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We introduce a closure model for coarse-grained kinetic theories of polar active fluids. Based
on a thermodynamically consistent, quasi-equilibrium approximation of the particle distribution
function, the model closely captures important analytical properties of the kinetic theory, including
its linear stability and the balance of conformational entropy production and dissipation. Nonlinear
simulations show the model reproduces the qualitative behavior and non-equilibrium statistics of the
kinetic theory, unlike commonly used closure models. We use the closure model to simulate highly
turbulent suspensions in both two and three dimensions in which we observe complex multiscale
dynamics, including large concentration fluctuations and a proliferation of polar and nematic defects.

I. INTRODUCTION

In many physical systems, microscopic structure dictates macroscopic dynamics. This is especially true in active
fluids, where collections of work-performing particles and the hydrodynamic interactions between them can give rise
to large-scale correlations and flows [1–5]. Active fluids arise in a variety of physical contexts, with examples including
suspensions of motile bacteria [6–8], assemblies of microtubules cross-linked by molecular motors [9, 10], and collections
of liquid droplets whose interiors support chemical reactions [11–13].

Two main classes of active fluids are polar fluids and active nematics. Polar fluids are characterized by head-tail
asymmetry in their constitutive particles, which may arise from propulsive mechanisms [14], polarity sorting [15, 16],
or asymmetric geometries [17]. This asymmetry establishes a well-defined orientation, or polarity, of the particles in
the fluid. On the other hand, nematic fluids, either active or passive, are classically composed of immotile, head-tail
symmetric particles, which means particle orientation is invariant under sign change.

Though these two classes of systems have much in common, their microscopic differences produce unique macroscopic
behaviors. For active nematics in two dimensions, characteristic features are ±1/2 topological defects [18–22], which
are points where the director field rotates 180◦ clockwise or counter-clockwise around a point of zero nematic order,
respectively. Three-dimensional analogs of ±1/2 defects correspond to disclination lines and loops along which the
director undergoes a variety of three-dimensional rotations [23]. In polar fluids, orientation is typically described by a
signed vector quantity called the polarity vector, though the director is still defined for such systems. The introduction
of a well-defined sign to the orientation means the polarity vector does not exhibit ±1/2 defects, but rather ±1 defects
[24–26]. Polar fluids also demonstrate a range of flows which do not occur in active nematics, especially involving
concentration instabilities and travelling waves driven by polar fluxes [27–30].

Models of active fluids, either discrete or continuous, provide insight into the collective dynamics and its relationship
to the system’s microscopic structure. In discrete models, microscopic motion is explicitly simulated, with the hydro-
dynamic equations solved subject to the particles’ self-generated flows [31–33]. Such models provide detailed insight
into the multiscale dynamics, but are difficult to analyze and expensive to simulate when the number of particles is
large. Continuum models, on the other hand, are formulated in terms of mean-field quantities that couple to the fluid
through an active stress [3]. Evolution equations for these mean-field quantities can be derived phenomenologically,
for example by the variation of a free energy functional [30, 34], however this approach can obscure interpretation of
the system parameters and their relationship to the underlying physics.

Continuum kinetic theories are a specific class of models that are rooted in microscopic modeling [35–37]. In these
models, the particle suspension is represented by a continuous distribution function that characterizes the number of
particles at each point in space with a given orientation. The evolution of this distribution function can then be derived
from conservation principles and explicit representations for the dynamics of the individual particles. However, since
the distribution function depends on both position and orientation, these models are high dimensional and can be
challenging to simulate. Coarse-graining the orientational degrees of freedom can mitigate this cost, where the system
is instead represented by low-order orientational moments of the particle distribution function [12, 38–40]. This yields
evolution equations for mean-field quantities, like the polarity vector, that are similar to phenomenological models
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but have clearer physical origins. Unfortunately this does not come for free; in most cases the evolution equations for
the orientational moments depend on unrepresented higher-order moments that must be approximated with a closure
model. Various closure models have been proposed for coarse-grained kinetic theories, especially in the context of
apolar suspensions [3, 41–43]. Most of these are based on approximations that apply to specific flow regimes and, as
a consequence, can produce unphysical solutions when applied ad-hoc [42].

In this paper, we propose a closure model for coarse-grained kinetic theories of polar active fluids. Based on
a thermodynamically consistent, quasi-equilibrium approximation of the particle distribution function, the model
generalizes the well-studied Bingham closure [44–48] to account for polarity in microscopic structure. We first describe
a continuum kinetic model for a concentrated polar active suspension and derive evolution equations for the first three
orientational moments of the distribution function. We then motivate and introduce the closure model and show it
closely approximates essential analytical properties of the kinetic theory, including the linearized behavior of the
isotropic, polar aligned, and nematically aligned base states, and the evolution of the conformational entropy. These
results are contrasted against first-moment models, which we find cannot capture the linear instability of the isotropic
and nematic base states. Extending from our previous work on apolar closures [48], we outline a computational
method for accurately and efficiently computing the closure in both two and three spatial dimensions. We use this
method to study the nonlinear dynamics of the closure model and validate it against the kinetic theory, where we find
good agreement in both the transient dynamics and non-equilibrium statistics of the system. In comparison, we find
other closure models produce drastically different flows and inconsistent statistics, which in turn can lead to numerical
instability. Finally, we demonstrate the capabilities of the model through high-resolution two- and three-dimensional
simulations.

II. THE DOI-SAINTILLAN-SHELLEY KINETIC THEORY

Here we summarize a continuum kinetic model for a concentrated suspension of motile particles, further details
can be found in References [37] and [49]. Consider a suspension of N motile rod-like particles, each of length `
and diameter b, with aspect ratio r = `/b � 1. The particles are suspended in a fluid of linear dimension L and
volume V = L3, from which we define a mean number density ν = N/V . We describe the suspension by means of a
continuous distribution function Ψ(x,p, t) with

∫
V

∫
|p|=1

Ψ dpdx = N , which characterizes the number of particles

with center of mass x and orientation p. Because the number of particles is conserved, this distribution function
satisfies a Smoluchowski equation,

∂Ψ

∂t
+∇x · (ẋΨ) +∇p · (ṗΨ) = 0, (1)

where ∇x is the spatial gradient and ∇p = (I−pp) ·∂p is the surface gradient on the unit sphere. The conformational
flux functions ẋ and ṗ describe the translational and rotational dynamics of an individual particle, respectively, and
depend on the specific microscopic model. For the model we consider, these fluxes are given by

ẋ = V0p + u−DT∇x log Ψ, (2)

ṗ = (I− pp) · (∇u + 2ζ0cQ) · p−DR∇p log Ψ, (3)

where u(x, t) is the fluid velocity, (∇u)ij = ∂ui/∂xj is the velocity gradient, c(x, t) =
∫
|p|=1

Ψ dp is the concentration,

and Q(x, t) = (1/c)
∫
|p|=1

ppΨ dp is the nematic tensor. Equation (2) says particles self-propel with velocity V0, are

advected with the local fluid velocity u, and diffuse in space, where DT is the translational diffusion coefficient which,
for simplicity, is assumed to be isotropic. Equation (3) describes contributions to rotational velocity arising from
Jeffery’s equation [50], which says particles align with velocity gradients, and steric interactions modeled by the
Maier-Saupe theory [51], which says particles tend to align with the principal axis of Q, where ζ0 is the strength of
steric alignment. The last term, proportional to ∇p log Ψ, models rotational diffusion, where DR is the rotational
diffusion coefficient which is again assumed to be isotropic.

An essential feature in continuum models of suspensions, either active or passive, is the extra hydrodynamic stress
due to the immersed particles. Here the stress has three components: the dipolar stress Σa = σacQ generated by
particle activity, a constraint stress due to particle rigidity Σr = σrcS : E, and stress due to steric interactions
Σs = −σsc2(Q ·Q− S : Q), where S = (1/c)

∫
|p|=1

ppppΨ dp is the fourth-moment tensor and E = (∇u +∇uT )/2

is the symmetric rate of strain tensor. The colon operator denotes contraction along the last two indices, that is,
(S : A)ij = Sijk`Ak`. It can be shown that the dipole strength scales as σa ∝ µV0`

2, with a negative sign for pusher
particles and a positive sign for puller particles. The coefficients σr and σs can be computed analytically, and are
given by σr = πµ`3/6 log(2r) and σs = πµ`3ζ0/3 log(2r), where µ is the fluid viscosity. Finally, because the particle
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length and fluid velocity scales we typically consider are small, the total extra stress Σ = Σa + Σr + Σs balances the
Stokes equation

−µ∆u +∇q = ∇ ·Σ, (4)

∇ · u = 0, (5)

where q(x, t) is the pressure. Equations (1)-(5) form a closed system which we refer to as the kinetic theory.

A. Non-dimensionalization

We choose a characteristic length scale `c = 1/ν`2, velocity scale uc = V0, and time scale tc = `c/uc, and normalize
the distribution function by the number density ν. The Smoluchowski equation (1) keeps the same form, and the
particle flux functions (2) and (3) become

ẋ = p + u− dT∇x log Ψ, (6)

ṗ = (I− pp) · (∇u + 2ζcQ) · p− dR∇p log Ψ, (7)

where dT = (ν`2/V0)DT and dR = (1/ν`2V0)DR are the dimensionless translational and rotational diffusion coeffi-
cients, respectively, and ζ = (1/`2V0)ζ0 is the dimensionless alignment strength. Under the same choice of character-
istic scales, the Stokes equation becomes

−∆u +∇q = ∇ ·Σ, (8)

∇ · u = 0, (9)

with the dimensionless extra stress tensor

Σ = αcQ + βcS : E− 2βζc2(Q ·Q− S : Q). (10)

The parameter α = σa/µV0`
2 is the dimensionless dipole coefficient, which inherits the sign of σa, and β =

πν`3/6 log(2r), being proportional to ν`3, characterizes the effective particle number density.

B. Moment equations

The orientational degrees of freedom make the kinetic theory high dimensional which makes it expensive to simulate.
To mitigate these difficulties, we can take orientational moments of the Smoluchowski equation (1) to represent the
dynamics in terms of coarse-grained fields which depend only on space. To summarize, the relevant fields here are

c(x, t) =

∫
|p|=1

Ψ dp,

n(x, t) = (1/c)

∫
|p|=1

pΨ dp,

Q(x, t) = (1/c)

∫
|p|=1

ppΨ dp,

R(x, t) = (1/c)

∫
|p|=1

pppΨ dp,

S(x, t) = (1/c)

∫
|p|=1

ppppΨ dp,

which are, respectively, the concentration c, the polarity vector n, the nematic tensor Q, and the third- and fourth-
moment tensors R and S. Integrating Eq. (1) against 1,p, and pp over the unit sphere {p : |p| = 1} yields evolution
equations for the first three moments c, cn, and cQ,

Dc

Dt
= −∇ · (cn) +Hc, (11)

(cn)∇ + cR : E = −∇ · (cQ) + Hn, (12)

(cQ)∇ + 2cS : E = −∇ · (cR) + HQ, (13)
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where D/Dt = ∂/∂t+u ·∇ is the material derivative, a∇ = ∂a/∂t+ (u ·∇)a−∇u ·a is the vectorial upper-convected
time derivative, and A∇ = ∂A/∂t+ (u · ∇)A− (∇u ·A + A · ∇uT ) is the tensorial upper-convected time derivative
[3]. The left hand side of the system of equations (11)-(13) consists of purely kinematic terms that are derived from
hydrodynamic advection and rotation, where the contractions (R : E)i = RijkEjk and (S : E)ij = Sijk`Ek` enforce
the constraint |p| = 1. The right hand side is separated into contributions from particle motility, captured by the
polar fluxes ∇ · (cn),∇ · (cQ), and ∇ · (cR), and terms arising from steric interactions, rotational diffusion, and
translational diffusion

Hc = dT∆c, (14)

Hn = 2ζc2(Q · n−R : Q)− (d− 1)dRcn + dT∆(cn), (15)

HQ = 4ζc2(Q ·Q− S : Q)− 2ddR

(
cQ− c

d
I
)

+ dT∆(cQ). (16)

The functions Hc,Hn, and HQ are analogous to those derived from the molecular free energy of Landau-deGennes-
type theories [52, 53], but have a clear origin here in the microscopic dynamics. Note that the only source of polarity
in Eqs. (11)-(13) is due to particle motility, which couples each moment to the next-order moment. In the absence of
such terms, the equation for cn can be ignored, resulting in an apolar Q-tensor theory for a nematic suspension [47].

Formulated in terms of mean-field quantities, the moment equations (11)-(13) are similar to other models of polar
fluids, such as those based on free-energy assumptions [30, 34], first-moment closures [54], or generalizations of the
Toner-Tu theory [55, 56]. Nearly all of these models neglect the second moment tensor equation (13), effectively
replacing the polar flux ∇ · (cQ) by self-advection, c(n · ∇)n, and the active stress αcQ by the outer product αcnn,
both of which amount to approximating the nematic tensor as an outer product Q = nn. This approximation is
accurate under the assumption that particles are mostly polar aligned, that is |n| ≈ 1, however it cannot describe
states that are nematically but not polar aligned. Moreover, it introduces additional nonlinearities in the first moment
equation and the active stress, which leads to different instabilities and mechanisms of energy transfer across scales.
By explicitly evolving the nematic tensor in addition to the polarity vector, the moment equations (11)-(13) show
polarization can be generated from purely nematic states without nonlinear interactions.

C. Closures of the moment equations

As written above, the system of equations (11)-(13) is not closed because the third and fourth moments R and S
are unrepresented. Evolution equations for these moments can be derived by integrating the Smoluchowski equation
(1) against ppp and pppp, respectively, which results in equations depending upon yet higher order moments and
leads to the same issue. Instead, we choose to approximate these tensors in terms of the lower order moments c,n,
and Q with a closure model.

One of the most commonly used closure models is the isotropic closure [3, 40, 57], which expresses the distribution
function as a severely truncated series of spherical harmonics on the unit sphere,

Ψ(x,p, t) =
c

2π(d− 1)

(
1 + dn · p + ad(Q− I/d) : pp

)
, (17)

with constants ad = 4 for d = 2 and ad = 15/2 for d = 3, where d is the spatial dimension. The moments R and S
are then approximated as the third and fourth moments of (17), respectively. As suggested by its name, this model
gives accurate solutions near isotropy Ψ ≈ 1/2π(d − 1) and preserves the trace conditions Qkk = 1, Rikk = ni, and
Sijkk = Qij . However, the isotropic closure performs poorly near aligned states where the distribution function has
sharp orientational gradients and, in fact, the approximate distribution function (17) can take on negative values in
regions of high polar alignment.

A different model that performs well when particles are nearly aligned is the quadratic closure [42], which expresses
the third and fourth moments as outer products,

Rijk = niQjk, (18)

Sijk` = QijQk`. (19)

This model also preserves the trace conditions on Q,R, and S, but it introduces ad-hoc nonlinearities and is not based
on a self-consistent representation of the distribution function. Moreover, the isotropic value for the fourth moment
given by (19) is incorrect, which biases alignment.

The Bingham closure is a self-consistent closure model that performs well for apolar suspensions, like active ne-
matics, capturing the linearized behavior of the isotropic and nematically aligned states and preserving the balance
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of conformational entropy production and dissipation [44, 47, 48]. In the apolar case, the distribution function is
assumed to take the form of the Bingham distribution on the unit sphere [58],

ΨB(x,p, t) = Z(x, t)−1eB(x,t):pp, (20)

where the symmetric matrix B and the normalization factor Z are determined by constraints to match the zeroth
and second moments c and Q at each point in space. The resulting distribution function is then integrated against
pppp to approximate the fourth-moment tensor S. In this model odd moments are always zero, that is, n = 0 and
R = 0, which restricts its applicability to apolar systems.

D. Quasi-equilibrium closure and the B-model

The Bingham closure belongs to a more general class of closure models for kinetic equations, such as the Boltzmann
equation, that are based on quasi-equilibrium approximation [59–62]. Interpreted in the context of suspensions, these
models derive from the assumption that the orientational dynamics are fast, in which case the distribution function
minimizes the conformational, or relative, entropy,

S[Ψ](t) =

∫
V

∫
|p|=1

( Ψ

Ψ0

)
log
( Ψ

Ψ0

)
dpdx, (21)

subject to pointwise constraints on known orientational moments, where Ψ0 = 1/2π(d−1) is the isotropic distribution
function. (Note that this is defined with the opposite sign of the conventional information-theoretic entropy.) It’s well
known that such a distribution function takes the form of the so-called maximum-entropy distribution [63], analogous
to the Gibbs-Boltzmann distribution for a system in thermodynamic equilibrium,

ΨB = Z−1e−βT

∑
n En , (22)

where Z is a normalization factor (the partition function) and βT is inverse temperature [64, 65]. The energies
En = B(n) : p(n) here reflect the strength of alignment along a given axis, where B(n) is a rank-n tensor and p(n)

denotes the nth order outer product of p. The moment equations can then be closed by solving for the parameters
B(n) based on the known moments, after which the distribution function (22) can be integrated to obtain higher
order moments. While this formulation is often used in classical kinetic theories, it has not yet been applied to polar
suspensions, either active or passive.

Retaining up to the second moment, the distribution function (22) is explicitly given by

ΨB(x,p, t) = Z(x, t)−1eB(x,t):pp+a(x,t)·p, (23)

where B is a traceless d × d symmetric matrix, a is a d-dimensional vector, and Z is a scalar normalization factor.
The parameters B, a, and Z are determined by constraints to match the zeroth, first, and second moments at each
point in space,

c(x, t) =

∫
|p|=1

ΨB dp, (24)

n(x, t) = (1/c)

∫
|p|=1

pΨB dp, (25)

Q(x, t) = (1/c)

∫
|p|=1

ppΨB dp, (26)

after which the third- and fourth-moment tensors are approximated as

RB [c,n,Q](x, t) = (1/c)

∫
|p|=1

pppΨB dp, (27)

SB [c,n,Q](x, t) = (1/c)

∫
|p|=1

ppppΨB dp. (28)
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For an apolar state, that is n = 0, one can show the constraints (24)-(26) imply a = 0 so that (23) reduces to the
Bingham distribution. With this representation of RB and SB , the first three moments evolve according to

Dc

Dt
= −∇ · (cn) +Hc,B , (29)

(cn)∇ + cRB : E = −∇ · (cQ) + Hn,B , (30)

(cQ)∇ + 2cSB : E = −∇ · (cRB) + HQ,B , (31)

with

Hc,B = dT∆c, (32)

Hn,B = 2ζc2(Q · n−RB : Q)− (d− 1)dRcn + dT∆(cn), (33)

HQ,B = 4ζc2(Q ·Q− SB : Q)− 2ddR

(
cQ− c

d
I
)

+ dT∆(cQ). (34)

Similarly, the stress tensor becomes

ΣB = αcQ + βcSB : E− 2βζc2(Q ·Q− SB : Q), (35)

and the Stokes equation

−∆u +∇q = ∇ ·ΣB , (36)

∇ · u = 0, (37)

which is a closed system of equations in c,n, and Q. Throughout we refer to the mapping (c,n,Q) 7→ (RB ,SB) along
with the mean-field equations (29)-(37) as the B-model.

Despite its quasi-equilibrium formulation, the B-model has several important analytical properties that hold even
out of equilibrium. First, it preserves the time evolution of the conformational entropy from the kinetic theory,
satisfying the identity

Ψ0
dS[ΨB ]

dt
= −2d

α

∫
V

E : E dx−
∫
V

∫
|p|=1

(dT |∇x log ΨB |2 + dR|∇p log ΨB |2)ΨB dpdx

= P(t)−D(t),

(38)

which balances the rate-of-work with spatial and rotational dissipation. (For simplicity we’ve set β = ζ = 0, however an
equivalent identity holds for non-zero β and ζ; see [47, 48].) A detailed proof of this identity for immotile suspensions
is given in Ref. [48]. The motile case follows from a similar argument so the proof is omitted here. Further, by
construction the trace conditions on Q,RB and SB are automatically satisfied, as well as the feasibly attainable
values of c,n,Q,RB , and SB . Finally, as we show in the next section, the B-model yields exact steady state solutions
in the isotropic, polar aligned, and nematically aligned base states, and the linear theory of these states agrees well
with the kinetic theory.

III. LINEAR STABILITY ANALYSIS

Being formulated in terms of partial differential equations, continuum theories are useful tools for analyzing the
hydrodynamic stability of particle suspensions [27, 37, 66]. Here we study analytically the linear stability of the
B-model and compare with the kinetic theory. For simplicity we limit our discussion to three dimensions, finding
analogous results in two dimensions.

A. Isotropic base state

We first consider the linear stability of the isotropic state Ψ0 ≡ 1/4π in a dilute suspension β = ζ = 0 with zero
diffusion dT = dR = 0. Taking B0 = 0,a0 = 0, and Z0 = 4π shows this is a valid solution of the B-model, with the
corresponding mean-field quantities c0 = 1, n0 = 0, and Q0 = I/3. We consider perturbations in the first and second
moments n = n0 + n′, Q = Q0 + Q′, and take c = c0 as motivated by analysis of the kinetic theory [28]. Writing
ΨB = Ψ0 exp{λ′ + (B0 + B′) : pp + (a0 + a′) · p} and linearizing gives

ΨB ≈ Ψ0 + (λ′ + B′ : pp + a′ · p)Ψ0.



7

FIG. 1. Dispersion relation σ(k) for plane-wave perturbations about the isotropic base state Ψ0 = 1/4π for a dilute suspension
of pusher particles with α = −1 and β = ζ = 0. The B-model is in close agreement with the kinetic theory at small wave
numbers, capturing the bifurcation as well as the exact growth rate in the long wave limit σ+(k = 0) = −α/5. For large
wave numbers the growth rates diverge, with the B-model predicting all high wave numbers are unstable with a wave number
independent growth rate σ± = −α/10 in the absence of spatial and rotational diffusion.

(Note that this is exactly the assumed distribution function in the isotropic closure (17), meaning the stability analysis
equally applies to that model.) From the moments of this linearized distribution function we can solve for λ′,B′, and
a′, after which we find R′B = 3S0 ·n′, where (S0)ijk` = (1/15)(δijδk` + δikδj` + δi`δjk) is the isotropic fourth-moment
tensor. Ignoring terms that are quadratic in the primed variables, we find the perturbation fields satisfy

∂n′

∂t
+∇ ·Q′ = 0,

∂Q′

∂t
+ 3∇ · (S0 · n′)−

2

5
E′ = 0,

and

−∆u′ +∇q′ = α∇ ·Q′, (39)

∇ · u′ = 0, (40)

with the constraint ∇·n′ = 0 which comes from the assumption c′ = 0. Now considering plane-wave perturbations in
each variable n′ = ñeσt+ik·x, Q′ = Q̃eσt+ik·x, u′ = ũeσt+ik·x, and q′ = q̃eσt+ik·x, we get the set of algebraic equations

σñ + ik · Q̃ = 0, (41)

σQ̃ + 3ik · (S0 · ñ)− i

5
(kũ + ũk) = 0, (42)

with the velocity given explicitly by

ũ =
iα

k
(I− k̂k̂) · Q̃ · k̂ = −ασ

k2
ñ, (43)

where the last equality holds from Eq. (41) and the constraint ik · ñ = 0. After a bit of algebra, we find the growth
rates are

σ± = − α

10
± 1

10

(
α2 − 20k2

)1/2
. (44)

From this we see that for α < 0 both σ+ and σ− will be positive, while for α > 0 both will be negative, meaning
pushers, or extensile particles, are always unstable and pullers, or contractile particles, are linearly stable, as predicted
by the kinetic theory.

Figure 1 shows the growth rates (44) along with those of the kinetic theory for α = −1. In the long wave limit
k → 0 the dispersion relations are in increasingly better agreement, yielding the exact value for the k = 0 mode,
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FIG. 2. Dispersion relation for plane-wave perturbations about the sharply polar aligned base state limγ→∞ Z
−1eγ cos θ for a

dilute suspension of pusher particles with α = −1 and β = ζ = 0. Growth rates are shown at several angles θ = arccos(k̂ · ẑ)
and wave amplitudes k, where we find the base state is unstable in all cases. The B-model exactly agrees with the kinetic
theory in this case, so only one dispersion relation is displayed.

which is always the most unstable. The B-model also captures the bifurcation, albeit at a slightly larger value
k =

√
1/20 ≈ 0.22. A significant difference in the B-model is that, in the absence of diffusion, all wave numbers are

unstable with a wave-number independent growth rate σ± = −α/10 beyond the bifurcation. We find this deviation
from the kinetic theory is unavoidable with any pointwise closure model. In particular, the dispersion relation from
the kinetic theory arises as the solution to a transcendental equation [28], while that of the coarse-grained theory is
the solution of a constant coefficient eigenvalue problem and is therefore the root of a polynomial.

This analysis also provides insight into the instability that is not as easily inferred from the kinetic theory. Namely,
from Eq. (43) we see the perturbed polarity vector n′ and the perturbed velocity u′ are colinear, being parallel for
pushers (α < 0) and anti-parallel for pullers (α > 0). This suggests polarity is positively correlated to velocity in
pusher suspensions, a phenomenon which is not obvious a priori but has been observed in numerical simulations
[28]. This also shows that the second-moment Q is necessary for capturing the linear instability. In particular, if
only c and n are evolved and we express Q := Q[c,n] and R := R[c,n], Eq. (III A) for the perturbed polarity is
closed and independent of the fluid velocity, which predicts linear stability as has been reported in previous studies
of first-moment models [30].

B. Polar aligned base state

We next analyze the stability of polar aligned suspensions where all particles swim in the same direction, again
considering dilute suspensions β = ζ = 0 and neglecting diffusion dT = dR = 0. Here we consider base states of the
form

Ψγ(θ) = Z−1eγ cos θ, (45)

where θ is the angle from the z-axis, and γ is a constant which sets the strength of alignment. Taking B0 = 0
and a0 = (0, 0, γ cos θ) shows this distribution function is also of the form (23), and therefore corresponds to a valid
solution of the B-model. We consider perturbations in each moment c = 1 + c′, n = n0 +n′, and Q = Q0 +Q′, where
n0 =

∫
|p|=1

pΨγ dp and Q0 =
∫
|p|=1

ppΨγ dp are the steady state polarity vector and nematic tensor, respectively.

Writing ΨB = Ψγ exp{λ′ + B′ : pp + a′ · p} and linearizing, we can derive

n′ = n0λ
′ + R0 : B′ + Q0 · a′, (46)

Q′ = Q0λ
′ + S0 : B′ + R0 · a′, (47)

R′B = R0λ
′ + T0 : B′ + S0 · a′, (48)

where R0 =
∫
|p|=1

pppΨγ dp, S0 =
∫
|p|=1

ppppΨγ dp, and T0 =
∫
|p|=1

pppppΨγ dp. The quantities n0, Q0,

R0, S0, and T0 can be computed analytically, after which we take the sharply aligned limit γ → ∞ to get n0 = ẑ,
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Q0 = ẑẑ, R0 = ẑẑẑ, S0 = ẑẑẑẑ, and T0 = ẑẑẑẑẑ. Equations (46)-(48) then imply Q′ = ẑn′ + n′ẑ and R′ =
ẑẑn′ + ẑn′ẑ + n′ẑẑ which, neglecting terms that are quadratic in the primed variables, gives a closed system of
equations for the perturbations c′ and n′,

∂c′

∂t
+ ẑ · ∇c′ +∇ · n′ = 0,

∂n′

∂t
+ ẑ · ∇n′ − (I− ẑẑ) · ∇u′ · ẑ = 0,

with

−∆u′ +∇q′ = α∇ · (c′ẑẑ + ẑn′ + n′ẑ),

∇ · u′ = 0.

This system is identical to that derived in [28], for which the dispersion relation was found to be

σ± =
1

2
f(θ) cos 2θ

[
1±

(
1− 4ik

α

sin2 θ cos θ

f(θ) cos2 2θ

)1/2]
− ik cos θ, (49)

where f(θ) = −α cos2 θ with cos θ = k̂ · ẑ. This dispersion relation is plotted in Fig. 2, where we find for all angles at
least one of Re(σ±) is positive, meaning the polar-aligned base state is unstable to all perturbations. Exact agreement
with the kinetic theory for this base state suggests the B-model should be increasingly accurate when the particles are
highly aligned. Note that this analysis is only valid for vanishing rotational diffusion, otherwise the suspension will
always relax to an orientationally isotropic state. However, the analysis is still relevant on dimensionless timescales
that are small relative to 1/dR for which rotational diffusion can be neglected.

C. Nematically aligned base state

When steric effects and rotational diffusion are included, i.e. β, ζ, dR > 0, additional steady state solutions exist
which are the so-called nematic base states,

Ψδ(θ) = Z−1eδ cos 2θ,

where the exponent δ depends on the alignment parameter ξ = 2ζ/dR. These states are also of the form (23) and
hence are valid solutions of the B-model. (Note that for such base states the polarity vector vanishes, meaning they
cannot be described by a first-moment closure model.) Using the Bingham closure, Gao et al. [47] analyzed the linear
stability of the nematic base states for immotile suspensions and found good agreement between the closure model
and the kinetic theory, especially at large values of ξ. Their analysis equally holds for the B-model by neglecting
the swimming contributions and taking a ≡ 0. When steric interactions are strong, particle motility has a relatively
minor influence on stability [37], so we reserve a more detailed analysis for future work.

IV. OUTLINE OF NUMERICAL IMPLEMENTATION

The B-model consists of an intermediate mapping from the moments (c,n,Q) to the parameters (Z,a,B), after
which the distribution function ΨB = Z−1eB:pp+a·p is integrated to obtain the third and fourth moment tensors RB

and SB . Starting from the constraints (24)-(26), we can solve for the normalization constant Z to get

n =

∫
|p|=1

peB:pp+a·p dp∫
|p|=1

eB:pp+a·p dp
, (50)

Q =

∫
|p|=1

ppeB:pp+a·p dp∫
|p|=1

eB:pp+a·p dp
, (51)

which is independent of concentration. As written, this is a (d2/2 + 3d/2 − 1)-dimensional nonlinear system (5
equations in 2D and 8 equations in 3D). Moreover, solving this nonlinear system requires evaluating many integrals
on the unit sphere which is expensive to do at each spatial grid point and time step. Alternatively, we can precompute
the closure map (n,Q) 7→ (RB ,SB) and interpolate during simulations. This approach is particularly efficient near
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aligned states for which the system of equations (50)-(51) becomes ill-conditioned, requiring many quadrature nodes
to evaluate the integrals and a large number of Newton iterations. Here we outline a framework for constructing
Chebyshev interpolants for the closure map (n,Q) 7→ (RB ,SB); further details can be found in Appendix A and in
Reference [48]. A MATLAB implementation is also available on GitHub [67].

Because Q is symmetric, it has an eigendecomposition of the form Q = ΩQ̃ΩT , where Q̃ is a diagonal matrix
consisting of the ordered eigenvalues of Q, and Ω is an orthonormal matrix whose columns are the ordered eigenvectors
of Q. Multiplying Eq. (50) by ΩT and conjugating Eq. (51) by Ω gives

ñ =

∫
|p̃|=1

p̃eB̃:p̃p̃+ã·p̃ dp̃∫
|p̃|=1

eB̃:p̃p̃+ã·p̃ dp̃
, (52)

Q̃ =

∫
|p̃|=1

p̃p̃eB̃:p̃p̃+ã·p̃ dp̃∫
|p̃|=1

eB̃:p̃p̃+ã·p̃ dp̃
, (53)

where ñ = ΩTn, ã = ΩTa, and B̃ = ΩTBΩ, and we’ve reparameterized the unit sphere by p̃ = ΩTp. Though
this nonlinear system is still (d2/2 + 3d/2 − 1)-dimensional, the off-diagonal terms of Q̃ vanish and so the mapping

(ñ, Q̃) 7→ (R̃B , S̃B) is (2d− 1)-dimensional, where we’ve defined

R̃B =

∫
|p̃|=1

p̃p̃p̃eB̃:p̃p̃+ã·p̃ dp̃∫
|p̃|=1

eB̃:p̃p̃+ã·p̃ dp̃
, (54)

S̃B =

∫
|p̃|=1

p̃p̃p̃p̃eB̃:p̃p̃+ã·p̃ dp̃∫
|p̃|=1

eB̃:p̃p̃+ã·p̃ dp̃
, (55)

as the rotated third- and fourth-moment tensors.
In the rotated coordinate system the constraints on the feasible values of the moments (ñ, Q̃) take a particularly

simple form. Constraints on the first moment come from the variance inequalities 〈pi〉2 ≤ 〈p2i 〉, yielding ñ2i ≤ Q̃ii,

for i = 1, . . . , d. Additional constraints arise from the trace condition
∑d
i=1Qii = 1, and the eigenvalue ordering

0 ≤ Q̃22 ≤ Q̃11 ≤ 1 or 0 ≤ Q̃33 ≤ Q̃22 ≤ Q̃11 ≤ 1. Establishing a mapping between this feasible domain and the
hypercube [−1, 1](2d−1) (see Appendix) admits a Chebyshev representation for the closure map (ñ, Q̃) 7→ (R̃B , S̃B)
that can be efficiently evaluated in practice.

While R̃B and S̃B have many components, we can reduce the number of interpolants to evaluate using symmetries
and the trace identities

ñi = R̃ikk, (56)

Q̃ij = S̃ijkk, (57)

where repeated indices imply summation. Finally, after computing R̃B and S̃B , we rotate back to the original frame
using the identities

Rijk = ΩimΩjnΩkpR̃mnp, (58)

Sijk` = ΩimΩjnΩkpΩ`qS̃mnpq, (59)

along with the analogous trace conditions (56) and (57) in the original coordinate system.

V. NONLINEAR DYNAMICS AND COMPARISON WITH THE KINETIC THEORY

To assess the long-time dynamics of the B-model, we perform two-dimensional numerical simulations in periodic
geometries. For all simulations the discretization is pseudo-spectral using 2562 spatial Fourier modes and the 2/3
anti-aliasing rule, for which analysis of the Fourier spectrum shows the simulations are sufficiently resolved, and time-
stepping is done with a second order, implicit-explicit, backwards-differentiation scheme. For the kinetic theory we
represent the orientation vector in polar coordinates p = (cos θ, sin θ), θ ∈ [0, 2π), and discretize with 64 orientational
Fourier modes in θ. For the B-model we use M = 50 degree Chebyshev interpolants for all closure maps. The initial
data is a perturbation from isotropy Ψ0 = 1/2π using a distribution function of the form (23), and the simulation is
run well past the initial instability to measure long-time statistics, with the initial conditions for the coarse-grained
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FIG. 3. Comparison of computed concentration (a)-(d) and velocity (e)-(h) fields for the kinetic theory, the B-model, and the
isotropic and quadratic closures for a dilute suspension with α = −1 and β = ζ = 0. The diffusion coefficients are dT = 0.2
and dR = 0.02, and the box size is L = 75. Qualitatively, the B-model is in much better agreement with the kinetic theory,
while the isotropic and quadratic closures significantly differ in the length and velocity scales, as well as the magnitude of
concentration fluctuations.

simulations computed as moments of the same initial distribution function. For ease of implementation, in the
simulations we evolve the unnormalized moments c, cn and cQ, which are linear in Ψ. We also implemented identical
schemes for the linear and quadratic closure models.

A. Dilute suspensions

We first study the non-equilibrium dynamics of the B-model for a dilute suspension (β = ζ = 0) so that any
instabilities are solely caused by particle activity. For these simulations we consider pusher particles with dipole
strength α = −1, and translational and rotational diffusivities dT = 0.2 and dR = 0.02. The time step for all
simulations in this section is ∆t = 0.01.

Figure 3 compares the concentration (a)-(d) and velocity fields (e)-(h) from simulations of the kinetic theory, the
B-model, and the isotropic and quadratic closures at time t = 200, for which each model has reached a quasi-steady
chaotic state. The overall scales of concentration and velocity fluctuations in the kinetic theory and the B-model are
in good agreement, while both the linear and quadratic closures fail to produce solutions that qualitatively match the
kinetic theory in either length or velocity scales. We found that for the isotropic closure to remain numerically stable
for these parameters it was necessary to numerically enforce c ≥ 0, which resulted in the growth of total concentration
over time.

A useful property of the B-model is that the distribution function has an analytical, self-consistent form. This
provides an approximation to statistics of the microscopic structure, such as the conformational entropy S(t), defined
in Eq. (21). Figure 4 shows the evolution of S(t) for systems with box sizes L = 50, 75, and 100. As predicted by the
linear stability analysis in Section III A, the B-model grows away from isotropy slightly faster than the kinetic theory
for all box sizes tested. The conformational entropy in both models eventually fluctuates about a quasi-steady mean,
with the B-model yielding an accurate estimate of the mean as well as the magnitude of fluctuations.

It’s also informative to compare the statistics of the B-model to other closure models. Here we consider, as an
informative measure of activity, the input power

P(t) = − 4

α

∫
V

E : E dx, (60)
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FIG. 4. Evolution of the conformational entropy (21) for the kinetic theory (solid) and the B-model (dashed) in a dilute
suspension of pushers for increasing box size L. The parameters are α = −1 and β = ζ = 0, with diffusion coefficients dT = 0.2
and dR = 0.02. For each case the B-model grows from isotropy slightly faster than the kinetic theory, which is consistent with
linear stability analysis. At later times the B-model closely matches the mean entropy as well as fluctuations about the mean.

FIG. 5. Evolution of the power input (60) for the kinetic theory, the B-model, and the isotropic and quadratic closures from the
same simulations shown in Fig. 3. The B-model accurately captures the mean input power, while the isotropic and quadratic
closures differ significantly in both the mean and fluctuations about the mean.

which, for extensile particles, α < 0, is a source of conformational entropy according to Eq. (38). The parameters
are the same as those in Figs. 3 and 4, with the box size fixed at L = 75. Figure 5 shows the evolution of P(t)
for the kinetic theory along with the B-model and the isotropic and quadratic closures. The power input for the
B-model is in close agreement with the kinetic theory, capturing comparable growth rates at early times as well as
the long-time mean. The isotropic closure performs similarly at early times, showing the same growth rate as the
B-model, which is to be expected from the linear stability analysis in Section III A. At late times, however, the
isotropic closure severely deviates from the kinetic theory, exhibiting large fluctuations without a clear mean. In
contrast, the quadratic closure rapidly grows away from isotropy and underestimates the mean power input at late
times by nearly a factor of two, although the magnitude of fluctuations is comparable. The faster growth rate of the
quadratic closure is also consistent with expectations due to its inability to capture the isotropic state.

B. Concentrated suspensions

We next compare the non-equilibrium dynamics of theB-model for concentrated suspensions with steric interactions.
Here we focus on similarities and differences between polar and nematic order, which is made accessible by evolving
both the first and second moment tensors. We again consider pusher particles with dipole strength α = −1 and
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FIG. 6. The scalar polar order parameter n(x, t) = |n(x, t)| and integral curves of the polarity vector field n in a concentrated
suspension for the (a) kinetic theory and (b) B-model. The dimensionless parameters are α = −1, β = 0.8, ζ = 0.2, dT = 0.2,
and dR = 0.02, and the box size is L = 50. The overall scales and features are qualitatively similar in both models, with the
B-model accurately reproducing ±1 defect structures, shown in the insets and indicated by pink and yellow circles, respectively.

FIG. 7. The scalar nematic order parameter s(x, t) and director field m (white bars) in a concentrated suspension for the
(a) kinetic theory and (b) B-model. The dimensionless parameters are the same as in Fig. 6. The B-model reproduces the
qualitative dynamics of the kinetic theory, including the generation of ±1/2 nematic defects, shown in the insets and indicated
by blue squares and green triangles, respectively.

particle density β = 0.8, and vary the alignment strength ζ. As before, the diffusion coefficients are dT = 0.2 and
dR = 0.02, which ensures both the isotropic and nematic base-states are linearly unstable [37]. The box size for all of
these simulations is L = 50, and the time step is ∆t = 0.01.

Figure 6 shows the scalar polar order parameter n(x, t) = |n(x, t)| along with integral curves of the polarity vector
n(x, t) at a late time from simulations of the (a) kinetic theory and (b) B-model. As in the dilute case, the general
features and scales are consistent in both models, where we observe narrow bands of low polar order (dark blue) among
broader regions of high polar order (light blue). We find numerous ±1 topological defects in the polarity vector field,
examples of which are shown in the insets. For the examples shown here, the +1 defects resemble clockwise rotating
vortices, while the −1 defects have a saddle-point structure. We note that other types of defects are possible, including
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FIG. 8. Spatially averaged angle θ̄ between the polarity vector n(x, t) and the nematic director m(x, t) for the kinetic theory
(solid) and the B-model (dashed). The dimensionless parameters are α = −1, β = 0.8, dT = 0.2, and dR = 0.02, and the box
size is L = 50. For increasing ζ, the B-model increasingly matches the kinetic theory, with the separation angle approaching
π/8 over long times.

FIG. 9. Evolution of the (a) mean polar order n̄(t) =
∫
V
|n(x, t)| dx and (b) mean nematic order s̄(t) =

∫
V
s(x, t) dx in a

concentrated suspension. The dimensionless parameters are α = −1, β = 0.8, ζ = 0.2, dT = 0.2, and dR = 0.02, and the
box size is L = 50. For both orders, the B-model accurately captures the growth away from isotropy, as well as the long-time
mean. When run past the initial instability, the isotropic and quadratic closures became numerically unstable with the same
grid resolution regardless of the time step, with the final time denoted by ×.

counter-clockwise rotating vortices (−1) and asters (+1) [25].
To characterize nematic alignment, we consider the scalar nematic order parameter

s(x, t) =
d

d− 1

(
µ(x, t)− 1

d

)
, (61)

where µ is the largest eigenvalue of the nematic tensor Q, and the director m(x, t), which is the eigenvector of Q
corresponding to the eigenvalue µ. Note that s ≈ 0 corresponds to a state of low nematic order while s ≈ 1 corresponds
to a state of high nematic order. Figure 7 shows a snapshot of the scalar nematic order parameter with the director
field superimposed for the (a) kinetic theory and (b) B-model at the same time as the simulation in Fig. 6. The
two models are in good qualitative agreement, showing broad regions of high nematic alignment and numerous ±1/2
nematic defects, closeups of which are shown in the insets. In both models we find that the spatial structure of
the nematic field differs considerably from the polarity field. Significantly, we find polar and nematic defects do not
coincide.

Differences between the polarity and director fields can be quantified by considering the separation angle θ(x, t) =
arccos(m · n/|n|) between the nematic director and the polarity vector. Figure 8 shows the spatially averaged angle
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θ̄(t) = (1/V )
∫
V
θ(x, t) dx for both the kinetic theory and the B-model at several values of the alignment strength ζ.

For both models the polarity vector and the director are separated on average at long times by an angle of about π/8
for each value of ζ tested. This finite separation angle violates the assumption of colinearity that is implicitly used
in first-moment models. Note that, because the director is unsigned, if the two vectors were uncorrelated the average
angle would be π/4 for this particular branch of arccosine.

To characterize the performance of other closure models, Fig. 9 shows the spatially averaged order parameters
n̄(t) = (1/V )

∫
V
n(x, t) dx and s̄(t) = (1/V )

∫
V
s(x, t) dx computed from the kinetic theory, the B-model, and the

isotropic and quadratic closures for ζ = 0.2. We find polar and nematic order initially grow at comparable rates for
each individual model, later fluctuating about a non-zero mean with n̄ < s̄. The B-model gives the most accurate
characterization of the kinetic theory in terms of both the initial growth rate and the long-time mean. As in the dilute
case, the growth rate of the isotropic closure is similar to that of the B-model, while that of the quadratic closure is
faster.

Even for these moderate flows, the isotropic closure became numerically unstable after the transient instability for
all time steps tested (green ×), which we suspect is due to its inaccuracy near aligned states. This instability typically
occurred when the concentration became negative, which may be a reflection of the isotropic approximation to the
distribution function becoming negative at strong polar alignment. Similarly, we found the quadratic closure became
numerically unstable at a later time (blue ×), with the instability caused by unresolved concentration gradients.
These sharp gradients may be due to the artificial nonlinearities which can act to saturate smaller length scales. The
B-model apparently does not suffer from these issues, and appears to evolve as stably as the kinetic theory.

VI. LARGE-SCALE SIMULATIONS

From a computational standpoint, the coarse-grained model has a much lower cost than the kinetic theory, especially
in three dimensions. In particular, the cost of the kinetic theory is O(Nd

xN
d−1
p ), where Nx is the number of grid points

in each spatial dimension and Np is the number of grid points in each orientational degree of freedom. In contrast,
the cost of the B-model is O(Nd

x ), with a modest constant that is set by the maximal degree M of the Chebyshev
interpolants. This makes it possible to efficiently simulate at high spatial resolutions and in aligned regimes where
a large number of orientational discretization points of the distribution function are required. Here we demonstrate
this capability with example large-scale two- and three-dimensional simulations.

A. Two dimensions

We first consider two-dimensional suspensions with large system size L, for which linear stability analysis predicts
a wide range of unstable wave numbers. We use the same pseudo-spectral method used in Section V, this time
discretizing with 20482 Fourier modes. The parameters are α = −1 and β = ζ = 0, with diffusion coefficients
dT = 0.2, and dR = 0.02.

Figure 10(a) shows a snapshot of the concentration field at a late time from a simulation with box size L = 1000.
The concentration field exhibits a vast range of scales, consisting of coherent jets at large scales and striations and
defect patterns at the smallest scales. Panels (b)-(d) show a zoomed-in region, indicated by the white box on panel
(a), of the (b) concentration, (c) scalar polar order, and (d) scalar nematic order fields. The size of this region is
1/16× 1/32 of the full box, or 128× 64 grid points. At these small scales, we find the polar and nematic order fields
consist of numerous topological defects, with ±1 polar defects indicated by pink and yellow circles, respectively, and
±1/2 defects by green squares and blue triangles, respectively. Upon inspection, we find concentration and polar order
are negatively correlated, with regions of low concentration typically corresponding to regions of high polar order. On
the other hand, nematic order is positively correlated with concentration, with ±1/2 defects typically manifesting in
similar symmetry patterns in the concentration field.

Differences between the turbulent structures of the coarse-grained fields are further identified by comparing their

power spectra [|c̃k|2]k, [|(̃cn)k|2]k, and [|(̃cQ)k|2]k, where tildes denote Fourier transforms and [·]k denotes an annular
sum over wave numbers such that |k| ∈ [k − ∆k, k + ∆k], where ∆k = π/L and k = 2πm/L for m = 0, . . . , N/2.
The instantaneous spectra, shown in Fig. 11, identify activity in length scales ranging over nearly two orders of
magnitude. These active scales extend past the marginal stability threshold of the isotropic state, which for these
parameters occurs at k = 0.5, indicating nonlinear interactions play a strong role. Comparing each field, we find the
concentration and polarity power spectra are peaked at intermediate wave numbers, reflecting characteristic nonlinear
length scales. The spectra exhibit possible power law scaling from this peak to low wave numbers. In contrast, the
nematic spectrum is maximal near a much longer length scale, showing near k−2 power law scaling across intermediate
wave numbers. Despite the polarity in these simulations, when taken with the Stokes equations (8)-(9) this yields



16

FIG. 10. Simulation of a two-dimensional suspension of pusher particles on a 20482 grid. The dimensionless parameters are
α = −1, β = ζ = 0, dT = 0.2 and dR = 0.02, and the box size is L = 1000. The concentration field in panel (a) shows a
vast range of scales consisting of large-scale jets and fine-scale defects and striations. Closeups of the (b) concentration, (c)
polar order, and (d) nematic order fields reveal a positive correlation between concentration and nematic order, and a negative
correlation between concentration and polar order. ±1 topological defects are indicated by pink and yellow circles, respectively,
and ±1/2 defects by green squares and blue triangles, respectively.

FIG. 11. Power spectra of the concentration c, first moment tensor cn, and second moment tensor cQ from the two-dimensional
simulation in Fig. 10. Each field exhibits activity in length scales spanning more than two orders of magnitude. The first
and second moment tensors have considerably different power spectra, with the former exhibiting a peak near k ≈ 0.1 and the
latter showing approximate k−2 power law scaling across intermediate scales.

the same k−4 power law in the velocity spectrum as that observed in active nematic turbulence [68, 69], suggesting
nematic structure is the dominant driver of the chaotic flows.
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FIG. 12. (a) Slices of the concentration field and (b) cross section of the velocity field from a three-dimensional simulation.
The grid resolution is 2563 and the dimensionless parameters are α = −1, β = ζ = 0, dT = 0.2 and dR = 0.02, and the box size
is L = 200. (c) The power spectrum of the concentration reveals activity across more than an order of magnitude of length
scales, with a characteristic scale given by the spectral peak at k ≈ 0.1.

FIG. 13. (a) Cross sections of the polarity field show numerous ±1 planar defects with both vortex and saddle-point structures
similar to those observed in two dimensions. (b) Segment of a three-dimensional polar defect. Cross sections along the defect
reveal a transition between +1 and −1 defect topologies in the polarity vector field.

B. Three dimensions

We next illustrate an example in three-dimensions. Here we use an analogous pseudo-spectral discretization and
backwards-differentiation time-stepping scheme with 2563 spatial Fourier modes and degree M = 8 Chebyshev in-
terpolants. For context, storing the distribution function Ψ(x,p, t) alone at this resolution assuming merely 322

discretization points in orientation would require about 136GB of memory. In contrast, storing the fields c,n and Q
requires less than 1GB, allowing us to run simulations at this resolution on a standard workstation.

Figure 12 shows (a) slices of the concentration field, and (b) an example cross section of the velocity field at a
late time from a simulation with box size L = 200. The parameters here are α = −1 and β = ζ = 0, with diffusion
coefficients dT = 0.2 and dR = 0.02. As in two dimensions, the concentration field consists of jets at larger scales
and striations at the smallest scales, while the velocity field consists of vortices and saddle-point flows. The power
spectrum of the concentration field, shown in panel (c), extends over more than an order of magnitude of wave
numbers, indicating a wide range of active length scales. Similar to in two dimensions, we find the power spectrum is
peaked at an intermediate wave number near k ≈ 0.1, indicating a possible characteristic nonlinear length scale.

Figure 13(a) shows cross sections of the scalar polar order field along with integral curves of the two-dimensional
projection of the polarity vector field from the same simulation in Fig. 12. The overall structure is similar to that in
two dimensions, where narrow regions of low polar order are surrounded by broader regions of high polar order. We
also find numerous ±1 defects with vortex and saddle-point structures, analogous to those in two dimensions. Further
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inspection of the polarity field shows these defects have a fundamentally three-dimensional structure. Figure 13(b)
shows an example portion of an isolated defect, with the overall polarity field consisting of more general filament-like
defects. Integral curves of the polarity vector field along cross sections of the defect reveal a transition between ±1
topologies. This is analogous to the transition between ±1/2 topologies in three-dimensional nematic defects [23],
however the precise details in the polar case are highly complex: transitions happen not only between ±1 topologies,
but also between the different field structures of a given topological sign. It remains for future work to characterize
these structures in detail, along with the dynamics of defect nucleation and annihilation.

VII. DISCUSSION

We developed and analyzed a closure model and coarse-grained theory (B-model) for a polar active fluid. The quasi-
equilibrium formulation of the closure model gives a simple prescription for constructing higher order moment closures
that maintain thermodynamic consistency with the kinetic theory. Here we found that including up to the second
moment tensor in the coarse-grained description was necessary for capturing salient features of the kinetic theory,
including the linear instability of the isotropic, polar aligned, and nematically aligned base states, the presence of polar
and nematic defects, and misalignment between the polarity vector and the nematic director. Nonlinear simulations
showed the B-model accurately reproduces the non-equilibrium dynamics of the kinetic theory for both dilute and
concentrated suspensions, especially in comparison to commonly used closure models which fail to qualitatively match
the kinetic theory even in moderate flow regimes. This was verified through a range of statistics, including mean-field
statistics such as polar and nematic order, and microscopic statistics such as the conformational entropy.

To implement the closure model, we constructed Chebyshev interpolants for the closure maps in both two and three
dimensions. This approach could still be improved, say by using alternative representations of the basis functions,
piecewise interpolation [62], or analytical approximations to the full closure map. The closure model’s pointwise
construction means it is straightforward to parallelize and can easily be incorporated into existing codes for coarse-
grained kinetic theories regardless of boundary conditions, whether in free space, in confinement [40], or in deformable
boundaries such as active droplets [13, 70].

Being formulated in terms of mean-field quantities, the B-model establishes connections between the kinetic theory
and phenomenological theories derived from symmetry considerations. In contrast to these latter theories, the evolu-
tion equations here are derived explicitly from the microscopic dynamics. This connection could be used to improve
the interpretation and estimation of phenomenological parameters as well as terms that occur in the molecular free
energy.

Finally, the simulations in Section VI reveal many directions for future work. Tractable three-dimensional simu-
lations allow for detailed numerical studies, which, for example, could be used to characterize the topology of three-
dimensional polar defects, their dependence on particle activity, and their interplay with nematic defects [23, 26]. The
model could also be used to study the multiscale statistics of polar active turbulence, which is largely unaddressed
with full hydrodynamic theories in either two or three dimensions, all in a way that is statistically consistent with the
kinetic theory.
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Appendix A: Numerical computation of the closure map

Here we construct the domain transformations between the feasible domain (ñ, Q̃) ∈ Md and the hypercube

[−1, 1](2d−1) for dimensions d = 2, 3. We then construct Chebyshev interpolants for the maps (ñ, Q̃) 7→ (R̃B , S̃B) and
briefly discuss their implementation.
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1. Two dimensions

Starting first with two dimensions, the system of equations to be solved for each (ñ1, ñ2, Q̃11) ∈M2 is
∫
|p|=1

p1ΨB dp∫
|p|=1

p2ΨB dp∫
|p|=1

p21ΨB dp∫
|p|=1

p1p2ΨB dp

 =


ñ1
ñ2
Q̃11

0

 . (A1)

Let (x, y, u) ∈ [−1, 1]3. We first define Q̃11 = (3+u)/4, which satisfies Q̃11 ∈ [1/2, 1]. From the constraints ñ2i ≤ Q̃ii ≤
1 and ñ21+ñ22 ≤ 1, we find the feasible range of the pair (ñ1/Q̃

1/2
11 , ñ2/Q̃

1/2
22 ) is the unit ball B2 = {(r1, r2) : r21+r22 ≤ 1}.

One well-conditioned invertible map from (t1, t2) ∈ [−1, 1]2 to (r1, r2) ∈ B2 is

r1 = t1

(
1− t22

2

)1/2
,

r2 = t2

(
1− t21

2

)1/2
,

which yields the map F : (x, y, u) 7→ (ñ1, ñ2, Q̃11),

F1(x, y, u) = x
[(

1− y2

2

)(3 + u

4

)]1/2
,

F2(x, y, u) = y
[(

1− x2

2

)(1− u
4

)]1/2
,

F3(x, y, u) =
3 + u

4
.

In practice, the inverse map is evaluated with Newton’s method. The nonlinear system (A1) over the square domain
[−1, 1]3 is then 

∫
|p|=1

p1ΨB dp∫
|p|=1

p2ΨB dp∫
|p|=1

p21ΨB dp∫
|p|=1

p1p2ΨB dp

 =

F1(x, y, u)
F2(x, y, u)
F3(x, y, u)

0

 . (A2)

We assume each field can be expressed in a separable Chebyshev basis in the variables (x, y, u),

R̃B =
∑

`+m+n≤M

C̃R
`mnT`(x)Tm(y)Tn(u),

S̃B =
∑

`+m+n≤M

C̃S
`mnT`(x)Tm(y)Tn(u),

where M is the degree of the interpolant. To compute the coefficient tensors C̃R and C̃S , we solve Eq. (A2)
numerically using Newton’s method over a three-dimensional separable grid of Chebyshev nodes of the first kind,
tk = cos((2k − 1)π/2n), which avoids singularities associated with the boundary of the feasible set. All of the
integrals involved in the nonlinear solve are computed numerically by converting to polar coordinates p = (cos θ, sin θ),
θ ∈ [0, 2π), and using the trapezoidal rule in θ. From these grid values we obtain the coefficient tensors from the
orthogonality property of the Chebyshev polynomials applied in each variable x, y, u,

∫ 1

−1

Ti(t), Tj(t)√
1− t2

dt =


π/2 i = j 6= 0

π i = j = 0

0 i 6= j,

(A3)

where the integrals are computed with Chebyshev-Gauss quadrature. Figure 14 shows the magnitude of the resulting
Chebyshev coefficients up to M = 50, at which the remainder is O(10−7).
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FIG. 14. Magnitude of the Chebyshev coefficients of the two-dimensional closure maps to R̃111, R̃112, S̃1111, and S̃1112, averaged
over degree m.

2. Three dimensions

In three dimensions the system of equations to be solved for each (ñ1, ñ2, ñ3, Q̃11, Q̃22) ∈M3 is



∫
|p|=1

p1ΨB dp∫
|p|=1

p2ΨB dp∫
|p|=1

p3ΨB dp∫
|p|=1

p21ΨB dp∫
|p|=1

p1p2ΨB dp∫
|p|=1

p1p3ΨB dp∫
|p|=1

p22ΨB dp∫
|p|=1

p2p3ΨB dp


=



ñ1
ñ2
ñ3
Q̃11

0
0

Q̃22

0


. (A4)

Let (x, y, z, u, v) ∈ [−1, 1]5. We first map the square (u, v) ∈ [−1, 1]2 to the triangular domain of eigenvalue constraints

{(Q̃11, Q̃22) : 0 ≤ Q̃33 ≤ Q̃22 ≤ Q̃11, Q̃11 + Q̃22 + Q̃33 = 1} by composing the maps

f(u, v) =

(
(1+u)(1+v)

4
(1+u)(1−v)

4

)

and

g(u′, v′) =

(
2u′/3 + v′/6 + 1/3
−u′/3 + v′/6 + 1/3

)
,

so that h := g ◦ f : (u, v) 7→ (Q̃11, Q̃22). Next, we make the same observation that the feasible set of {ñi/Q̃1/2
ii } is

the three-dimensional unit ball B3 = {(r1, r2, r3) : r21 + r22 + r23 ≤ 1}. One invertible map from (t1, t2, t3) ∈ [−1, 1]3 to
(r1, r2, r3) ∈ B3 is

r1 = t1

(
1− t22

2
− t23

2
+
t22t

2
3

3

)1/2
,

r2 = t2

(
1− t21

2
− t23

2
+
t21t

2
3

3

)1/2
,

r3 = t3

(
1− t21

2
− t22

2
+
t21t

2
2

3

)1/2
,
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FIG. 15. Magnitude of the Chebyshev coefficients of selected three-dimensional closure maps to R̃111, R̃222, S̃1111, and S̃2222,
averaged over degree m. The coefficients of the other fields (not shown) decay at a similar rate.

which yields the map F : (x, y, z, u, v) 7→ (ñ1, ñ2, ñ3, Q̃11, Q̃22),

F1(x, y, z, u, v) = x
[(

1− y2

2
− z2

2
+
y2z2

3

)
h1(u, v)

]1/2
,

F2(x, y, z, u, v) = y
[(

1− x2

2
− z2

2
+
x2z2

3

)
h2(u, v)

]1/2
,

F3(x, y, z, u, v) = z
[(

1− x2

2
− y2

2
+
x2y2

3

)
h3(u, v)

]1/2
,

F4(x, y, z, u, v) = h1(u, v),

F5(x, y, z, u, v) = h2(u, v),

where we’ve defined h3(u, v) = 1−h1(u, v)−h2(u, v). As in 2D, the inverse map is evaluated with Newton’s method.
The system (A4) over the square domain [−1, 1]5 is then

∫
|p|=1

p1ΨB dp∫
|p|=1

p2ΨB dp∫
|p|=1

p3ΨB dp∫
|p|=1

p21ΨB dp∫
|p|=1

p1p2ΨB dp∫
|p|=1

p1p3ΨB dp∫
|p|=1

p22ΨB dp∫
|p|=1

p2p3ΨB dp


=



F1(x, y, z, u, v)
F2(x, y, z, u, v)
F3(x, y, z, u, v)
F4(x, y, z, u, v)

0
0

F5(x, y, z, u, v)
0


. (A5)

As before, we assume each field can be expressed in a separable Chebyshev basis in (x, y, z, u, v),

R̃B =
∑

`+m+n+p+q≤M

C̃R
`mnpqT`(x)Tm(y)Tn(z)Tp(u)Tq(v),

S̃B =
∑

`+m+n+p+q≤M

C̃S
`mnpqT`(x)Tm(y)Tn(z)Tp(u)Tq(v).

To compute the coefficient tensors C̃R and C̃S , we solve Eq. (A5) numerically using Newton’s method over a five-
dimensional separable grid of Chebyshev nodes of the first kind, along with the same orthogonality property (A3).
All of the integrals involved in the nonlinear solve are computed numerically by converting to spherical coordinates
p = (cosφ sin θ, sinφ sin θ, cos θ), φ ∈ [0, 2π), θ ∈ [0, π], and using the trapezoidal rule in φ and Gauss-Legendre

quadrature in θ. Figure 15 shows the magnitude of the Chebyshev coefficients for R̃111, R̃222, S̃1111, and S̃2222 up to
M = 10, with the other fields decaying at a similar rate. For each map the remainder at M = 10 is O(10−4).
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3. Efficient evaluation of the interpolants

Though interpolation is more efficient than a direct solve of Eqs. (A2) or (A5), the interpolants are still relatively
expensive to evaluate for large M , with a cost that scales as O(M2d−1). This cost can be mitigated by noting that

the components of the closure maps (ñ, Q̃) 7→ R̃ijk and (ñ, Q̃) 7→ S̃ijk` are either even or odd in each component
of the rotated polarity vector ñi, with the symmetry determined by the even or odd number of repeated subscripts.
Since the transformation F preserves the quadrant of ñ, these symmetries are inherited by the transformed variables
x, y, and z. Further, because the Chebyshev polynomials are also even or odd in their argument, this implies only a
fourth (2D) or eighth (3D) of the terms in the coefficient tensors C̃R and C̃S are non-zero, and so these zero terms
can be omitted.


