generated. Other than the viscous boundary layer, the acoustic streaming 

can also be developed in the fluid bulk and it is known as Eckart streaming[4]. It is already 

established that in Rayleigh streaming, there is an effective slip velocity observed at the interface of 

the boundary layer and the fluid bulk. Nyborg[5] was the first to provide an analytical expression for 

the slip velocity near an arbitrary smooth surface, which was later modified by Lee and Wang[6]. 

Researchers[7,8] have also provided analytical solutions for the acoustic streaming for simple 

geometries such as flow-through channels and flow-past cylinders. In his publication in 1978, 

Lighthill[9] pointed out that the Reynolds stress divergence, which is resulted from the attenuation 

of acoustic energy flux, indeed acts as a driving force for acoustic streaming. Acoustic streaming can 

be used for microscale mixing[10-15], enhancement of heat transfer[16-18], and 
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electrodeposition[19], etc. It is to note here that pressure acoustic theory is a widely used theory for 

acoustofluidics, although, it neglects the viscous boundary layer. Recently, Bach and Bruus[20] 

modified that and provided a pressure acoustic theory for curved elastic cavities where viscous 

boundary layer has been considered explicitly. 

The particles or cells suspended in the fluid experience a mean force, called acoustic radiation force, 

due to the reflection of the sound wave from the particle surface. This acoustic radiation force[21,22] 

is utilized as a non-invasive tool to manipulate[23-26], remove[15,27-29], trap[30-34], lyse[35,36], 

concentrate or sort[27,37-41]  cells and particles[42,43]. It is established that this acoustic radiation 

force is proportional to the square of the particle size[44-46] and there exists a critical size above 

which the particle motion is dominated by the acoustic radiation force. Below that particle size, 

streaming drag force dominates over acoustic radiation force and the motion of the particle is 

maneuvered by only the viscous drag. Nam et al.[47] successfully demonstrated that platelets can be 

separated from whole blood by utilizing the acoustic radiation force generated via a standing SAW 

driven microfluidic system. Separation of circulating tumor cells (CTCs) from clinical samples was 

also possible by using a tilted angle SAW[40] or a vertical acoustic resonator[48]. Baasch et al.[49] 

demonstrated that for heavy particles, the acoustic radiation force can be significantly influenced by 

the acoustic microstreaming. Bjerknes force is also proven to be an effective means to manipulate 

the autonomous motions of micromotors[26,34,50,51]. Based on the broad applicability of acoustic 

streaming and acoustic radiation force in biomedical and small-scale activities, there is a need for 

controlling the streaming or the acoustic radiation forces. For instance, Hoyos and Castro[52] 

experimentally showed that acoustic streaming can be suppressed by using a pulsed actuation. 

However, the mechanism for the suppression is not yet understood[53]. This is often required since a 

strong acoustic radiation force causes significantly higher acoustic streaming which can impair the 
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acoustic devices. Recently, Bach and Bruus[54] proposed shape-optimized channels for acoustic 

streaming suppression while the acoustic radiation forces remain unaltered. 

Even though a large amount of literature is available on acoustic streaming, most studies are limited 

to Newtonian fluids. However, it is observed from a few studies that non-Newtonian fluid rheology 

can significantly affect acoustic streaming. Frater[55] analyzed acoustic streaming of an electro-

viscous fluid near a cylindrical particle and showed how elasticity modulates the streaming fields. 

Powell[56] studied the propagation of a finite amplitude planar acoustic wave in a viscoelastic fluid 

and reported a streaming reversal in the extreme viscoelastic regime. Doinikov et al. developed an 

analytical model to study the acoustic streaming[57] and the acoustic radiation force[58] of a solid 

particle in Oldroyd-B fluids. Das et al.[59] presented an analytic model to characterize the inner 

streaming in second-order fluids near a boundary. Their work showed the influence of extra stress 

and fluid compressibility on inner streaming.  

In this contribution, we studied numerically the acoustic streaming and the acoustophoretic motion 

of particles for a bottom actuated microchannel filled with second-order fluids. Perturbation 

technique was applied to the governing Navier-Stokes equation to separate the inherent fast and slow 

timescales and the resulting net flow fields were expressed in time-averaged form to obtain the 

acoustic streaming. We demonstrate that acoustic streaming can be suppressed by altering the fluid 

rheology. It is observed that the extra stress present in the second-order fluids has a negligible 

impact in modulating the acoustic pressure, however, it can reduce the acoustic streaming 

drastically. 

II. MATHEMATICAL FORMULATION 

A. Governing equations and boundary conditions 
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We consider a PDMS (polydimethylsiloxane) microchannel of width W   and height H  , placed on 

a lithium niobate piezoelectric substrate as shown in Fig. 1. The PDMS microchannel contains a 

compressible second-order fluid having static density 0 , and dynamic viscosity  . Under the 

influence of acoustic excitation, the fluid density changes and can be denoted as  . The sonic speed 

in the fluid is denoted as 0c . The governing equations for the fluid flow are given by 

 . 0
t




    


v                                                                                                                  (1a) 

 . .p
t


             

  

v
v v τ                                                                                       (1b) 

In the above, p , x yu v 
   v e e , are the pressure, and velocity of the fluid, respectively. xe  and 

xe  are the unit vectors along x  and y , respectively; t  is the time. The shear stress is given by 

      2

1 22
T

t
  

                       
  

A
τ A v A A v v A A  where, 1 , 2  are material 

constants related to normal stress coefficients and A  is the rate of strain tensor in the fluid given by 

  1 2 T      A v v . For acoustic oscillations with small amplitude, a linear constitutive 

relationship correlating density,   with pressure, p  can be assumed and it is expressed as[60-62] 

2

0p c  . The fluid inside the PDMS microchannel is actuated via standing surface acoustic wave 

(SSAW) generated via AC excitations of the interdigital transducers on lithium niobate piezoelectric 

substrate and x  and y  components of the SSAW displacement field is given by[61,62] 
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        2 2 2 2

0
d x d xc W x ik x W c x W ik x W i t

xd u e e e e e 
                 


                                                    (2a) 

         2 22 22 2

0

xxd d
i k x Wi k x Wc W x c x W i t

yd u e e e e e
                 



 
   

 
                                 (2b) 

where   and xk   are the angular frequency and the wave vector of the SSAW. 0u   is the SAW 

displacement amplitude along y  direction, and   is the ratio of the displacement amplitudes in x  

and y  directions. The attenuation coefficient of the SAW is given by 0 0d LN LNc c c     where LN  

and LNc  are the density and the speed of SAW in lithium niobate along x  direction, respectively;   

is the wavelength of the SSAW on the piezoelectric surface. For the side and top walls, the PDMS 

allows us to use acoustic impedance boundary condition prescribed by 

.wp Z   n v                                                                                                                                              (3) 

In the above, wZ   the acoustic impedance of the PDMS wall and is given by w w wZ c  ; where wc  

and w  are sonic speed and density of PDMS, respectively. 

 

FIG 1: (a) Schematic illustration of the physical problem depicting the standing surface acoustic 

wave driven microfluidic channel filled with second-order fluid. The microchannel is made of 

polydimethylsiloxane (PDMS) and is placed on lithium niobate substrate. IDTs are etched on the 

lithium niobate substrate and the excitations of the IDTs generates surface acoustic waves. (b) 
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Schematic of the corresponding computation domain consisting of the fluid only, with appropriate 

coordinate system. 

B. Nondimensionalization of the governing equations and the boundary conditions 

The governing equations and the associated boundary conditions are rendered dimensionless using 

the following dimensionless variables: 
1

x
x

k 


 ,

1

y
y

k 


 ,

0







 , 

0c




v
v , 2

0 0

p
p

c


 , and 

1

t
t




  

where k  is the acoustic wave vector inside the fluid and it is given by 0k c . The 

nondimensionalized governing equations are therefore written as 

 . 0
t





 


v                                                                                                                         (4a) 

 . .p
t Re




 
       

v
v v τ                                                                                               (4b) 

where 
 1

0 0k u
Re

 



 
  is the Reynolds number and the acoustic Mach number of the system is 

given by 1

0u k  . Please note here that the Reynolds number has been defined by considering 

reference velocity as 0u   which is nothing but the velocity amplitude of the SSAW. Dimensionless 

shear stress, τ  is expressed in terms of Deborah number De  as 

2

2

xx xy

yx yy

u u v

s sx y x
De

s su v v

y x y

   
     

    
         

τ                                                                                    (5) 
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where 
1 0

1

c
De

k



 
  and 

x yu v v e e . The first term on the right-hand side denotes Newtonian stress 

whereas the second term indicates the extra stress present in the second-order fluid and its different 

components are given by  

 
22 22 2 2

2

2 2 2 2 2 2

2 2

2 1 1 ;
4 2 4

1 3

2 2

3

2

xx

xy yx

u u u u b v b u v b u
s u v b

t x x x y x x y x y

u v u v u v b u u
s s u u v v

t y t x x y x y x y x y

b v v

x

              
                 
                 

          
          

             

   
 

 

 
2 222 2 2

2

1 1
;

2 2

1 1 2
4 4 2

yy

b u v b v u

y x x y y

v v v b v b u b u v v
s u v b

t y x y y x y y x y









         
            


               

                  
                   

                   (6) 

The nondimensionalized boundary conditions are prescribed here. At the fluid bottom, the 

displacement boundary conditions are 

        2 2 2 2d x d xc W x ik x W c x W ik x W it

xd e e e e e
      

                                                        (7a) 

          2 2 2 22 2x xd d
i k x W i k x Wc W x c x W it

yd e e e e e
 


       

                                        (7b) 

Here 1

x xd d k 


 , 1

y yd d k


 , 1

d dc c k  , 
1W W k  , and 1

x xk k k 

 . At the side and top walls, 

.wp Z n v                                                                                                                                        (8) 

where the nondimensionalized acoustic impedance of the PDMS is expressed as 
0 0

w
w

Z
Z

c


 . 

C. Separation of timescales 

The present theoretical study faces significant challenges due to the inherent multiple timescales 

involved in the problem. The fast-oscillating SSAW generates a fast-oscillating flow field (i.e. 

associated with fast timescale) and the nonlinearity in the flow dynamics adds a slowly moving fluid 

motion (i.e. associated with slow timescale). To tackle the issue, we employed a perturbation method 
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to separate the fluid response corresponding to (i) a hydrostatic part which defines the unperturbed 

flow field before acoustic excitation, (ii) an oscillatory flow component (called as acoustic fields) 

within a fast timescale, and (iii) an additional component namely mean flow field in the slow 

timescale. As with most of the SAW device based acoustofluidic applications, operating SAW 

frequency is ~ 1-100 MHz and displacement amplitude 0u   is ~ 1-10 A
o

 for which acoustic Mach 

number   ≪ 1, and we can expand the flow and pressure variables asymptotically 

 2 3

1 21 O                                                                                                       (9a) 

 2 3

0 1 2p p p p O                                                                                                                (9b) 

 2 3

0 1 2 O     v v v v                                                                                             (9c) 

It is important to note here that we defined Reynolds number in such a way that it contains SAW 

displacement which is of  O   and hence,  Re O  . We define /sRe Re   which is of  1O . 

In the present study, the fast and slow timescale components are denoted as 1 1g g  and 2

2g g  

where g  represents  , p , and v . 

D. Modeling of fluid hydrostatics 

Substituting eq (9) into eq (4), we obtain the set of equations of  0O  , describing the fluid 

hydrostatics prior to the acoustic excitations, which are expressed as 

0 0
t





                                                                                                                            (10a) 

0 0p                                                                                                                              (10b) 
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We assume that the fluid is at rest before applying the acoustic excitations i.e. 0 v 0 . The solutions 

of the hydrostatic equations are trivial and indicate a uniform pressure and density distribution 

throughout the fluid. 

E. Modeling of acoustic components 

Equations of  1O   governs the acoustic fields which harmonically oscillate with the angular 

frequency   and they are given by 

1
1. 0

t


 


v                                                                                                                   (11a) 

1
1 1

1
.

s

p
t Re


   



v
τ                                                                                                       (11b) 

where 

2 2 2

1 1 11 1 1

11
2 2 2

1 1 1 1 1 1

1
2

2

12
2

u u vu u v

t x t y t xx y x
De

u v v u v v

y x y t y t x t y

                                                    

τ . The associated 

boundary conditions are: 

at the bottom: 

1
xd

u
t





                                                                                                                                     (12a) 

1

yd
v

t





                                                                                                                                     (12b) 

at side and top walls, 

1 1.wp Z n v                                                                                                                                   (13) 
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We can further simplify eqs. (11-13) as the acoustic components harmonically oscillate with the 

same frequency as that of the actuation SAW and therefore all acoustic fields can be expressed in the 

form    1 1, , , itg x y t g x y e . Utilizing these, eq. (11) become 

1 1
1 0

u v
i

x y


 
  
 

                                                                                                          (14a) 

2 2 2

1 1 1 1
1 2 2

1
2 2

s

De
i

p u u v
iu

x Re x y x y

     
     

     
                                                                 (14b) 

2 2 2

1 1 1 1
1 2 2

1
2 2

s

De
i

p u v v
iv

y Re x y x y

     
     

     
                                                                  (14c) 

and the boundary conditions at the bottom are 

1 xu id                                                                                                                                        (15a) 

1 yv id                                                                                                                                       (15b) 

The impedance boundary at the side and top walls can further be simplified[60,62,63] and expressed 

as 

1
1.

w

ip
p

Z
  n                                                                                                                               (16) 

F. Modeling of mean flow fields 

The mean flow field is governed by the second-order equations (i.e.  2O  ) which are given by 

 2
2 1 1. . 0

t





  


v v                                                                                              (17a) 
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 2 1
1 1 1 2 2

1
. .

s

p
t t Re


 

      
 

v v
v v τ                                                                      (17b) 

In the above, 

2 2 2

2 2

2

2 22 2 2

2

2

xx xy

yx yy

u u v

s sx y x
De

s su v v

y x y

   
     

    
         

τ  where  

 
22 22 2 2

2 1 1 1 1 1 1 1
2 1 12

2 1 1 ;
4 2 4

xx

u u u u v u v ub b b
s u v b

t x x x y x x y x y

              
                 
                 

 

2 2 2 2 2 2

2 2 1 1 1 1 1 1
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Note here, 2τ  can be expressed as a summation of Newtonian stress, 
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and extra stress 
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2

2 2

xx xy

e

yx yy

s s
De

s s

 
  

 
τ . To obtain the equations governing the acoustic streaming, we 

need to express eq (17) in the time-averaged form where time-averaging of any flow or pressure 

variable,  , ,g x y t  has been performed over oscillation time-period 2  as 

   
2

1 1

1
, , , ,

2

t

t

g x y t g x y t dt







                                                                                   (18) 
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where   denotes time-averaged component. Time-averaging of the product of two acoustic field 

components  1 , ,g x y t  and  1 , ,f x y t  can be expressed as 

       *

1 1 1 1

1
, , , , , ,0 , ,0

2
g x y t f x y t g x y f x y   

                                                               (19) 

were     denotes the real component of an expression and  *

1 .g  indicates the complex conjugate 

of  1 .g . With this time-averaging, eq (17) can be expressed at steady state as 

2 1 1. . 0  v v                                                                                                     (20a) 

2 1 1 2

1
. 0

s

p
Re

 
    
 

τ v v I                                                                                     (20b) 

The associated boundary conditions are described below. At the bottom, the conservation of mass 

flux provides us the required boundary condition whereas, for the sides and top walls, zero velocity 

is prescribed. 

at bottom: 
2 1 1 v v                                                                                               (21a) 

at sides and top: 
2 0v                                                                                                (21b) 

III. RESULTS AND DISCUSSIONS 

A. Choices of parameters 

The governing eqs. (14) and (20) along with the boundary conditions prescribed by eqs (15), (16) 

and (21) are solved for 0.08 0.32Re  . This range of Re  is chosen since the density 0  for 

second-order fluid is ~ 1000 kg.m-3, sonic speed 0c  is ~ 1000 m/s, viscosity   is ~ 
4 310 10   Pa.s. 
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SAW displacement amplitude 0u   ~ 0.1- 1 
o

A  and the operating SAW frequency is ~ 1-100 MHz. 

Along with that Reynolds number range, Deborah number is taken as 0 1De  ; and b  is taken 

within 0 100b   and the acoustic impedance of the wall material and the attenuation coefficient of 

the SAW are taken as 0.743wZ   and 34.741 10dc   , respectively.  ,   and xk  are taken as 0.86, 

51 10  and 0.37474, respectively. With these parameters, we studied the influence of Re , De  and 

b  on the acoustic fields and the acoustic streaming. The acoustophoretic particle motions are also 

predicted by accounting for the drag forces and the acoustic radiation forces acting on the particles. 

B. Mesh convergence analysis 

Before presenting the results, a mesh convergence analysis has been performed to confirm the fact 

that the spatial resolution considered for the numerical study is adequate to capture the underlying 

physics. As evident from previous related studies[53,60,64], we need a very fine mesh near the 

boundary. The thickness of the boundary layer can be estimated in dimensional form as 

02      and in dimensionless form, it is given by 
1k   . We have defined region of 

thickness 10  near each boundary and prescribed very fine mesh within that (see Fig. S1a-b in the 

Supplemental Material[65]). Rest of the computational domain has relatively large mesh size (called 

bulk mesh size), bulkd . We have taken 10bulkd   and progressively refined the boundary mesh size, 

bd . We define a relative convergence function  C g  for solution g  relative to its reference solution 

refg  following similar previous studies [60,64]. 

 
 

 

2

2

ref

ref

g g dxdy
C g

g dxdy






                                                                                                                       (22) 
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Here 
refg  is obtained for 0.2bd   and we have plotted the mesh convergence study results in Fig. 

S1c (see Supplemental Material [65]) for various bd  ranging from 1 to 4.4. Based on our study 

we found 3bd   is suitable for all convergence function to be bellow 
210
 and we have chosen 

this value for all the simulations presented in the work. Please note that, any further refinement in 

the bulk mesh size (i.e. bulkd ) does not affect the simulation results. With these simulation settings, 

we first validated our model with the existing literature (see Fig. S2 in the Supplemental Material 

[65]) and after successful validation, we present the acoustic fields, acoustic streaming and the 

acoustophoretic particle motions in the following sections. 

 

FIG 2: (a) Color plot of acoustic pressure 1p , and (b) velocity magnitude 
1v   at 2t n  for a 

microchannel of width 2 xW k  and height 2 xH k  excited by a standing SAW specified by 

eq (7). The plot represents pressure and velocity magnitude for 0.08 0.32Re   and 0 1De   

these values show negligible variation (< 0.15%) over these ranges. The acoustic impedance of the 
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microchannel wall material, the attenuation coefficient of the SAW, and the acoustic Mach number 

are taken as 0.743wZ  , 34.741 10dc   , and 
51 10    respectively. SAW amplitude ratio ( ), 

and SAW wave vector ( xk ) are taken as 0.86 and 0.37474, respectively. 

C. Acoustic fields 

Fig. 2 shows the acoustic pressure and velocity fields in a microchannel of width 2 xW k  and 

height 2 xH k  excited by a standing SAW at 2t n  where n  is an integer. The acoustic 

pressure 1p , varies between 
52.17 10  (red) and 

52.17 10   (blue) whereas acoustic velocity 

magnitude 
1v  varies within zero (blue) and 

51.76 10  (red). It is evident from eq (14) that the 

acoustic field does not depend on the material constant ratio, b . In addition to that, Re  and De  

have a negligible impact on the acoustic pressure and velocity profiles. For instance, the maximum 

acoustic pressure 5

1max 2.1687 10p    at 0.08Re   and 0De  , whereas at 0.32Re   and 1De  , 

5

1max 2.1720 10p   , indicating less than 0.15%  variation over a wide range of Reynolds number (

0.08 0.32Re  ) and Deborah number 0 1De  . This is a remarkable result, and it implies that 

the acoustic fields hardly depend on the fluid inertia or the viscous effects. It is clear that the 

acoustic pressure and velocity are oscillating with time (see Supporting Material video [65]), and the 

maximum acoustic pressure 1maxp  is observed to be 
52.30 10  whereas maximum acoustic 

velocity magnitude (
1 max

v ) is estimated to be 
52.20 10  which is much higher than the maximum 

acoustic velocity associated with the SSAW i.e. 
51 10   . This ensures that there are reflections of 

the acoustic waves on the microchannel walls which are attributed to the impedance mismatch 

between the wall material ( wZ = 0.743) and fluid (dimensionless impedance of the fluid is 1). 
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FIG 3: (a) Acoustic streaming velocity field (color plot) and associated vector plot (black arrows) for 

the standing SAW driven microchannel of width 2 xW k  and height 2 xH k  filled with 

second-order fluid where 2 max
v  denotes the maximum acoustic streaming velocity magnitude. 

The plots show generic acoustic streaming velocity field for 0.08 0.32Re  , 0 1De   and 

0 1b  . The acoustic impedance of the microchannel wall material, the attenuation coefficient of 

the SAW, and the acoustic Mach number are taken as 0.743wZ  , 34.741 10dc   , and 
51 10    

respectively. SAW amplitude ratio ( ), and SAW wave vector ( xk ) are taken as 0.86 and 0.37474, 

respectively. (b) Variation of rescaled acoustic streaming velocity magnitude i.e. 2 2 max
v v  

along y  at 
3

8
x H   (blue) and 

1

8
x H   (red).  

D. Acoustic streaming 
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Fig. 3a shows the acoustic streaming velocity field 2v , inside the microchannel of width 

2 xW k  and height 2 xH k . We observe four streaming vortices similar to that for Newtonian 

fluids (i.e. De =0). A large acoustic streaming velocity magnitude is observed near the bottom 

boundary and there exists a sharp velocity gradient adjacent to it. Fig. 3b illustrates this sharp 

velocity gradient and the variation of 2v  along the channel height at 
1

8
x H  , and 

3

8
x H  . 

The maximum acoustic streaming velocity, 2 max
v  is located near the bottom boundary at 

1

8
x H  , whereas at 

3

8
x H  , the acoustic streaming is slightly suppressed due to the interaction 

with adjacent sidewalls. We notice that the color plot of the acoustic streaming velocity distribution 

remains the same for all Reynolds numbers and Deborah numbers except the maximum acoustic 

streaming velocity magnitude 2 max
v  varies. 
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FIG 4: Dependence of 2 max
v  on De  for b  =0 (blue), 50 (red) and 100 (black) at (a) 0.08Re  , 

(b) 0.16Re  , (c) 0.24Re  , and (d) 0.32Re   for standing SAW driven microchannel of width 

2 xW k  and height 2 xH k  filled with second-order fluid. The acoustic impedance of the 

microchannel wall material, the attenuation coefficient of the SAW, and the acoustic Mach number 

are taken as 0.743wZ  , 34.741 10dc   , and 
51 10    respectively. SAW amplitude ratio ( ), 

and SAW wave vector ( xk ) are taken as 0.86 and 0.37474, respectively. The cyan region indicates 

the enhanced acoustic streaming zone. 

Fig. 4 illustrates the variation of 2 max
v  as a function of De  for b   0, 50 and 100 at Re  = 0.08, 

0.16, 0.24, and 0.32. It can be concluded that with increasing Reynolds number, the acoustic 
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streaming velocity is enhanced. This is attributed to the fact that with increasing Reynolds number, 

either the inertial force increases or the viscous force decreases, leading to an overall increase in the 

driving force for acoustic streaming. However, we found that the acoustic streaming velocity is first 

enhanced with an increase in Deborah number, and thereafter, a further increase in Deborah number 

causes suppression of the acoustic streaming. This is counterintuitive and requires further 

explanation. We dig into the characterizations of the driving forces and how it is influenced by the 

extra stress components associated with the second-order fluids. It is observed that even though the 

variation of acoustic fields over Deborah number is extremely small, the dependence of the time-

averaged momentum-flux-density-tensor i.e. 
1 1v v  on Deborah number cannot be neglected. 

Importantly, with increasing Deborah number, the time-averaged momentum-flux-density-tensor 

increases, which helps in enhancing the acoustic streaming, whereas the extra stress components 

suppress the acoustic streaming. Due to this complex interplay, there exists a cut-off Deborah 

number (
cut offDe 

) below which larger acoustic streaming as compared to that of a Newtonian fluid 

is encountered. In Fig. 4, the acoustic streaming enhanced zone has been shown in cyan color and for 

0.08Re   and 0b  , the cut-off value is 
cut offDe 

 = 0.44, and above that Deborah number, the 

acoustic streaming is suppressed more and more with increasing Deborah number (see Fig. 4a). An 

increase in the material constant ratio, b  effectively implicates an increase in the viscous force 

which causes further suppression of the acoustic streaming, leading to a lower 
cut offDe 

 value. For 

instance, at 0.08Re   and 50b  , the acoustic streaming enhanced zone is restricted to 

0 0.16De  , whereas for 0.08Re  , 100b  , there is no enhancement of the acoustic streaming at 

all. This is a very important result that provides us with the flexibility to control and manipulate 

acoustic streaming by regulating the fluid rheology, without affecting the acoustic fields. Our present 

study also reveals that a stronger acoustic streaming is manifested at higher Reynolds number, which 
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ensures a wider range of Deborah number for acoustic streaming enhancement for higher b  values (

50b  , and/or 100) with exceptions at low values of b  where slightly lower 
cut offDe 

 is observed.  
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FIG 5: (a) Initial positions of the particles, and (b-e) their trajectories in a standing SAW driven 

microchannel of width 2 xW k  and height 2 xH k  filled with second-order fluid. Trajectories 

are shown for particle size 0.05a   at (b) 0De  , 0b  , (c) 0.25De  , 0b  , (d) 1.0De  , 0b  , 

and (e) 1.0De  , 100b  . The trajectories have been shown for particle density, 1.05p   and 

particle compressibility, 0.56p   at 0.08Re= . The color associated with the particle trajectories 

indicates the particle velocities as shown in the color bar where red and blue show maximum (
,maxpv

) and zero particle velocities, respectively. 

E. Acoustophoretic motion of the microparticles 

One of the primary uses of acoustofluidic devices is the manipulation of micron size cells or 

particles as these objects experience acoustic radiation force due to the scattering of the acoustic 

waves onto them. This acoustophoretic motion of the particles can be predicted for a steady acoustic 

streaming field and in this section, we consider spherical particles of radius a , density p  , 

compressibility p   suspended in the second-order fluids. We made these dimensionless as: 

1a a k  , 0p p    and 0p p    where 0  is the compressibility of the fluid. The particle 

suspension is diluted enough so that the interparticle interactions can be neglected. For small particle 

size i.e. ( a  ≪ 2 ), the acoustic radiation force acting on the particle can therefore be described in 

dimensionless form as[21] 

rad U F  where 
23

1 1 0 1 1

1 1
2

3 2
U a p p f f

 
  

 
v                                                      (23) 
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where monopole and dipole scattering coefficients are given by 
0 1 pf    and 

 
1

2 1

2 1

p

p

f








, 

respectively. The drag force acting on the particle is estimated via Stokes formula 

 2

6drag

p

a

Re

 
 F v v  and the motion of the microparticles can be predicted via Newton’s second 

law: 
34

3

p rad drag

p p

d
a

dt
   

v
F F . At steady state, the particle velocity field is obtained as 

, 2
6

rad

p s

Re

a 
 v v F  which indicates that the acoustophoretic particle velocity is increased by the 

acoustic radiation force.  
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FIG 6: (a) Vector plot of acoustic radiation force. (b-e) Particle trajectories in a standing SAW 

driven microchannel of width 2 xW k  and height 2 xH k  filled with second-order fluid with 

initial particle configuration as shown in Fig. 5a. Trajectories are shown for (b) 0.1a  , 0De  , 

0b  , (c) 0.1a  , 1.0De  , 0b  , (d) 0.5a  , 0De  , 0b  , and (e) 0.5a  , 1.0De  , 0b  . The 
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trajectories have been shown for particle density, 1.05p   and particle compressibility, 0.56p   

at 0.08Re= . The color bar is associated with the particle trajectories (b-e) and the color indicates 

the particle velocities where red and blue show maximum (
,maxpv ) and zero particle velocities, 

respectively. 

Figs. 5-6 show the acoustophoretic particle trajectories at 0.08Re=  for particles of various sizes 

over the Deborah number and b  ranging from 0 to 1 and 0 to 100, respectively. For 0.05a  , the 

particles closely follow the acoustic streaming velocity vector (Fig. 5) whereas for 0.5a   the 

particle trajectory shows resemblance to the acoustic radiation force vectors (Fig. 6a). This indicates 

that for small particles (i.e. 0.05a  ), the acoustic radiation force is very little and the particle 

motion is governed by the viscous drag of the fluid (Fig. 5b-e). With the initial particle configuration 

shown in Fig. 5a, the maximum particle velocity for 0.05a   at 0De   and 0b   (see Fig. 5b) is 

observed as 
,maxpv 

96.11 10  which is slightly higher than the corresponding maximum acoustic 

streaming velocity 2 max
v = 

96.06 10 . For 0.25De  , the acoustic streaming velocity 2 max
v  

increases to 
96.11 10  and the maximum estimated particle velocity is 

96.15 10  (Fig. 5c). As the 

De  and b  increase further, the particle motion slows down due to suppression of the acoustic 

streaming (Fig. 5d). With increasing particle size, the acoustic radiation force increases faster than 

the viscous drag and for large particle size (i.e. 0.5a  ), the particle trajectory is maneuvered by the 

acoustic radiation force (Fig. 6c-d). At intermediate particle size such as 0.1a  , both acoustic 

radiation force and the viscous force are prominent, and the particle trajectory follows a path 

governed by the superposition of both these forces (Fig. 6a-b). Interestingly, the particle trajectories 

are not much influenced by the variation of Re , De  and b  values (see Figs. S3-S4 in the 

Supplemental Material [65] for microparticle trajectories at 0.20Re   and 0.32Re  ) which confirm 
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that the variation of second-order fluid properties can suppress or enhance the acoustic streaming 

without altering the acoustic radiation force significantly. 

IV. CONCLUSION 

In this article, we have presented a multiple-timescales-based model and carried out a numerical 

study to characterize the acoustic streaming in a bottom actuated microchannel filled with second-

order fluids. The governing Navier-Stokes equations are expressed in dimensionless form and the 

perturbation technique is used to separate the slow and fast timescales associated with the 

acoustofluidic system. The acoustic fields and the acoustic streaming velocities are estimated for a 

wide range of Reynolds number Re , and Deborah number, De  and the material constant ratio, b . 

With increasing Re , the increasing inertia or decreasing viscous effect essentially increase acoustic 

streaming. Our study reveals that for relatively low De , the second-order fluid rheology can enhance 

the acoustic streaming values, and beyond a cutoff value (
cut offDe 

), increasing De  gradually 

suppresses the acoustic streaming due to the extra stresses present in the fluids. This cutoff value 

strongly depends on Re  and b . The microparticle trajectories are influenced by the particle size 

and based on the size, either drag force or acoustic radiation force or both control the paths of the 

particle motion. However, they are negligibly influenced by the Re , De  and b . This study is 

extremely important in the context of acoustofluidic particle sorting and manipulation as it provides 

us the flexibility to enhance or suppress acoustic streaming by altering fluid rheology without 

significantly affecting the acoustic radiation forces.   
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