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In this paper we extend the harmonic resolvent analysis to study the dynamics of subharmonic
perturbations about a periodically time-varying base flow. In doing so, we recover an input-output
operator that is closely related to the harmonic transfer function introduced in [Wereley, 1991], and
we also elucidate the nature of the cross-frequency interactions between subharmonic flow structures
in the proximity of the base flow. We first demonstrate the use of this method on the Rössler system,
under conditions for which the dynamics are sensitive to period-doubling perturbations. We then
apply it to a forced incompressible axisymmetric jet, and we study how the jet’s sensitivity to
subharmonic perturbations varies as a function of the Reynolds number. This analysis suggests
that as the Reynolds number is increased, the cross-frequency interactions between subharmonic
structures with period 2T and the T -periodic base flow become increasingly important. Remarkably,
we also demonstrate that the well-known nonlinear vortex pairing phenomenon is driven by the
spatio-temporal structures contained within the first right singular vector (or input mode) of the
harmonic resolvent evaluated at the 1/2-subharmonic of the fundamental frequency. In particular,
we show that if the nonlinear flow is forced with an input that is orthogonal to the first right singular
vector of the harmonic resolvent, then no pairing will occur.

I. INTRODUCTION

Over the past few decades, model-based approaches rooted in linear systems theory have helped shed light on the
physics of complex, high-dimensional fluid flows. While there are a number of linear techniques that can be used
to analyze the dynamics of fluid flows in the proximity of a solution of the Navier-Stokes equation, here we focus
on the so-called input-output methods. Perhaps the most well-known is resolvent analysis [1–3], a frequency-domain
technique that allows one to study the input-output dynamics of perturbations about a steady base flow (typically
either a steady solution of the Navier-Stokes equation or the temporal mean of a data set of interest). This method
is particularly helpful for the analysis of non-normal systems that exhibit large-amplitude transient energy growth
in response to external perturbations [2, 3], but it has also been used for controller design in unsteady turbulent
flows [4, 5]. While resolvent analysis is an appealing analysis tool due to its (usually) low computational cost, it is
well-known that it loses its predictive capabilities when the nonlinear dynamics evolve far away from the temporal
mean or from a steady solution of the Navier-Stokes equation. This is because the steady nature of the base flow
is such that this analysis neglects all the cross-frequency interactions in the flow. A successful effort to improve the
performance of resolvent analysis by accounting for some of the triadic coupling that dominates the dynamics in highly
oscillatory flows may be found in [6]. Another noteworthy improvement of resolvent analysis applied to wall-bounded
flows was proposed in [7], where the authors treated the action of the nonlinearity as a structured uncertainty that
forces the linear part of the dynamics.

Recently, resolvent analysis was extended to flows that exhibit large-amplitude deviations from the temporal mean or
from a steady solution of the governing equations. More specifically, in the harmonic resolvent analysis described in [8]
the governing equations are linearized about a periodically time-varying base flow that accounts for the aforementioned
large-amplitude oscillations about the mean. This leads to a frequency-domain system of coupled equations where the
coupling is introduced by the time-varying nature of the base flow. Given its ability to capture the first-order triadic
interactions in the proximity of the base flow, the harmonic resolvent analysis can be seen as a first step towards
understanding the nature of the cross-frequency coupling in fluid flows that are dominated by nonlinear effects. In this
paper, we present an extension of the harmonic resolvent framework that considers subharmonic perturbations about
a base flow with period T . While previous work in [8] focused exclusively on the dynamics of T -periodic perturbations,
here we consider perturbations with period nT , for an integer n. These perturbations are of particular interest in shear
flows such as mixing layers and jets, whose selective sensitivity to subharmonic flow structures lead to phenomena such
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as vortex merging and pairing [9, 10]. Recently, the authors in [11] showed that vortex pairing in an incompressible
axisymmetric jet can be understood as a Floquet instability arising from an underlying (unstable) periodic solution
of the Navier-Stokes equation. However, they also observed that the pairing can happen at Reynolds numbers much
lower than the critical Reynolds number, and they attributed this to the highly non-normal nature of the flow due to
the presence of high-shear regions along the shear layer. We will show how the harmonic resolvent framework can be
used to confirm the highly non-normal nature of the problem, and also to obtain additional information regarding the
driving mechanism behind vortex pairing. In particular, we shall see that as the Reynolds number is increased, the
input-output dynamics are dominated by cross-frequency interactions between subharmonic perturbations with period
2T and the T -periodic base flow. Furthermore, we will use this analysis to compute the spatio-temporal structures
that drive the vortex pairing mechanism.

The harmonic resolvent framework discussed herein lies at the intersection of harmonic balancing methods and linear
time-periodic systems theory. Harmonic balancing methods are becoming an increasingly popular technique for solving
partial differential equations thanks to the fact that they convert time-dependent problems into constant-coefficient
algebraic systems of equations in the frequency domain. A remarkable use of harmonic balancing is presented in [12],
where the authors studied the transition to turbulence in a volumetrically-forced incompressible boundary layer. As
far as linear time-periodic systems theory is concerned, historic and recent applications to incompressible flows in
the time domain can be found in [13–15]. In [13], the authors studied the stability properties of the two-dimensional
wake of a circular cylinder via a Floquet analysis, and they detected a three-dimensional instability at Reynolds
number Re ≈ 189. More recently, the authors in [14] sought the optimal inflow forcing profile that would maximize
spreading in an incompressible jet linearized about an axisymmetric time-periodic solution of the Navier-Stokes
equation. Similarly, in [15], the authors studied the linear energy-amplification mechanisms in pulsatile channels and
pipes. Examples of the use of the frequency domain for the analysis of periodic fluid flows may be found in [16–18].
The authors in [16] proposed a computationally efficient approach to compute the H2 norm of linear time-periodic
systems where the periodic component of the dynamics is small. In particular, by expanding the periodic dynamics in
powers of a parameter ε� 1, they showed that the H2 norm of the system can be approximated to second order by
solving a sequence of simplified Lyapunov and Sylvester equations in the frequency domain. They then demonstrated
their approach on a pressure-driven two-dimensional channel subject to streamwise (small-amplitude) time-periodic
oscillations of the bottom wall. The theoretical developments presented in [16] were also used in [17] and [18]. In
reference [17] the authors performed a receptivity analysis of the linearized Navier-Stokes equations to inform the
design of small-amplitude streamwise travelling waves to suppress transition to turbulence in a channel. Similarly, in
[18], the authors designed small-amplitude transverse wall oscillations to achieve turbulent drag reduction in channel
flow. These references stand out as examples of how to develop flow control strategies by leveraging the frequency-
domain structure of linearized models that are periodic in time, but where the periodic component is small. Finally, a
formalism similar to the ones described herein was used in [19] and [20] to account for the effect of spanwise-periodic
riblets in a turbulent channel and to design spanwise-periodic riblets for turbulent drag reduction in a channel,
respectively. In these references, the spatially-periodic structure of the riblets was not assumed to be small, so the
analysis tools used in [19] and [20] may be understood as the spatial analog of the temporal harmonic resolvent that
we discuss in this paper. For a comprehensive summary of resolvent-like methods for the space-time analysis of fluid
flows, we refer the reader to the recent review [21].

The structure of this paper is as follows. In section II we present the extension of the harmonic resolvent to study
the dynamics of subharmonic perturbations. In particular, we will see that if we seek a (nT )-periodic solution of
the linearized Navier-Stokes equation about a T -periodic base flow, the problem decouples into n subproblems that
can be solved separately at a much lower computational cost. This will lead to the definition of an input-output
operator that is closely related to the harmonic transfer function discussed in [22]. Henceforth, we will refer to this
input-output operator as harmonic resolvent operator. It will become clear in section II that the operator in [8] is
a special case of the harmonic resolvent discussed herein when the period of the perturbations is the same as the
period of the base flow (γ = 0, in the notation of section II). In section III we show that, similarly to the resolvent
analysis in [2, 3], the singular value decomposition of the harmonic resolvent operator provides information about the
dominant input-output mechanisms of the flow in the proximity of the periodic orbit. Moreover, since the harmonic
resolvent operator supports coupling between selected frequency pairs, we show that the singular value decomposition
of the blocks of the harmonic resolvent operator can shed light on the cross-frequency input-output dynamics. In
section IV we demonstrate the use of this method on the Rössler equations under conditions for which the system is
highly sensitive to period-doubling perturbations. Finally, in section V we apply the harmonic resolvent framework
to the periodically-forced axisymmetric jet considered in [11]. Here, we identify the mechanisms by which the flow
selectively amplifies subharmonic perturbations and we use these results to explain why the authors in [11] observed
vortex pairing in an otherwise linearly-stable flow configuration. In particular, we demonstrate that if the nonlinear
flow is forced with an input that is orthogonal to the optimal input mode of the harmonic resolvent evaluated at
the 1/2-subharmonic of the fundamental frequency, then no vortex pairing occurs. We therefore conclude that the
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optimal input mode defines the spatio-temporal signal that is responsible for vortex pairing. In both examples we
also provide a comparison with the results obtained by performing the mean-based resolvent analysis.

II. MATHEMATICAL FORMULATION

In this section we extend the harmonic resolvent framework [8] by considering perturbations with period nT about
a T -periodic base flow. This will lead to the definition of an input-output operator that is closely related to Wereley’s
harmonic transfer function [22]. As mentioned in the introduction, we refer to this input-output operator as the
harmonic resolvent operator and it will become clear that the operator described in [8] arises as a special case when
the perturbations have the same period as the base flow. The reader who is familiar with the harmonic transfer
function literature [22] may be used to working in the space of exponentially modulated periodic (EMP) signals. In
this section, we choose to proceed in a different fashion, and we rely exclusively on the Fourier transform. We favor
this approach because it does not require a-priori knowledge of EMPs, and because it sheds light on the reason why
EMPs are appropriate test signals for the frequency-domain analysis of periodic systems. The equivalence between
our derivation and the derivation using EMPs is clarified in Remark 1 in section II C.

A. Frequency-domain representation of linear time-periodic dynamics

Let us consider a nonlinear dynamical system with state q(t) ∈ RN , whose time evolution is governed by

d

dt
q(t) = g(q(t)). (1)

In our present context, this may be understood as the spatially-discretized incompressible Navier-Stokes equation,
and the state vector contains the three-dimensional velocity and the pressure at the cell faces (or cell centers) of the
computational grid. Normally, formula (1) is also equipped with an algebraic constraint on the velocity field (i.e.,
the continuity equation). However, it is well known that this constraint can often be removed from the formulation
by expressing the pressure as a function of the velocity by means of a Poisson equation. Therefore, we move forward
by working with the constraint-free system (1). Algebraic constraints on the state q(t) can be handled with a
straightforward modification of the harmonic resolvent framework discussed in this paper. Letting Q(t) = Q(t + T )
denote a T -periodic base flow, we perform the state decomposition

q(t) = Q(t) + q′(t), (2)

where q′(t) denotes a perturbation about Q(t). We observe that, in general, the perturbation q′(t) need not be
periodic. Upon substitution of (2) into the governing equation (1), we obtain

d

dt
q′(t) = Dqg(Q(t))︸ ︷︷ ︸

A(t)

q′(t) + f ′(t), (3)

where f ′(t) contains higher-order terms O(‖q′‖2) as well as an additional error term if the base flow does not satisfy (1)
exactly. By virtue of the T -periodicity of the base flow, the JacobianA(t) is also periodic with period T . We henceforth
assume that A(t) is a differentiable function of time; this guarantees the existence of a unique solution to (3) (see,
e.g., Theorem 3.2 in [23]), and furthermore it implies nice properties of the Fourier series of A(t) (e.g., pointwise
convergence, and square-summability of the Fourier coefficients). A simple rescaling of time allows us to take T = 2π,
so the Fourier series of A(t) has the form

A(t) =
∑
k∈Ω̃

Âke
ikt, Ω̃ = {· · · ,−2,−1, 0, 1, 2, · · · }. (4)

We observe that the frequency set Ω̃ is potentially infinite. In practice, however, it will contain a few frequencies
associated with the energetically-dominant coherent structures that we observe in the flow. While in [8] we were
interested in studying the dynamics of perturbations q′(t) with the same period as the base flow, here we consider
perturbations with period 2πn, where n is a natural number. Since solutions of (3) are differentiable with respect to
time, we may expand q′(t) in a square-summable Fourier series with fundamental frequency 1/n,

q′(t) =
∑
α∈Ω

q̂αe
iαt, Ω =

{
· · · ,− 2

n
,− 1

n
, 0,

1

n
,

2

n
, · · ·

}
. (5)
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We refer to Ω as the frequency set associated with the perturbations q′(t). It is convenient, from a notational
standpoint, to let the set Ω be infinite. In practice, however, we truncate Ω at some appropriate frequency r/n that
depends on how accurately we wish to resolve the temporal evolution of the perturbations q′(t). Plugging formulas
(5) and (4) into (3), and writing f ′(t) as a Fourier series over Ω as in (5), we obtain

iαq̂α =
∑
β∈Ω

(α−β)∈Ω̃

Âα−β q̂β + f̂α, ∀α ∈ Ω. (6)

Formula (6) is a system of linearly-coupled equations, where structures at frequency α are coupled to structures at

frequency β through the base flow at the frequency difference (α − β) ∈ Ω̃. However, we will see shortly that this
equation hides n decoupled systems of equations that can be solved separately at a much lower computational cost.
Uncovering the decoupled nature of the problem will also help us understand the nature of the triadic frequency
coupling in the proximity of the base flow.

B. Understanding the cross-frequency coupling

In this section we show how the convolution-like sum in formula (6) couples structures at different frequencies.
We will do so using a simple example. Consider the base flow set below, and a perturbation set with fundamental
frequency 1/n, where we take n = 3,

Ω̃ = {−1, 0, 1}, Ω =

{
· · · ,−7

3
,−6

3
,−5

3
, · · · ,−1

3
, 0,

1

3
, · · · , 5

3
,

6

3
,

7

3
, · · ·

}
. (7)

We now show that the three disjoint subsets of Ω given below contain the frequencies that are non-trivially coupled

to one another through the base flow set Ω̃.

Ω−1/3 =

{
· · · ,−7

3
,−4

3
,−1

3
,

2

3
,

5

3
, · · ·

}
, Ω0 = {· · · ,−2,−1, 0, 1, 2, · · · }, Ω1/3 =

{
· · · ,−5

3
,−2

3
,

1

3
,

4

3
,

7

3
, · · ·

}
.

(8)
As previously discussed, the coupling between frequencies α, β ∈ Ω is supported by the base flow at the frequency

difference (α− β) ∈ Ω̃. For example, it is easy to verify that for every α ∈ Ω1/3, there exists a β 6= α in the same set

such that (α− β) ∈ Ω̃. We therefore say that the frequencies in Ω1/3 are coupled through the base flow. Conversely,

there is no frequency α ∈ Ω1/3 and no frequency β ∈ Ω0 such that (α − β) ∈ Ω̃. So the frequencies in Ω1/3 are fully
decoupled from those in Ω0. A schematic of the cross-frequency coupling is shown in figure 1. It is also useful to
observe that all the sets in (8) may be written as

Ωγ = γ + {· · · ,−2,−1, 0, 1, 2, · · · }, γ ∈
{
− 1

3
, 0,

1

3

}
, (9)

where the + in the definition of Ωγ denotes element-wise addition. In general, the following rule can be used to
determine whether any two frequencies are coupled.

Property II.1. Let Ω̃ and Ω be given as in (4) and (5), respectively. Two frequencies α, β ∈ Ω are coupled if α = β
(mod 1). Letting Z denote the set of integers, it follows that the set Ω can be partitioned into n disjoint subsets Ωγ
of the form

Ωγ = γ + Z, γ ∈ Γ =

{
− 1

n

⌊
(n− 1)

2

⌋
, · · · ,− 1

n
, 0,

1

n
, · · · , 1

n

⌊n
2

⌋}
. (10)

Observe that −1/2 < γ ≤ 1/2 for every value of n. Furthermore, when n is even we see that Γ contains the element
1/2, but it does not contain −1/2. This is because Ω1/2 = Ω−1/2, so including −1/2 would be redundant.

We can now uncover a second property. It is easy to see using our simple example that Ω−1/3 = −Ω1/3. Thus,
the Fourier coefficients of q′(t) corresponding to the frequencies in Ω−1/3 are merely the complex conjugates of the
Fourier coefficients corresponding to the frequencies in Ω1/3. For our example in (7), this means that it suffices to
explicitly solve for the Fourier coefficients of q′(t) over the sets Ω0 and Ω1/3, while the Fourier coefficients over Ω−1/3

may be obtained by complex-conjugating the coefficients over Ω1/3. In general, we have the following property.
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FIG. 1. Two frequencies α, β ∈ Ω are linked if α− β ∈ Ω̃. Two frequencies α, β ∈ Ω share the same color (hence are coupled)
if α = β (mod 1).

Property II.2. Let the frequency sets Ωγ be given as in property II.1. The signal q′(t) in (3) is fully determined by
its Fourier coefficients over the sets Ωγ with 0 ≤ γ ≤ 1/2.

While property II.1 states that the original problem (6) decouples into n separate problems, property II.2 states that
only dn/2e of these need to be solved explicitly. This is of course beneficial from a computational standpoint, since
solving dn/2e smaller decoupled problems is much easier than solving one large coupled system of equations. We are
now equipped to define the harmonic resolvent operator.

C. The harmonic resolvent operator

In this section, we adopt the following notation. Given a periodic signal q′(t) with period 2πn, we define

Fγ(q′(t)) = (. . . , q̂γ−1, q̂γ , q̂γ+1, . . .) , γ ∈ Γ, (11)

where q̂α are the Fourier coefficients as given in (5). This may be understood as an infinite-dimensional vector
containing a subset of the Fourier coefficients of q′(t), namely those corresponding to frequencies in the set Ωγ = γ+Z.
We now use the properties discussed in the previous section to introduce the harmonic resolvent operator. Let us
recall that property II.1 states that problem (6) decouples into n separate problems over the sets Ωγ . We can therefore
constrain our attention to the Fourier coefficients of q′(t) and f ′(t) corresponding to the frequencies in Ωγ , for some
fixed γ ∈ [0, 1/2] according to property II.2. Moreover, any α ∈ Ωγ may be written as (γ + k) for some integer k ∈ Z.
We then proceed as follows. We start from formula (6), replace Ω with Ωγ and write α = γ + k and β = γ + j, to
obtain

i(γ + k)q̂γ+k =
∑
j∈Z

(k−j)∈Ω̃

Âk−j q̂γ+j + f̂γ+k, ∀k ∈ Z. (12)

Formula (12) is a system of coupled linear equations, and it may be written compactly be defining appropriate linear
operators. In particular, letting q̂ = Fγ(q′(t)), we introduce the operator

[
T̂ q̂
]
k+γ

= −ikq̂γ+k +
∑
j∈Z

(k−j)∈Ω̃

Âk−j q̂γ+j . (13)

It is important to observe that T̂ does not depend on γ, but only on the base flow set Ω̃. Formula (12) may finally
be written compactly as

(
iγI − T̂

)
q̂ = f̂ , (14)

where I is the identity operator. Before moving forward, it is instructive to discuss the structure of the operator T̂ .
First, we observe that it is infinite-dimensional since it acts on the infinite-dimensional vector q̂. Second, it may be
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visualized in matrix form as follows

T̂ =



. . .
. . .

. . .
. . .

. . . R̂−2 Â−1 Â−2
. . .

. . . Â1 R̂−1 Â−1 Â−2
. . .

. . . Â2 Â1 R̂0 Â−1 Â−2
. . .

. . . Â2 Â1 R̂−1 Â−1
. . .

. . . Â2 Â1 R̂−2
. . .

. . .
. . .

. . .
. . .


, R̂k =

(
−ikI + Â0

)
∈ CN×N , (15)

where we recall that N is the dimension of the state vector q′(t). The number of off-diagonal bands in T̂ is equal to

the number of non-zero frequencies in the base flow set Ω̃. Moreover, Â−k is the complex-conjugate of Âk, since the

matrix A(t) is a real-valued function of time. If the base flow is steady, then the off-diagonal blocks are zero and T̂ is a
block-diagonal operator. Consequently, there no longer is any cross-frequency coupling between structures at different
frequencies. It is also important to observe that given a diagonal block R̂k, the operator −R̂−1

k is the resolvent

operator discussed in [2, 3] and evaluated at frequency k. Thus, when the base flow is steady, the operator (iγI − T̂ )

is block diagonal with blocks −R̂(γ+k), and we recover the well-known resolvent analysis.
Resuming from formula (14), we now wish to define the harmonic resolvent operator as a linear operator that maps

inputs f̂ to outputs q̂. However, properly defining this operator requires some care and we first need to address a
subtlety. Specifically, it is straightforward to show that if the nonlinear dynamics in (1) admit time-periodic solutions

Q(t+ ε) for any phase shift ε, then T̂ (assembled about the base flow Q(t)) is singular and its nullspace is spanned

by the Fourier coefficients of v(t) := dQ(t)/dt. In other words, T̂ v̂ = 0, where v̂ = F0(v(t)). This scenario is
very common, and it is most often encountered when the homogeneous nonlinear dynamics (1) admit time-periodic
solutions (e.g., incompressible flow past a body at moderately low Reynolds numbers and periodic orbits in turbulent
regimes). Conversely, if the periodic solution arises in response to some external time-periodic forcing (e.g., flows in

turbomachinery and rotorcraft), then the latter usually sets the phase of the solution and the nullspace of T̂ will be
trivial. We henceforth refer to the time-derivative of the base flow as the direction of phase shift about the base flow.
This singularity of T̂ is problematic because the direction of phase shift is physically uninteresting and, at the same
time, it prevents us from defining the harmonic resolvent as the inverse of (iγI − T̂ ) (in fact, this inverse is undefined
for γ = 0). Since we want our definition to hold for all γ, we need to remove this singularity by restricting the domain

of T̂ to a physically meaningful subspace Σ on which T̂ is bijective. In order to define this subspace Σ, we begin by
requiring that for all times, all time-periodic solutions of the linear dynamics in (3) lie in the range of the 2π-periodic
oblique projection

P (t) = I − v(t)u(t)∗. (16)

Here, u(t) is a 2π-periodic signal such that u(t)∗v(t) = 1 for all times, so that P (t) is a projection (i.e., P (t)2 = P (t)).

In particular, we choose u(t) such that T̂ ∗û = 0, where û = F0(u(t)). In other words, the Fourier coefficients of u(t)

span the left nullspace of T̂ . The efficient computation of û is discussed in appendix A. Clearly, the projection P (t)
annihilates any component along the phase shift direction, since P (t)v(t) = 0 for all times. Since P (t) is 2π-periodic,
it may be written in a Fourier series

P (t) =
∑
k∈Z

P̂ke
ikt, P̂k = Iδk,0 −

∑
j∈Z

v̂k+jû
∗
j , (17)

where δk,0 = 1 if k = 0 and δk,0 = 0 otherwise. We may then define the frequency-domain representation of P (t) as

[P̂ q̂]k+γ =
∑
j∈Z

P̂k−j q̂γ+j . (18)

The desired subspace Σ is defined as the range of P̂ . It can be shown that Σ is an invariant subspace of T̂ and, by
design, T̂ is bijective on Σ. Thus, letting T̂Σ denote the restriction of T̂ onto Σ, the harmonic resolvent operator is
given by

H(iγ) =
(
iγI − T̂Σ

)−1
. (19)
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This is a linear input-output operator that maps the Fourier coefficients of inputs f ′(t) ∈ Range(P (t)∗) with period
T/γ and frequency content Ωγ to the Fourier coefficients of outputs q′(t) ∈ Range(P (t)) with period T/γ and
frequency content Ωγ . It is important to observe that above we have used a slightly different projection than that
used in [8]: in that formulation, the perturbations F0(q′(t)) were constrained to the orthogonal complement of v̂,

while here they are constrained to the range of P̂ . Consequently, when γ = 0, we do not recover the previous definition
of harmonic resolvent. While the definition in [8] is mathematically correct and physically meaningful, the orthogonal

complement of v̂ may not be invariant under T̂ (unless T̂ is a normal operator, which is never the case in high-shear
flows), so performing a projection onto v̂⊥ loses its physical meaning when γ 6= 0. In contrast, the projection as
defined here is meaningful for all choices of γ, including the case γ = 0 (i.e., the harmonic resolvent defined in [8]).
Finally, we observe for the sake of completeness that it is not necessary to evaluate H(iα) for α > 1/2. It is easy to
verify using sets of the form (10) that for any set Ωα with α > 1/2 there exists a γ ∈ [0, 1/2] such that either Ωα = Ωγ
or Ωα = −Ωγ . Thus, either H(iα) = H(iγ) or H(iα) = H(iγ), where the overline indicates complex conjugation.
For a computationally efficient way to compute with H(iγ), we point the reader to appendix B.

Remark 1. As mentioned at the beginning of this section, the harmonic resolvent operator (19) can be derived using
exponentially modulated periodic (EMP) signals [22]. More precisely, this can be done by writing q′(t) in (5) as

q′(t) = eiγt
∑
k∈Z

q̂γ+ke
ikt

︸ ︷︷ ︸
:=q̃(t)

, (20)

where the 2π-periodic component q̃(t) of q′(t) is modulated by eiγt. Formula (12) (and therefore (19)) may then be
obtained by substituting formulas (20) and (4) into (3). While the derivation of the harmonic resolvent H(iγ) using
EMPs may appear less cumbersome than the one presented in this paper, it is precisely the frequency decoupling
of subharmonics discussed in section II B that makes EMPs an appropriate class of signals for the analysis of the
input-output dynamics of time-periodic systems. For completeness, we observe that (if γ is a rational number) the
Fourier coefficients of the signal q′(t) in (20) are precisely given by Fγ(q′(t)), and the associated frequency set is Ωγ .

III. AMPLIFICATION MECHANISMS

The spectral analysis of the harmonic resolvent operator can provide insightful information about the physics of the
flow under consideration. In the first subsection, we discuss how to extract information about the global amplification
mechanisms, while in the second subsection we discuss how to probe the harmonic resolvent for information regarding
the cross-frequency interactions that dominate the flow dynamics.

A. Global amplification mechanisms

Here we consider the problem of finding the input f̂ over the set of frequencies Ωγ that excites the most energetic
response through the harmonic resolvent H(iγ). Mathematically, we seek

ψ̂1 = arg max
‖f̂‖=1

∥∥H(iγ)f̂
∥∥. (21)

It can be shown that the optimal forcing input ψ̂1 is the first right singular vector of H(iγ), while the corresponding

output, which we denote φ̂1, is the first left singular vector of H(iγ). The first singular value σ1(γ) can be understood
as a gain, or amplification factor, on the leading input-output pair. This provides a measure of the sensitivity of the
flow to perturbations with a given frequency content Ωγ . In particular, if σ1(γ) > σ1(α) then we say that the flow is
more sensitive to perturbations over Ωγ than to perturbations over Ωα. We also remark that the optimal input and
the optimal output identify spatially- and temporally-coherent signals whose temporal evolution can be reconstructed
as follows,

ψ1(t) =
∑
α∈Ωγ

ψ̂1,αe
iαt + c.c., φ1(t) =

∑
α∈Ωγ

φ̂1,αe
iαt + c.c. (22)

where c.c. denotes complex conjugate. It is worth pointing out that the complex conjugate is not necessary if γ = 1/2
or γ = 0, since for any α ∈ Ω1/2 (resp. Ω0) we also have −α ∈ Ω1/2 (resp. Ω0). By recognizing that any element
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α ∈ Ωγ may be written as α = γ + k for some k ∈ Z, we also observe that the input and output modes in (22) may
be expressed as EMP signals,

ψ1(t) = eiγt
∑
k∈Z

ψ̂1,γ+ke
ikt + c.c., φ1(t) = eiγt

∑
k∈Z

φ̂1,γ+ke
ikt + c.c. (23)

The importance of the optimal input and output signals and of the corresponding singular value can be understood

by writing the response q̂ to any input f̂ in terms of the singular value decomposition

H(iγ) =
∑
k

σkφ̂kψ̂
∗
k. (24)

Assuming σ1 � σ2 for simplicity, we can write

q̂ = H(iγ)f̂ ≈ σ1φ̂1ψ̂
∗
1 f̂ . (25)

If the input f̂ has a non-zero projection onto ψ̂1, then q̂ will have a component in the direction of φ̂1. In other words,
the spatio-temporal evolution of the optimal response mode φ1(t) describes the flow structures that one expects to
see in experiment or simulation when external perturbations force the system. The signal ψ1(t), on the other hand,
identifies the spatio-temporal structures that are responsible for exciting the response φ1(t). These modes can be
used to understand the physics of the flow, but also to develop a control strategy to meet some control objective. For
instance, if one wants to excite the flow response φ1(t), then they would select a control input that aligns well with
ψ1(t). Similarly, if one wants to suppress the spatio-tempotal waveform φ1(t), they could design a controller that
rejects disturbances that align with ψ1(t). Finally, it is worth observing that if σ1 � 1 (i.e., the flow is very sensitive

to disturbances over the frequency set Ωγ), then any f̂ with a small component along the direction ψ̂1 will suffice to

trigger a large response q̂ in the direction φ̂1. We will see in section V that this is precisely why we observe vortex
pairing in the jet flow.

It is important to remark that the cost function in the optimization problem in (21) may be expressed in terms of

a weighted norm ‖û‖2
Ŵ

= û∗Ŵ û, for some positive-definite weight Ŵ . It is then straightforward to show that the

solution ψ̂1 is equal to the first right singular vector of the linear operator

H̃(iγ) = Ŵ 1/2H(iγ)Ŵ−1/2, (26)

where Ŵ 1/2 denotes the square-root of Ŵ . The physical interpretation of the optimal input and output modes and
corresponding singular value remains unchanged.

B. Cross-frequency amplification mechanisms

We have seen in the previous sections that the time-varying nature of the base flow introduces coupling between

flow structures over the set Ωγ . We can therefore consider the problem of finding the input f̂β at frequency β ∈ Ωγ
that excites the most energetic response q̂α at frequency α ∈ Ωγ . Letting Hα,β(iγ) denote the block of the harmonic

resolvent operator that maps inputs f̂β to outputs q̂α, we seek

ψ̂β,1 = arg max
‖f̂β‖=1

∥∥Hα,β(iγ)f̂β
∥∥. (27)

As before, the optimal forcing input ψ̂β,1 is the first right singular vector of Hα,β(iγ), the corresponding response,

which we denote φ̂α,1, is the first left singular vector of Hα,β(iγ), while the first singular value σ(α,β),1 is a gain on the
leading input-output pair. This singular value can be understood as a measure of how strongly inputs at frequency β
affect the response of the flow at frequency α. If σ(α,β),1 > σ(α,η),1 then we say that disturbances at frequency β ∈ Ωγ
are more effective than disturbances at frequency η ∈ Ωγ at exciting an energetic response at α ∈ Ωγ . The optimal
input and output vectors identify spatially-coherent structures that oscillate at frequencies β and α, respectively,

ψ1,β(t) = ψ̂1,βe
iβt + c.c., φ1,α(t) = φ̂1,αe

iαt + c.c. (28)

As in the previous section, the optimization problem (27) may be written with respect to a weighted inner product.
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FIG. 2. In (a) we show the periodic solution of (29) with period T ≈ 2π. The black marker indicates the temporal mean. In
(b) we show the leading singular value of the harmonic resolvent H(iγ) for γ ∈ [0, ω/2]. In (c) we show the leading singular
value of the mean-based resolvent operator evaluated at frequency γ.

IV. APPLICATION TO A TOY MODEL: THE RÖSSLER SYSTEM

In this section we demonstrate the harmonic resolvent framework on the Rössler system under conditions for which
the dynamics are sensitive to period-doubling perturbations. We also present a comparison with the well-known
resolvent analysis (i.e., linearization about the temporal mean) and we show how this analysis can fail to capture the
qualitative sensitivity of the system to subharmonic perturbations. Consider the Rössler system in the form

ẋ = −y − z
ẏ = x+ 0.1y

ż = 0.1 + z(x− c).
(29)

As discussed in [24], these dynamics undergo a cascade of period-doubling bifurcations as we sweep the bifurcation
parameter c. Here, we fix c = 5.3 and, using a Newton-based harmonic balancing method, we find that (29) admits
a periodic solution with period T ≈ 2π. This solution is shown in figure 2a. Our choice of parameter c is close to the
critical value for one of the aforementioned period-doubling bifurcations, so we expect the system to be very sensitive
to any disturbance with frequency ω/2, where ω = 2π/T is the fundamental frequency. We are interested in verifying
whether the harmonic resolvent analysis can be used to identify the frequency sets over which the base flow is sensitive
to perturbations. We also wish to check if this framework accurately predicts the input-ouptut dynamics of the flow
under small-amplitude forcing. The harmonic resolvent results are compared against the predictions provided by
the mean-based resolvent analysis, which is performed by linearizing the dynamics about the temporal mean of the
T -periodic solution (see black marker in figure 2a).

Throughout this section, we let our periodic base flow for the harmonic resolvent analysis be given by the curve

shown in figure 2a. The base flow has frequency content in Ω̃ = {−20ω, · · · , 0, · · · , 20ω}, and we let the perturbations
evolve over sets of frequencies Ωγ = γ + {−30ω, · · · , 0, · · · , 30ω}, where 0 ≤ γ ≤ ω/2 by property II.2. We begin
by computing the singular value decomposition of the harmonic resolvent operator H(iγ), defined in (19), and a
plot of the first singular value over 0 ≤ γ ≤ ω/2 is shown in figure 2b. Figure 2b shows a clear peak at γ = ω/2,
which suggests that the flow is very sensitive to disturbances over the set Ωω/2. By contrast, in figure 2c, the curve
associated with the leading singular value of the mean-based resolvent operators suggests that the flow is sensitive to
perturbations that oscillate at frequency γ ≈ ω.

We now try to verify whether the results provided by the harmonic resolvent framework convey reliable information
about the nonlinear dynamics of the flow. In particular, we are interested in checking whether the flow is more
sensitive to perturbations at frequency ω, as indicated by the mean-resolvent analysis, or if it is more sensitive to
perturbations over the set Ωω/2, as indicated by the harmonic resolvent analysis. We perform a numerical test by
introducing a forcing term f ′(t) to the governing equations (29),

f ′(t) = εB cos(αt). (30)

Here ε = 3 × 10−4, B ∈ R3 is a column vector of ones and we take α to be either equal to 5ω/2 ∈ Ωω/2 or to ω.
The results are shown in figures 3a and 3b for values α = 5ω/2 and α = ω, respectively. We can see that the forcing
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FIG. 3. We show (a) the forced nonlinear response (purple), the harmonic resolvent prediction (orange) and the mean-based
resolvent prediction (green) for a forcing input (30) with ε = 3×10−4 and α = 5ω/2. Panel (b) is the analog of (a) with α = ω.

input f ′(t) triggers a much more energetic response when it oscillates at frequency 5ω/2. The same forcing input
at frequency ω excites a response that is roughly two orders of magnitude less energetic. This is consistent with the
information provided by the singular values of the harmonic resolvent operators evaluated at different values of γ. In
particular, the leading singular value σ1(ω/2) is roughly two orders of magnitude larger than σ1(0) (see figure 2b).
Figures 3a and 3b highlight additional details. First, the mean-based resolvent prediction shown in green, is only
active at the forcing frequencies α = 5ω/2 and α = ω, respectively. This is due to the fact that the mean-based
resolvent operator does not describe cross-frequency interactions, since it is based on a linearization about a steady
base flow. On the other hand, the harmonic resolvent prediction shown in orange is active at multiple frequencies
over the sets Ωω/2 and Ω0, respectively. We also observe that that the nonlinear response in figure 3a is active
(although very small) at frequencies kω with k an integer. This is exclusively due to nonlinear interactions between
perturbations. For instance, a perturbation at frequency ω/2 ∈ Ωω/2 can nonlinearly interact with itself to produce a
perturbation at frequency ω /∈ Ωω/2. Nonlinear (i.e., second-order) interactions between perturbations are disregarded
in the harmonic resolvent formulation, so the harmonic resolvent prediction in figure 3a is inactive at frequencies kω
with integer k. We take this opportunity to observe that if the forcing amplitude ε in (30) becomes too large, then
these second-order nonlinear effects start dominating the response of the system and the harmonic resolvent may lose
predictive accuracy.

V. APPLICATION TO AN INCOMPRESSIBLE FORCED AXISYMMETRIC JET

A. Flow configuration

In this section we consider an incompressible axisymmetric jet forced by an axial inflow velocity. Throughout, ve-
locities are non-dimensionalized by the jet centerline velocity and lengths are non-dimensionalized by the jet diameter.
The flow is governed by the incompressible Navier-Stokes equation along with the continuity equation over the spatial
domain D = {(z, r)| z ∈ [0, Lz], r ∈ [0, Lr]}, with Lz = 20 and Lr = 6. In particular, given the (dimensionless) axial
velocity u, the radial velocity v and the pressure p, we have

∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
= −∂p

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2

)
∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r
= −∂p

∂r
+

1

Re

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+
∂2v

∂z2

)
∂u

∂z
+

1

r

∂ (rv)

∂r
= 0.

(31)

At the centerline r = 0 we impose axisymmetric boundary conditions, at the outflow and at the top boundary we
impose a zero normal gradient boundary condition on both velocity components, and at the inflow we consider the
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FIG. 4. Vorticity snapshots from the T -periodic solution at time t = 0 for (a) Reynolds number Re = 500 and (b) Reynolds
number Re = 1250. The colorbar ranges from 0 to 9 and it has been slightly saturated to better visualize downstream vortices.

axial velocity profile

u(r, z = 0, t) = g(r) (1 +A cosωt) , (32)

where A is the non-dimensional forcing amplitude, ω is the forcing frequency, and

g(r) =
1

2

{
1− tanh

[
1

4θ0

(
r − 1

4r

)]}
. (33)

The parameter θ0 may be understood as a non-dimensional vorticity thickness of the incoming profile. The spatial
domain is discretized on a fully-staggered grid of size Nz ×Nr = 800× 300 using second-order finite differences. The
advective term is treated using a third-order upwind-biased scheme. Given the fully-staggered nature of the grid,
we do not require explicit pressure boundary conditions. The time-stepping Navier-Stokes solver was validated by
reproducing the Floquet analysis in [11] for Re = 1000, and we registered less than 0.5% error on the least stable
Floquet multiplier.

Throughout this section, we consider fixed values A = 0.05, θ0 = 0.025 and ω = 6π/5, but we consider several
different Reynolds numbers: Re = 500, 750, 1000, 1250. This choice is motivated by the recent work in [11], where
the authors studied the stability and modal/transient growth dynamics of the flow for a wide range of parameters.
For the parameters considered herein, they observed that for Re / 1350, the Navier-Stokes equations admit a stable
T -periodic solution (where T = 2π/ω) characterized by unpaired vortices. Snapshots from two such solutions at
Re = 500 and Re = 1250 are shown in figures 4a and 4b. For larger Reynolds number values, the T -periodic solution
becomes linearly unstable and the flow settles onto a 2T -periodic orbit characterized by vortex pairing. However,
the authors also observed that vortex pairing can be easily triggered by low-amplitude noise at Reynolds numbers
well-below the critical Reynolds number for modal instability, and they attributed this behavior to the large-amplitude
transient growth due to the non-normality of the underlying linear operator. Here, we confirm the non-normal nature
of the linearized dynamics by studying the spectral proprties of the harmonic resolvent operator over all frequency
sets Ωγ , for γ ∈ [0, ω/2]. We also offer an additional explanation regarding the driving mechanisms behind vortex
pairing. In particular, we will use the harmonic resolvent to uncover the fact that the pairing mechanism is driven by
complicated frequency interactions between the subharmonic frequency ω/2 and its odd harmonics. Finally, we use
nonlinear direct numerical simulations to demonstrate that vortex pairing is driven by the spatio-temporal structure
defined by the first right singular vector of the harmonic resolvent evaluated at γ = 1/2. We also perform a mean-based
resolvent analysis for comparison.

B. Sensitivity analysis via the harmonic resolvent and mean-based resolvent

In this section we study the sensitivity of the flow to subharmonic perturbations in the proximity of the T -periodic
base flow at four different Reynolds numbers: Re = 500, 750, 1000, 1250. We do so by performing the global (section
III A) and cross-frequency (section III B) spectral analyses of the harmonic resolvent operators H(iγ) for γ ∈ [0, ω/2].
Recall that, as discussed at the end of section II C, the harmonic resolvent operators only need to be evaluated
over the interval [0, ω/2] in order to fully characterize the dynamics of perturbations. Throughout this section, we

will take the base flow set to be Ω̃ = ω{−4, · · · , 0, · · · , 4}, and we will consider perturbations over frequency sets
Ωγ = γ + ω{−6, · · · , 0, · · · , 6}. We also perform the mean-based resolvent analysis by computing the singular value
decomposition of the resolvent operator R(iγ) for γ ∈ [0,∞). For all four Reynolds numbers, the periodic base
flow (and hence the temporal mean) was computed via numerical integration of the Navier-Stokes equation using
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the time-delayed feedback technique described in [25] to suppress transient growth and to accelerate convergence to
the desired solution. It is also worth observing that since the inflow boundary condition determines the phase of
the solution, the operator T̂ evaluated about the T -periodic solution of the Navier-Stokes has a trivial nullspace.
Therefore, the harmonic resolvent in (19) can be safely defined in terms of T̂ instead of T̂Σ. Moving forward, we also

restrict our attention to flow structures over the spatial domain D̃ = {(r, z) | 0 ≤ r ≤ 2.5, 0 ≤ z ≤ 20}. We do so

by defining two operators B and C that are equal to the identity on D̃ and zero otherwise. This is done in order to
mitigate spurious amplification mechanisms associated to mass entrainment from the top boundary located at r = 6.
These manifest themselves as energetic zero-frequency input-output structures supported in close proximity of the
top boundary. While entrainment is a physical phenomenon, we believe that the high sensitivity of the flow at the
top boundary detected by the harmonic resolvent and by the mean-based resolvent is simply an artifact of domain
truncation in the radial direction. In any case, we are not interested in amplification mechanisms far away from the
shear layer so, for this example, we consider the input-output operator

H(iγ) = Ĉ
(
iγI − T̂

)−1
B̂, (34)

where B̂ = I ⊗ B and Ĉ = I ⊗ C (that is, block diagonal matrices formed from B and C). Similarly, for the
mean-based resolvent analysis we consider the operator

R(iγ) = C
(
iγI − Â0

)−1

B, (35)

where Â0 denotes the linearization of the Navier-Stokes equation about the temporal mean. In the presence of the
input and output matrices B̂ and Ĉ, the operator H(iγ) in (34) is precisely the harmonic transfer function discussed
in [22], while R(iα) in (35) is the well-known linear time-invariant transfer function.

The spectral analysis of H(iγ) and R(iα) is performed by solving the optimization problem (21) in the radially-
weighted norm

‖u‖2 =

∫
D
|u(r, z)|2r dr dz. (36)

In other words, letting W denote the matrix representation of the weight, and letting Ŵ = I ⊗W , we compute the
singular values of

H̃(iγ) = Ŵ 1/2H(iγ)Ŵ−1/2, R̃(iγ) = W 1/2R(iγ)W−1/2. (37)

Plots of the first singular value of H̃(iγ) and R̃(iγ) across the considered Reynolds numbers are shown in figures

5a and 5b, respectively. For all Reynolds numbers, the singular value σ1 of the harmonic transfer function H̃(iγ)
peaks at γ = ω/2, which suggests that the flow is most sensitive to perturbations over the frequency set Ωω/2 =
ω/2 + ω{−6, . . . , 0, . . . , 6}. On the other hand, for all Reynolds numbers, the singular value of the mean-based

transfer function R̃(iγ) peaks at γ ≈ ω/2, and this suggests that the flow is sensitive to flow structures that oscillate
at the single frequency γ ≈ ω/2. Both analyses show an increase in sensitivity as the Reynolds number is increased,
but the harmonic transfer function shows a much steeper increase in the magnitude of the singular value. In order to
explain this discrepancy, we must study how frequencies within the set Ωω/2 interact with one another, and we do so

by computing the cross-frequency singular values of H̃(iω/2) (see section III B).

Plots of the cross-singular values of H̃(iω/2) for Re = 500, 750, 1000, 1250 are shown in figure 6. The blocks are
color-coded according to the quantity

Ek,j =
σ2

(k,j),1

max(l,m) σ
2
(l,m),1

, (38)

where σ(k,j),1 denotes the leading singular value of the block H̃(k,j)(iω/2) of the harmonic transfer function. Large
values (i.e., darker color) of Ek,j indicate that forcing the flow at frequency (1/2 + j)ω excites a very energetic
response at frequency (1/2 + k)ω. At Re = 500, in figure 6a, we see that self interactions at frequency ω/2 dominate
the input-output behavior, while other cross-frequency interactions are weaker. As we increase the Reynolds number,
we observe that self interactions at ω/2 remain strong, but the cross interaction between ω/2 and its odd harmonics
becomes progressively stronger and unidirectional. By unidirectional we mean that while, for instance, forcing at
3ω/2 excites a very amplified response at ω/2, the converse is not true.
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FIG. 5. Panel (a) shows the first singular value of the harmonic transfer function H̃(iγ) (37) as a function of γ for four
different Reynolds numbers Re = 500, 750, 1000, 1250. Panel (b) shows the first singular value of the mean-based transfer

function R̃(iγ) (37) as a function of γ for four different Reynolds numbers Re = 500, 750, 1000, 1250.
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FIG. 6. For Reynolds numbers Re = 500, 750, 1000, 1250, we plot the quantity Ek,j defined in (38).

The information contained within these plots sheds light on the reason why the harmonic transfer function H̃(iω/2)

exhibited larger peaks in its singular value compared to the mean-based transfer function R̃(iω/2) (see figures 5a and

5b). In particular, while the peak in R̃(iω/2) is symptomatic of strong self interactions at ω/2, the much larger

peaks at H̃(iω/2) are due to the fact that other cross-frequency interactions (i.e., those highlighted in figure 6)
are contributing the input-output dynamics of the flow. We also offer the conclusions drawn from figure 6 as an
explanation for the observations made in [11], where the authors observed how low-amplitude noise could easily
trigger vortex pairing even in linearly-stable configurations. First and foremost, we remark that paired vortices are
energetic flow structures that oscillate at frequency ω/2, and we also recall that a noisy signal has frequency content
across the entire frequency spectrum. Given the information in figures 6b through 6d, it becomes clear that the flow
amplifies many frequencies from the spectrum of the noisy forcing profile, and it selectively injects energy into flow
structures with frequency ω/2. In other words, a non-trivial amount of the energy of the noisy forcing profile gets
transferred to flow structures at frequency ω/2, and we therefore observe vortex pairing.

In order to better understand how the sensitivity of the flow varies as a function of the Reynolds number, it is
instructive to look at the so-called input modes (i.e., the first right singular vector) of the harmonic transfer function
and of the mean-based transfer function. These are shown in figures 7 and 8 for Reynolds numbers Re = 500 and
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FIG. 7. On the left we show the vorticity field from the ω/2-, 3ω/2- and 5ω/2-entries of the first right singular vector (i.e.,

the first input mode) of H̃(iω/2) at Re = 500. The right panels are the analog of the left ones for the mean-based transfer

functions R̃(iω/2), R̃(i3ω/2) and R̃(i5ω/2). The colorbar is not shown on the right because these frequencies are decoupled
and the modes are scaled arbitrarily.

Re = 1250, respectively. In particular, on the left-hand side panels we show the vorticity fields from the entries ω/2,

3ω/2 and 5ω/2 entries of the first input mode of H̃(iω/2). On the right-hand side panels we show the vorticity field

from the first right singular vector of the mean-based transfer functions R̃(iγ) evaluated at γ = ω/2, 3ω/2, 5ω/2. It
is worth recalling that the structures in the left-hand side panels (i.e., those associated with the harmonic transfer
function) are spatially- and temporally-coherent since they are coupled to one another via the base flow. On the
other hand, structures associated with the mean-based transfer function are temporally decoupled, so their relative
magnitude is arbitrary. Comparing these two sets of figures allows us to draw several conclusions regarding the
amplification mechanisms of the flow under consideration. First, we observe that at low Reynolds numbers, there is
no substantial qualitative difference between the mean-based and harmonic modes at low frequencies. This suggests
that the amplification mechanisms are primarily driven by self interactions via the mean flow. This can also be
inferred from the cross-frequency plot in figure 6a, where we see that the input-output dynamics are dominated by
self interactions of structures at frequency ω/2. Conversely, at higher Reynolds numbers, we see that the mean-based
and harmonic input structures are qualitatively different at all frequencies. This is most likely due to the fact that
cross-frequency interactions (see, e.g., figure 6d) start dominating the input-output dynamics of the flow and the
temporal mean no longer provides qualitatively meaningful information regarding the dynamics of the flow. It is also
useful to observe that as the Reynolds number is increased, the spatial support of the input modes becomes more
concentrated near the shear layer at r = 1/2 and 0 ≤ z / 2.

C. The driving mechanism behind vortex pairing: case study at Re = 1000 and Re = 1250

In this section we explore the driving mechanism behind vortex pairing, and in particular, we show that this
nonlinear phenomenon is driven primarily by a linear mechanism. Specifically, although nearly all perturbations of
this flow lead to vortex pairing [11], we show that if one projects out the component of the forcing aligned with the
leading input mode of the harmonic transfer function at the pairing frequency, then no pairing is observed.

We consider Re = 1000 and Re = 1250, and we let ψ̂ =
(
. . . , ψ̂(−1+1/2)ω, ψ̂(0+1/2)ω, ψ̂(1+1/2)ω, . . .

)
denote the first

right singular vector (i.e., the optimal input mode) of the harmonic transfer function H̃(iω/2). We remark that, at

Re = 1250, the vorticity fields from the Fourier coefficients ω/2, 3ω/2 and 5ω/2 in ψ̂ are shown in the left-hand side

panels of figure 8. Similarly, we let ξ̂ω/2 denote the first right singular vector of the mean-based transfer function

R̃(iω/2). The vorticity field corresponding to this mode at Re = 1250 is shown in the top right panel of figure 8. We

now demonstrate that, for this flow, the spatio-temporal signal defined by ψ̂ drives the vortex-pairing mechanism. In
order to do so, we perform two numerical experiments at each Reynolds number.
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FIG. 8. Analog of figure 7 for Re = 1250.

1. In the first numerical experiment, we first embed ξ̂ω/2 into a vector ξ̂ =
(
. . . , 0, ξ̂−ω/2, ξ̂ω/2, 0, . . .

)
with the

same dimension as ψ̂, and we scale ξ̂ so that ‖ξ̂‖E = ε. Here, the subscript E denotes the Euclidean norm, since

the weight W is already accounted for in the definition of R̃ in (37). We then compute the nonlinear forced
response of the Navier-Stokes equation to the forcing input

ξ(t) =
∑

α∈Ωω/2

ξ̂αe
iαt = 2 Real(ξ̂ω/2e

iωt/2). (39)

2. In the second numerical experiment, we project out the component of ξ̂ in the direction of ψ̂ according to

ξ̂⊥ = ξ̂ − ψ̂
〈
ξ̂, ψ̂

〉
E
, (40)

and then we scale the resulting vector ξ̂⊥ so that ‖ξ̂⊥‖E = ε. Finally, we compute the nonlinear forced response
of the Navier-Stokes equation to the forcing input

ξ⊥(t) =
∑

α∈Ωω/2

ξ̂⊥,αe
iαt. (41)

In other words, in the first experiment we compute the nonlinear response of the flow to a 2T -periodic forcing input

that has a non-zero component along the direction ψ̂. It is worth mentioning that, at both Reynolds numbers, the

projection of the unit vector in the direction of ξ̂ onto ψ̂ is approximately 0.77. In the second experiment we compute

the nonlinear response to a 2T -periodic input that has no component along ψ̂. In both cases, the forcing inputs
are normalized to have the same magnitude ε. The nonlinear response is computed by integrating the Navier-Stokes
equations to time t = 40T with initial condition given by the base flow at time t = 0. The results are shown in figures 9a
and 9b for Re = 1000 and ε = 5×10−3. Figures 9c and 9d show the analog for Re = 1250 and ε = 10−3. Remarkably,

in both cases we see that if the forcing input has no component along the direction of ψ̂ then no vortex pairing is

observed. We must therefore conclude that vortex pairing is triggered by the component of ξ̂ along the direction of ψ̂.

In other words, the spatio-temporal signal defined by ψ̂ drives the pairing mechanism. The implications of this result
are far-reaching. First and foremost, it means that a fundamentally nonlinear phenomenon such as vortex pairing is
driven by a linear mechanism. Secondly, vortex pairing is driven by the exchange of energy between the unsteady
structures in the base flow and the perturbations, and a single input mode seems to be responsible for nearly all
the energy exchange. By contrast, if it were driven solely by the exchange of energy between the perturbations and

the temporal mean then the mean-based input mode ξ̂ would be perfectly aligned with the harmonic input mode ψ̂.
Finally, we wish to stress the fact that this information can be used to develop control strategies. In fact, we have just
demonstrated that if one wished to suppress vortex pairing, then one would have to design a controller that rejects

disturbances that align with ψ̂.
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FIG. 9. In panels (a) and (b) we show the vorticity field from the nonlinear response to inputs (39) and (41), respectively, at
time t = 40T , Re = 1000 and forcing amplitude ε = 5× 10−3. Panels (c) and (d) show the analog for Re = 1250 and forcing
amplitude ε = 10−3. The colorbar is shown in figure 4a.

VI. CONCLUSION

We presented an extension of the harmonic resolvent framework to study the dynamics of subharmonic perturbations
about a time-periodic base flow. In particular, by linearizing the Navier-Stokes equations about a T -periodic base
flow and by seeking perturbed solutions with period nT , one may define a family of input-output operators H(iγ)
parameterized by a scalar γ ∈ [0, ω/2], where ω = 2π/T . The operator H(iγ) is the harmonic resolvent operator over
the frequency set Ωγ = γ + ω{. . . ,−1, 0, 1, . . .}, and it is closely related to the harmonic transfer function discussed
in [22]. When γ = 0 (i.e., when the perturbations have the same period as the base flow), we recover the operator
discussed in [8] (however, here we have used a slightly different projection operator). The singular value decomposition
of H(iγ) at different values of γ can be used to study the input-output properties of the flow in the proximity of the
base flow. Moreover, since H(iγ) accounts for the first-order triadic frequency coupling between the perturbations
and the base flow, it is also possible to study the input-output dynamics of the flow at selected frequencies of interest.
We demonstrated this method on a simple toy model and then we used it to shed light on the driving mechanism
behind vortex pairing in an incompressible forced axisymmetric jet.
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Appendix A: Computing the vectors v̂ and û

In this appendix we show how to compute the vectors v̂ and û that define the oblique projection P̂ in (18). As

discussed in section II C, when the base flow Q(t) and its phase shift Q(t + ε) satisfy (1), T̂ is singular with its
nullspace spanned by the phase shift direction F0(dQ(t)/dt). However, truncation errors and numerical errors are

likely to perturb this singularity so that, in practice, the operator T̂ is not singular to machine precision. Here we
seek a procedure to calculate v̂ and û that is independent of the singular/non-singular nature of the matrix T̂ . The
choice of v̂ is very natural: since we are ultimately interested in removing the direction of phase shift, it is appropriate
to simply define v̂ := F0(dQ(t)/dt). That is, we let v̂ be the vector containing the Fourier coefficients of the time-

derivative of the base flow. When T̂ is exactly singular, v̂ spans the nullspace of T̂ . When T̂ is not exactly singular
due to numerical and truncation errors we have ‖T̂ v̂‖ � 1.

Computing the vector û is slightly more involved. As discussed in section II C, when T̂ is singular we would like
to choose û so that T̂ ∗û = 0. When T̂ is not exactly singular, we seek an appropriate û such that ‖T̂ ∗û‖ � 1. Both
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scenarios may be handled by letting û be the solution of the optimization problem below

û = arg min
q̂

1

2
‖T̂ ∗q̂‖2

s.t. 〈q̂, v̂〉 = 1.

(A1)

The equality constraint is chosen such that û and v̂ may be used to define an oblique projection. It can be shown
that the optimal solution û solves the problem

T̂ T̂ ∗û = λv̂

û∗v̂ = 1,
(A2)

where λ ≥ 0 is a Lagrange multiplier. In matrix form, we may write the system of equations above as[
T̂ T̂ ∗ −v̂
v̂∗ 0

] [
û
λ

]
=

[
0
1

]
. (A3)

Thus, the desired û is obtained by solving (A3). The structure of (A3) is reminiscent of the method discussed in [26]
for the computation of Landau constants. It is instructive to observe that the augmented matrix in (A3) is invertible

even when T̂ is singular with its nullspace spanned by v̂. It is also reassuring to observe that when T̂ is singular, the
optimal solution û lies in the nullspace of T̂ ∗, and the objective function attains its minimum at zero.

Appendix B: Computing with the harmonic resolvent H(iγ)

In this appendix we discuss the efficient computation of the singular value decomposition (SVD) of the operator

H(iγ) in (19). Computing the SVD of H̃(iγ) in (26) may be done in an analogous fashion. Henceforth, we assume
that all the infinite-dimensional linear operators introduced in section II have been truncated, and they may therefore
be understood as matrices. The SVD is computed using one of the randomized SVD algorithms in [27], and it requires
solving linear systems of the form (

iγI − T̂Σ

)
q̂ = f̂ ,

(
iγI − T̂Σ

)∗
ẑ = ĝ, (B1)

where f̂ , q̂ ∈ Σ := Range(P̂ ) and ĝ, ẑ ∈ Range(P̂ ∗), and P̂ is defined in (18). It is straightforward to verify that

T̂Σ = T̂ P̂ = P̂ T̂ P̂ , (B2)

since Σ is an invariant subspace of T̂ . The linear systems in (B1) are not particularly well-suited for computation

since T̂Σ is a dense matrix. Instead, we would like to obtain the solutions q̂ and ẑ in terms of T̂ , which is a very
sparse matrix that can be assembled and stored in memory. Substituting T̂Σ = T̂ P̂ in the first linear system (B1),

using the fact that P̂ = I on Σ, and observing that f̂ = P̂ f̂ (since f̂ ∈ Σ), we obtain(
iγI − T̂

)
P̂ q̂ = P̂ f̂ . (B3)

In a similar fashion, the second linear system in (B1) may be written in the form(
iγI − T̂

)∗
P̂ ∗ẑ = P̂ ∗ĝ. (B4)

To solve (B3) for q̂ when f̂ is a random vector (as in the randomized SVD algorithm mentioned above), we proceed
as follows:

• Compute f̂Σ = P̂ f̂ . This operation is performed without assembling P̂ explicitly. The action of P̂ on a vector
may be easily obtained using vector-vector products (see definition of P̂ in (18) and appendix A).

• Solve (iγI−T̂ )q = f̂Σ for q. This can be done either iteratively or via direct solution using an LU decomposition.

We recommend the use of MUMPS for large-scale LU decompositions. When γ = 0 and T̂ is exactly singular,
an LU decomposition cannot be performed, but Krylov-based methods will have no problems finding a solution,

since f̂Σ ∈ Σ ⊆ Range(T̂ ).
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• Compute q̂ = P̂ q. This step is not necessary if (iγI− T̂ ) is full-rank, since fΣ ∈ Σ so q must also lie in Σ (since

Σ is an invariant subspace of T̂ ). However, it might be useful to perform this operation anyways, in order to

have q̂ ∈ Σ to machine precision. It is important to observe that this step is necessary if γ = 0 and T̂ is exactly
singular, since the solution to (B3) is not unique and Krylov-based solvers may find one with some component

along the nullspace of T̂ (which is contained in the nullspace of P̂ ).

Solving (B4) may be done in a similar way.
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