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We apply a previously developed asymptotic model (J. Fluid. Mech. 915, A133 (2021)) to study
instabilities of free surface films of nanometric thickness on thermally conductive substrates in two
and three spatial dimensions. While the specific focus is on metal films exposed to laser heating,
the model itself applies to any setup involving films on the nanoscale whose material parameters
are temperature-dependent. For the particular case of metal films heated from above, an important
aspect is that the considered heating is volumetric, since the absorption length of the applied laser
pulse is comparable to the film thickness. In such a setup, absorption of thermal energy and film
evolution are closely correlated and must be considered self-consistently. The asymptotic model
allows for a significant simplification, which is crucial from both modeling and computational points
of view, since it allows for asymptotically correct averaging of the temperature over the film thickness.
We find that the properties of the thermally conductive substrate – in particular its thickness and
rate of heat loss – play a critical role in controlling the film temperature and dynamics. The
film evolution is simulated using efficient GPU-based simulations which, when combined with the
developed asymptotic model, allow for fully nonlinear time-dependent simulations in large three-
dimensional computational domains. In addition to uncovering the role of the substrate and its
properties in determining the film evolution, one important finding is that, at least for the considered
range of material parameters, strong in-plane thermal diffusion in the film results in negligible spatial
variations of temperature, and the film evolution is predominantly influenced by temporal variation
of film viscosity and surface tension (dictated by average film temperature), as well as thermal
conductivity of the substrate.
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I. INTRODUCTION

Thin film dynamics is a well-studied problem, which has been addressed extensively from modeling, com-
putational, experimental and applications points of view, as described in excellent review articles [1, 2]. A
particular challenge involves modeling external effects that couple to the fluid dynamics of the film. Some
examples include the influence of an electric field on film dynamics [3–5], the competition between chem-
ical instabilities in multi-mixture liquids and their dewetting [6–10], or the effect of permeable underlying
substrates [11, 12]. Thermal effects have received significant attention as well, in particular regarding the
temperature dependence of material properties, as discussed further below. One setup where thermal ef-
fects are clearly very important involves dynamics of liquid metal films deposited on thermally conductive
substrates [13–18], a setup important in the context of nanotechnology [19], electronic coatings [20], and
photovoltaics [21], to name just a few examples. A number of experimental works have investigated the
assembly mechanism of droplets that result from liquified metal films, as described in recent reviews [22–
24]. While a number of modeling and computational studies have been carried out, theoretical modeling of
thermal effects coupled with evolution of a thin film whose material parameters are temperature-dependent
is a challenging problem, which still has not been fully addressed. Development of such a model and of
the efficient computational methods that are required for carrying out the corresponding time-dependent
simulations, is the main subject of the present paper.
We proceed with a brief and necessarily incomplete review of relevant previous work; to put this discussion

in the context of the present paper we first discuss briefly our earlier work [25], in which a model for a
thin molten metal film evolving on a thin thermally conducting substrate was proposed. Working within
asymptotic long wave theory (LWT), the most significant outcome was the development of a self-consistent
model for the coupled fluid/thermal dynamics in the case of volumetric heating such that the energy absorbed
depends on the local film thickness, whose evolution is itself influenced by temperature (and therefore heat
flow). A key finding was that to leading order, film temperature is uniform across the (thin) film depth, with
spatial and temporal evolution governed by an in-plane diffusion equation with additional terms accounting
for the laser heating and heat loss to the substrate. Neglect of in-plane diffusion in the film (an approach taken
in some previous works [13, 18, 26]) was shown to lead potentially to inaccurate results for heat transport,
and to shorter liquid lifetimes. A second focus was the influence of temperature-dependent surface tension
and viscosity on the dewetting of the films. Regarding surface tension, it was found that, at least for
liquid metals, the spatial variation of surface tension (Marangoni effect) did not influence the dynamics in
any relevant manner. Temporal dependence of surface tension (via average film temperature) was found
to play a much more relevant role. Similarly, while it was found that temperature-dependent viscosity is
crucial for accurately simulating films that dewet while in the liquid phase, once again temporal variation
turned out to be much more relevant than spatial variation. It should be pointed out that although the
dynamics of the film was coupled self-consistently to the thermal transport (in both substrate and film),
the study was limited to asymptotically thin substrates with constant thermal properties, and the influence
of substrate physical characteristics on film temperature and dynamics remains to be addressed, especially
since in practice, substrates may be much thicker than the film itself.
Other works have considered similar setups but with a different focus. Shklyaev et al. [27], for example,

used LWT to derive a model similar to that of Allaire et al. [25], but omitting laser heating, and with
the underlying substrate (due to the assumed difference in thermal conductivities of substrate and film)
modeled simply by a constant temperature gradient. Batson et al. [28] found that self-consistently solving
for substrate temperature is crucial for the development of oscillatory free surface film instabilities, which
have been previously observed (for example, when thermocapillary effects are present in multi-layer film
configurations [29] and when the film is heated from below by a substrate of sufficiently low thermal con-
ductivity [27]). Atena & Khenner [14] proposed a model for liquid metals that accounts for heat transport
in the substrate as well as laser heating in the film, but considers heat loss at the film surface to be relevant
(see also Saeki et al. [15, 16] and Oron [30] in this context), leading to differences with our recent model [25].
In contrast, other works (including ours) assume heat loss to the substrate to dominate over any free surface
losses [13, 25, 26]. A number of authors have also investigated the significance of temperature-dependent
material parameters, as discussed by Craster & Matar [2].
In the present paper, our focus is on investigation of the role that the underlying substrate has on both the
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heating of the film and its free surface evolution. In particular, we focus on the role of substrate thickness,
heat loss through the lower substrate boundary, and nonlinear effects due to temperature varying thermal
conductivity. The thermal model developed in our earlier work [25] (asymptotically thin substrates, constant
thermal properties) is extended to account for thick substrates characterized by temperature-dependent
thermal conductivity. The model development is accompanied by novel GPU-based computations simulating
dewetting of three-dimensional evolving molten films. Similarly, temperature variation of surface tension and
viscosity are included, but Marangoni effects are neglected since these were demonstrated to be irrelevant
in the present context [25]. To summarize, the main novel aspects of the present work involve (i) extension
of our self-consistent model with volumetric heating to thick substrates; (ii) careful analysis of the role of
substrate properties on the film evolution, and (iii) consideration of film instabilities in both two and three
spatial dimensions.
The remainder of the paper is organized as follows. In Section II, we present the thin film equation

governing the fluid dynamics and the extension of the thermal model developed previously [25]. The main
results are presented in Section III. In Section IIIA, we outline the numerical scheme used to solve our
models. In Section III B, we present results that highlight effects due to thermal transport only, in the
absence of film evolution (the film surface is held flat and static even when above melting temperature);
in particular the correlation between peak film temperatures and substrate thickness, as the heat loss from
the substrate varies (via tuning the Biot number, Bi). In Section III C we consider evolving 2D films and
investigate the influence of thermal effects on the film dynamics. In Section IIID, we present large-scale 3D
numerical results for both film evolution and heat conduction. The main finding in both 2D and 3D is that
the substrate heat loss, thickness, and thermal conductivity temperature dependence may all influence the
final solidified film configuration, and depending on the relative strengths of these terms, films may either
dewet fully or only partially by the time they resolidify. Appendices A - G provide additional information
about material parameters, details of the model, and an extensive overview of the computational methods
implemented. In Section IV, we present our conclusions and directions for future work.

II. THE MODEL

Consider a free surface metal film of nanoscale thickness, H, and characteristic lateral length-scale L
(defined in terms of the wavelength of maximum growth; see Table II and [25]), which is initially solid, with
air above, and in contact below (at z = 0) with a thermally conductive solid SiO2 substrate of thickness
Hs, which may be much larger than that of the film. The whole assembly is placed upon another, thicker,
slab of Si. The metal film is heated by a laser and may change phase (solid to liquid and vice-versa).
Figure 1 shows the basic setup. For later reference, Table I lists the dimensionless parameters that will be
used extensively in the paper, and the dimensional material parameters and other quantities of interest are
specified in Appendix A, Table II.
We define the aspect ratio of the film to be ε = H/L � 1. For clarity we list a number of underlying

assumptions, which will be discussed and where appropriate justified in the text that follows:

• the metal film evolves only when melted;

• inertial effects are negligible;

• phase change (melting, solidification) is fast and the associated energy gain/loss can be ignored;

• liquid-solid interactions are relevant and can be modeled by a disjoining pressure;

• the laser energy is absorbed volumetrically in the film, but absorption in the substrate is neglected;

• the film is in perfect thermal contact with the SiO2 substrate at z = 0;

• heat loss in the film is only through the substrate and not through radiative losses;

• the Si slab underneath the SiO2 is a perfect conductor and remains at ambient temperature (this
is reasonable since its thermal conductivity is much larger than that of SiO2) but there is contact
resistance at the interface z = −Hs;
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• the surface tension and viscosity of the film, as well as the thermal conductivity of the substrate, may
vary with temperature; and

• the film does not evaporate.

FIG. 1. Schematic of a three-dimensional (3D) film with free surface z = h(x, y, t), deposited on a substrate that
may be much thicker than the film and is in contact with an even thicker Si slab underneath.

With respect to the in-plane and out-of-plane length scales, L and H (respectively), we define in-plane
coordinates x, y and the out-of-plane coordinate z. Following Allaire et al. [25], we choose the in-plane
velocity scale U = ε3γf/(3µf) (where γf and µf are surface tension and viscosity at melting temperature,
T̃melt) so that the time scale, L/U , is comparable to the duration of the laser pulse, but the model also
retains surface tension effects to leading order in ε. Subsequently, we choose εU , T̃melt, µfU/(ε2L) and γf
as the out-of-plane velocity, temperature, pressure, and surface tension scales, respectively. We take the
dimensionless domain length/width to be 2Pπ, where P is a positive integer.

We treat the film as an incompressible Newtonian fluid, assume that the viscosity and surface tension
may vary in time through the average film temperature (details to be specified below; in Appendix F we
consider spatial dependence as well), but fix material density and heat capacity at their melting temperature
values. Since our focus is on substrate effects we also assume the film thermal conductivity is fixed at

4



the melting temperature value. However, for thick substrates, large temperature gradients could lead to
significant differences in thermal conductivity across the depth. Therefore, we allow thermal conductivity
of the substrate to vary with temperature and use its value at ambient temperature, κs, as the thermal
conductivity scale. For what follows we use Tf and Ts to denote the temperatures of the film and substrate,
respectively. As will be discussed further below, to leading order (with respect to ε � 1), Tf(x, y, t) is
independent of the out-of-plane coordinate z [25]. We assume that the dimensionless surface tension Γ
depends linearly on average film temperature, to leading order, and is given by:

Γ = 1 + 2Ma
3 (Tavg − 1), (1)

where the Marangoni number Ma and average free surface temperature, Tavg(t), are given by

Ma = 3γTT̃melt
2γf

, Tavg(t) = 1
(2Pπ)2

∫ Pπ

−Pπ

∫ Pπ

−Pπ
Tf(x, y, t) dxdy. (2)

Here, γT = (γf/T̃melt)dγ/dTavg|Tavg=1 is the change in surface tension with temperature when the film (on
average) is at melting temperature, Tavg = 1. For the remainder of the text we omit the argument of Tavg(t)
with the understanding that it is time-dependent. More general expressions for surface tension exist that
account for spatial variation of temperature (Marangoni effect); it has been shown, however, that this has
little influence on film evolution in the present context due to small spatial temperature variations [25], and
thus we omit spatial dependence of Γ despite a Marangoni number that is not small (see Table I).
We follow the long-wave theory approach [2] adopted in our earlier work [25], which reduces conservation

of mass and momentum to a 4th order nonlinear PDE for film thickness, h, written in the general form
∂th + ∇2 · (hu) = 0, where ∇2 = (∂x, ∂y) is the in-plane gradient, and u = (u, v) is the depth-averaged
in-plane fluid velocity, related to the pressure gradient. For the remaining text, vector quantities are in bold
and scalar quantities are not. We assume that the pressure at the interface, z = h, obeys a modified Laplace-
Young type boundary condition, which includes both free surface curvature and also liquid-solid interactions,
modeled by a disjoining pressure Π(h). While various forms of Π(h) have been proposed (see [24] for a review
of this topic), we here use

Π(h) = Ω
[(

h∗
h

)n
−
(
h∗
h

)m]
, Ω = AHL

6πεγfh3
∗H

3 . (3)

In Eq. (3) the terms on the right-hand side represent the repulsive and attractive components of the liquid-
solid interactions, h∗ is the equilibrium film thickness where the attraction and repulsion balance, AH is the
Hamaker constant, and n > m are positive exponents; in the present work, we use (n,m) = (3, 2) following
Gonzalez et al. [31]. We note that the form of disjoining pressure specified by Eq. (3) allows for specification
of the equilibrium contact angle. Since for metals on SiO2 contact angles may be rather large (∼ 70◦ for
Cu, with some volume dependence [31]), one may wonder whether it is appropriate to use the long wave
theory. This question was discussed extensively in previous works, see e.g. Mahady et al. [32] where it was
shown that the difference in the results obtained by the long wave theory and full numerical simulations of
the Navier-Stokes equations are not significant even for such large contact angles. For the parameters used
in the present work (see Table II, the equilibrium contact angle is 50◦, therefore smaller than for Cu films
in the experiments; this difference may influence the shape of the drops that form after film breakup. Since
such details are not of interest in the present work, we focus on the long wave theory-based model, which
allows for a tractable and computationally feasible formulation including careful consideration of thermal
effects.
Continuing with our derivation, with disjoining pressure as specified by Eq. (3) the governing equation for

film height h can then be written as

∂th+∇2 ·
[

1
M
(
h3∇2

(
Γ∇2

2h+ Π(h)
))]

= 0, (4)
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whereM = µ/µf is the dimensionless viscosity, assumed to vary exponentially with average temperature via
an Arrhenius law,

M(t) = exp
(

E

RT̃melt

(
1

Tavg
− 1
))

, (5)

where R = 8.314 JK−1mol−1 is the universal gas constant, and E is the activation energy [33]. Other
approaches have been used to implement temperature dependence of viscosity; see e.g. Kaptay [34] for a
comparison of Arrhenius and statistical mechanics approaches, or Oron et al. [1] for derivation of an analog
of Eq. (4) that includes z-dependence of viscosity. We follow the approach of Seric et al. [18] in utilizing
Eq. (5), but we use average film temperature and thus omit spatial dependence of viscosity (shown to be
irrelevant in this context [25]).
Equation (4) describes the evolution of the nanoscale thin film, which is coupled to its temperature. To

determine the temperature we use an approach similar to our previous work [25], which assumed a thin
substrate to allow an asymptotic reduction of the heat flow problem in both film and substrate regions. We
assume (repeating some of the previously-listed assumptions for a self-contained presentation): (i) the film is
heated volumetrically by a laser, but the SiO2 substrate is transparent (an approximation justified by earlier
results showing that most of the laser energy is absorbed in the metal film, see Supplementary Materials
of [35]), (ii) heat conduction in the film is much faster than the evolution of the film, (iii) substrate heat
conduction and film evolution occur on similar timescales, and (iv) film heat loss is only through the SiO2
substrate, which is in perfect thermal contact with the film, and itself loses heat to an underlying Si slab
of much higher thermal conductivity. To extend our previous work, we present a formulation that includes
temperature-varying thermal conductivity in the substrate, κ(Ts) (made dimensionless by scaling with κs, the
substrate thermal conductivity at the ambient temperature, Ta). Furthermore, we now allow the substrate
to be thick, but assume negligible in-plane diffusion (an assumption shown to be valid in Appendix B). The
leading order film temperature is found to be independent of z and the model describing the transport of
heat in the film/substrate system is then [25]

hPef∂tTf = ∇2 · (h∇2Tf)−K (κ(Ts)∂zTs) |z=0 + hQ, for z ∈ (0, h) , (6)
Pes∂tTs = ∂z (κ(Ts)∂zTs) , for z ∈ (−Hs, 0) , (7)

Tf = Ts, on z = 0, (8)
κ(Ts)∂zTs = Bi (Ts − Ta) , on z = −Hs, (9)

∂xTf = 0, on x = ±Pπ, (10)
∂yTf = 0, on y = ±Pπ, (11)

where the dimensionless parameters defined by

Pef = (ρc)f UL

κf
, Pes = (ρc)s UεH

κs
, K = κs

κf
ε−2, Bi = αsH

κs
,

are the film and substrate Peclet numbers, the substrate-to-film scaled thermal conductivity ratio, and the
Biot number governing heat loss from the SiO2 substrate to the Si slab below, respectively. Values for each
of these parameters, as well as the film aspect ratio ε and the dimensionless viscosityM, are given in Table I.
On the right-hand side of Eq. (6) the terms, from left to right, represent lateral diffusion, film heat loss due
to contact with the substrate, and the laser heat source, respectively. Equation (7) reflects the assumption
that heat flow in the substrate is affected by out-of-plane diffusion only. Since the substrate thickness may
actually be comparable in size to the domain length, dropping lateral substrate diffusion is not necessarily a
consequence of the leading order approximation of heat conduction in ε, but rather an assumption, justified
later in Appendix B by showing that in-plane derivatives of substrate temperature are orders of magnitude
smaller than those in the out-of-plane direction. Furthermore, note that Ts still retains the dependence on
x and y due to Eq. (8), which represents continuity of film/substrate temperatures. Equation (9) represents
heat loss from the SiO2 substrate to the underlying Si slab, assumed to be at ambient temperature, Ta.

Values of the heat transfer coefficient, αs, in the definition of Bi are difficult to find in the literature
so in this work we consider Bi to be a variable parameter within the range given in Table I. The lateral
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boundaries are thermally insulated, Eq. (10) and (11). The above model assumes that radiative losses are
negligible relative to heat loss to the substrate. By a simple energy argument, we find that the time scale on
which radiative losses would be relevant is on the order of milliseconds, orders of magnitude longer than the
time scales of the laser pulse and consequent flow considered here; see Appendix D for more details. In the
present work we do not consider the details of the phase change process: we assume it to be instantaneous,
following Seric et al. [18], and in particular we ignore the contribution of latent heat to the energy balance.
A simple argument justifying this is a back-of-the-envelope comparison of the latent energy of melting and
the total energy supplied by the laser. For our considered system, the latter is nearly 40 times larger. We
note that the effects of latent heat were considered in a similar context recently by Trice et al. [13], who
found consistently that the latent heat is negligible.
Next, we assume the film-averaged heat source, Q in Eq. (6), representing external volumetric heating due

to the laser at normal incidence, is given by [13, 18],

Q = 1
h

∫ h

0
F (t) [1−R(h)] exp [−αf (h− z)]dz, (12)

F (t) = C exp
[
− (t− tp)2

/(2σ2)
]
, C = E0αfL

2
√

2πσtsHκf T̃melt
,

where C is a dimensionless constant proportional to the laser fluence E0, α−1
f is the (scaled) absorption

length for laser radiation in the film, and F (t) describes the temporal shape of the laser, taken to be
Gaussian centered at tp and of width σ = tp/(2

√
2 ln 2). For the reflectivity of the film, R(h), we use [13, 18]

R(h) = r0 (1− exp (−αrh)) ,
where r0 and αr are dimensionless fitting parameters, specified in Table II in Appendix A.

Dimensionless Numbers Notation Value Expression
Aspect Ratio ε 0.347 H/L

Film Peclet Number Pef 1.42× 10−3 (ρc)fUL/κf

Substrate Peclet Number Pes 2.17× 10−2 (ρc)sUεH/κs

Biot Number Bi 10−3 − 103 αsH/κs

Thermal Conductivity Ratio K 0.034 κs/(ε2κf)
Range of Dimensionless Viscosity M 0.028− 1 µ/µf

Marangoni Number Ma 0.35 3γTT̃melt/(2γf)

TABLE I. Dimensionless Parameters Based on Material parameters in Table II.

III. RESULTS

After outlining our numerical approach in Section IIIA, we consider 2D films with free surface z = h(x, t)
in Section III B and Section III C, focusing on the influence of substrate thickness, Biot number, and variable
substrate thermal conductivity. In Section IIID we expand our consideration to 3D films with free surface
z = h(x, y, t).

A. Numerical schemes

In the 2D case, Eq. (4) for h(x, t) is solved using the approach of our earlier work [25], with spatial
discretization commensurate with the equilibrium film thickness, ∆x = h∗ = 0.1. Eq. (4) can be rewritten
as ∂th+∂xJ = 0 for some flux J , and a Crank-Nicolson scheme is used for the time-stepping, turning Eq. (4)
into a nonlinear system of algebraic equations

hi(t+ ∆t)− hi(t)
∆t = 1

2Di(t+ ∆t) + 1
2Di(t), i = 1, 2, . . . , N, (13)

7



where hi(t) ≈ h(xi, t), {xi} is a N -point spatial discretization, and Di is a discretization of ∂xJ , at xi.
Although any iterative method for solving nonlinear equations would suffice to solve Eq. (13), we use Newton’s
method; since Eq. (13) must be solved at each time-step, the rapid quadratic convergence ensures faster
computing times. The initial condition takes the form of a small perturbation to a flat film h = h0,

h(x, 0) = h0 (1 + δ cos (x)) , (14)

where h0δ is the perturbation amplitude (|δ| � 1), and the wavelength of the perturbation is equal to the
domain length, 2π (see Table II in Appendix A for the physical sizes). The no-flux boundary conditions,
hx = hxxx = 0, are applied at x = ±Pπ.
A similar approach is used to solve Eq. (7) for the substrate temperature Ts, while for the film temperature

Tf in Eq. (6) an implicit-explicit methodology is used (see the Appendix of Allaire et al. [25] for more details).
The film and substrate are initially fixed at room temperature,

Tf(x, 0) = Ts(x, z, 0) = Ta. (15)

During the initial laser heating both film and substrate temperatures are found by solving Eqs. (6)–(7)
with the film flat and static until it melts, which we deem to happen when the minimum film temperature
(over space) surpasses Tmelt = 1. Film evolution, film temperature, and substrate temperature are then
sequentially found at each time step. Once the minimum film temperature decreases past Tmelt the film is
considered solid. After this time, only film and substrate temperatures are solved for; we no longer evolve
the free surface, which is frozen in what we refer to as its final configuration.
A successful time iteration requires that two criteria are met for both film evolution and heat conduction:

(i) the iterative method should converge to a relative error tolerance of 10−9 in fewer than 10 iterations; and
(ii) the relative truncation error should be less than 10−3. If either (i) or (ii) are not satisfied, the time step
is decreased and the equations are integrated again. For more details regarding the 2D numerical scheme
see Appendix G1.
For the 3D simulations, one needs to be careful with the choice of the initial condition, so as to produce

a surface h(x, y, 0) with perturbations that are uncorrelated (in the x and y directions) and that excite
a significant number of Fourier modes (note that using simply a sum or a product of sines and cosines
with random amplitudes produces noise that is not random). To create the initial condition we follow Lam
et al. [36], first taking a(qx, qy) to be a random variable, uniformly distributed on [0, 1] for each pair of
wavenumbers (qx, qy). Next, we define noise in Fourier space,

ζ̂ =
[
q2
x + q2

y

]−α/2 exp (2πia(qx, qy)) ,

with α = 25∆x/(2π), where ∆x is the grid spacing. This value of α, which is independent of the domain size
and was used also by Lam et al. [36], was chosen so that ζ̂ decays sufficiently fast for large wavenumbers.
We denote the inverse Fourier transform of ζ̂ by ζ(x, y), then we let η(x, y) be a linear rescaling of ζ(x, y)
(bounded to be less than one in absolute value) and finally define the initial condition as

h(x, y, 0) = h0 (1 + δη(x, y)) , (16)

where δ = 0.01 as in the 2D case. The additional boundary conditions, hy = hyyy = 0 at y = ±Pπ are
applied in the 3D case.
Equation (4) is written as ∂th + ∇2 · J = 0, with flux J, and solved for h(x, y, t), via an alternating-

direction implicit (ADI) method combined with the Newton iterative method described above (Di, hi in
Eq. (13) are now replaced by Di,j , hi,j) [36]. Equation. (6) is now solved using an implicit-explicit ADI
approach, which consists of a predictor and corrector step. Equation (7) is solved similarly to the 2D
case, except now Ts = Ts(x, y, z, t). Due to the dependence on three spatial variables, this equation alone
amounts to a significant number of systems of discrete nonlinear equations to be solved at each time-
step. Similarly, Eq. (4) and Eq. (6) lead to large discrete systems, which present a daunting computational
challenge. To enhance computational performance the equations are solved in parallel using the Compute
Unified Device Architecture (CUDA) programming framework [37] developed by NVIDIA®, which utilizes
graphics processing units (GPUs). In a similar context, Lam et al. [36] showed that GPUs offer significant
computational advantages over traditional (CPU) computing, especially when large domains are considered.
The parallel numerical schemes used for heat conduction are described in Appendix G2.
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B. Flat film results - influence of substrate thickness, Biot number, and thermal conductivity

In this section we suppress dewetting in the molten film and consider the static flat film h = h0, focusing
on the influence of substrate properties on film temperature. In particular, we analyze the influence of (i)
the substrate thickness, (ii) the substrate heat loss, and (iii) nonlinear effects due to temperature-dependent
thermal conductivity in the substrate (compared with constant thermal conductivity, κ = 1). For more
details on the model used for the thermal conductivity, see Appendix C. In the following discussion we focus
on two quantities: peak film temperature, Tpeak (the maximum spatially-averaged film temperature attained
by the film over the duration of the simulation), and the liquid lifetime (LL) of the film, defined as the time
interval during which the average film temperature remains above melting (Tavg > 1).

FIG. 2. Phase plane plots of the film peak temperature, Tpeak and liquid lifetime (LL). Here surface tension and
viscosity are fixed at the melting temperature values, Γ =M = 1. (a, c) Tpeak for thermal conductivity fixed at room
temperature (κ = 1), or temperature-dependent, κ = κ(Ts). (b, d): corresponding results for LL. Log base 10 is used
on the horizontal axes and the color bars for (b, d) are nonuniform.
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Figures 2(a) and (b) show phase plane plots of Tpeak and LL, respectively, for various values of substrate
thickness Hs and Biot numbers, Bi; see Eq. (9). A zero Biot number corresponds to a perfectly insulated
substrate that loses no heat to the underlying Si slab, while Bi → ∞ corresponds to a poorly insulated
substrate in contact with a Si slab at ambient temperature, Ta (in Eq. (9) this corresponds to a Dirichlet
boundary condition, Tf = Ta). In Fig. 2(a) we see that films on well-insulated substrates (Bi � 1) retain
more heat and reach higher peak temperatures than those on their poorly-insulated counterparts (Bi � 1).
In Fig. 2(b) this corresponds to longer LLs for Bi � 1. Note that here the LL scale is nonuniform and
the LL varies with substrate thickness, even for Bi < 10−1. Furthermore, we see little variation in Tpeak
for Bi ∈ [1, 103], which manifests in Fig. 2(b) as near-horizontal constant LL contour lines in this range,
compared to those in the remaining range of Bi where LL varies significantly. Between Bi = 10−1 and
Bi = 1 there is a sharp transition in peak temperature and LL. This is primarily due to the changing balance
between the heating of the film-plus-substrate and the heat loss from the substrate (there is perfect thermal
contact at the film–substrate interface, and since radiative losses are neglected no heat is lost at the film’s
free surface). For substrates perfectly insulated from below, heat is retained in the substrate (and thus the
film, due to the perfect thermal contact) more so than in the poorly-insulated case, where the film rapidly
loses heat to a near-room-temperature substrate.
The influence of substrate thickness is also significant, and depends strongly on the value of Bi. For well-

insulated substrates (Bi� 1), peak average film temperature decreases with increasing Hs, while for poorly-
insulated substrates (Bi � 1) peak temperature increases with Hs. This is again due to the competition
between the absorption of heat in the substrate and the heat loss to the underlying slab at its lower boundary,
z = −Hs. For Bi � 1, the thicker the substrate the more thermal energy it absorbs (due to the greater
volume) and retains (due to the insulated lower boundary), leaving less heat in the film (see movie1 of [38],
for the associated heat conduction animation). For Bi � 1, substrate heat loss is rapid and the farther
the interface at z = −Hs is from the molten film, the less heat is lost from the film (see movie2 of [38] for
the associated heat conduction animation). Therefore, in this case thicker substrates yield higher film peak
temperatures. Liquid lifetime is, in general, positively correlated with peak temperature, despite differences
in cooling. Furthermore, peak temperatures are similar for substrates thicker than Hs = 20 (beyond this
value the substrate effectively behaves as one of infinite depth). The exact solution for a flat film on an
infinite substrate Hs → ∞ can be found in the literature [13, 18]; in Appendix E we demonstrate the
convergence of our numerical results to this analytical solution as Hs increases.

Figures 2(c) and (d) show peak average film temperatures and LL for the substrate whose thermal con-
ductivity varies with temperature according to Eq. (C1). The trend of peak temperature and LL is similar
to the κ = 1 results shown in Figs. 2(a) and (b), although the temperatures are much lower and thus the LL
is shortened for given (Bi, Hs) pairs. For the entire simulation κ(Ts) ≥ 1, so that substrate diffusion occurs
more rapidly, and heat is then transferred faster away from the film, compared with the κ = 1 case. This
becomes increasingly important when considering films that evolve, since viscosity may depend strongly on
temperature [25]. Finally, it should be noted that some temperatures in Fig. 2 surpass the boiling point of
the film (Tboil ≈ 2.088), while our model neglects possible evaporation. Although models that account for
evaporation exist (see, e.g. [1] for a review), in practice the laser fluence is often adjusted to the system of
interest so that no significant mass is lost to evaporation. These results, therefore, can serve as a guideline
for such fluence adjustments.

C. 2D Evolving films

In this section the film surface is initially prescribed by Eq. (14), with δ = 0.01, on the spatial domain
x ∈ [−π, π], and we investigate the influence of Bi and Hs on the film evolution. The initially solid film is
static until it melts, at which point it evolves according to Eq. (4). Once the film re-solidifies, its evolution
stops. To maintain generality, we allow the material parameters governing surface tension, viscosity and
thermal conductivity to vary with average film temperature, so that Γ = Γ(t) via Eq. (1) andM =M(t) via
Eq. (5). Similarly, the thermal conductivity of the substrate is allowed to depend on substrate temperature,
κ = κ(Ts) (see Eq. (C1) in Appendix C for the form used).
Figures 3(a) and (b) show the evolution of the film midpoint (x = 0) and the average film temperature,

respectively, for various values of Bi and for fixed substrate thickness, Hs = 10. The trend of shorter LL in
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FIG. 3. (a) Evolution of film thickness at x = 0 for Bi = 0.1 (red, dash-dotted), 0.2 (blue, dash-dotted), 0.5
(green dashed), 1.0 (magenta dashed); and equilibrium film thickness h = h∗ (orange dash-dotted). (b) Average
film temperature corresponding to the cases shown in (a). The material parameters are variable, Γ = Γ(t),M =
M(t), κ = κ(Ts), substrate thickness is fixed, Hs = 10, and melting temperature, Tmelt = 1 (orange dash-dotted).

Fig. 3 as Bi increases is consistent with Fig. 2(d). Consequently, the films for Bi = 0.5 and Bi = 1.0 solidify
prior to any significant evolution, whereas for Bi = 0.1 the film dewets fully. For Bi = 0.2 the film mostly
dewets, but solidifies just before its surface reaches the equilibrium film thickness, h = h∗. This intricate
balance between solidification and dewetting highlights the importance of the value of Bi in determining
whether full or partial dewetting occurs.
Next, we consider the influence of substrate thickness. Similarly to Fig. 3, Figs. 4(a) and (b) show the

midpoint film thickness and average film temperature, but for varying Hs: Hs = 5, 10, 15, 20, 25. Here the
Biot number is fixed at Bi = 0.1. From Fig. 4(a), we see that increasing substrate thickness increases the
dewetting speed by only a small amount. Since in Fig. 4(b) films on thinner substrates are seen to achieve
higher temperatures, the film on the thinnest substrate, Hs = 5, has lowest viscosity and dewets fastest in
(a). The observed decrease in peak temperature with substrate thickness, and the similar LLs for Bi = 0.1,
are consistent with Figs. 2(c) and (d).
For completeness, Fig. 5 shows results analogous to Fig. 4 but for the case Bi = 0.2, showing consistent

findings. Figures 5(a) and (b) show the evolution of the film midpoint and average temperatures, respectively,
for the same five substrate thicknesses. Of the Hs cases considered, the film for Hs = 5 shows the largest
difference (similar to Fig. 4). In contrast to the Bi = 0.1 case, however, here the film with Hs = 5 solidifies
before full dewetting (h(0, t) does not reach the equilibrium film thickness). We see in Fig. 5(b) that the
liquid lifetimes vary more significantly than for Bi = 0.1, but the effect of varying Hs is still small relative to
that of varying Bi (compare Fig. 3(a)). Finally, note that despite the weak influence of Hs on film evolution,
a small change in LL may signal premature solidification of the film, as we see in 3D simulations (e.g. Fig. 9).
To summarize, varying substrate thickness (Hs) and heat loss from the lower surface (Bi) may result in

films that solidify prior to complete dewetting. We will see in Section IIID that the substrate thickness may
play a significant role in determining the final configurations of the 3D films.
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FIG. 4. (a) Evolution of film thickness at x = 0 for Hs = 5 (black), 10 (red, dash-dotted), 15 (blue dash-dotted), 20
(green dashed), 25 (magenta dashed), and the equilibrium film thickness h = h∗ (orange dash-dotted). (b) Average
film temperature corresponding to the Hs cases in (a) and melting temperature, Tmelt (orange dash-dotted). The
material parameters are variable, Γ = Γ(t),M =M(t), κ = κ(Ts), and Bi = 0.1.
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FIG. 5. (a) Evolution of film thickness at x = 0 for Hs = 5 (black), Hs = 10 (red, dash-dotted), Hs = 15 (blue
dash-dotted), Hs = 20 (green dashed), Hs = 25 (magenta dashed), and h = h∗ (orange dash-dotted). (b) Average
film temperature corresponding to the Hs cases in (a) and melting temperature, Tmelt (orange dash-dotted). The
material parameters are variable, Γ = Γ(t),M =M(t), κ = κ(Ts), and Bi = 0.2.
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D. 3D Evolving films

Next, we consider the role of the temperature-dependent material parameters, the substrate thickness,
Hs, and the Biot number, Bi, in the pattern formation for 3D films, with free surface z = h(x, y, t). For
this section, we consider randomly perturbed films with the initial free surface disturbance specified by
Eq. (16) (shown in Fig. 6), and follow the same melting/solidification procedure described in Section III C.
In all cases, the domain is a square of linear dimension 16π, surface tension is a function of average film
temperature via Eq. (1) and, except where otherwise specified, the Biot number is fixed at Bi = 0.1. We
consider both constant viscosityM = 1 and (average) temperature-dependent viscosityM(t) (see Eq. (5)),
and κ = 1, κ(Ts) for substrate thermal conductivity. To maintain generality we only consider the case Γ(t)
(and not Γ = 1) since temporal variation of surface-tension was found in [25] to only slightly alter the results.
We note that even though the Marangoni number is not small, the Marangoni effect (spatial variation of
surface tension) is not relevant because of the small spatial temperature variations.
In earlier work [18, 25], 2D simulations reveal that temperature-dependent viscosity is crucial for modeling

the correct dewetting speed of the films. We now confirm the importance of accounting for temperature-
dependent viscosity in 3D simulations.

FIG. 6. Initial film thickness h(x, y, 0) for 3D simulations, described by random noise perturbations to the flat film
h = 1, and given by Eq. (16). The domain has length 16π in both x and y directions.

1. Influence of viscosity

Figures 7(a) and (b) both show the final solidified film for temperature-dependent substrate thermal
conductivity κ = κ(Ts), but (a) corresponds toM = 1 (viscosity fixed at melting value) and (b) toM =M(t)
(viscosity depends on average temperature as given by Eq. (5)). The main finding is that the variable-
viscosity film in Fig. 7(b) has mostly dewetted and formed droplets prior to resolidification, whereas the
constant-viscosity film in Fig. 7(a) has barely evolved. Figure 7(c) shows the average film temperature Tavg
in both cases, along with the melting temperature, Tmelt; we see that Tavg is nearly identical for the two
cases, despite the very different fluid dynamics. Since the final film structures are very different but the LLs
are nearly identical, we conclude that the variable viscosity is crucial for accurate modeling of dewetting
within the liquid phase. The simplest explanation of the influence of viscosity on the evolution of the film
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FIG. 7. Final film thickness for (a)M = 1 and (b)M(t). Average film temperatures are shown in (c), with melting
temperature, Tmelt. In (a) the film solidifies before significant evolution occurs, whereas in (b) further dewetting
occurs with some droplet formation. Both films are initialized with the same random noise (Eq. (16), shown in
Fig. 6). The LLs are approximately 4.35 and 4.15 for (a) and (b), respectively, and in both cases Bi = 0.1 and
Hs = 10. See movie3 of [38] for an animation of film evolution..

and surface instabilities is that its value modifies the time scale of evolution, with a lower viscosity value
leading to faster evolution due to reduced effects of internal friction.
Note that the spatially-varying form of viscosity,M(x, t), given by Allaire et al. [25], which replaces Tavg

by Tf in Eq. (5), produces essentially identical results to Fig. 7(b), due to the weak in-plane spatial variation
of film temperature. Detailed results are presented in Appendix F.

2. Influence of thermal conductivity

Next, we consider the influence of temperature-dependent substrate thermal conductivity on film dewetting
behavior. Figure 8 shows final solidified film thickness for (a) constant, and (b) temperature-varying (κ(Ts)),
substrate thermal conductivity, each with temperature-dependent viscosity M = M(t). Figure 8(c) shows
the average film temperature over time for both cases. The decreased LL and lower peak temperature for
κ(Ts) are consistent with the flat film results in Figs. 2(c) and (d), although the difference is not dramatic.
Despite this, dewetting has clearly proceeded further in (a) than in (b), as evidenced by the differences in film
heights: dewetting in case (b) is slower due to the higher film viscosity resulting from lower temperatures.
Coarsening is also more advanced in case (a) at solidification, with generally larger droplets than case (b),
due to both premature solidification in case (b) and to different values of the surface tension parameter Γ,
known to alter instability wavelengths [25].
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FIG. 8. Final film thickness for (a) κ = 1 and (b) κ(Ts). Average film temperatures are shown in (c), with melting
temperature, Tmelt. Here,M =M(t), (b) is identical to Fig. 7(b) and the LL for (a) is approximately 4.82. In both
cases Bi = 0.1 and Hs = 10. See movie4 of [38] for an animation of film evolution..

3. Influence of substrate thickness

Figures 9, 10, and 11 illustrate the role of Hs on the dewetting process for small (Bi = 0.1) and large
(Bi = 103) values of the Biot number. Figure 9(a) shows average film temperatures for a well-insulated
substrate, Bi = 0.1, andHs = 10, 15, 20, and 25, where both film viscosity and substrate thermal conductivity
are temperature-dependent, M = M(t) and κ = κ(Ts). The similar LLs and small variations in peak
temperature observed are nearly identical to those for the 2D film in Fig. 4(b). Nevertheless, the small
deviations in peak temperature as Hs varies are important because of the strong temperature dependence
of viscosity, which changes the dewetting speed.
Figure 9(b) similarly shows average film temperature for the same substrate thicknesses as in (a) but for a

poorly-insulated substrate, Bi = 103. The significantly decreased temperatures and shorter LLs for thinner
substrates are consistent with Fig. 2(c). Note in particular the reversal of the trend between Figs. 9(a) and
(b), with peak temperature decreasing with Hs in (a), and increasing with Hs in (b). In Fig. 9(b), the peak
temperatures are generally lower and the LLs much shorter, which (we now show) may lead to different final
solidified film configurations.
Figure 10 shows the final solid film configurations for (a) Hs = 10, (b) Hs = 15, (c) Hs = 20 and (d)

Hs = 25, for Bi = 0.1 (corresponding to Fig. 9(a)). Since average peak temperature Tpeak decreases with Hs,
the dewetting speed decreases from (a)–(d) due to the viscosity increase. This is to some degree surprising,
since the influence of Hs was not readily apparent in the 2D case. The proposed explanation is that, in our
3D simulations, we prescribe a random initial condition, and therefore it takes time for the fastest growing
mode of instability to develop. This surplus time slows the dewetting sufficiently for the thicker substrates

15



FIG. 9. Average film temperatures, Tavg, for (a) Bi = 0.1 and (b) Bi = 103, when deposited on substrates of thickness
Hs = 10 (red dash-dotted line), Hs = 15 (blue dash-dotted line), Hs = 20 (green dashed line), and Hs = 25 (magenta
dash-dotted line). The melting temperature is given by the black dash-dotted line.

that it is still incomplete at resolidification.
Figure 11 shows the final solid film configurations for (a) Hs = 10, (b) Hs = 15, (c) Hs = 20 and (d)

Hs = 25 for the poorly insulating substrate, Bi = 103, corresponding to Fig. 9(b). Since Tpeak now increases
with substrate thickness, viscosity decreases and dewetting speed increases from (a)-(d). In this case, none of
the simulations (a)-(d) fully dewet (recall the lower peak temperatures in Fig. 9(b) compared with Fig. 9(a)
leading to earlier resolidification in Fig. 11 compared with Fig. 10). The films in Figs. 11(c) and (d) begin
to form holes, but those in (a) and (b) barely evolve. Collectively, Figs. 10 and 11 indicate that the final
configuration of the resolidified film depends on both Hs and Bi in a nontrivial way.

IV. CONCLUSIONS

We have modeled and simulated the evolution of pulsed laser irradiated nanoscale metal films that are
deposited on thick substrates. In particular, we have focused on the role that the underlying substrate plays
in determining both the temperature of the film and its corresponding evolution. With regards to material
parameters, our model accounts for temperature dependence of both surface tension and viscosity of the film.
Our 3D simulations indicate that if temperature dependence of viscosity is not included, the film evolution
is significantly slower, leading in some cases to partial dewetting only.
The film liquid lifetime (LL) and spatially-averaged peak temperature (Tpeak) are found to depend on

the substrate heat loss (as characterized by a Biot number, Bi, governing heat loss at the lower surface),
substrate thickness Hs, and the thermal conductivity model used (specifically, whether it is taken to be
constant, or varying with temperature). Tpeak is found to vary strongly with Bi, but less so with Hs. In
particular, we find that the correlation between Hs and Tpeak changes from negative to positive according
to whether the substrate is well-insulated (Bi � 1) or poorly-insulated (Bi � 1). The choice of well- or
poorly-insulated substrates can lead to significantly different final solidified film configurations. Including
temperature-varying thermal conductivity, in general, increases the heat loss from the film to the substrate,
decreasing Tpeak and therefore liquid lifetimes. The decreased film temperatures observed with temperature-
varying thermal conductivity lead to a much larger film viscosity, which reduces the speed of dewetting.
Our 3D simulations show that this can lead to films that solidify prematurely, although the effect is not as
dramatic as that of changing Hs. Interestingly, we find that varying Hs does not appear to alter significantly
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FIG. 10. Final film thickness for Bi = 0.1, and on substrates of thickness (a) Hs = 10, (b) Hs = 15, (c) Hs = 20, and
(d) Hs = 25, with temperature-dependent material parameters, Γ(t), M(t), and κ(Ts). Films on thicker substrates
dewet slower due to the lower temperatures (and higher viscosity), see Fig. 9(a). Here, (a) is the same as Fig. 7(b)
and the LLs are (a) t = 4.15, (b) t = 4.31, (c) t = 4.19, and (d) t = 3.95. See movie5 of [38] for an animation of film
evolution.

the LL of the films; however, a small but significant change in Tpeak results, which again alters viscosity
and thus the final configuration of the film. It should be noted that including a finite-thickness substrate is
crucial since its absorption of the energy alters the heating and cooling of the film in a way that cannot be
captured by simple boundary conditions.
Our model omits a number of effects, the possible relevance of which we briefly discuss. First, we neglected

temperature-dependent thermal conductivity of the metal film. Although this could be added to the model,
with notable added complexity to the numerical schemes described in Appendices G 1 and G2, the modest
changes to thermal conductivity [39] would be inconsequential on the fast time scale of heat transfer across
the film. Second, our simulations assume that phase change occurs instantaneously. In practice, partial
melting and solidification may occur, in different parts of the film. The current model could be altered
to include such effects, most readily by modifying the form of Eq. (5) to account for spatial variations in
film temperature, and viscosities that increase dramatically when the film temperature drops below Tmelt.
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FIG. 11. Final film thickness on poorly insulated substrates, Bi = 103, of thickness (a) Hs = 10, (b) Hs = 15, (c)
Hs = 20, and (d) Hs = 25, with temperature-dependent material parameters, Γ(t),M(t), and κ(Ts). Films on thicker
substrates dewet faster due to the higher temperatures (and lower viscosity), see Fig. 9(b). The LLs are (a) t = 1.46,
(b) t = 2.57, (c) t = 3.16, and (d) t = 3.52. See movie6 of [38] for an animation of film evolution.

Radiative heat losses and evaporation are also neglected in the modeling; both effects may become important
for certain choices of film materials. Finally, in-plane diffusion is neglected in the substrate. These additional
effects should be considered in future work.
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Appendix A: Values of parameters

Parameter Notation Value Unit
Viscosity at Melting Temperature µf [26] 4.3× 10−3 Pa s
Surface tension at Melting Temperature γf [26] 1.303 J m−2

Wavelength of maximum growth λm = 2π/
√

Ωεh2
∗/(2Lh4

0) (2h0 − 3) [25] 180.84 nm
Vertical length scale H 10 nm
Horizontal length scale L = λm/(2π) 28.78 nm
Time scale ts = 3Lµf/(ε3γf) 6.79 ns
Temperature scale/Melting Temperature T̃melt 1358 K
Film density ρf [26] 8000 kg m−3

SiO2 density ρs [26] 2200 kg m−3

Film specific heat capacity cf [26] 495 J kg−1 K−1

SiO2 specific heat capacity cs [26] 937 J kg−1 K−1

Film heat conductivity κf [26] 340 W m−1 K−1

SiO2 heat conductivity κs [26] 1.4 W m−1 K−1

Film absorption length α−1
f H [26] 11.09 nm

Temp. Coeff. of Surf. Tens. γT [26] −0.23× 10−3 J m−2 K−1

Hamaker constant AH [31] 3.49× 10−17 J
Reflective coefficient r0 [26] 0.3655 1
Film reflective length α−1

r H [26] 12.0 nm
Laser energy density E0 [31] 1400 J m−2

Gaussian pulse peak time tpts [31] 18 ns
Equilibrium film thickness h∗H 1 nm
Mean film thickness h0H 10 nm
SiO2 thickness HsH 50− 250 nm
Room temperature TaT̃melt 300 K
SiO2 Heat Transfer Coefficient αs 105 − 1011 W m−2 K−1

Characteristic Velocity U 4.237 m s−1

Activation Energy E 30.5 kJ mol−1

Latent Heat Lf [33] 204.89 kJ kg−1

TABLE II. Parameters used for liquid Cu film and SiO2 substrate.

Appendix B: Model validity: neglecting in-plane heat diffusion in the substrate

For brevity, we denote the asymptotically-reduced model described by Eqs. (6)-(11) as model (A). In our
previous work on this system [25], it was assumed that the film is placed upon a substrate sufficiently thin
that neglecting in-plane diffusion in the substrate is asymptotically valid. In Section II of the present work,
we allow the underlying substrate to be thick relative to the film, so the neglect of terms representing in-
plane diffusion in the substrate requires further justification. For this purpose, we consider a model, denoted
(FA) (here, “F” indicates that a “full” (2D) model is used for heat flow in the substrate, while “A” denotes
the “asymptotically” reduced model that applies to heat transport in the film), which includes Eq. (6) and
Eqs. (8)–(11), but replaces Eq. (7) with a full 2D heat transport model in the substrate,

Pes∂tTs = ε2∂2
xTs + ∂2

zTs. (B1)

Figure 12 shows the evolution of the film thickness at the midpoint, x = 0, (a) and average film temperature
(b) for 2D films on substrates of thicknesses Hs = 10, 50, and 100. In (a), the film is initially given by Eq. (14)
and h(0, t) is determined by solving Eq. (4) with Γ =M = κ = 1 and Bi ≈ 4.3× 10−2. The heat conduction
is solved using both models (A) and (FA). We find good agreement between model (A) (the thermal model
used in the main text) and model (FA). This indicates that including lateral diffusion in the substrate does
not influence the film (neither evolution nor heating) and can be neglected.
To further justify dropping lateral diffusion in the substrate, we compare in-plane to out-of-plane diffusion

in the full heat conduction model (FA) used in Fig. 12 (which uses Eq. (6) and Eq. (B1)). Figure 13 shows
the largest value in magnitude of both in-plane diffusion, maxx,t |ε2Txx| (blue), and out-of-plane diffusion,
maxx,t |Tzz| (black), as a function of z, for Hs = 10 (a, b), Hs = 50 (c, d), and Hs = 100 (e, f). In all cases,
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FIG. 12. (a) Film thickness at the midpoint, x = 0, and (b) average film temperature for model (A) (Eqs. (6)–(11))
and model (FA) (where Eq. (7) is replaced by Eq. (B1)). Models (A) and (FA) agree for substrate thicknesses
Hs = 10, 50, and 100. For both (a) and (b) the parameters were held constant, Γ =M = κ = 1, and Bi ≈ 4.3×10−2.
Note that the temperature range here differs from that in other plots.

the term representing in-plane diffusion in the substrate is at least 10 times smaller than that representing
out-of-plane diffusion. The former, then, can be dropped without significant loss of accuracy.

Appendix C: Temperature-varying thermal conductivity

The dimensionless substrate thermal conductivity, given by κ(Ts), depends on the local values of the
substrate temperature Ts. Limited data exist on SiO2 thermal conductivity values at high temperatures
(e.g. higher than film melting temperature) and the wide range of temperatures observed during film
heating presents a modeling challenge. To determine the appropriate functional dependence for κ(Ts) we
follow the approach of Combis et al. [40], which utilizes both the annealing temperature, Tanneal, and the
softening temperature, Tsoften. The values we use are based on changes in the thermal expansion coefficient
[40], although in practice these temperatures are measured by a sudden change in various material properties
(such as viscosity), which could occur in such a wide range of temperatures considered. For more general
information regarding Tanneal and Tsoften see e.g. Callister [41] or Petrie [42]. Based on the data provided
by the manufacturer (Silica Suprasil 312 Type 2 [43]), we use Tanneal = 1.03 and Tsoften = 1.40, respectively
(all temperatures are normalized by the film melting temperature used in our simulations and thermal
conductivity is normalized by the value at melting temperature, κs). Figure 14 shows the data provided
(black squares) by the manufacturer [43], the piecewise linear fit used by Combis et al. [40] (blue dashes),
and the form of κ(Ts) we use (black solid line). Instead of using a piecewise linear profile, we use a cubic
polynomial smoothed with sigmoid functions, in the following form:

κ(Ts) = 1
1 + exp (β1Ts − β2) (a+ bTs + cT 2

s + dT 3
s ) + 1

1 + exp (β2 − β1Ts)
κsoften, (C1)

where a, b, c, d, β2 are fitting parameters, β1 is a scaling factor, and κsoften is the thermal conductivity at
softening temperature, all of which are given in Table III. This form captures the thermal conductivity at
low, annealing, and softening temperatures reasonably well and provides a large range of values for use
in simulations. Note that above the softening temperature the thermal conductivity is nearly constant, a
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FIG. 13. Maximum magnitude of in-plane diffusion over all x and t, maxx,t|ε2Txx|, for (a) Hs = 10, (b) Hs = 50,
(c) Hs = 100; and maximum out-of-plane diffusion, maxx,t|Tzz| similarly for (b), (d), and (f). Out-of-plane diffusion
is orders of magnitude larger than in-plane diffusion. The parameters are the same as Fig. 12 and the full heat
conduction model (FA) is used.

simplifying assumption made due to lack of reliable data in this regime.

Parameter Notation Value
Fitting Parameter a −1.23× 10−4

Fitting Parameter b 2.06× 10−1

Fitting Parameter c −59.89
Fitting Parameter d 3.22× 104

Scaling Factor β1 30.12
Fitting Parameter β2 40.0
SiO2 Thermal conductivity at Tsoften κsoften 1.43
SiO2 Annealing Temperature Tanneal 1.03
SiO2 Softening temperature Tsoften 1.40

TABLE III. Table of parameters used for the fit of temperature-dependent thermal conductivity, given by Eq. (C1).
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FIG. 14. Manufacturer data of thermal conductivity at various temperatures (black �), extrapolated values at
annealing temperature (red 4) and softening temperature (red 5), the fit of substrate thermal conductivity to
temperature Ts used in this manuscript (black solid line), and the fit used by Combis et al. [40] (blue dashed line).
Note that Ts is in units of T̃melt, so that the leftmost point on the horizontal axis corresponds to the ambient
temperature, where κ = 1).

Appendix D: Relevance of radiative losses

Here we briefly consider the relevance of radiative heat losses at the film surface, z = h. For simplicity we
consider a simple energy argument. Consider the case of a flat film h = 1, which is at melting temperature.
The total internal thermal energy of the system is then ρfcf T̃meltL

2H. The rate of energy loss at the
boundary z = h due to radiation is proportional to the fourth power of temperature and is given by
σSBεrT̃

4
melt

(
1− T 4

a
)
L2, where σSB = 5.67×10−8Wm−2K−4 is the Stefan-Boltzmann constant and εr ≈ 0.14

is the thermal emissivity [33]. In time interval ∆t then, the ratio of the energy lost to free surface radiation
and the internal thermal energy is,

rrad =
∆tσSBεrT̃

4
melt

(
1− T 4

a
)

Hρfcf T̃melt
. (D1)

For the parameter values in our problem, the timescale ∆t on which these two energies become comparable,
rrad = O(1), is found to be ∆t ≈ 2 × 10−3s, a millisecond time interval, which is five orders of magnitude
longer than the laser pulse and dewetting time scales of interest in this work. Therefore, radiative losses can
be safely neglected.

Appendix E: Convergence results

Here we show that Tavg from our model converges to the analytical solution [13, 18] in the limitHs,Bi→∞
and for a uniform flat film, h = h0. Figure 15 plots average film temperature for Hs = 5, 10, 20, 30, 40, 50 as
well as the analytical solution. As substrate thickness is increased, the average film temperatures converge
to the analytical result, as expected.
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FIG. 15. Average film temperature, Tavg, for varying substrate thickness; and the analytical solution, see text, in the
limit Hs,Bi→∞. In each simulation, Bi = 108.

Appendix F: Influence of spatially varying viscosity in 3D

Here we briefly consider the effect of spatially varying viscosity, where Tavg(t) is replaced by Tf(x, y, t) in
the viscosity law, Eq. (5). Figures 16(a) and (b) show film thickness and film temperature at the final solidi-
fication time in the case where viscosity depends only on average film temperature,M =M(t) (Fig. 16(a) is
identical to Fig. 7(b)). Figures 16(c) and (d) show the corresponding film thickness and temperature for the
spatially-varying viscosity case,M(x, y, t). There is no noticeable difference between the film thicknesses in
(a) and (c), nor between the temperatures in (b) and (d). Note that the spatial variation of temperature is
small in (b) and (d). Consequently, Tavg(t) is a good approximation of Tf(x, y, t) in Eq. (5).

Appendix G: Numerical schemes

1. 2D Numerical schemes including temperature-dependent thermal conductivity

Here, we describe the numerical schemes used to solve for the film height, h, temperature, Tf , and substrate
temperature, Ts. First, we describe the spatial discretization, and then the solution mechanism for Ts and
Tf . We conclude with the numerical scheme used to compute h. For notational simplicity, we drop the
arguments (x, y, z, t) remembering that the dependent variables are space- and time-dependent.
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FIG. 16. Final film thickness and film temperature, Tf forM(t) (a) and (b) andM(x, y, t) (c) and (d). Tf is plotted
at the time of solidification. Here Γ = 1, thermal conductivity is variable κ = κ(Ts), and Bi = 0.1.

We define the cell-centered spatial grid in the x-direction, used for both film and substrate:

xi = x0 + ∆x (i− 1/2) , i = 1, . . . , N, ∆x = (xmax − x0)
N

, (G1)

where N is the number of grid points in the x-direction, and the lateral boundaries are x0 = −π and
xmax = π. An example of the spatial grid is given in Figure 17(a), when N = 7.
Similarly, let p be the number of grid points in the z-direction (relevant only in the substrate). To reduce

the computational expense, we use a nonuniform grid in the substrate, with grid points {zk} and variable
step sizes {∆zk}, k = 0, 1, . . . , p− 1, where the step sizes are taken to be geometric, with ratio r,

∆zk+1 = r∆zk, k = 1, . . . , p− 1. (G2)

Figure 17(b) shows an example when p = 5 and r = 1.5 (the value of r used in all results). The point z0 = 0
is always fixed at the liquid-solid interface, z = 0, and zp−1 is the final grid point, which lies a distance
∆zp/2 above z = −Hs. We then fix the first (minimum) step size, ∆zmin = ∆z1 to ensure that {∆zk},
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(a) (b)

FIG. 17. (a) Visual example of the cell-centered spatial grid in the x−direction for N = 7. The nodes are spaced by
∆x, except the the first and last grid point, which are spaced ∆x/2 from the boundaries x0 and xmax, respectively.
(b) Example of the nonuniform grid in the z−direction for p = 5. Here, the spacing between grid points increases by
a factor of 1.5 at each increment.

k = 1, 2, . . . , p− 1, gives the desired geometric partition of [−Hs, 0],

∆zmin = Hs

(
p−1∑
k=1

rk−1 + 1
2r

p−1

)−1

. (G3)

With ∆zmin defined, we can consistently define the sequence of step sizes and grid:

∆zk = ∆zminr
k−1, k = 1, . . . , p, (G4)

zk = zk−1 −∆zk, k = 1, . . . , p− 1. (G5)

We next proceed with the solution methods for the underlying equations. For simplicity, we begin with the
solution scheme for Eq. (7). We define

Sni,k ≈ Ts(xi, zk, tn), i = 1, 2, . . . , N, k = 0, 1, . . . , p− 1, (G6)

to be a discrete approximation of substrate temperature, Ts, on the spatial grid given above. First, we apply
a Crank-Nicolson time-stepping scheme, which takes the discrete form

Sn+1
i,k − Sni,k

∆t = 1
2f

n+1
i,k + 1

2f
n
i,k, i = 1, . . . , N, k = 1, . . . , p− 1, (G7)

where fi,k(Si,k−1, Si,k, Si,k+1) ≈ Pe−1
s ∂z (κ(Ts)∂zTs) |(x,z)=(xi,zk) is a nonlinear function of Si,k−1, Si,k, and

Si,k+1. For the remainder of the section, we suppress the subscript i on Si,k and fi,k, for simplicity. For
completeness, we note that fk can be approximated as follows,

∂z (κ(Ts)∂zTs) = κ(Ts)∂2
zTs + κ′(Ts) (∂zTs)2

, (G8)
∂z (κ(Ts)∂zTs) |z=zk

≈ AkSk−1 +BkSk + CkSk+1 +Dk (Sk−1 − Sk+1)2
, (G9)

Ak = 2κ(Sk)
∆zk (∆zk + ∆zk+1) , Bk = −2κ(Sk)

∆zk∆zk+1
, (G10)

Ck = 2κ(Sk)
∆zk+1 (∆zk + ∆zk+1) , Dk = κ′(Sk)

(∆zk + ∆zk+1)2 , (G11)
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where each equation is applied for a fixed i, κ′(Sk) = dκ(Sk)/dSk, and k = 1, 2, . . . , p− 1.
The cases k = 1 and k = p − 1 in Eq. (G9) involve unknowns S0 and Sp, which are determined by

discretizing the boundary condition at z = 0 (Eq. (8)) and at z = −Hs (Eq. (9)), respectively. Since z0 = 0,
S0 is simply set to the film temperature, S0 = Tni ≈ Tf(xi, tn) for each i. The boundary condition given by
Eq. (9) is discretized as

κ

(
Sp−1 + Sp

2

)(
Sp−1 − Sp

∆zp

)
= Bi

(
Sp−1 + Sp

2 − Ta

)
, (G12)

which is a nonlinear equation for the unknown Sp to be solved at each node xi. To solve Eq. (G12), we use
a Newton method, although any convergent iterative method would suffice.
Next, we assume that the substrate temperature at time tn+1 can be written as

Sn+1
k = S∗k + wk, (G13)

where S∗k is the guess to the solution at time tn+1 and wk is a correction to that guess, which we call a
Newton correction in what follows to avoid confusion. Then, f is linearized around the guess:

fn+1
k = fk(Sn+1

k ) = fk(S∗k + wk) ≈ fk(S∗k) + wj
∂fk
∂Sj
|Sj=S∗

j
, (G14)

where k = 1, . . . , p−1, and ∂fk/∂Sj |Sj=S∗
j
are the components of the Jacobian, denoted Fk,j = ∂fk/∂Sj |Sj=S∗

j
,

evaluated at the guess for the next temperature S∗j . Equation (G7) is then linearized by plugging in
Eqs. (G13), (G14), leading to a linear system of equations for the correction wk, where S∗k and Snk are both
known (S∗k is to be iterated):

p−1∑
j=1

(
δk,j −

1
2∆tFk,j

)
wj = Rk, k = 1, . . . , p− 1, (G15)

where δk,j is the Kronecker delta, and the right-hand side is

Rk = Snk − S∗k + 1
2∆tfk(S∗k) + 1

2∆tfk(Snk ), k = 1, . . . , p− 1. (G16)

For simplicity, we abbreviate Eq. (G15) as (Aw = R)i with the understanding that each (p − 1) × (p − 1)
linear system is to be solved for each xi. Solving Eq. (G15) completes one step of the iteration. Next, we
check that |wk/S∗k | < tol for all k. If yes, the iteration is finished, and S∗k + wk becomes the substrate
temperature at time tn+1 for each k = 1, 2, . . . , p − 1, namely Sn+1

k = S∗k + wk. If not, the iteration is
completed until the specified convergence criterion is reached. We use tol = 10−9.
Next we describe the solution mechanism for film temperature, Eq. (6). First, we define the approximation

for film temperature and thickness by

Tni ≈ Tf(xi, tn), hni ≈ h(xi, tn), i = 1, . . . , N. (G17)

Next, for compactness, we define the following expressions

Ψn
i = 1

Pef

[
δ2
xT

n
i +

(
δxh

n
i

hni

)
δxT

n
i

]
, (G18)

Gni = − K
Pefhni

[
κ(Sn0 )δ+

z (Sn0 )
]
i
, (G19)

where [κ(Sn0 )δ+
z (Sn0 )]i ≈ κ(Ts)∂Ts/∂z|(x,z,t)=(xi,0,tn) is an approximation of the heat flux along the liquid-

solid interface, z = 0, at node xi and time tn, which we define as

κ(Sn0 )δ+
z (Sn0 ) = κ(Sn0 ) (a0S

n
0 + b0S

n
1 + c0S

n
2 ) , (G20)

a0 = 2∆z1 + ∆z2
∆z1 (∆z1 + ∆z2) , b0 = −

(
1

∆z1
+ 1

∆z2

)
, c0 = ∆z1

∆z2 (∆z1 + ∆z2) . (G21)
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The second-order central difference approximations of ∂x, ∂2
x are defined as δx and δ2

x, respectively, and are
given by

δxTi = Ti+1 − Ti−1
2∆x , δ2

xTi = Ti+1 − 2Ti + Ti−1
∆x2 , i = 1, . . . , N,

where T0, TN+1 can be written in terms of T1 and TN , respectively, by solving discretized versions of Eq. (10)
at the lateral boundaries, x = ±π,

∂x (Tf) |x=−π ≈
T1 − T0

∆x = 0, ∂x (Tf) |x=π ≈
TN+1 − TN

∆x = 0. (G22)

FIG. 18. Depiction of the discretized film temperature adjacent to the lateral boundaries, x = ±π (black, vertical
bars). The blue nodes represent the grid x1, x2, . . . , xN with spacing ∆x. The film temperature at the first and last
interior grid points, near x = −π, π, are T1, TN , and T0, TN+1 represent ghost points, located at x = ± (π + ∆x/2)
(red nodes).

Figure 18 shows the spatial grid in the x-direction. The red nodes represent ghost points with temperatures
T0, TN+1. By solving Eq. (G22), we obtain T1 = T0 and TN+1 = TN .
Now, to solve Eqs. (6) and (7) for Tf and Ts, we use a predictor-corrector Runge-Kutta/Crank-Nicolson

scheme combined with a Newton method as described above. In what follows, hatted quantities denote
those found in the predictor phase, whereas those without hats are determined in the corrector phase. In
the predictor phase, one finds intermediate “predicted" film and substrate temperatures (T̂n+1

i , Ŝn+1
k ). In

the corrector phase, one uses the intermediate variables to find corrected film and substrate temperatures
(Tn+1
i , Sn+1

k ). In both cases, the substrate temperature is found by solving the linear systems given by
Eq. (G15) for ŵ or w. In the former case, the nonlinear system that is linearized is Eq. (G7) with Ŝn+1

k

in place of Sn+1
k and with fn+1

k replaced by f̂n+1
k (Ŝn+1

k−1 , Ŝ
n+1
k , Ŝn+1

k+1 ). In the predictor phase, we use a
forward-Euler scheme to deal with Gni :

T̂n+1
i − Tni

∆t = 1
2

[
Ψ̂n+1
i + Ψn

i

]
+Gni +Q

n+1/2
i , i = 1, . . . , N, (G23)(

Âŵ = R̂
)
i
, i = 1, . . . , N, (G24)

where Qn+1/2
i = (Qni + Q

n+1
i )/2, and Ψ̂n+1

i is found by substituting T̂n+1
i in place of Tn+1

i in Eq. (G18).
Similarly, the components of ŵ are related to the predicted substrate temperature, Ŝn+1

k , via Eq. (G13) with
appropriate substitution.
Solving Eq. (G23) provides the predicted temperature T̂n+1

i . The linearized system given by Eq. (G24)
(where Â, R̂ are found using Ŝ∗k , the guess to Ŝ

n+1
k and Ŝnk in Eqs. (G15) and (G16)) is solved iteratively for

ŵ and each i. The predictor phase amounts to solving one linear system of size N for the film and N linear
systems of size p− 1 for the substrate. More importantly, the solution to Eq. (G24) in the predictor phase
gives us an approximation of substrate temperature, Ŝni,k, so that we can calculate a prediction to the heat
flux at the liquid-solid interface, Ĝni . We then correct the temperature predictions by using a second-order
Runge-Kutta method on Gni using Ĝni :

Tn+1
i − Tni

∆t = 1
2
[
Ψn+1
i + Ψn

i

]
+ 1

2

(
Gni + Ĝni

)
+Q

n+1/2
i , i = 1, . . . , N, (G25)

(Aw = R)i , i = 1, . . . , N. (G26)
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Next we describe the numerical scheme for film thickness, h(x, t). First, we use the Crank-Nicolson
scheme to discretize Eq. (4) in time. The resulting nonlinear system of equations is given by Eq. (13), where
Di(t) = D(h(xi, tn)) ≈ Dn

i is a second-order accurate spatial discretization of the derivative of flux,

D = −∂x ·
[

1
M
(
h3∂x (Γ∂xxh+ Π(h))

)]
. (G27)

Following the procedure implemented for solving Eq. (G7) we apply a Newton method, first linearizing the
film thickness around a guess, h∗i , and solving a resultant linear system for the Newton correction to the
guess,

hn+1
i = h∗i + q∗i , i = 1, . . . , N, (G28)

Ahq = Rh, (G29)

where (Ah)i,j = ∂Di/∂hj |hj=h∗
j
are the components of the Jacobian, q is the Newton correction vector for

h, and Rh is the remainder, whose components, (Rh)i, i = 1, 2, . . . , N , are analogous to Eq. (G16):

(Rh)i = hni − h∗i + 1
2∆tD∗i + 1

2∆tDn
i , (G30)

and where D∗i ≈ D(h∗i ) is an approximation of the flux with the guess. For more details regarding the 2D
solution mechanism for h, we refer the reader to Kondic [44].

FIG. 19. Flowchart for the 2D numerical method used to solve for h(x, t), Tf(x, t) and Ts(x, z, t).

Figure 19 shows a flowchart of the solution process for finding film thickness, film temperature, and
substrate temperature. Red circles indicate the beginning and end of a time-step iteration. Gray circles
indicate the prediction step for heat conduction and the blue circles represent the correction step. The
green circles represent intermediate stages where the thermal flux into the substrate is updated. First, h
is found at time tn by solving Eq. (G29) for every spatial node xi. That value of h is then used to solve
Eq. (G23) for a prediction of the film temperature, T̂ni . That film temperature is then used to solve for the
predicted substrate temperature, Ŝni,k via Eq. (G24). The thermal flux at the liquid-solid interface, Ĝni , is
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then updated using Ŝni,k in Eq. (G19). These temperature predictions are then corrected using Eqs. (G25)
and (G26). Surface tension, Γ, viscosity,M, and substrate thermal conductivity at z = 0, κ(Sni,0), are then
updated. Finally, until the desired end time is reached, time is incremented, and Gni is updated using Sni,k
in Eq. (G19).

2. 3D Numerical schemes

Here, we consider the numerical scheme to solve the full 3D versions of Eqs. (4), (6)–(7), where h =
h(x, y, t), Tf = Tf(x, y, t), and Ts = Ts(x, y, z, t). Since y-dependence is now included (see Fig. 1), the
complexity of the numerical problems are, as a minimum, increased by a factor of N for each set of equations.
This creates a computational challenge, which makes serial CPU computing prohibitively slow. Parallel
computing is a much more practical route.
For example, the finite-difference method discretization of PDEs often leads to tri-diagonal linear systems

(such as Eq. (G24)). In these cases, either the formation of the matrix/vector system, or the solution method
itself, can be parallelized. Parallelization of the matrix/vector system may be done, for example, by defining
the value of each element in parallel. Solving the tri-diagonal linear systems in parallel is less trivial since
the Thomas Algorithm, typically used for such problems, is naturally sequential. To compensate, parallel
cyclic reduction methods have been proposed that trade complexity for speed and prove superior to the
traditional Thomas algorithm for many problems [45]. We use a simpler approach, however, by solving each
linear system in parallel rather than parallelization of the solver (details following below).
Parallel computing with multi-node systems and multi-core processors is also used in scientific computing

but is resource-limited by the number of cores available per CPU. GPUs, on the other hand, have thousands
of “cores" available for computing and allow the programmer many more degrees of freedom in paralleliza-
tion [46]. Various CUDA algorithms have been developed for solving penta-diagonal systems [36, 47], for
example, which often arise from 4th order PDEs such as Eq. (4). Recent work [36] described a GPU-based
code that can be used to solve thin film problems, finding a near 150 times speed up over similar CPU-based
code for certain domain sizes. The present work uses an extension of that code, which also incorporates
thermal effects with CUDA, described below.
The remainder of the section is structured as follows. First, we define the 3D spatial grid. Then, we

describe the solution methodology for computing temperatures, both in the film and in the substrate. Finally,
we conclude with the solution mechanism for film thickness. We focus mainly here on the aspects of the
implementation that are specific to the 3D geometry.
The x-component of the spatial grid is given by Eq. (G1) and the z-component of the substrate grid by

Eq. (G5). We similarly introduce the y-component of the spatial grid,

yj = y0 + ∆y (j − 1/2) , j = 1, . . . ,M, ∆y = (ymax − y0)
M

, (G31)

where M is the number of grid points in the y-direction. Therefore, the film grid consists of N ×M interior
nodes {(xi, yj), i = 1, 2, . . . , N, j = 1, 2, . . . ,M}. In the substrate there are N ×M × p nodes (xi, yj , zk).
Similarly to Appendix G1, we define

Tni,j ≈ Tf(xi, yj , tn), Sni,j,k ≈ Ts(xi, yj , zk, tn), hni,j ≈ h(xi, yj , tn), (G32)

as approximations to the film and substrate temperatures, and film thickness. The predictor/corrector
solution methodology from Appendix G1 is applied once more, except Eq. (6) now requires an alternating-
direction implicit (ADI) method to achieve second-order accuracy. Similarly to Appendix G1, we begin with
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a predictor step to find ŵ and (T̂n+1
i,j , Ŝn+1

i,j,k):

T ∗i,j − Tni,j
∆t = 1

2X
∗
i,j + 1

2Y
n
i,j + 1

2G
n
i,j + 1

2Q
n+1/2
i,j , (G33)

T̂n+1
i,j − T ∗i,j

∆t = 1
2X
∗
i,j + 1

2 Ŷ
n+1
i,j + 1

2G
n
i,j + 1

2Q
n+1/2
i,j , (G34)(

Âŵ = R̂
)
i,j
, (G35)

where

Xi,j = Pe−1
f

[
δ2
xTi,j +

(
δxhi,j
hi,j

)
δxTi,j

]
, (G36)

Yi,j = Pe−1
f

[
δ2
yTi,j +

(
δyhi,j
hi,j

)
δyTi,j

]
, (G37)

Q
n+1/2
i,j =

Q
n

i,j +Q
n+1
i,j

2 , (G38)

Gni,j = − K
Pefhni,j

[
κ(Sn0 )δ+

z (Sn0 )
]
i,j
, (G39)

hni,j ≈ h(xi, yj , tn), i = 1, . . . , N , j = 1, . . . ,M , and κ(Sn0 )δ+
z (Sn0 ) approximates the heat flux at the interface

z = 0 and is given in Appendix G1. The term T ∗i,j is the solution at an intermediate step between times
tn, tn+1, and Â, R̂ are defined as in Appendix G1, but with the extra index j. The solution for h is only
found at times tn and tn+1, so we approximate h at the intermediate step as

h∗i,j =
hni,j + hn+1

i,j

2 . (G40)

Equation (G33) yields M linear systems of equations of size N . Similarly, Eq. (G34) yields N linear systems
of equations of size M . Since the ADI method treats one variable explicitly and the other implicitly, both
Eqs. (G33) and (G34) are solved in parallel for each j and each i, respectively (the formation of the linear
system is also parallelized; for example, T ∗i,j − (∆t/2)X∗i,j for j fixed and i = 1, . . . , N are the components of
the N ×N matrix in Eq. (G33), which are all found simultaneously). The 3D numerical code used here is
freely available [48].
Equation (G35) is the 3D analog of Eq. (G24), but now there are N ×M linear systems of equations of

size p− 1. Since Eq. (7) only involves z-derivatives, Eq. (G35) is trivially parallelized for each i and j. Since
the solution of Eq. (G35) is iterative, careful consideration of the size of domains and the relation to memory
performance is crucial. In our computations, p is relatively small in comparison to N and M so that for
each i and j both the matrix and vector of the linear system (of size p− 1) can fit on shared memory on the
device (GPU), which is known to be computationally advantageous over the use of global memory [46].
Next, we correct the predictor step using the Runge-Kutta method on Gi,j ,

T ∗i,j − Tni,j
∆t = 1

2X
∗
i,j + 1

2Y
n
i,j + 1

4

(
Gni,j + Ĝni,j

)
+ 1

2Q
n+1/2
i,j , (G41)

Tn+1
i,j − T ∗i,j

∆t = 1
2X
∗
i,j + 1

2Y
n+1
i,j + 1

4

(
Gni,j + Ĝni,j

)
+ 1

2Q
n+1/2
i,j , (G42)

(Aw = R)i,j , (G43)

where i = 1, . . . , N , and j = 1, . . . ,M . We note that although the repetitive nature of the predictor-corrector
scheme may appear as a performance bottleneck, in our implementation the results from the predictor phase
are stored to global memory and imported into the corrector step to speed up the computations.
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Next, we briefly describe the solution mechanism for film thickness h. Now, h = h(xi, yj , tn) but the
approach is very similar to that of Appendix G1. First we define the divergence of the flux

D = −∇2 ·
[

1
M
(
h3∇2

(
Γ∇2

2h+ Π(h)
))]

, (G44)

and define Dn
i,j to be a second-order spatial discretization of D. Equation (4) can then be written as

hn+1
i,j − hni,j

∆t = 1
2D

n+1
i,j + 1

2D
n
i,j , i = 1, . . . , N, j = 1, . . . ,M. (G45)

Equation (G45) is linearized and a Newton’s method is used to iterate guesses to the film thickness at time
tn+1. In contrast to the 2D case, D now involves derivatives with respect to y as well as x. Therefore, the
Newton’s method is split into two separate linear systems of equations (one where y-derivatives are treated
implicitly in time and one similarly for x-derivatives), and solved iteratively. The equations in general take
the form

Ay,(l)wh = by,(l), (G46)
Ax,(l)v = wh, (G47)
hn+1

(l+1) = hn+1
(l) + v, (G48)

where (l) represents iteration number, h represents the array of values hi,j , wh is an intermediate step, v is
an array of corrections to the guess hn+1

(l) , Ay,(l),Ax,(l) are matrices whose components are found using pure
y- and x-derivative terms, respectively, and by,(l) is a vector (containing flux discretizations), which we omit
for brevity. For details regarding these terms we refer the reader to the work of Lam et al. [36]. Notably,
Eqs. (G46) and (G47) are penta-diagonal systems, which can be solved in parallel. In the former, N linear
systems of equations of size M ×M are solved simultaneously, while in the latter, the same is done for M
linear systems of size N ×N .

The film thickness is again coupled to film temperature through the material parameters, film temperature
is coupled to thickness via Eqs. (G36) and (G37), and substrate temperature to film temperature via the
interface z = 0. The solution order is identical to that of Appendix G1, solving first for h and then Tf and
Ts using a predictor-corrector method.
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