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This article develops a leaky-dielectric model to study the axisymmetric breakup of an electrified
jet, using the phase field method to treat interfacial phenomena. The model is used to analyze the
breakup in a wide range of the Taylor number (Γ), the Ohnesorge number (Oh) and the wavenumber
relevant to electrosprays operating in the cone-jet mode. The phase field technique accurately
captures the behavior of the jet after pinch-off and predicts the formation of primary and satellite
droplets. The numerical results are compared with existing experimental and numerical studies,
extending them to account for the formation of sub-satellite droplets. It is found that for highly
viscous jets, Oh � 1, the number of sub-satellite droplets generated increases with the Taylor
number when compared to low viscous jets, hence widening the size distribution of droplets. At
fixed Γ and Oh the primary droplets are charged to an approximately constant ratio of the Rayleigh
charge limit, regardless of the wave number. Furthermore, the primary droplets are charged below
the Rayleigh limit for Γ . 1.5, and charged above the Rayleigh limit when Γ & 1.5. Thus, most
primary droplets are expected to be unstable at Taylor numbers exceeding 1.5.

Electrosprays operating in the cone-jet mode [1, 2] are
characterized by the emission of a stationary and long
jet from the vertex of a liquid meniscus, resulting from
the interplay between an imposed electric field, the fluid
dynamics of the liquid, and its surface tension. The nat-
ural instability of the jet is suppressed by the acceler-
ating effect of the electric field, but once the latter be-
comes sufficiently weak away from the vertex, the jet be-
comes unstable and breaks into charged droplets [3, 4].
The axisymmetric breakup of the stationary jet produces
droplets characterized by a narrow distribution of diame-
ters with an average that depends on the physical proper-
ties of the liquid and its flow rate. Various technological
applications benefit from such fine sprays [5, 6], making
the study of the breakup not only of fundamental but
also of practical interest. The problem of destabilization
and breakup of electrified jets is usually studied either
using linear stability analysis (small deformation), or a
non-linear numerical approach (large deformation).

Linear stability analyses consider an infinitely long
cylindrical jet of radius Rj , and impose a sinusoidal per-
turbation on the surface so that its position can be de-
fined as R = Rj(1 + εest+ikz/Rj ), where s is the growth
rate of the perturbation, k its specified wavenumber, and
ε an arbitrarily small number. An arbitrary perturbation
can be expressed as an infinite series of these k-normal
modes and, since the system is linear, the response can
be computed with the individual solutions for each nor-
mal mode. The basic goal of the analysis is to find the
range of wavenumbers for which the growth rate is pos-
itive, i.e. which make the jet unstable. Furthermore the
wavenumber with fastest growth rate yields the diameter
of the droplet most likely to be produced by the breakup,
or modal droplet. Basset [7] analyzed the breakup of an
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equipotential and inviscid jet subjected to axi-symmetric
perturbations. Melcher [8] extended Basset’s analysis by
including both axisymmetric and non-axisymmetric per-
turbations. Saville [9] included viscosity into the equipo-
tential problem, and found that when the viscosity is
sufficiently high, the axisymmetric instability modes are
damped and non-axisymmetric modes dominate, leading
to jet whipping [9, 10]. Mestel [11, 12] relaxed the as-
sumption of equipotential breakup and investigated the
effect of surface charge and tangential electrical stresses.
López-Herrera et al. [13] used linear stability analysis
to study the deformation and breakup of jets with fi-
nite electrical conductivity, and the role of a downstream
electrode. Wang [14] studied the breakup of jets with
finite electrical conductivity using both linear stability
and non-linear analysis for jets surrounded by another
viscous medium in the Stokes limit.

Linear stability analysis can only probe the initial
stages of the breakup, and the study of phenomena de-
pendent on large deformation such as the generation of
satellite droplets requires the use of non-linear numeri-
cal calculations. Setiawan and Heister [15] formulated a
non-linear boundary element algorithm (BEM) to study
the axisymmetric breakup of an inviscid and equipoten-
tial jet. They considered high electrification levels and
observed the formation of satellite droplets along with
primary droplets. They calculated pinch-off times and
the sizes of primary and satellite droplets. López-Herrera
et al. [16] extended the model of Lee [17] to study the
breakup of a viscous and equipotential jet at low elec-
trification levels and low-moderate viscosities. They cal-
culated the sizes and charges of the primary and satel-
lite droplets for different wavenumbers. The numerical
results were found to be in good agreement with exper-
imental data [18]. Collins et al. [19] studied the equipo-
tential breakup of a jet subjected to a radial electric
field, for wide ranges of electrification and viscosity lev-
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els. They showed that as the level of electrification in-
creases, the size of the satellite droplet increases mono-
tonically, thereby reducing the size of primary droplets.
They also showed that for a fixed electrification level,
the size of satellite droplets decreases as the viscosity
increases, a trend also observed in the experiments of
López-Herrera and Gañán-Calvo [18]. For high elec-
trification, the charges carried by primary and satellite
droplets can exceed the Rayleigh [20] stability limit, lead-
ing to the possibility of the subsequent breakup of these
droplets. Collins et al. [19] also showed that satellite
droplets are produced for electrified jet’s in the Stoke’s
limit. This feature is not observed in uncharged jets,
but has been reported when the jet is surrounded by a
viscous medium [21, 22]. Wang and Papageorgiou [23]
studied the non-linear breakup of a perfect conducting
viscous thread surrounded by another viscous medium at
zero Reynolds number. Nie et al. [24] developed a leaky-
dielectric electro-hydrodynamic (EHD) model to study
the role of different charge relaxation mechanisms on the
pinch-off and formation of satellite droplets. A distinc-
tion must be made between the implementation of the
equipotential condition by several authors. It is always
possible to impose a constant potential on the surface of
the jet, e.g. as in [19]. In this case the potential field
inside the jet is constant and does not need to be re-
solved, but the total charge in the simulated section of
the jet is not conserved. On the other hand, one can en-
sure quasi-equipotentiality by including a conservation
of charge equation in the model, imposing an electric re-
laxation time much smaller than the breakup time, and
solving for the potential inside the jet. This approach en-
sures conservation of charge and therefore is more phys-
ical. López-Herrera and Gañán-Calvo [18] and Li et al.
[25] discuss in detail these two approaches.

Few non-linear models utilize the Volume of Fluid or
the Level Set methods to study the deformation and
breakup of electrified jets. These phase field methods
are useful to reproduce the formation of additional sub-
satellite droplets after the first pinch-off. Eck et al.
[26] developed a phase field model for electrowetting.
They coupled the Navier-Stokes equation and electro-
static charge transport equations with the Cahn-Hilliard
phase field equations. For the EHD system in two and
three dimensions, they proved the existence of weak solu-
tions for the governing dynamics of electrowetting. Lak-
dawala et al. [27] formulated a dual grid level set method
to study the breakup of conducting liquid threads of low
viscosity and electrification level. They showed that, for
sufficiently long perturbations, sub-satellite droplets may
also form along with the primary and satellite droplets.
López-Herrera et al. [28] developed a volume of fluid
model to study the role of electrokinetic effects on the
deformation and breakup of conducting jets when the
breakup time is comparable or smaller than the diffusion
time scale.

Existing non-linear analyses do not capture the liquid
threads formed after pinch-off and which may generate

sub-satellite droplets [19, 23, 29, 30]. Moreover, most
existing non-linear analysis have imposed the constant-
potential condition and usually study jets under low or
moderate levels of electrification. Motivated by this,
the present article develops a phase field, leaky-dielectric
EHD model to study the axisymmetric breakup of an
electrified jet. The model does not consider the effect
of an imposed axial electric field, which is negligible in
the breakup region of most cone-jets [16, 18, 31, 32], and
is not applicable to sinuous or whipping instabilities and
ramified jet breakups [5, 33]. The remainder of the article
is organized as follows: Section I presents the description
of the model along with the numerical procedure. Section
II establishes the connection between the sets of dimen-
sionless numbers parametrizing the breakup and cone-
jets. In Section III the numerical solution is validated
with existing experimental and numerical results (III A),
and the breakup is investigated for selected wavenumbers
and broad ranges of the Ohnesorge and Taylor numbers
(III B and III C). Concluding remarks are presented in
Section IV.

I. PROBLEM FORMULATION AND
NUMERICAL SETUP

For the numerical calculations we assume an infinitely
long jet subjected to a small periodic perturbation with
a given wavenumber, and follow the evolution of a sec-
tion of the jet using periodic boundary conditions. This
framework follows the linear analysis technique, and
is commonly used to study the non-linear, long defor-
mation problem (for reference see López-Herrera et al.
[13, 16], López-Herrera and Gañán-Calvo [18], Collins
et al. [19], Nie et al. [24], Lakdawala et al. [27], Lpez-
Herrera et al. [34]). Figure 1 depicts the schematic of the
problem, modeled in cylindrical {z, r} coordinates. The
domain contains a liquid jet of length λ (Fluid 2), sepa-
rated from a surrounding liquid (Fluid 1) by an interface
r = S(z, t). Fluid 1 is further enclosed by a cylindrical
electrode of radius Re. In its unperturbed state the jet
has a radius Rj and a net charge q distributed homo-
geneously on its surface, inducing a normal electric field
Eno

Eno =
q

2πε0Rjλ
. (1)

To study the stability of the system a small sinusoidal
perturbation is added to the position of the interface

S(z, 0) = Rj

(
1 +Acos

kz

Rj

)
, k =

2πRj
λ

(2)

In the numerical simulations we use A = 0.015 and Re =
12Rj . The relevant physical properties of the fluids are
the electrical conductivity Ki, relative permittivity εi,
viscosity µi, and density ρi, as well as the surface tension
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FIG. 1. Schematic of the problem and computational domain.

γ of the interface. The subscript i indicates either Fluid
1 or 2.

The interface between the jet and the outer medium
is modeled as a diffuse interface using the phase field
method [35]. A continuous phase variable φ is defined
throughout the domain, varying from -1 to 1 between the
bulks of Fluid 1 and Fluid 2 respectively, and fulfilling
the Cahn-Hilliard equation [35–37]. The phase variables
changes rapidly across the narrow, yet finite, thickness of
the diffuse interface, so that the surface where φ = 0 de-
fines the mean interface S(z, t). The physical properties
are defined as continuous functions of φ throughout the
domain. In particular the density, the viscosity and the
relative electrical permittivity are defined as the weighted
arithmetic mean of φ, whereas, the electrical conductiv-
ity is defined as its weighted harmonic mean [38–40]:

ρ = ρ1(
1− φ

2
)+ρ2(

1 + φ

2
), µ = µ1(

1− φ
2

)+µ2(
1 + φ

2
),

(3)

ε = ε1(
1− φ

2
)+ε2(

1 + φ

2
),

1

K
=

1

K1
(
1− φ

2
)+

1

K2
(
1 + φ

2
).

(4)
Fluid 1 consists of vacuum space, i.e. µ1 and ρ1 are

zero while ε1 = 1; we set its electrical conductivity to a
very small value, K1 = 10−12S/m. The model solves
for the velocity u, pressure p, and volumetric charge
ρe, the electric potential V (the electric field is simply
E = −∇V ), and the phase field variable φ as func-
tions of position and time. These field variables ful-

fill the equations of conservation of mass, momentum
and charge, the Poisson equation, and the Cahn-Hilliard
equation. They are written in dimensionless form us-

ing lc = Rj , tc =
√
ρ2R3

j/γ, vc = lc/tc, pc = ρ2v
2
c ,

Ec = Eno, and ρe,c = ε0Eno/Rj as the characteristic
scales for length, time, velocity, pressure, electric field
and volumetric charge respectively:

∇ · u = 0, (5)

∂( ρρ2u)

∂t
+∇ · ( ρ

ρ2
uu) =−∇p+Oh∇ · µ

µ2
(∇u +∇uT )

+ΓFes + Fst, (6)

∂ρe
∂t

+∇ · (ρeu) =
1

Πt
∇ · ( K

K2
E), (7)

ε∇2V +∇V ·∇ε = −ρe, (8)

∂φ

∂t
+u ·∇φ =

1

Pe
∇2ψ, ψ =

1

ξ
(φ2− 1)φ− ξ∇2φ, (9)

where Fes is the electric body force [41]

Fes =∇ ·Te =∇ · ε(EE− 1

2
I|E|2) = ρeE−

1

2
∇εE ·E,

(10)
and Fst is the surface tension body force [36, 37]

Fst = ψ∇φ. (11)

ξ in the Cahn-Hilliard equation (9) is the dimensionless
interface thickness parameter, which provides a measure
of the sharpness of the interface. In the sharp interface
limit, the diffuse interface thickness goes to zero. In prac-
tice, the phase variable and the velocity are independent
of the thickness parameter when the latter is sufficiently
small, ξ . 0.01 − 0.03 [36]. Unlike the classical leaky-
dielectric formulation of Saville [42], our model includes
a conservation equation for the volumetric charge that
retains convective and conduction terms, i.e. we do not
require the electrical relaxation term to be much smaller
than the characteristic time of the flow, and uses the vol-
umetric charge as the source term in the Poisson equa-
tion for the electric potential. On the other hand the
model follows the leaky-dielectric convention of omitting
electrokinetic effects, which are replaced by a physical
property, namely the electrical conductivity. The clas-
sical formulation of the leaky-dielectric model has been
demonstrated to be accurate in the description of cone-
jets [43], a problem similar to the present one.
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Equations (5)-(11) include five dimensionless numbers:
Oh, Γ, Πt, Pe and the relative permittivity of the jet ε2.
The Ohnesorge number is the ratio between the viscous
time scale tµ = µ2Rj/γ, and the characteristic time scale
tc

Oh =
µ2√
γρ2Rj

, (12)

and measures the relative importance of viscous and cap-
illary stresses. The Taylor number measures the rela-
tive importance between the electrostatic and capillary
stresses

Γ =
εoE

2
noRj
γ

. (13)

Γ = 2 indicates that the capillary and electrostatic
stresses fully balance each other in the baseline jet, i.e.
the pressure jump across the jet’s surface is zero. Πt is
the ratio between the characteristic time scale and the
electrical relaxation time of Fluid 2

Πt =
te
tc

=
εo/K2√
ρ2R3

j/γ
. (14)

Πt is indicative of the speed with which the charge in the
bulk of Fluid 2 migrates to the surface as the jet deforms.
Finally, the Peclet number measures the advection rate
to the diffusion rate in the Cahn-Hilliard equation:

Pe =
R3
j

ςγtc
. (15)

ς is the mobility parameter which we treat as a constant,
such that for all the numerical cases considered in the
current study ς = (Rjξ)

2/pctc [44, 45]. Therefore,
alternatively we can define Pe = 1/ξ2.

The problem is axisymmetric and since we consider an
infinitely long jet, we apply periodic boundary conditions
at z = 0 and z = λ. The boundary conditions for the
electrical, hydrodynamic and phase field problems are:

ez ·E(r, 0, t) = 0, ez ·E(r, λ, t) = 0, V (Re, z, t) = 0,
(16)

ez · u(r, 0, t) = 0, ez · u(r, λ, t) = 0, (17)

∂(er · u(r, 0, t))

∂z
= 0,

∂(er · u(r, λ, t))

∂z
= 0, (18)

ez ·∇φ = 0 at z = 0, λ, φ(Re, z, t) = −1. (19)

Along the symmetry axis (r = 0) the boundary condi-
tions on the velocity vector are:

er · u(0, z, t) = 0,
∂(ez · u(0, z, t))

∂r
= 0. (20)

er and ez represent the unit vectors in the radial and the
axial directions.

We solve the electro-hydrodynamic and phase field
equations using the commercial COMSOL Multiphysics
software [46]. Initially, a homogeneous volumetric charge
ρeo = 2 in Fluid 2 is allowed to relax to the perturbed
interface (2) by only solving the electric problem (u ≡ 0).
Once the charge is relaxed, the full set of equations
is solved yielding the evolution of the jet and eventual
breakup into droplets. The time dependent simulations
are solved using a parallel sparse direct solver, MUMPS
with Backward Differential Formulation (BDF) for run-
ning the time stepping. In all simulations we use uni-
form meshing for the jet with node spacing h, such that
1/h = 33. The thickness parameter for the phase field
model is set such that ξ = 0.5h. We have verified that
for ξ = 1/100 and ξ = 1/66, the numerical results are
independent of the grid size. The simulations are done
at fixed values of Πt, Pe and ε2, and varying the Taylor
number, the Ohnesorge number, and the wavenumber to
study the effects of these parameters. We set Πt = 0.02
and ε2 = 12.2, which are the values associated with the
ionic liquid EMI-Im and whose cone-jets have been char-
acterized in detail [47]; the small Πt value is typical of
cone-jets of highly conducting liquids, suggesting that
under these electrospraying conditions the charge in the
bulk rapidly relaxes to the surface and the breakup is
quasi-equipotential. We set Pe = 4356, which is equiv-
alent to using a thickness parameter ξ = 1/66. In Ap-
pendix A we validate conservation of charge within the
simulation domain while letting the jet deform and break
into droplets. The maximum variation is within 1%-1.7%
of the total charge.

II. CONNECTION BETWEEN THE BREAKUP
MODEL AND CONE-JETS OF HIGHLY

CONDUCTING LIQUIDS

The solution of the breakup model is a function of Γ,
Oh and Πt. In order to apply the model to electrosprays,
it is useful to express these dimensionless numbers in
terms of those commonly used in the parametrization
of cone-jets, namely the dimensionless flow rate ΠQ and
the electric Reynolds number ReK :

ΠQ =
ρ2K2Q

γε0
, (21)

ReK =

(
ρ2εoγ

2

µ3
2K2

)1/3

. (22)

ReK is a grouping of physical properties, while ΠQ also
contains the flow rate Q. Both sets of dimensionless num-
bers can be related using well-established scaling laws for
the electric current I of a cone-jet and the radius of the
jet at the breakup [5]
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FIG. 2. a) Evolution of the jet for Oh = 0.079, Γ = 0.9 and k = 0.7, the axial axis is normalized by λ; b) radii of primary
and satellite droplets, comparison between the solution of the phase field model (PF) and the experimental and numerical data
(LHGC) of López-Herrera and Gañán-Calvo [18] for Oh = 0.079, Γ = 0.9; c) charge of primary droplets; and d) charge of
satellite droplets. Charges are normalized with the charge of the droplet at the Rayleigh limit.

I ∼= α (γK2Q)
1/2

= α

(
ε0γ

2

ρ2

)1/2

ΠQ
1/2, (23)

RJ ∼= β

(
ρ2εoQ

3

γK2

)1/6

= β
µ2
2

ρ2γ
ReK

2ΠQ
1/2, (24)

and by noting that the dominant mechanism for charge
transport in the jet is convection of the surface charge
σ, which makes it possible to estimate the electric field
normal to the surface of the jet

Eno =
σ

εo
=

RJI

2εoQ
∼=
αβ

2

ρ
1/2
2 γ

εo1/2µ2
ReK

−1. (25)

The factors α and β are dimensionless proportionally
constants relating the current of a cone-jet with the char-
acteristic current (γK2Q)1/2, and the radius of the jet at
the breakup with the characteristic radius of the cone-

to-jet transition region,
(
ρ2εoQ

3/γK2

)1/6
. They are rel-

atively insensitive to the operational conditions of elec-
trosprays in the cone-jet mode. The factor α is easily
computed from experimental data: α = 2.6 fits well data
for many liquids in a wide range of operational condi-
tions [5], and has been reproduced by numerical models

[43]. The factor β is more difficult to obtain, because
it requires measuring radii of jets that often are submi-
crometric. Recently, values for highly conducting liquids
have been inferred [47, 48] using an experimental tech-
nique developed by Gamero-Castaño [49]. For example,
0.27 ≤ β ≤ 0.31 in cone-jets of EMI-Im in the current
range 230 nA ≤ I ≤ 450 nA, at 21 oC emitter tempera-
ture [47]. Equations (12) - (14), (24) and (25) yield the
relationship between the two sets of dimensionless num-
bers:

Γ ∼=
α2β3

4
Π

1/2
Q , (26)

Oh ∼=
(
βΠ

1/2
Q Re2K

)−1/2

(27)

Πt =
(
βΠ

1/2
Q

)−3/2

, (28)

making it possible to estimate the ranges of Γ, Oh and
Πt of cone-jets.
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FIG. 3. a) Evolution of the jet for Oh = 0.271, Γ = 0.9 and k = 0.7, the axial axis is normalized by λ; b) radii of primary
and satellite droplets, comparison between the solution of the phase field model (PF) and the experimental and numerical data
(LHGC) of López-Herrera and Gañán-Calvo [18] for Oh = 0.271, Γ = 0.9; c) charge of primary droplets (PD); d) charge of
”Satellite Droplet” SD; (e) radius of the satellite (S) and sub-satellite (S1) droplets; and (f) charge of the satellite (S) and
sub-satellite (S1) droplets. Charges are normalized with the charge of the droplet at the Rayleigh limit.

III. RESULTS AND DISCUSSIONS

A. Validation of the Phase Field Method

We validate the phase field model with the numeri-
cal results and experiments reported by López-Herrera
and Gañán-Calvo [18]. These authors measure the sizes
and charges of primary and satellite droplets resulting
from imposed axisymmetric perturbations with different
wavenumbers, 0.5 < k < 0.9, at moderate and small
Taylor and Ohnesorge numbers, Γ ≤ 0.9 and Oh ≤ 0.271,
and nearly equipotential conditions (Πt ∼ 3×10−5). Fig-
ure 2 shows the solution of our model and the compari-

son with [18], for Oh = 0.079 and Γ = 0.9. Throughout
the remainder of the article we use the following nomen-
clature for the droplets: primary droplet, PD, refers to
the larger droplets formed at z = 0 and z = λ; satellite
droplet SD refers to the droplet that would contain the
fluid and charge separated from the primary droplets by
the initial pinch-off; this section of fluid may split into
two or more droplets if there is a second pinch-off, pro-
ducing a larger satellite droplet centered at z = λ/2 and
referred to as S, and smaller sub-satellite droplets of de-
creasing size referred to as S1, S2 ... formed between
the PD and the S droplets. Figure 2(a) shows the evolu-
tion of the jet for k = 0.7, leading to the formation of a
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satellite droplet in addition to the primary droplet. The
shape of the satellite droplet oscillates due to the slow
viscous dissipation of its internal flow. Figure 2(b) com-
pares the radii of the primary and satellite droplets. The
radius Rd of a droplet is deduced from its volume right
after pinch-off. The agreement between our calculations
and the experiments and calculations of López-Herrera
and Gañán-Calvo [18] is excellent. As the wavenumber
increases the sizes of the primary and satellite droplets
decrease monotonically, a trivial trend resulting from the
volume of the jet yielding both droplets, 2π2R2

j/k, and
the volume of the satellite being a small fraction of it.
Figures 2(c) and 2(d) compare the charge of the pri-
mary and satellite droplets expressed as a fraction of the
Rayleigh limit,

QRay = 8π
√
εoγR3

d. (29)

When the charge of a droplet is above the Rayleigh limit,
the droplet becomes unstable and fragments into smaller
droplets. The primary droplet is charged to a nearly
constant fraction of the Rayleigh limit regardless of the
wavenumber, while in the case of the satellite droplet
this ratio increases modestly for decreasing wavenumber.
Collins et al. [19] also found this trend in their equipo-
tential study.

Figure 3 reproduces the analysis in Fig. 2 under more
viscous conditions, Oh = 0.271, and equal electrification
level, Γ = 0.9. Figure 3(a) shows that after the initial
pinch-off separating the primary droplet and the satellite
droplet, the retracting threads connected to the latter
undergo a subsequent pinch-off that forms sub-satellite
droplets. We observe this for all wavenumbers consid-
ered, 0.55 ≤ k ≤ 0.8. Figure 3(b) compares the radii
of PD and SD droplets. There is again excellent agree-
ment between the phase field model and [18]. Moreover,
the size of the SD droplets is slightly smaller than in
the less viscous breakup. Figure 3(c) shows that the pri-
mary droplets are charged below the Rayleigh limit, al-
though at a slightly higher fraction than for Oh = 0.079;
the SD droplets is now slightly smaller and takes less
charge from the original jet section. In their experimen-
tal study López-Herrera and Gañán-Calvo [18] found that
the SD droplets underwent subsequent breakups, how-
ever, they did not present the charge carried by them
and simply argued that this subsequent breakup was a
consequence of their charge levels exceeding the Rayleigh
limit. Figure 3(d) shows that the SD droplets are indeed
charged above the Rayleigh limit. However, as evident
from Fig. 3(a), this section of the jet resulting from the
first pinch-off splits into additional droplets before it be-
comes spherical, with charges and diameters that can be
quantified. Figure 3(e) depicts the radius of the satellite
droplets S and S1 resulting from the second pinch-off,
and Fig. 3(f) shows their charge levels. Interestingly, the
second pinch-off reduces the charging level of both satel-
lite droplets compared to the original SD droplet, so that
the droplets actually forming remain below the Rayleigh

limit. In summary, previous studies [18, 19] have shown
that the charge carried by the SD droplets increases with
the Ohnesorge number (at constant Taylor number and
wavenumber); the phase field model reproduces this too,
and in addition shows that these SD droplets undergo ad-
ditional pinch-offs during the jet breakup phase, yielding
smaller droplets with charge levels (expressed as a frac-
tion of the Rayleigh limit) smaller than that of the SD
parent droplet. Sections III B and III C will show that for
higher electrification levels the satellite droplets S pro-
duced by the second pinch-off may exceed the Rayleigh
limit.

B. Jet Breakup with Low Viscous Effects

We next study the breakup of jets with reduced vis-
cous effects, Oh = 0.1, at varying levels of electrification
and wavenumbers, 0 ≤ Γ ≤ 3 and 0.5 ≤ k ≤ 1. Figure
4 depicts the evolution of the breakup at representative
Taylor numbers and wavenumbers. For uncharged jets,
Figure 4(a), the jet initially deforms with the radial ve-
locity being negative at z = λ/2. This is because in the
early stages of the deformation, z = λ/2 experiences the
maximum capillary pressure. The pressure difference be-
tween z = λ/2 and z = 0 drives the early deformation of
the jet pushing the fluid towards the ends of the jet sec-
tion. As the deformation proceeds the radial velocity at
z = λ/2 reverses its direction at t = 17 (k=0.5), leading
to the formation of a satellite droplet [19, 27, 33]. Figure
4(b) depicts the deformation and breakup for an electri-
fication level Γ = 1. In this case the reversal in the sign
of the radial velocity of the interface at z = λ/2 occurs
at an earlier stage due to the additional normal electric
stresses acting on the interface, which leads to a greater
bulge at z = λ/2. Subsequently, the jet breaks and forms
satellite droplets larger than in the uncharged breakup.
It is worth noting that for Γ = 0 and Γ = 1, only PD and
SD droplets are formed for all the wavenumbers studied,
i.e. we do not observe subsatellite droplets. Figures 4(c)
and 4(d) depict the deformation and breakup of highly
charged jets (it is worth restating that the electrostatic
stress fully balances the capillary pressure in the nom-
inal jet when Γ = 2). For Γ = 2 and k = 0.5, the
retracting threads formed at the pinch-off undergo an ad-
ditional breakup leading to the formation of sub-satellite
droplets. For Γ = 3 and k = 0.5 the radial velocity re-
versal at z = λ/2 occurs at a much earlier stage due to
the larger electrostatic stresses. The breakup differs in
this case in that the first pinch-off actually happens in
the thread attached to the S droplet, rather than near
the PD droplet. Subsequently and as depicted in the
first row in Figure 4(d), the retracting thread joined to
the primary droplet undergoes a second pinch-off lead-
ing to the formation of an S1 droplet. Therefore highly
charged jets with long wavelengths lead to the formation
of sub-satellite droplets even at low viscosities.

Figure 5(a) depicts the time at the first pinch-off,
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FIG. 4. Evolution of breakups with small viscous effects,
Oh = 0.1, for two wavenumbers k = 0.5 and k = 0.8, and
several electrification levels: a) Γ = 0; b) Γ = 1; c) Γ = 2;
and d) Γ = 3.

which can be regarded as the breakup time. For 0.6 <
k < 1, the breakup time decreases at increasing Tay-
lor number, a trend also observed by Collins et al. [19]
and Lakdawala et al. [27]. Moreover, the wavenumber
with minimum breakup time increases with the Taylor
number, i.e. the modal droplet becomes smaller at in-
creasing electrification level. Figures 5(b) and 5(c) show
the radius of the primary and satellite droplets. At fixed
wavenumber the radius of the primary droplet decreases
at increasing Taylor number because of the earlier rever-
sal in the radial velocity of the interface, which increases

FIG. 5. Results of the phase field model for breakups with
small viscous effects, Oh = 0.1, as a function of the Taylor
number and wavenumber: a) time at first pinch-off; b) radius
of primary droplets; c) radius of S and S1 satellite droplets;
d) charge of the primary droplet relative to its Rayleigh limit;
(e) charge of the S and S1 satellite droplets relative to their
Rayleigh limit; (f) fraction of the total charge carried by the
satellite droplets.

the size of the satellite droplet. Sub-satellite droplets are
not formed at either Γ = 0 or Γ = 1, and start to ap-
pear at Γ = 2 and sufficiently long wavelengths. Figure
5(d) depicts the charge carried by the primary droplet as
a fraction of the Rayleigh limit. As already observed in
Figures 2 and 3, this ratio is relatively independent of the
wavenumber, and increases with the Taylor number. Pri-
mary droplets exceed the Rayleigh limit for Γ & 1.5, an
important result for predicting the stability of primary
droplets in low viscous breakups. Figure 5(e) shows the
charges carried by the satellite droplets. Although sub-
satellite droplets are being formed, the S droplets are
above the Rayleigh limit for Γ ≥ 2 and the longer wave-
lengths. On the other hand the S1 droplets are always
charged below the Rayleigh limit. Finally, Figure 5(f)
shows the fraction of the total charge carried by the satel-
lite droplets.

Figure 6(a) shows the electric potential, with arrows
representing the direction and strength of the electric
field, when the radial velocity of the interface at z = λ/2
becomes zero before reversing its direction, together with
profiles of the radial velocity, axial velocity, potential
and normal component of the electric field along the
surface. The radial velocity at this time displays min-
ima at z = 0.35λ and z = 0.65λ, which starts creating
the curvature for the satellite droplet that will eventu-
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FIG. 6. Electric potential map and radial velocity, axial ve-
locity, potential and normal component of the electric field on
the surface, for Oh = 0.1, Γ = 2 and k = 0.7: a) solution at
t = 13.7 coinciding with zero radial velocity at z = λ/2; b) so-
lution just before pinch-off. c) Electric potential maps before
(t = 16.6), near (t = 16.95), and after (t = 17.9) the second
pinch-off. The last inset shows the maxima of the electric
field.

FIG. 7. Retracting thread and sub-satellite formation process
for k = 0.5, Γ = 2 and Oh = 0.1

ally form. The electric potential along the surface is
nearly constant, i.e. the jet can be regarded equipo-
tential to a good approximation, as should be expected
from the small value of Πt; furthermore the potential has
very slightly dropped from its initial value of 1 at this
point. The electric field on the surface at z = 0.25λ and
z = 0.75λ is partially shielded by the inward bending
of the surface, and hence its normal component displays

FIG. 8. Evolution of breakups with high viscous effects, Oh =
10, for two wavenumbers k = 0.5 and k = 0.8, and several
electrification levels: a) Γ = 0; b) Γ = 1; c) Γ = 2; and d)
Γ = 3.

local minima at these points, while there are local max-
ima at z = 0, λ/2 and λ. Figure 6(b) depicts the same
variables immediately before the first pinch-off. The elec-
tric potential along the surface is slightly lower near the
pinch-off, a feature also observed by López-Herrera and
Gañán-Calvo [18], because the capillary time associated
with the local radius of the surface becomes comparable
to the electric relaxation time. The radial velocity dis-
plays two distinct minima, which later separate the pri-
mary and sub-satellite S1 droplets from the satellite S
droplet. Figure 6(c) includes three snapshots with map-
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pings of the electric potential after the first pinch-off,
including the formation of a sub-satellite droplet. The
maximum values of the normalized electric field on the S
and S1 droplets are 1.98 and 2.37 respectively, and occur
at the farthest point from the axis. In particular, the S1
droplet features the maximum value of the electric field
at any point and time of the calculation.

Figure 7 depicts the evolution of the breakup leading to
the formation of a sub-satellite droplet (k = 0.5, Γ = 2,
Oh = 0.1). A tapered thread connecting the primary
droplet and the soon-to-be satellite droplet is severed by
the first pinch-off, and retracts towards the SD droplet
due to the higher pressure in the tapered end. However
the thread does not fully collapse into the bulk of the
liquid, but it starts to elongate backwards toward the
primary droplet (see third inset). This thread eventually
undergoes a second pinch-off, leading to the formation of
the S and S1 droplets.

C. Jet Breakup with High Viscous Effects

Figures 8-11 reproduce the same simulations as in Sec-
tion III B, but for a large Ohnesorge number exemplify-
ing dominant viscous effects, Oh = 10. The geometry
of the deforming jet displays several differences with re-
spect to the Oh = 0.1 case. In the absence of electrifi-
cation, Figure 8(a), no satellite or sub-satellite droplets
form. Since inertial effects are negligible, the pressure
remains maximum at z = λ/2 until pinch-off, preventing
the formation of satellite droplets [19, 50]. Figure 8(b)
shows the evolution for a Taylor number of one. In this
case satellite and sub-satellite droplets form, not driven
by inertia but by the electrostatic pressure in the vicin-
ity of z = λ/2. At the larger Taylor numbers shown
in Figures 8(c) and 8(d), Γ = 2 and Γ = 3, three dis-
tinct sub-satellite droplets are formed along with the pri-
mary and satellite droplets for k = 0.5, and single sub-
satellite droplets are formed for the shorter jet section,
k = 0.8. The mechanism for the formation of the initial
SD droplet is different when compared to the Oh = 0.1
case. At small Ohnesorge number the SD droplet is
connected to the primary droplets by a tapered thread,
whereas at large Ohnesorge number the thread joining
the primary and SD droplets is slender and thin. The
slender thread coupled with the lack of inertial effects
leads to the formation of multiple sub-satellite droplets.
The breakup behavior is qualitatively similar to that ob-
served in prior studies of highly viscous and uncharged
jets (Stoke’s limit) surrounded by a fluid of comparable
viscosity [21, 22, 29, 30].

The times of the first pinch-off, Figure 9(a), are over
one order of magnitude larger than in Fig. 5(a). tµ
rather than tc is the appropriate characteristic time for
describing the dynamics because inertial effects are negli-
gible, but since we continue using tc to normalize time the
breakup times are much larger than one. Note also that
for a given Taylor number, the wavenumber with min-

FIG. 9. Results of the phase field model for breakups with
high viscous effects, Oh = 10, as a function of the Taylor
number and wavenumber: a) time at first pinch-off; b) radius
of primary droplets; c) radius of S and S1 satellite droplets;
d) charge of the primary droplet relative to its Rayleigh limit;
(e) charge of the S and S1 satellite droplets relative to their
Rayleigh limit; (f) fraction of the total charge carried by the
satellite droplets.

imum breakup time decreases at increasing Onhesorge
number. Thus, the wavelength that produces the modal
primary droplet increases with the importance of viscous
effects, while the intensity of electrification has the op-
posite effect. The radius of the primary droplets, Fig-
ure 9(b), displays a similar trend as in the low viscosity
regime, i.e. the size of the primary droplet decreases as
the level of electrification increases due to the larger elec-
tric stresses on the interface which leads to the formation
of larger satellite droplets. Figure 9(c) depicts the radii
of the S and S1 droplets (no satellite droplets are formed
for Γ = 0). We only display the radius of S1 sub-satellite
droplet, although two additional sub-satellites are formed
for k = 0.5; for all the other wavenumbers only the S1
sub-satellite droplet forms. The size of the S droplets for
a given Γ is smaller in the high viscous regime than in
the low viscous regime. This trend could be explained by
the fact that in the low viscous case, along with the elec-
tric stresses, inertial effects also help in pushing the fluid
to the satellite droplet, hence increasing its size. This
additional inertial mechanism is not present at Oh� 1.
The trends for the charge of the different droplets rel-
ative to the Rayleigh limit, Figures 9(d) and 9(e), are
similar to the low viscosity case. Again, in Figure 9(d)
we include results for Γ = 1.5 indicating that this value
of the Taylor number separates primary droplets that
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FIG. 10. Electric potential map and radial velocity, axial
velocity, potential and normal component of the electric field
on the surface, for Oh = 10, Γ = 2 and k = 0.7: a) solution at
t = 453 coinciding with zero radial velocity at z = λ/2; and
b) solution just before pinch-off. c) Electric potential maps
before (t = 538), at (t = 554), and after (t = 568) second
pinch-off. The last inset shows the location and values of
electric field maxima.

FIG. 11. Formation of sub-satellite droplet from the retract-
ing slender thread for Oh = 10, Γ = 2 and k = 0.5. z/λ = 0
depicts the primary droplet location and z/λ = 0.5 depicts
the location of the satellite droplet.

are above (Γ & 1.5) and below (Γ . 1.5) the Rayleigh
limit, i.e. droplets that are unstable and stable. Inter-
estingly, this stability condition for the primary droplets
is largely independent of the wavenumber and the On-
hesorge number. Finally, note that the fraction of the
total charge that is carried by satellite droplets is reduced
in a breakup dominated by viscous effects (compare Fig-

ures 9(f) and 5(f)).
The surface profiles and electric potential maps in Fig-

ure 10 display similar trends to the Oh = 0.1 case. At any
given time, the surface is equipotential to a good approx-
imation. In fact, our definition of Πt overestimates the
time constant for charge relaxation, because tµ is the cor-
rect characteristic time for the evolution of the jet at high
Ohnesorge number, and tµ � tc. The electric field is nor-
mal to the surface of the jet, and displays local maxima
at the centers of the primary and subsatellite droplets
with an absolute maximum on the smallest subsatellite.
In Figure 10(b) for a time close to the first pinch-off we
note a distinct feature connected to the formation of sub-
satellite droplets: in addition to the typical local minima
of the radial velocity at z = 0.2λ and z = 0.8λ leading
to the location of the first pinch-off, two additional lo-
cal minima appear at z = 0.4λ and z = 0.6λ which lead
to the thinning of the retracting thread and eventually
to a second pinch-off and sub-satellite droplets. Similar
features are also observed in the axial velocity profile.

Figure 11 depicts the breakup behavior of the retract-
ing thread for Γ = 2 and k = 0.5. Although the retracting
thread moves towards the satellite droplet, the thread is
detached from the satellite droplet by a second pinch-off
and subsequently undergoes additional pinch-offs to form
subsatellite droplets. When compared with the breakup
in Figure 10(c) for the same Taylor number and smaller
wavenumber, k = 0.7, the behavior is similar but the
longer thread produced by the smaller wavenumber leads
to a larger number of subsatellite droplets.

IV. CONCLUSIONS

We have developed a leaky-dielectric phase field model
to study the deformation and breakup of electrified jets
of finite conductivity, performing calculations in wide
ranges of the Taylor number, the Ohnesorge number and
the wavenumber. The phase field method allows us to ac-
curately model the deformation of the jet beyond the first
pinch-off, and therefore makes it possible to study the
formation of sub-satellite droplets. However, one of the
caveats of the phase field model is the use of a diffuse in-
terface with an artificial finite thickness, and the possibil-
ity that some sub-satellite droplets may have smaller or
comparable diameters. These sub-satellite droplets can-
not be resolved by the numerical model. These smaller
droplets would have size Rd/Rj ≤ ξ, where ξ = 1/66.
We draw the following main conclusions:

1. There is an excellent agreement between the solu-
tion of the phase field model and the experimental
and numerical results of López-Herrera and Gañán-
Calvo [18]. The radius of the satellite droplet in-
creases at decreasing Ohnesorge number for fixed
Taylor number and wavenumber. For high Ohne-
sorge number the satellite droplet SD would be
above the Rayleigh limit even at relatively low val-
ues of the Taylor number, but it does not form be-
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cause the retracting liquid threads tend to undergo
additional pinch-offs that distribute the charge into
sub-satellite droplets that are charged below the
Rayleigh limit. This phenomenon can only be ob-
served with a phase field model like the one devel-
oped in this article.

2. The Ohnesorge number plays a key role in the
size distribution of the droplets. In a highly vis-
cous breakup, the satellite droplet is connected to
the primary droplet by a long and slender thread,
which undergoes additional pinch-offs to create
sub-satellite droplets. This feature also exists at
low Ohnesorge number and high Taylor number,
however and due to the shape of the retracting
thread and inertia, fewer sub-satellite droplets are
produced.

3. The Taylor number also plays a key role in the
size distribution of the droplets. Irrespective of the
importance of viscous effects, an increasing level
of electrification increases the size of the satellite
droplet and hence reduces the radius of the primary
droplet. Moreover, the formation of sub-satellite
droplets is enhanced by increasing electrification
levels.

4. We show that the value 1.5 for the Taylor num-
ber separates primary droplets that are above the
Rayleigh limit and would be unstable (Γ & 1.5),
from primary droplets that are below the Rayleigh
limit (Γ . 1.5), regardless of the wavenumber and
the Ohnesorge number.

5. We present formulae for relating the dimensionless
numbers parametrizing the phase field model (Γ,
Oh and Πt) with those parametrizing the state of a
cone-jet (ΠQ and ReK), in order to apply it to the
natural breakup of cone-jets.
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Appendix A: Role of the outer electrode and charge
conservation

We test the role of the position of the outer grounded
electrode on the dynamics of the deformation and
breakup of the electrified jet. For all the simulation re-
sults reported in the current article, the outer grounded
electrode is located such that Re = 12. Without chang-
ing other parameters we run tests by locating the outer

FIG. 12. Comparison between the profile of the interface of
the jet for Γ = 2, Oh = 10 and k = 0.9 when the grounded
electrode is placed far away from the jet (Re = 80) and when
Re = 12.

electrode such that Re = 80. Figure 12 depicts the profile
of the deformation and breakup of the jet for Oh = 10,
Γ = 2 and k = 0.9 for the two electrode positions. The
profiles of the jet are superimposed on one-another for
the same time t. From figure 12 we can deduce that the
electrode at Re = 12 is sufficiently far for this parameter
to have a negligible effect on the solution. Note that the
electric field on the surface of the nominal jet does not
depend on the position of the electrode, because we are
fixing the Taylor number by fixing the volumetric charge
density in the jet. Provided that the outer electrode is
sufficiently far away from the jet, the exact position does
not have an effect on the dynamics of the breakup.

The initial dimensional volumetric charge in the jet
is calculated with the imposed Taylor number. For the
surface of a cylinder with surface charge density σ, the
dimensional electric field on the surface of the cylinder is
given as:

E(Rj) =
σ

εo
(A1)

Therefore, the dimensional surface charge density is ob-
tained from the Taylor number as:

σ =

√
Γεoγ

Rj
(A2)

We subsequently obtain the initial volumetric charge
density ρeo from the surface charge density as ρeo =
2σe/Rj . The dimensionless initial volumetric charge den-
sity therefore is ρeo = 2. ρeo is initially distributed uni-
formly in the domain 0 < r < 1 + Acos(kz) at t < 0.
Since the electrical conductivity of the jet (fluid 2) is
much higher than the outside passive medium (fluid 1).
The charges relax along the mean interface at t = 0. At
t = 0, the electric field variation along the radial direction
could be analytically approximated by the expression of
electric field variation of a perfectly conducting cylinder,
given as:

|E(r < 1)| = 0;

|E(r ≥ 1)| = 1

r

 (A3)
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FIG. 13. (a) Electric field variation along the radial direction
after the charge relaxation process (at t = 0) predicted using
the phase-field model and it’s comparison with the analytical
expression. (b) normalized volumetric charge density along
the mean interface at t = 0.

FIG. 14. The total charge in the simulation domain normal-
ized by the initial total charge for different time instants dur-
ing the deformation-breakup process. (A) refers to the time
instant when the size and charges of the primary and satellite
droplet is made. (B) refers to the time instant when the size
and charges are measured for sub-satellite droplets. Figure
(a) k = 0.6, Γ = 2, Oh = 10, (b) k = 1, Γ = 2, Oh = 10, (c)
k = 0.6, Γ = 3, Oh = 10, (d) k = 0.7, Γ = 3, Oh = 10.

Figure 13 (a) depicts the electric field variation along
the radial direction predicted using the phase-field model
after the charges have relaxed along the mean-interface at
t = 0 and it’s comparison with the analytical expression
A3. Since the phase field method is continuous interface
method, the electric field in the proximity of r = 1 has
a continuous and finite slope, however, it compares well
with the analytical expression. Figure 13 (b) depicts the
normalized volumetric charge density.

Since, we apply periodic boundary condition in the
domain of the simulation at z = 0 and z = λ, the total
charges along one wavelength of the jet should be con-
served. Figure 14 depicts the total charge variation in
the entire simulation geometry for different cases. Fig-
ure 14(a) depicts the total charge variation for Oh = 10,
Γ = 2 and k = 0.6, the arrows (A) and (B) depict the
time instant at which the charges on the droplets are cal-
culated (right after respective pinch-off). After pinch-off
there is a loss in the total charge in the geometry. How-
ever, since we are only limited to measuring the charges
just after each pinch-off process. The charges measured
are within a 1− 1.7% error range and hence the present
setup along with the numerical validation with prior ex-
perimental results gives us confidence in our numerical
measurements. However, after the formation of primary,
satellite and sub-satellite droplets we cannot capture the
Rayleigh instability process of the droplets which are
above the Rayleigh limit, as the charges fail to be con-
served in our simulation domain for extended periods af-
ter break-up.
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[32] A. Gañán-Calvo, On the general scaling theory for elec-
trospraying., J. Fluid Mech. 507, 203 (2004).

[33] J. Eggers and E. Villermaux, Physics of liquid jets., Rep.
Prog. Phys. 71, 36601 (2008).

[34] J. Lpez-Herrera, A. Gan-Calvo, and M. Herrada, Abso-
lute to convective instability transition in charged liquid
jets., Physics of Fluids 22(6) (2010).

[35] G. B. Anderson, D. M. amd Mcfadden and A. A.
Wheeler, Diffuse-interface methods in fluid mechanics.,
Annu. Rev. Fluid Mech. 30, 139 (1998).

[36] D. Jacqmin, Calculation of two-phase navierstokes flows
using phase-field modelling., J. Comput. Phys. 155, 96
(1999).

[37] P. Yue, J. Feng, C. Liu, and J. Shen, A diffuse-interface
method for simulating two-phase flows of complex fluids,
J. Fluid Mech. 515, 293 (2004).
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