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We experimentally investigate a millimetric armored droplet of a water-isopropyl alcohol solution
sedimenting through oil and approaching a water layer at the bottom of the container. Upon
reaching the oil-water interface, the droplet is shown to rupture and coalesce with the water either
for low droplet densities (floating rupture) or for low oil viscosities (sinking rupture). By contrast,
for sufficiently large drop density or oil viscosity, the oil covering the armored drop pinches off in
the underlying water, as the armored drop continues to sink. This leads to the double encapsulation
of an aqueous solution in water, which can be utilized to transport desired ingredients within a wet
environment. We show that a simplified quasistatic model of a rigid sphere successfully captures
the limit of the floating rupture behavior. We also rationalize the transition from the sinking
rupture to oil pinch-off, by comparing the time scales of the film drainage versus sinking. Our
results demonstrate that an effective Bond number and an effective Ohnesorge number are the two
key dimensionless parameters that characterize the pinch-off threshold in good agreement with the
experiments.
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FIG. 1: (a) The 3D schematic of the stratified system where particles are slowly added from the top. (b) The
schematic of the granular raft forming on an IPA-oil interface prior to the formation of the armored drop. (c) The

armored drop sediments in oil and approaches the water-oil interface.

I. INTRODUCTION

When particles bind to a fluid-fluid interface, the long-range capillary attraction [1] between the particles leads to
the formation of so-called granular rafts [2]. For sufficiently large or heavy particles, granular rafts become unstable
and form particle-armored droplets [3, 4]. These armored drops, also known as liquid marbles [5, 6], can alternatively
be formed by rolling aqueous droplets on a bed of hydrophobic particles [5], or by utilizing magnetic [7] or electrical
[8] forces. Liquid marbles are applicable in biochemical microreactors [9], blood typing [10], and liquid transport [11].
While a liquid marble interacting with a fluid-fluid interface has been studied under quasi-static conditions [12–15],
the dynamic interaction between a liquid marble and a fluid-fluid interface poses a further complex physical picture
that has not been explored.

In this study, we investigate armored drops of varying composition and density sedimenting in an immiscible liquid
and approaching the interface of a liquid miscible to the droplet. While some armored drops rupture similar to a
liquid drop at a miscible fluid interface, others maintain their integrity when the immiscible liquid surrounding them
pinches off and allows the resulting encapsulated drop to sink, reminiscent of a solid sphere. We show that this unique
combination of behaviors stems from the presence of the particle shell coupled with a dynamic fluid-fluid interface.
Because of the combined features of the current system, we incorporate theories from well-established dynamics of solid
spheres [16–33] and dynamics of liquid drops [34–45] at a fluid-fluid interface to characterize the different behaviors
of our system.

The pinch-off behavior of an armored droplet is of particular interest, as it enables the double encapsulation of
an aqueous solution in water. The double encapsulation of liquids [46–48] has been studied extensively due to the
importance of stabilizing double emulsions in food [49], cosmetics [50], or drug delivery applications [51, 52]. While a
few studies have investigated the effects of particles in double emulsions on the submillimetric scale [53, 54], particle-
laden double encapsulation on the millimetric scale has not been investigated. Hence, characterizing the pinch-off
behavior in the current system offers an inexpensive approach for double encapsulating liquids in a new gravity-driven
regime.

The manuscript is organized as follows. In section II A, we introduce our three phase experiments and the different
behaviors exhibited by the armored drops in this system. In section II B, we describe our two phase experiments and
show the relationship between the properties of the individual particles and the resultant armored droplets. In sections
III A, and III B, we present a quasistatic model and scaling laws that characterize different behavioral regimes of the
armored drops observed in the three phase system. Finally, we summarize our findings and discuss future studies in
section IV.

II. EXPERIMENTS

A. Three phase experiments

We conduct a series of experiments in a tank with a cross section of 12.6 cm × 12.6 cm. The tank is filled with a
5 cm layer of distilled water followed by a 5 cm layer of silicone oil with the density, ρo = 970 kg m−3, and viscosity,
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FIG. 2: Time sequential images for (a) [ds = 125 µm, ρs = 2500 kg/m3, µo = 0.097 Pa·s]: The armored drop
approaches the interface (t0 = 0 s) and comes to an apparent rest (t1 = 0.12 s), until the thin film ruptures (t2 = 0.6

s). After rupture, some particles sink and some particles float and surf under a Marangoni flow (t3 = 0.72 s), as
illustrated in the inset schematic. (b) [ds = 500 µm, ρs = 3800 kg/m3, µo = 0.097 Pa·s]: The interface deforms

strongly (t0 = 0 s); the armored drop continues to push the interface downward into water (t2 = 0.02 s), until the oil
film ruptures (t3 = 0.035 s). Then, all particles sink in water (t4 = 0.07 s), as highlighted in the inset schematic. (c)

[ds = 350 µm, ρs = 2500 kg/m3, µo = 0.485 Pa·s]: The interface deforms strongly (t0 = 0 s); the armored drop
continues to push the interface downward into water (t1 = 0.3 s and t2 = 0.6 s) until the encapsulating oil pinches
off (t4 = 0.68 s). The inset schematic highlights the resultant double encapsulation in the pinch-off behavior. All

scale bars show 2 mm.

µo, which is varied from 0.097 to 0.97 Pa·s (see Fig. 1(a)). We add a mixture of Isopropyl alcohol (IPA) and water
(70% IPA by volume) on top of the oil layer; the density of the IPA mixture corresponds to ρi = 850 kg m−3. The
interfacial tension between the IPA solution and silicone oil is measured to be γio = 27 mN m−1 using a pendant drop
test. We then carefully deposit negatively buoyant monodisperse particles of diameter, ds, and density, ρs, onto the
free surface at the center of the tank to minimize wall effects. We use soda-lime glass beads (Cospheric), or ceramic-
coated zirconium oxide beads (Glen Mills) with densities, ρs = 2500 kg m−3 and ρs = 3800 kg m−3, respectively, while
ds ranges from 4 µm to 1000 µm. For a complete range of parameters, see Appendix A.

The particles sediment until they reach the IPA-oil interface. For the current range of ds and ρs, each particle comes
to rest at the oil-IPA interface as the capillary force on the particle dominates the gravitational and buoyant forces.
The centimetric-scale granular raft that forms due to the capillary attraction between floating particles subsequently
deforms the interface under gravitational effects. Once the granular raft grows large enough, it becomes unstable,
which results in the encapsulation of particle-coated IPA in the form of an armored drop in silicone oil [3].

Once the armored drop forms at the IPA-oil interface, it sediments towards the oil-water interface, as illustrated
in Fig. 1(b,c). The thickness of the silicone oil layer is chosen so that all tested armored drops reach their terminal
velocity before reaching the oil-water interface. Drops covered with smaller or lighter particles settle slowly while
deforming the interface minimally. For these armored drops, the deformed interface comes to rest macroscopically
shortly after the deformation begins, as indicated in time sequential snapshots of Fig. 2(a). However, the armored drop
continues to slowly sediment and thin the film between the armored drop and the interface until the long range van
der Waals forces dominate. At this point, water bridges through the particle-armor, and the particle-armor ruptures.
Upon rupture, the particles below the free surface immerse in water, while the particles above the free surface stay
trapped on the oil-water interface under capillary forces. Under this behavior, some particles float on the interface,
while others sink as illustrated in the inset of Fig. 2(a). Notably, the floating particles undergo a radially outward
Marangoni flow due to the release of the IPA inside the armored drop [55]. We refer to this behavior as floating
rupture.

For armored drops with larger or heavier particles, two distinct behaviors are observed: rupture and pinch-off. For
both behaviors, the armored drop continuously deforms the interface and approaches the pinch-off, distinct from the
floating rupture scenario. However, for lower viscosities of silicone oil, the thin film between the armored drop and the
interface drains faster than the time it takes for the pinch-off of the encapsulating oil, leading to the film rupture (see
Fig. 2(b)). We refer to this behavior as sinking rupture. In this regime, all particles become immersed in water and
sink as indicated in the inset schematic of Fig. 2(b) [55]. On the contrary, for silicone oil with higher viscosities, the
oil filament encapsulating the armored drop pinches off before the thin film drains completely, as shown in Fig. 2(c)
[55]. We refer to this behavior as pinch-off. Under this behavior, IPA is double encapsulated in water, as illustrated in
the inset of Fig. 2(c). The experimental movies of all three droplet behaviors are included as Supplemental Material.
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FIG. 3: Schematics for two phase experiments (a) before, and (b) after formation of the armored drop. (c) The
armored drop equivalent density, ρeq as a function of ρsds/`c for varying particle sizes, ds = 4− 1000 µm, and

particle densities, ρs = 2500 kg m−3 (half-filled) or ρs = 3800 kg m−3 (filled). The dashed line corresponds to the
total mass calculation with particle packing fraction, φ = 0.76. Inset: The armored drop equivalent radius, a, for

varying ρsds/`c.

B. Two phase experiments

To characterize the equivalent radius, a, and density, ρeq of the armored drop systematically, we perform a series
of two-layer experiments. As indicated in the schematics in Fig. 3(a), we examine different particle densities and
particle sizes in the same tank filled with different viscosities of silicone oil, µo =0.291, 0.485, and 0.97 Pa·s and a thin
layer of the 70% IPA solution on top. We find ρeq by measuring the terminal settling velocity, V , and approximating
it as the Stokes settling velocity, or V ≈ 2(ρeq−ρo)ga2/(9µo). Figure 3(c) shows ρeq for various ρsds/`c, where

`c =
√
γoi(ρo−ρi)−1g−1 denotes the capillary length for the silicone oil and IPA. If we assume that particles are half

immersed in the drop and half in the continuous phase, the total mass calculation for a monolayer armored drop
yields ρeq−ρi = 2φρsds/a, where φ denotes the particle packing fraction. As a varies negligibly between 2.4 - 2.8 mm
under the current parameter range (see the inset of Fig. 3(c)), ρeq−ρi is shown to increase linearly with increasing
ρsds, as plotted in Fig. 3(c). The linear fit for ρeq corresponds to φ = 0.76, which is very close to the packing volume
fraction in the granular raft prior to destabilization [4]. Details of how we measure φ is provided in Appendix B.

III. MODEL

A. Quasistatic model

Inspired by the behavior of a solid sphere at a fluid-fluid interface which either floats or sinks, we apply a quasistatic
force balance on an armored drop. In the manner of [25, 30], the drop is approximated as a rigid sphere (density ρeq)
at rest on the oil-water interface with a contact angle θ. We note that in the case of the armored drop, there is a thin
film between the armored drop and the interface, therefore, all force balance arguments apply to a negligibly larger
control volume, while θ corresponds to the apparent contact angle as depicted in Fig. 4(a). The particle wettability
has some importance on the IPA-oil interface to enable the formation of a granular raft that eventually destabilizes
into an armored drop. However, armored drops made with glass beads (contact angle ≤ 15o [56]) and those made
with zirconia beads (contact angle ∼ 101o [57]) do not exhibit noticeable differences at the oil-water interface. We
speculate that the wettability of particles will ultimately be important in initiating the rupture event microscopically.
However, such effects are out of scope of the current study and may be considered in the future.

Under quasistatic assumptions, the sphere deforms the interface below it. As depicted in Fig. 4(a), the interface
gets separated from the sphere at an angle ψ from the centerline with a slope angle φ with distance hs from the
free surface. If we normalize the parameters with the capillary length, `c,ow =

√
γow(ρw − ρo)−1g−1, balancing the
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FIG. 4: (a) Schematics of a sphere in equilibrium at a fluid-fluid interface. (b) An armored drop [ρs = 2500 kg.m−3,
ds = 125 µm, µo = 0.485 Pa.s] before the onset of rupture.

gravitational force with the buoyancy and surface tension forces yields

4

3
ΓR∗3 = 2R∗ sinψ sinφ+

2

3
R∗3 −R∗3 cosψ +

1

3
R∗3cos3 ψ −R∗2h∗s sin2 ψ, (1)

where Γ = (ρeq − ρo)/(ρw − ρo), R∗ = a/`c,ow, and h∗s = h∗s/`c,ow. The interface profile is determined by the
Young-Laplace equation,

h∗′′

1 + h∗′
2 +

h∗′

r∗
− h∗

√
1 + h∗′

2
= 0, (2)

where the asterisk denotes dimensionless parameters normalized by `c,ow, and the prime denotes the derivative with
respect to r∗. We solve Eqs. (1) and (2), subject to the boundary conditions h∗′(R∗ sinψ) = tanφ and h∗(∞) = 0,
along with the geometrical constraint of θ − φ + ψ = π. Then, for varying φ, we find the maximum value of Γ that
yields an equilibrium state.

The sphere floats when the solution for the interfacial shape exists under the quasistatic force balance, but sinks
when no equilibrium solution exists [25]. If the equilibrium solution exists for a solid sphere, we expect the equivalent
armored drop to exhibit the floating rupture behavior, as it is the only case where the interface comes to a macroscopic
equilibrium before the oil film ruptures. On the other hand, if the quasistatic analysis yields sinking, the armored
drop may exhibit either sinking rupture or pinch-off. Figure 5 summarizes the three distinct behaviors in a phase
diagram for the dimensionless density, Γ, as a function of Bond number, Bo= (ρw−ρo)ga2/γwo. We consider a range
of θ in the model and find the corresponding sinking threshold. Notably, the transition from floating rupture to either
sinking rupture or pinch-off is well predicted by the lower and upper bounds of θ = π/2 (dotted-dashed line) and
θ = 3π/5 (dashed line), shown in Fig. 5, respectively. While we cannot measure θ precisely, our experimental images
strongly suggest that θ > π/2 for all floating rupture cases, as the oil-water interface is shown to deviate from the
lower half of the droplet as illustrated in Fig. 4(b). Therefore, π/2 < θ < 3π/5 is in good qualitative agreement with
the experiments.

For Bo� 1, Eq. (1) yields

ΓBo ≈ 3(1− cos θ)/4. (3)

ΓBo is an important dimensionless parameter as it considers the effects of both a and ρeq. Therefore, we refer to ΓBo
as the effective Bond number, Boeff = (ρeq−ρo)ga2/γwo. Note that we change Boeff in our experiments mainly by
varying ρeq through ρs and ds.

B. Scaling laws

As shown in Fig. 5, the quasistatic force balance does not differentiate sinking rupture from pinch-off. This implies
that in both cases, oil surrounding the armored drop approaches pinch-off. Hence, we can determine whether or not
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FIG. 5: The phase diagram showing Bo vs. Γ for the particle density, ρs = 2500 kg/m3 (half-filled), or ρs = 3800
kg/m3 (filled), and varying particle sizes (corresponding varying symbol sizes). Error bars are smaller than symbol

sizes. The dotted-dashed line and the dashed line correspond to the upper bounds (i.e. Γmax) of the floating
behavior from the quasistatic force balance [25, 30] for θ = π/2 and θ = 3π/5, respectively.

the film ruptures before pinch-off by comparing the time scale of sinking with that of the film drainage. The settling
velocity in our experiments ranges from 1 - 10 cm/s, with the corresponding Reynolds number Re ranging from 0.05
- 2.5. However, all the cases of Re > 1 belong to µo = 0.097 Pa·s, where all the armored drops rupture. For all
the other cases, Re < 0.3, including the cases near the transition from sinking rupture to pinch off. Therefore, for
simplicity, we assume Re� 1 to model that transition.

To find the sinking time scale, we consider the early stage of armored drop sinking in water while encapsulated in
an elongating oil filament as depicted in Fig. 6. We simplify the armored drop and the thin oil film encapsulating the
drop as a rigid sphere of radius, a, and density, ρeq, that is sinking in water with velocity V . Then, the force balance
on the control volume (a dashed circle in Fig. 6) yields

ρeqa
3 dV

dt
∼ Fg − Fb − Fγ − Fdrag, (4)

where the right hand side denotes the gravitational force, the buoyant force, the capillary force, and the drag force
on the control volume, respectively.
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(b)FIG. 6: Schematics of a sinking armored drop approaching pinch-off.

The drag force is estimated as a Stokes drag on a sphere sinking in water, Fdrag ∼ µwV a. Then, the force balance
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becomes

ρeqa
3 dV

dt
∼ (ρeq − ρw)a3g − γwoa− µwV a, (5)

where dV/dt ∼ a/τ2
s , and τs denotes the sinking time-scale. As the armored drop approaches and deforms the oil-water

interface, it decelerates by a small amount. Nevertheless, its velocity still scales as the terminal settling velocity in
oil at the early stage of sinking, so that Fdrag ∼ (ρeq−ρo)a3gµw/µo. In addition, as µw/µo � 1 for our current range
of parameters, Fdrag � Fg, which allows us to neglect the drag force term in Eq. (5). Furthermore, we note that
Bo� Boeff for both sinking rupture and pinch-off behaviors in our experiments. Therefore, Eq. (5) simplifies to

τ−2
s ∼ γwo

ρeqa3
(Boeff − 1) . (6)

Next, we discuss the lubrication model for finding the film drainage time scale inspired by [34]. To find the time-
scale of the film drainage, we consider the simplified case of a rigid sphere approaching a rigid planar surface. For a
sinking sphere with velocity, V , pressure increases inside the film below the sinking sphere. This pressure build-up
drives a flow that drains the film and thins the gap as shown in Fig. 7. We consider the translation of a rigid sphere
with density ρeq and radius a approaching a shear-free planar boundary with a relative velocity, v, when the distance
between the sphere and the boundary along the centerline, h0, is much smaller than the radius (i.e. h0 � a). For
consistency with the main text, the fluid density and viscosity are denoted as ρo and µo, respectively. Then, under
lubrication approximations, the flow inside the gap in cylindrical coordinate yields

ur =
1

2µo

∂p

∂r
(z2 − h2), (7)

where p(r, t) is the pressure inside the gap.
Also, integrating the continuity equation, (1/r)∂r(rur) + ∂zuz = 0, across the gap yields∫ h(r,t)

0

1

r

∂(rur)

∂r
dz + v(t) = 0. (8)

By combining Eq. (7) with Eq. (9), and after some algebra, we obtain

∂

∂r

(
rh3 ∂p

∂r

)
= 3µovr ⇒ h3 ∂p

∂r
=

3

2
µovr. (9)

The Taylor expansion of the film thickness near the center where the pressure gradient is dominant corresponds to
h(r, t) = h0(t) + r2/2a. Therefore, integrating Eq. (9) with respect to r yields

p(r, t) = p0 −
3µova

4
(
h0 + r2

2a

)2 . (10)

From Eq. (10), we can calculate the resistive force exerted on the sphere by the pressure build-up inside the film,

F = −2π

∫ a

0

(p− p0) r dr ≈ −3

2

µova
2

2h0
, (11)
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where h0 � a. As v < 0, the resistive force is positive in the z-direction. Finally, the resistive force balances the
gravitational and buoyant forces in the low Re regime,

4

3
πa3∆ρg = −3

2

µova
2

h0(t)
⇒ v

h0
= −8

9

∆ρ g a

µo
, (12)

where ∆ρ = ρeq − ρo. The left hand side of Eq. (12) represents the inverse of the film drainage time scale, τd.
Therefore, we conclude τd ∼ µo/(∆ρga).

By comparing the film drainage time and the sinking time, we obtain

τ2
d

τ2
s

∼ Oh2

(
ρo

ρeq

)
Bo−2

eff (Boeff − 1) , (13)

where Oh = µo/
√
γwoρoa denotes the Ohnesorge number. The pinch-off condition, τd/τs > 1, further reduces to

Oheff >
Boeff√

Boeff − 1
, (14)

where Oheff = µo/
√
γwoρeqa. Notably, for Boeff � 1 this simplifies to Oheff > Bo

1/2
eff . Figure 8 shows the three

behaviors of the armored drop for varying Oheff as a function of Boeff . The solid line shows the scaling of Eq. (14)
for the transition from sinking rupture to pinch-off, which is in good qualitative agreement with the experiments.

As shown in Fig. 8, the pinch-off occurs only for Boeff & 1, as all armored drops with Boeff < 1 undergo floating
rupture. Notably, the two vertical lines in Fig. 8 correspond to Boeff scaling for the limit of floating rupture when
θ = π/2 (dotted dashed) and θ = 3π/5 (dashed), respectively In addition, when Boeff & 1, the minimum value of
Oheff required for pinch-off increases weakly with Boeff . Note that Oheff at a given Boeff is primarily varied in our
experiments by changing µo. In other words, for a larger particle density or particle size (i.e., increasing Boeff), a
larger oil viscosity is required to slow down the drainage rate before pinch-off.

IV. SUMMARY AND DISCUSSION

We present a system of three fluid layers where a granular raft at the first interface between oil and IPA leads
to the formation of an armored drop. The resultant droplet encapsulates IPA and sinks in oil toward the second
interface between water and oil. We demonstrate that the dynamic interaction between the sinking armored drop
and the oil-water interface can result in three different behaviors: floating rupture, sinking rupture, or pinch-off. We
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first show that Γ and Bo are the key independent parameters to characterize the transition from the floating rupture
regime to the other two regimes. In addition, we incorporate scaling arguments to show that Oheff and Boeff are the
key parameters to characterize the transition from the sinking rupture regime to the pinch-off regime. The transition

from sinking rupture to pinch-off is shown to scale as Oheff ∼ Boeff/
√

Boeff − 1, which yields Oheff ∼ Boeff
1/2 in

the limit of Boeff � 1. Therefore, since Boeff = ΓBo, the complete phase separation requires three independent
parameters (i.e., Bo, Γ, and Oheff).

The current system offers a gravity-driven method to generate double encapsulated liquids on a millimetric scale,
by using granular rafts coupled with a fluid-fluid interface. As indicated in Fig. 8, either large Boeff or large Oheff is
required to achieve double encapsulation (i.e., pinch-off). Notably, the size of the armored droplet appears constant
in the current setup, while its effective density is shown to vary linearly with ρsds. Hence, the density of the
double encapsulated drops can be controlled with the choice of particle properties as well as encapsulated fluid
properties. While our scaling argument for the transition from sinking rupture to pinch-off is in good agreement with
the experiments, we acknowledge that the current experimental setting only allows for the partial validation of the
individual parameters included in Oheff and Boeff . Additional experiments with different fluid systems are required to
validate the universality of our model. We also note that applying additional body forces such as a centrifugal force
can expand the range of armored drop sizes to a submillimeter scale [58] while maintaining Boeff > 1 and Oheff > 1
required for double-encapsulation.
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Appendix A: parameter space in experiments

particles
oil viscosity

⇢s = 3800 kg/m3, ds = 200 � 300µm

⇢s = 3800 kg/m3, ds = 400 � 600µm

⇢s = 3800 kg/m3, ds = 800 � 1000µm

⇢s = 2500 kg/m3, ds = 500 � 600µm

⇢s = 2500 kg/m3, ds = 300 � 400µm

⇢s = 2500 kg/m3, ds = 100 � 150µm

⇢s = 2500 kg/m3, ds = 30 � 60µm

⇢s = 2500 kg/m3, ds = 3 � 6µm

0.096 Pa.s 0.483 Pa.s 0.97 Pa.s0.143 Pa.s 0.192 Pa.s 0.34 Pa.s

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

pinch � o↵

floating
rupture

sinking
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

floating
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

sinking
rupture

TABLE I: Different parameters tested in the experiments presented in Fig. 3 and Fig. 4.

Appendix B: Armored drop density measurements

To measure the settling velocity of the armored drops, we perform MATLAB image processing to track the front
(i.e., lowest) point on the armored drop. We then extract the velocity when it reaches a plateau.

We measure the equivalent density, ρeq, of the armored drop via two methods. First, we calculate ρeq by plugging
in the measured terminal velocity into the expression for the Stokes terminal velocity. Second, we perform image
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⇢s = 2500 kg/m3, ds = 100 � 150µm⇢s = 2500 kg/m3, ds = 30 � 60µm⇢s = 2500 kg/m3, ds = 3 � 6µm

symbol size

⇢s = 3800 kg/m3, ds = 200 � 300µm⇢s = 2500 kg/m3, ds = 300 � 400µm⇢s = 3800 kg/m3, ds = 400 � 600µm⇢s = 2500 kg/m3, ds = 500 � 600µm⇢s = 3800 kg/m3, ds = 800 � 1000µmds [µm]

TABLE II: Different parameters tested in the experiments presented in Fig. 3 and Fig. 4.

z

r

R(z)
H

Hs

a

FIG. 9: A snapshot of an armored drop sinking in oil.

processing to extract the shape of the falling armored drop shape as shown in Fig. 9. We then measure the area
covered by the solid particles, As, by assuming an axisymmetric shape for the falling armored drop:

As =

∫ Hs

0

2π

(
R(z)− ds

2

)
dz, (B1)

where Hs denotes the height of the drop that is covered by the particles as shown in Fig. 9. By assuming a monolayer
of particles armoring the drop, the total number of particles can be approximated as ns = 4φAs/(πd

2
s ), where φ is the

surface packing fraction of particles. Therefore, the mass of particles yields ms = (2/3)φAsρsds.
Next, we measure the total volume of the fluid encapsulated in the armored drop,

Vf =

∫ Hs

0

π

(
R(z)− ds

2

)2

dz +

∫ H

Hs

πR2(z)dz. (B2)

Here, H denotes the total height of the armored drop as shown in Fig. 9. Finally, the total mass of the armored drop,
m, yields

m =
2

3
φAsρsds + ρiVf . (B3)

Hence, the equivalent density of the armored drop can be approximated as ρeq = (2/3)φAsρsds/Vf +ρi. Note that the
data presented in Fig. 3(c) is extracted from the first method (i.e., using steady settling velocity). For φ = 0.76, we
get a match with the data presented in Fig. 3(c) with less than 2% error by using the second method.
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[44] C. Ortiz-Dueñas, J. Kim, and E. K. Longmire, “Investigation of liquid–liquid drop coalescence using tomographic piv,”
Experiments in Fluids 49, 111–129 (2010).

[45] H. P. Kavehpour, “Coalescence of drops,” Annual Review of Fluid Mechanics 47, 245–268 (2015).
[46] M. Kanouni, H. L. Rosano, and N. Naouli, “Preparation of a stable double emulsion (w1/o/w2): role of the interfacial

films on the stability of the system,” Advances in Colloid and Interface Science 99, 229–254 (2002).
[47] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions

generated from a microcapillary device,” Science 308, 537–541 (2005).
[48] J. G. Xu, R. Chen, Y. Wang, and G. Luo, “Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic

device,” Lab Chip 12, 2029–2036 (2012).
[49] G. Muschiolik and E. Dickinson, “Double emulsions relevant to food systems: Preparation, stability, and applications,”

Comprehensive Reviews in Food Science and Food Safety 16, 532–555 (2017).
[50] N. Garti and C. Bisperink, “Double emulsions: Progress and applications,” Current Opinion in Colloid & Interface Science

3, 657–667 (1998).
[51] S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer, “Controlled delivery systems for proteins based on

poly (lactic/glycolic acid) microspheres,” Pharmaceutical Research 8, 713–720 (1991).
[52] M. Iqbal, N. Zafar, H. Fessi, and A. Elaissari, “Double emulsion solvent evaporation techniques used for drug encapsula-

tion,” International Journal of Pharmaceutics 496, 173–190 (2015).
[53] B. J. Sun, H. C. Shum, C. Holtze, and D. A. Weitz, “Microfluidic melt emulsification for encapsulation and release of

actives,” ACS Applied Materials & Interfaces 2, 3411–3416 (2010).
[54] H. Lamba, K. Sathish, and L. Sabikhi, “Double emulsions: Emerging delivery system for plant bioactives,” Food and

Bioprocess Technology 8, 709–728 (2015).
[55] “See supplemental material for the full parameter space in the experiments, the movies showing different behaviors of the

armored drop presented in fig. 2, and details concerning the model.”.
[56] M. Wei, R. S. Bowman, J. L. Wilson, and N. R. Morrow, “Wetting properties and stability of silane-treated glass exposed

to water, air, and oil,” Journal of Colloid and Interface Science 157, 154–159 (1993).
[57] U. Patel, K. Patel, K. Chauhan, A. Chawla, and S. Rawal, “Investigation of various properties for zirconium oxide films

synthesized by sputtering,” Procedia Technology 23, 336–343 (2016).
[58] M. Abkarian, E. Loiseau, and G. Massiera, “Continuous droplet interface crossing encapsulation (cdice) for high throughput

monodisperse vesicle design,” Soft Matter 7, 4610–4614 (2011).


