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We experimentally study intrusion into fluid-saturated granular beds by a free-falling sphere,
varying particle size and fluid viscosity. We test our results against Darcy-Reynolds theory, where
the deceleration of the sphere is controlled by Reynolds dilatancy and the Darcy flow resistance. We
find the observed intruder dynamics are consistent with Darcy-Reynolds theory for varied particle
size. We also find that our experimental results for varied viscosity are consistent with Darcy-
Reynolds theory, but only for a limited range of the viscosity. For large viscosities, observed forces
begin to decrease with increasing viscosity, in contrast with the theoretical prediction. We suggest
that a dynamic lubrication mechanism may be responsible for the observed discrepancy.

I. INTRODUCTION

Intrusion or impact into a granular-fluid mixtures is a common process with relevance in, e.g., bio-inspired loco-
motion problems [1, 2] or shock absorption applications [3]. Each of the constituent phases of this system (granular
flows or fluid flows) is already challenging enough to describe, and the combination is even more difficult. There has
been extensive recent work on steady-state rheology of granular fluid mixtures, including generalizations of inertial
rheology descriptions for granular flows [4–7] as well as rheological studies of shear-thickening behavior [8–10]. Steady
state analyses of granular and suspension flows often assume a weak coupling between the dynamics of both phases
or only mild gradients (space or time) in the flow rate or the local stress. These analyses therefore offer few han-
dles to understand more complex flow situations such as intrusion, which inherently involves compaction or dilation
and propagation phenomena [11–14]. Thus, in addition to the utility of describing the impact or intrusion process
for practical applications, intrusion is a useful benchmark to probe the limits of existing theories and uncover new
physics. This has been recognized by a diverse and expanding set of works on intrusion [12, 15–17]. In particular,
understanding how relevant data during an impact (e.g., crater size [18, 19], or peak forces [15, 20]) depends on sys-
tem parameters (e.g., intruder speed, intruder size, or grain stiffness) often yields significant insight about underlying
physics, especially inherently transient processes that by definition cannot be captured by steady-state descriptions.
A notable example of such a process was recently highlighted by Jerome et al. [21]. When intrusion occurs into a

granular bed in which the packing fraction φ is compacted above a critical volume fraction φc (due to, e.g., external
vibrations [22, 23] or aging from other mechanisms [24, 25]), there is an initial transient where the bed dilates, due
to Reynolds dilatancy [26]. Generally, the bed will be saturated in some fluid (e.g., air or water), and the fluid will
be sucked into the expanding pore structure. For sufficiently small particles and a sufficiently viscous fluid, Darcy
pressure [27] begins to play an increasingly dominant role during the granular bed expansion. Jerome et al. [21]
formulated a basic theory that combined these two effects, called Darcy-Reynolds theory (DRT), to describe the
dynamics of spheres impacting granular beds that were fully immersed in a fluid. The authors showed explicitly that
DRT could explain the dependence on φ of the force response during intrusion into fluid-saturated granular beds.
Although the φ-dependence of the impact response was confirmed to agree with DRT [21], several other parameters

like viscosity ηf of the interstitial fluid or the particle diameter d play a crucial role in this theory, but the scaling
behavior for these parameters was tested only for a few cases. If tested and confirmed, this would provide a framework
that could be used for, e.g., prediction of robotic locomotion behavior [28, 29] or tunable granular-fluid mixtures. One
particular example motivating this study is the use of a ferrofluid as the viscous fluid. Ferrofluids [30] consist of
nanometer-sized iron particles coated in a surfactant suspendend in a simple fluid (e.g., alcohol or a petroleum-based
fluid). Ferrofluids behave approximately as Newtonian viscous fluids, but with a viscosity that depends on the applied
magnetic field. Thus, the viscosity can be changed in situ during the use of the material to achieve a desired mechanical
response. Since Darcy-Reynolds pressure increases with increasing ηf , this could provide a way to externally tune the
flow behavior of granular-fluid mixtures.
Here, we demonstrate how DRT predicts scaling laws for intrusion into fluid-grain mixtures as a function of particle

size and fluid viscosity. We then experimentally test these scaling laws with impact experiments by dropping spheres
from a height H into fluid-saturated granular beds with varying particle size d and fluid viscosity ηf ; see Fig. 1(a).
In both cases, we find results that are consistent with DRT over a range of parameter values. We observe some
change to the phenomenology for large d; we show that this can be explained using DRT. However, we also observe
a qualitative discrepancy for the predicted behavior for large ηf which cannot be reconciled with DRT. Increasing
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FIG. 1. (a) Sketch of the experiment. The magnet releases the sphere, which is connected to the accelerometer (accel.) via
a threaded rod. The magnet is released at height H onto the submersed settled particle bed (sample). (b) Sketch of the
particle bed slowing down the spherical intruder impacting the bed of particles with diameter d and packing fraction φ0. The
penetration of the intruder with speed V , diameter D and mass m will make the particles bulge out from the bed surface (long
dashed line). At penetration depth z = δ the particle have been sheared in a region with size L. This shear required dilation
of the packing and thus forces the local absorption of fluid with viscosity ηf (B) whose properties may depend on the applied
magnetic field strength B. (c) SEM image of the glass beads used, showing slight polydispersity and a mild roughness (d) SEM
image of dried ferrofluid on the glass beads. The individual ferrofluid nanoparticles are too small to observe yet the leftovers
from capillary bridges are clearly visible. Image width in (c,d) is 200 micrometer.

ηf should lead to increasing Darcy-Reynolds forces. Instead, we observe that for large ηf , increasing ηf leads to
decreasing forces during impact. Viscosity is controlled by adding glycerol to water as well as by using a ferrofluid
and tuning the viscosity with an external applied magnetic field; both methods yield similar results. Our results
demonstrate that Darcy-Reynolds theory as formulated describes variation in d over a wide range but breaks down
for large viscosities, at least for the particles and fluids studied here. However, the overall agreement between the
glycerol-water mixtures and the ferrofluid suggest that ferrofluids could be used to construct tunable complex fluids,
where the applied magnetic field controls the viscosity and hence impact hardness.

II. DARCY-REYNOLDS THEORY

We first reproduce the derivation of Darcy-Reynolds theory that appears in the main text and the Supplemental
Material of Jerome et al. [21]. The key idea is that intrusion of an object requires shear in the particulate phase. Such
shear gives rise to frictional stress as set by some effective friction coefficient. Additionally, when a packing is denser
than its “critical state” solid fraction φc—i.e. the density it would have during steady-state shear—then the material
will dilate when sheared until asymptotically approaching φc, a process known as Reynolds dilatancy. This induces
fluid flow into the expanding pores. Under certain conditions the pore fluid pressure Pf can locally reach values much
larger than any other local pressure scale, such as gravity, in which case Pf dominates the dynamics. The key hurdle
is then to find an expression for Pf for the situation sketched in Fig. 1(b).
It is reasonable to assume that the rate of dilation is linearly proportional to the shear rate γ̇ [31]. Thus, the first

assumption of this theory is that the dilation obeys a simple differential equation,

1

φ

∂φ

∂t
= −αγ̇(φ− φc). (1)

To approximate the magnitude of α, we take finite differences, i.e., γ̇ → δγ/δt. We assume that the strain needed over
which dilation happens is δγ ≈ 0.1 [31–33], and ∂φ/∂t → δφ/δt, with δφ ≈ φc − φ, yielding α = 1/(φδγ). If φ ≈ 0.6,
then α ≈ 20. We use this approximation later to confirm that our comparison between theory and experiments is
reasonable.
As previously stated, when the granular phase dilates, fluid from elsewhere in the material must fill this volume

opened up via dilation. If the particle diameter d is small and/or the fluid viscosity ηf is large, then the Darcy flow
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resistance of the fluid through the pore structure is dominant. The Darcy law states that

(1− φ)(Vf −Vp) = − κ

ηf
∇Pf , (2)

where κ ∝ d2 is the permeability, ηf is the fluid viscosity, and Pf is the pore pressure. Assuming that the particle
and fluid phases are both incompressible, i.e., ∂φ/∂t +∇ · (φVf ) = 0 and ∂φ/∂t + ∇ · (φVp) = 0, then taking the
divergence of Eq. (2) yields (1/φ)∂φ/∂t = −(κ2/ηf )∇2Pf , assuming that spatial dependence in φ can be neglected
(i.e., ∇φ = 0). Combining with Eq. (1) yields

∇2Pf =
ηf
κ
αγ̇(φ − φc). (3)

This equation represents a local constitutive law, which can then be extended to impact of a sphere into a saturated
granular bed, with initial volume fraction φ0, using several more assumptions. During impact, there is a shearlike
deformation that occurs beneath the intruder. The first important assumption is that this shear deformation occurs
over a length scale L, which is proportional to the square root of the instantaneous contact area between the intruder
and the fluid-grain mixture. In this picture, Pf then sets the pressure scale for a frictional intrusion-resisting force.
This represents a qualitative difference between Darcy-Reynolds theory and recent theories that have been proposed
to describe impact into dense suspensions, where propogating dynamically jammed fronts play a crucial role [12, 14,
16, 34]. Something like Darcy-Reynolds theory likely describes why these these dynamically jammed fronts remain
solidified, due to very small (e.g., cornstach) particles with very low associated permeability. These two systems
(fluid-saturated granular beds and dense suspensions) have obvious similarities, but this and other key differences
make direct comparisons challenging; we discuss further at the end of Section VI.

A. The role of shear length scale L

Assuming that the shear length scale L is set by the square root of the contact area between the ball and the
material, the shear rate is γ̇ ∼ v/L, where v is the speed of the intruder. The pore-pressure effects also act over length
scale L, so ∇2Pf ∼ Pf/L

2. Thus, Eq. (3) becomes

Pf ∼ ηf
d2

αLv(φ − φc), (4)

which sets the characteristic pressure on the sphere by the material. Assuming that Darcy-Reynolds pressure dominate
all other forces, and that the intruder predominantly feels a frictional, decelerating force, the equation of motion can
be written as

mz̈ = −AπL2Pf , (5)

where m is the sphere mass, z is the penetration depth, dots denote time derivatives, and A is an effective friction
coefficient. The effective mass density ρs can be defined as ρs ≡ 6m/πD3, where D is the sphere diameter. We note
that since all the dynamics involve deceleration of the intruder after impact, we denote a = −z̈ in our plots below
and our scaling analysis of the maximum deceleration, amax.

B. Testable predictions from Darcy-Reynolds Theory

The next step is to connect the shear length scale L with the penetration depth z of the intruder in order to close
the equation of motion and predict dynamics, including scaling laws. This requires using the specific geometry of
the intruder shape. For a spherical intruder, the contact area is circular and L is set by the radius of this circular
contact boundary between the spherical intruder and the bed, which grows nonlinearly with z. If the Darcy-Reynolds
pressure is very large, then the penetration depth of the sphere is small, i.e., z ≪ D (this is observed experimentally
for small grains). In this case, simple geometry with a small-angle approximation yields L2 ≈ Dz. This approximation
is specific to spherical intruders, meaning that other shapes would require a different calculation connecting L and z.
Inserting this approximation into Eq. (5) yields

π

6
ρsD

3z̈ = −πAαηfD
3/2∆φ

d2
z3/2ż, (6)
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where ∆φ = φ− φc. After integrating in time, Eq. (6) yields a dimensionless equation of motion

dz̃/dt̃ = −(2/5)z̃5/2 + 1, (7)

where z̃ = z/V tm, t̃ = t/tm, and

tm =
D

V

(

6Aα
ηfD

ρsd2V
∆φ

)

−2/5

, (8)

The initial conditions are given by z(0) = 0 and ż(0) = V , where V is the initial velocity at impact. This means that

the dimensionless velocity at impact is Ṽ = 1, since dz̃/dt̃ = ż/V and ż = V at initial impact.
Numerically solving Eq. (6) yields a deceleration-versus-time curve that rises, peaks at characteristic time set by

tm, and decreases. Such a curve can be seen in the Supplemental Material of Ref. [21] as well as in comparison to our
experimental data in Fig. 2(b) (dashed line). The peak dimensionless acceleration ãmax = amaxtm/V is therefore

amax ∝ V

tm
=

V 2

D

(

6Aα
ηfD

ρsd2V
∆φ

)2/5

. (9)

This equation predicts, for example, a peak force scaling via amax ∝ d−0.8η0.4f V 1.6, which can be explicitly tested.

The derivation of Eq. (9) contains several assumptions. The breakdown of the validity of these assumptions leads
to measurably different scaling behaviors. One assumption discussed by Jerome et al. is that φc can be strain rate
dependent, shifting the solidification response during impact. Other deviations are possible; for example, in the case
that the Darcy-Reynolds pressure is not sufficiently large to preserve z ≪ D throughout the impact, then Eq. (6)
onward must be reevaluated. In the case where the Darcy-Reynolds pressure is dominant but still small enough that
the penetration depth becomes similar to or larger than D, the contact area is simply proportional to the intruder
cross sectional area, meaning that L ≈ D, not L ≈

√
Dz. This means that Eq. (6) becomes

z̈ = −6Aαηf∆φ

ρsd2
ż. (10)

Thus, in this limit, the force on the impacting sphere is proportional to its speed, suggesting amax ∝ V . Note that
this linear dependence on velocity is reminiscent of Stokes drag, although the physical mechanism is different.
Equation (10) predicts exponential decay in the velocity and acceleration, specifically

z̈ = −V

τ
e−t/τ , (11)

where τ = ρsd
2

6Aαηf∆φ . However, we note that during the initial stages of penetration, L2 ≈ Dz would still be valid,

so we expect a buildup of the force before exponential decay takes over as the intruder passes through different
scaling regimes. The equations in this section contain specific predictions about the dynamics, which are testable via
experiments, as we show below. We note that there are other assumptions in these equations which may not always
be valid, such as the assumption that A is a constant that is independent of any system parameter. This and other
assumptions may be responsible for deviations from these predictions, as we discuss below.

III. EXPERIMENTAL METHODS

To test the predictions from the previous section, we perform experiments where a spherical intruder of mass
m = 0.047 kg and diameter D = 0.02 m is dropped into fluid-saturated granular beds. The dependence on ∆φ
was carefully confirmed in Ref. [21]. Instead, we focus on other parameters, specifically V , d, and ηf . We note
that Jerome et al. [21] included selected results where these parameters were varied in order to demonstrate trends
that were consistent with the DRT picture. We use five distinct sets of glass beads (Mo-Sci), with d ranges of (1)
53-75 (mean of 64), (2) 75-106 (mean of 90.5), (3) 180-212 (mean of 196), (4) 300-425 (mean of 362.5), and (5) 600-850
(mean of 725) in units of µm. Details of the fluids are described below.
We note that we did not have the experimental means to carefully prepare an homogeneous packing for each drop

at a precise value of φ. Thus, our rationale was to use a simple, repeatable experimental protocol that assumed that
the bed had a positive value of ∆φ and that this value did not change significantly across different experiments, or
at least that fluctuations in ∆φ would be averaged out. We believe our experimental data justify this position as
reasonable, as we discuss below.
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A. Details of the fluids

We vary ηf in two ways. First, we add glycerol to water in various concentrations, using data from [35] to estimate
the viscosity of the resulting mixture. By volume glycerol was diluted with water in 25% increments and then
converted to mPas for data analysis. Using these increments we achieve viscosity of 1 mPas (water), 2.4 mPas (25%
glycerol), 7.9 mPas (50% glycerol), 24 mPas (75% glycerol), and 1412 mPas (100%). All viscosity experimental data
was collected in an ambient temperature between 21.7-24.4 oC, minimizing the impact of viscosity variance due to
temperature variance. We note that glycerol is hygroscopic and that there can be a few percent ambiguity in the
glycerol fraction in the mixtures. However, a small change in the glycerol fraction will not affect the viscosity of the
fluid significantly, except perhaps for the 100% glycerol sample. If that were to have absorbed a few percent of water,
its viscosity might drop by at most a factor three. In figures below, we include a horizontal error bar to highlight this
uncertainty.
Due to data saving and resetting of the experiment, there were always several minutes that elapsed between any two

individual impacts. We performed multiple tests to ensure that our experimental results for the high viscosity liquids
were not sensitive to this settling process. We varied the time between experiments and performed subsequent series
of drops where we went up in velocity for the first series and then back down for the second series. We additionally
performed three representative impact experiments into the 100% glycerol mixture with settling times of 1 hour, 2
hours, and 24 hours. The impacts with 24 hours of settling did result in a roughly 20% increase in the peak acceleration
measured during impact, but the impacts with 1 and 2 hours settling had no discernable difference. We speculate
that this is due to slow compaction of the bed over this time, caused by vibrations in the building or simple contact
aging effects [36, 37], which would increase φ and therefore increase the forces felt by the intruder. This data can be
found in Ref. [38]. We note that we do not observe any bubbles (which were observed to play a role in Ref. [39]), but
they would be hard to distinguish from the small particles we use.
Second, we use Ferrotec EFH1 Ferrofluid to conduct similar test to the glycerol, where we increase the viscosity by

applying an external magnetic field. The ferrofluid has a base viscosity of 6 mPas [40], and we increase the viscosity
by adding an external magnetic field using arrays of permanent magnets as well as a large solenoid for smaller
adjustments. We use neodymium magnets that were arranged symmetrically on two (lateral) sides of the container
holding the mixture of ferrofluid and glass beads. There was a gap (roughly three inches) between the magnet arrays
and the sides of the container. The result was a magnetic field that was pointing in a direction orthogonal to the
vertical direction (i.e., the direction of motion of the intruder). We used a Hall probe to measure the value of the
magnetic field, before inserting the container filled with ferrofluid-grain mixture, at the point where the intruder would
strike the surface of the material. This value is reported as B0 when we present the results. We also move the Hall
probe laterally along the direction of the magnetic field over the width of the container and observe an increase in the
magnetic field of less than 50% of the value at the impact point. We estimate the variation in the field value in the
region of intruder impact as less than 10%. We take data for B0 = 0 mT (no field), 3 mT, 9 mT, 14 mT, and 31 mT.
Based on Ref. [41], we estimate that viscosity will increase by roughly two orders of magnitude over this range of B0.
We return to this point below in Sec. IV, when we describe results from impacts into ferrofluid-saturated beds.
We note that the ferromagnetic particles that are suspended in the ferrofluid are orders of magnitude smaller than

the glass beads. Additionally, impacts into the mixture of ferrofluid and glass beads is non-damaging to the beads
themselves. To illustrate this, we show SEM images in Fig. 1(d) of the ferrofluid-grain mixture after letting a sample
of the mixture sit out to dry. The silica beads are covered in ferrofluid particles, which appear as a continuous material
on the length scale of a glass bead. Additionally, the glass beads are not damaged after being subjected to impacts.

B. Sample Preparation

Samples are prepared by filling a 8x8 cm acrylic container with an open top with the relevant fluid to a level of
roughly 10 cm. We then pour particles of given size until the particle packing level is at approximately the same
height as the fluid. After this, we perturbed the bed by smoothing and stirring the particles using a small spoon, then
removed and weighed any excess fluid from the top. By weighing both the fluid and the grains as they are poured,
we can estimate the volume ratio and thus packing fraction of the suspension. We observe φ ≈ 0.59 for all samples
with the exception the largest beads (d = 600 to 850 µm), where φ ≈ 0.60 is found. We assume that φ > φc, which is
corroborated by the fact that we observe a strong solidification during impact, consistent with the results for φ > φc

in Ref. [21]. If we also assume that φc ≈ 0.585, as measured by Jerome et al., then this puts our beds somewhat above
φc.
After each impact, we push displaced grains back to the crater and smooth the top surface using a small spoon.

We find that the global packing fraction does not change during the course of many impacts. We take multiple data
sets per bed going up in drop height (and therefore impact velocity) and then back down again, represented by the
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multiple data points in Figs. 3(a) and 5(a) for each impact velocity V . Additionally, we note that the intruder does
not penetrate deep into the bed for all impacts except large grains with water (certainly not for the higher viscosity
experiments), so removing the intruder does not significantly disturb most of the bed. Thus, if our bed were too
loose at first, this would quickly be destroyed in the first few impacts. We find that our results are very repeatable,
meaning that this issue is not a concern. Thus, we conclude that our measurements are in the ∆φ > 0 regime with
values of ∆φ > 0 that do not change significantly, or are at least averaged out over small variations through multiple
impacts at each value of V .
This protocol also depends somewhat on the fluid used. For water-based suspensions, any excitation from stirring

quickly dissipates. For the more viscous samples, any stirring is challenging to do without introducing bubbles or
transient bed states. To ensure that bed settling was not a dominant factor, additional experiments were performed
to ensure that φ does not change significantly from run to run via the application of the protocol. Visual inspection
shows that φ did not change in any significant manner until after many hours to days of settling. Impact experiments
for high-viscosity glycerol-water mixtures were repeated over several hours and up to five days. The results showed
that the impact-induced forces were quantitatively indistinguishable within the first two hours. For very long settling
times, the measured forces during impact increased by roughly 30% after one day of settling and roughly doubled
after five days of settling [38]. However, all experiments conducted on the same day were found to give similar results.
All the impact data shown here was collected in less than four hours. We further verify that φ is not playing a role in
our measurements by the fact that there is no significant change in the small fluid layer at the top of the sample. We
also perform multiple sets of experiments with the same sample, and we find that our measurements are repeatable.

C. Generating impacts

A steel sphere is fixed to the end of threaded rods and dropped from various heights H by releasing them using an
electromagnet. Impact velocities are inferred by V =

√
2gH, where g is the gravitational acceleration; we also confirm

these velocities using high-speed video for selected cases. We measure the acceleration using an onboard accelerometer
(Sparkfun with ADXL377 with 500 Hz bandwidth). The accelerometer is wired to a data acquisition board with 32
AWG thin copper cables, which limits the range of H we can explore but was thin enough not to interfere with free
fall motion of the intruder. A sketch of the setup is shown in Fig. 1(a).
We include in Supplemental Material [42] five representative videos of these impacts, taken with a Phantom V711.

These videos include a representative video of (1) our smallest particles in water, showing a strong Darcy-Reynolds
response; (2) our largest particles in water, showing essentially no Darcy-Reynolds response; (3,4,5) our second-
smallest particles in 25%, 75%, and 100% glycerol solutions, respectively. We refer to these videos throughout the
remainder of the paper.

IV. RESULTS

A. Phenomenology

Figure 2(a) shows a(t) for five impacts, one for each range of d, all with impact velocity V ≈ 1.1± 0.1 m/s. These
curves clearly demonstrate that, consistent with the Darcy-Reynolds picture, smaller d leads to more sharply peaked
deceleration profiles with larger values of amax. This is also supported by Supplementary Videos 1 and 2 [42], which
show impacts into glass beads and water mixtures with mean particle diameters of d = 64 and 725 µm, respectively.
For the small particles, the intruder stops abruptly on impact. In contrast, it penetrates deep into the bed comprised
of the larger particles. Figure 2(b) shows −ã, where ã ≡ d2z̃/dt̃2, plotted as a function of t̃ for each of the five curves
shown in Fig. 2(a). For the three smallest particle size ranges (d = 53 – 75 µm, d = 75 – 106 µm, and d = 180 –
212 µm), the Darcy-Reynolds pressure is sufficiently large that z ≪ D is satisfied during the bulk of the trajectory,
meaning that Eq. (9) is valid. The rescaled experimental results for the smaller values of d agree well with a numerical
solution of Eq. (7), which is shown as a black dashed line.
To rescale the experimental data in Fig. 2(b), we need to set tm for each curve. Several parameters in tm are not

directly measurable or known a priori, but a suitable collapse (at least for small d) is found by setting 6Aα∆φ = 80.
The packing fraction differential ∆φ is of order 10−2, meaning that the product Aα is of order 103. Above, we
estimated α ≈ 20, meaning that the effective friction coefficient A ≈ 50. While this value appears very high for a
friction coefficient, we note that it is not a simple friction coefficient and that a previous study on granular intrusion
found a value of approximately 35 for a similar parameter [43]. Additionally, we note that the assumptions leading up
to Eq. (4) may affect the value of α. In any case, the quantities are within reasonable physical bounds, and assuming
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FIG. 2. Experimental data for impacts into mixtures of water, ηf = 1 cp, and glass beads of varying diameter d, using an
intruder of diameter D = 20 mm and mass m = 0.047 kg. (a) Acceleration a = −z̈ as a function of time for impacts with similar
impact speed, V ≈ 1 m/s, for each of the five values of d. (b) Dimensionless acceleration ã as a function of dimensionless time
t̃, as defined in Eq. (7). Smaller grains collapse well, where the assumptions leading up to this equation are valid. (c) Three
representative curves of acceleration versus time for the largest beads (600 to 850 µm), where the assumptions for Eq. (7) are
not valid. These larger grains are better captured by Eq. (11); see text for discussion.

6Aα∆φ = 80 yields good agreement between the experimental trajectories and the theoretical prediction of Eq. (9)
for small d.
In contrast, for the two largest particle sizes, the Darcy-Reynolds pressure is much smaller, meaning that the sphere

is able to penetrate more deeply into the material (see Supplemental Video 2 [42]). In this case, z ≪ D is not satisfied,
so it is not surprising from the theoretical prediction that arises from solving Eq. (7) numerically that the experimental
results do not match the Jerome predictions. This argument can be made quantitative by estimating the penetration
depth z∗ at peak deceleration in the following way. By assuming that the average deceleration between t = 0 and the
time tmax corresponding to the peak deceleration is equal to half of the peak value (corresponding to approximating
the rise in deceleration as linear), then z∗ ≈ V tmax − amaxt

2
max/4. We can then use z∗/D as a dimensionless measure

of how far the sphere has penetrated relative to its own diameter at tmax. For the smallest particles, with d = 53 –
75 µm, we find typical values of z∗/D ∼ 0.1, meaning that z ≪ D is a reasonable approximation. For the largest
particles, with d = 600 – 850 µm, we find typical values of z∗/D ∼ 1 or larger.
The data for d = 600 – 850 µm in particular appears to be better described by a sharp rise followed by quasi-

exponential decay, consistent with Eq. (11). Figure 2(c) shows acceleration versus time for three impacts into beds
with d = 600 – 850 µm and with initial velocities V ≈ 1, 1.5, and 2 m/s; the data for V ≈ 1 is the same curve shown

in panel (a). Note that the axes are rescaled using τ = ρsd
2

6Aαηf∆φ , as defined in conjunction with Eq. (11), as well

as the impact velocity V on the horizontal axis. The solid black line shows the theoretical prediction from Eq. (11).
Note that the values used in the rescaling here are fully determined by the collapse in panel (b), using 6Aα∆φ = 80,
leaving no free parameters.

B. Scaling results for V and d

Figure 3(a) shows amax versus V for all five particle sizes. Equation (9) shows that DRT predicts amax ∝ V 1.6, under
several assumptions, including z ≪ D. Experimental results are more consistent with this prediction for smaller d (red
squares, green stars, and black triangles) and larger V where these assumptions are valid. For large d (e.g., blue circles
and magenta triangles), we observe amax ∝ V , as predicted by Eq. (11) and consistent with the collapse in Fig. 2(c).
Figure 3(b) and (c) show the result of fits to the amax-versus-V data in Fig. 3(a) of the form amax = BV β (error
bars represent 95% confidence intervals). We find good agreement with the prediction from Eq. 9 that B ∝ d−0.8.
The best fit for the exponent β is consistently smaller than the prediction of β ≈ 1.6 from Eq. (9), even for small d
where we would expect it to be valid. However, we note that the low value of β for the smallest particles seems to
be caused by outliers at low V ; the large-V data appears very consistent with β ≈ 1.6. Overall, amax ∝ V 1.6 appears
to be highly consistent with the data at small d. For larger d, where the Darcy-Reynolds pressure is smaller and we
expect Eq. (11) to be applicable, we find amax ∝ V as expected. Overall, our data for varied d agree well with the
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FIG. 3. Experimental data for impacts into mixtures of water, ηf = 1 cp, and glass beads of varying diameter d, using an
intruder of diameter D = 20 mm and mass m = 0.047 kg. (a) amax versus V for all five values of d. Smaller beads obey the
scaling law in Eq. (9), as expected, since z ≪ D for these impacts. Larger beads obey amax ∝ V from Eq. (11), as expected,
since z ∼ D for these impacts; see text for discussion. (b,c) We perform linear fits to the logarithmic data in panel (a) to obtain
the best fit for the function amax = BV β. DRT predictions are shown: B ∝ d−0.8 for panel (b); β = 1.6 for small beads and
β = 1 for large beads in panel (c).
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FIG. 4. Acceleration vs time for different impacts into beds with d = 90 µm and varying fluid viscosity using an intruder of
diameter D = 20 mm and mass m = 0.047 kg. Panel (a) shows impacts with V ≈ 1 where ηf is varied by adding glycerol to
water. Panel (b) shows impacts with V ≈ 2.5 where ηf is varied by using a ferrofluid and changing the external magnetic field.
A zero-field ferrofluid impact result is also shown in panel (a) for the ferrofluid (dash-dotted line).

predictions of Darcy-Reynolds theory.

C. Viscosity dependence

Turning now to the impact behavior for varied ηf , Fig. 4 shows results for impacts at varying V and ηf with
constant particle size d = 75-106 µm. Fig. 4(a) shows typical acceleration curves with similar V ≈ 1.2 but with varied
ηf . The solid curves represent water-glycerol mixtures, and the dash-dotted curve (6 cp) represents the ferrofluid with
no applied magnetic field. These curves appear qualitatively similar to those in Fig. 2. However, in contrast with the
predictions of DRT, the peak value amax shows non-monotonic behavior as ηf is increased: amax increases with ηf
up to ηf = 7.9 cp but then decreases dramatically as ηf is further increased. This decrease in amax is qualitatively
inconsistent with DRT. This behavior is corroborated by Supplementary Videos 3, 4, and 5, which show impacts into
25%, 75%, and 100% glycerol solutions, respectively. The dynamics for impacts into the 25% and 75% solutions look
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FIG. 5. Experimental data for impacts into mixtures with varied ηf and d = 90 µm using an intruder of diameter D = 20 mm
and mass m = 0.047 kg. (a) amax versus V for all values of ηf . (b,c) We perform linear fits to the logarithmic data in panel (a)
to obtain the best fit for the function amax = BV β. DRT predictions are shown: B ∝ η0.4

f for panel (b); β = 1.6 in panel (c).
Similar to the data from Fig. 4, we find that DRT breaks down for ηf > 10 cp, and forces begin to decrease with increasing
viscosity. The horizontal error bar represents the uncertainty in the viscosity for the 100% glycerol, as discussed in Sec. IIIA.

similar, despite wildly different viscosities. The video of impact into the 100% glycerol solution shows the least abrupt
deceleration, consistent with Fig. 4. Note that the stopping dynamics for the impact into the 100% glycerol solution
are still much more abrupt than the impact into the d = 725 µm beads and water, shown in Supplementary Movie 2.
As stated in Sec. I, one motivation of these experiments was to move toward tunable particle-fluid mixtures. In

particular, if the viscous fluid were replaced with a ferrofluid, then the particle-fluid mixture could be strengthened in

situ by applying an external magnetic field. Our results for glycerol-water mixtures, shown in Fig. 4(a), suggest that
this may not be the case. Figure 4(b) shows that the breakdown of thickening at higher viscosities reproduces when
the viscous fluid is no longer glycerol-water mixtures but is instead replaced by a ferrofluid. The initial viscosity of
the ferrofluid is ηf = 6 cp, which is just below the value of ηf ≈ 10 cp where we expect to see the largest values of
amax for the range of V we study here. Therefore, we expect that as the applied magnetic field is increased, we should
see a slight increase in amax followed by a decline. Figure 4(b) shows five curves of a(t) with similar V ≈ 2.5 m/s
with five different magnetic field strengths, B0 = 0, 3, 9, 14, and 31 mT. We again find that amax increases with ηf
(which we vary indirectly through B0) and then begins to decrease. Importantly, we find this result consistently for
all values of V . Figure 5(a) shows data for amax versus V . The data for ηf = 1 cp (water), marked with green stars,
are the same data shown with deep red stars in Fig. 3. Figure 5(b) and (c) show results of best fits to these data in
the form amax = BV β . We again find that best fits for β tend to be slightly smaller than the prediction of β = 1.6
from Eq. (9). The best fits for B increase in a way that is consistent with the prediction of B ∝ η0.4f from Eq. (9) for

1 cp (water), 2.4 cp (25% glycerol), 6 cp (zero-field ferrofluid) and 7.9 cp (50% glycerol). However, for larger values
of ηf , we observe that B begins to decrease, consistent with Fig. 4.

V. ANALYSIS OF ANOMALOUS VISCOSITY DEPENDENCE

Our results from the previous section suggest that DRT, a theory that explicitly describes transient phenomena,
must be somehow modified in the limit of large viscosity interstitial fluid. We propose as an hypothesis that the
frictional behavior of the grain-grain contacts is rate-dependent in a way that depends on the viscosity of the fluid.
For the initial static packing, we assume all particles are making solid-solid contact, so all contacts are fully frictional.
During the impact-induced shear, particles begin moving past one another and forming new contacts, which are
implicitly assumed to have the same friction coefficient as the contacts from the original static packing. DRT then
predicts that the packing will undergo a transient expansion phase due to Reynolds dilatancy, which gives rise to large
Darcy forces. However, if the particles move past each other sufficiently quickly such that they are unable to squeeze
out the viscous fluid between them and make solid-solid (frictional) contact, they may instead behave as frictionless
contacts mediated through a lubrication layer.
Even a partial disruption in the frictional behavior between particles could have measurable effects on the observed

impact dynamics. Reynolds dilatancy of the granular phase is an inherently frictional effect that does not exist for
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frictionless particles at all [44]. Additionally, the value of φc is strongly dependent on grain-grain friction, and would
increase if the grain-grain friction decreased [45], making ∆φ smaller. So, if the grain-grain friction coefficient were
dynamically reduced in this way, then the Darcy-Reynolds effect would also be reduced. This mechanism is somewhat
similar to the mechanism that is often invoked to explain discontinuous shear thickening of dense suspensions [9, 46, 47],
where friction “turns on” for sufficient applied shear stress. Our impact-induced lubrication hypothesis is one view
that plausibly explains the data we show in Figs. 4 and 5.
Further work is certainly needed to better explore this hypothesis, including better accounting of the forces on

individual particles and corresponding dimensional analysis. To highlight this, we note that Supplementary Movie 3
from Jerome et al. [21] shows a strong Darcy-Reynolds response for impact of spherical intruder of diameterD = 25 mm
with V = 2.55 m/s into 1.3 mm spheres and silicone oil with ηf = 100 cp (or 0.1 Pa·s). Although it is hard to tell
just by the video whether the response obeys the predicted scaling, this viscosity is larger than the viscosity where we
see anomalous scaling appear. Comparison with our results would require using at least one dimensionless number.
The simplest choice would be either the Stokes number St = ρgUd/ηf , where ρg is the mass density of a grain and
U is a characteristic speed, or the particle Reynolds number, Rep = ρud/ηf , where ρ is the mass density of the fluid.
We note that St = (ρg/ρ)Rep, so St ∼ Rep here, since ρg/ρ ≈ 2.5 for soda-lime glass beads and water. Both numbers
have been used to capture the ratio of inertial to viscous effects in the context of a small particle approaching a
wall [48, 49] or of particle-particle collisions in a viscous fluid [50]. In particular, Yang and Hunt [50] showed that,
for large St, restitution losses were similar to the dry case. For St < 100, the restitution coefficient decreased and
approached zero at St ∼ 10. In the present case, these dimensionless numbers could be use to quantify the dynamics
of inertial particles overcoming lubrication forces to make frictional contact.
To determine the values of St and Rep where anomalous scaling begins, one approach would be to set U as simply

the impact speed V . In this case, the anomalous scaling we observe appears for ηf > 10 cp with d = 90 µm and
typical impact velocities of V = 1 m/s. This corresponds to Rep < 11. The video referenced above from Jerome et al.
[21] would have Rep ≈ 32, which is above the value where we observe anomalous behavior, so a strong Darcy-Reynolds
response is consistent. The value of Rep ∼ 10 has the advantage of being similar to the value where the restitution
coefficient went to zero in the study by Yang and Hunt [50]. However, it is likely that velocity scale U is not the
absolute velocity scale V set by the intruder, but the typical relative velocity between two particles. Assuming that
the velocity goes to zero over the size of the shear zone L, then U ≈ V (d/L). If we assume L ≈ D, then this reduces
Rep by a factor d/D ≈ 1/200 in our experiments and 1/20 for the case shown by Jerome et al. [21], separating the
two cases even more. In any case, future experiments and theoretical work is needed to fully understand how and
why DRT should be modified in the limit of small particles and large viscosity.

VI. CONCLUSION

Here we have followed Jerome et al. [21] to derive equations describing the dynamics of a sphere impacting a fluid-
saturated granular bed, where the granular phase is compacted above the critical volume fraction such that it dilates
under shear. The dilation (Reynolds) caused by the impact forces fluid to flow into the expanding pore structure, and
the resulting Darcy pressure dominates the force on the intruder. We have expanded on the derivation from Ref. [21]
to include the case where the sphere penetration depth becomes similar to or larger than its diameter.
The predictions from this theory were experimentally confirmed by Jerome et al. [21] with regard to the dependence

on ∆φ. Here, we performed additional experiments to test the theory’s predictions on other parameters, specifically
impact velocity V , particle size d, and fluid viscosity ηf . Our experimental results confirm the predictions of DRT
for variation in d over more than an order of magnitude. For small d, DRT as formulated in Ref. [21] works well. For
larger d, a key approximation (z ≪ D) for the context of impact dynamics is no longer applicable, so the equation
of motion describing the impacting sphere’s dynamics must be modified. However, with this modification, DRT still
captures the observed behavior over a large range of d.
When we vary ηf , we observe good agreement with DRT for ηf between 1 and 10 cp, specifically that amax ∝ η0.4f .

However, for ηf > 10 cp (and other details of the experiment held constant, such as particle diameter d = 90 µm),
we observe that forces generated during impact begin to decrease as ηf is further increased. We validate this result
with two methods: varying η by adding glycerol to water as well as by using a ferrofluid with an externally applied
magnetic field. Both approaches show that the forces generated during impact begin to decrease with increasing ηf at
ηf ≈ 10 cp. This is qualitatively inconsistent with DRT, suggesting that a new theory, or at least some modification,
is required. We hypothesize that this effect is controlled by the particle Reynolds number Rep and the anomalous
behavior occurs when Rep < 10. Future work is required to better explore this phenomenon.
Finally, as pointed out in [21], the pore-pressure effects from DRT could help explain the dramatic response of

impact into shear-thickening suspensions. Shear-thickening suspensions differ from saturated granular beds, in that
the particles are not making solid-solid contact in the absence of driving. However, in these systems, φc decreases
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as stress is applied, causing dilation and thereby inducing a large Darcy pressure that solidifies the material. We
emphasize that there are key differences between the system discussed here and impact into dense suspensions. For
example, in the initial state of the system before impact, the particles in DRT experiments are making solid-solid
contact in a dense packing. In impacts into dense suspensions, the particles begin in a state whereby they are not
making contact with each other but are “suspended” in the liquid. Additionally, in the theoretical analysis discussed
here, there is no propagation time between the intruder and the shear flow in the material below it. This is apparent
from the fact that the shear length L is set by the current value of the contact radius between the intruder and bed,
as opposed to the value of the contact radius at some previous time. For impacts into dense suspensions, propagation
phenomena are thought to play a key role in the impact response of shear-thickening suspensions [12, 14, 34, 51] but
are not considered in DRT. However, DRT likely plays an important role in impact behavior into shear-thickening
suspensions, primarily by holding together the dynamic solidlike region often observed in experiments on impact into
shear-thickening suspensions.
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