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I 

FIG. 1. Representative sketch of the electrohydrodynamic Hele-Shaw flow.

I. INTRODUCTION

Viscous fingering (or Saffman-Taylor instability) [1] is perhaps the most well-known and studied phenomenon
among a family of phenomena that exhibit interfacial instabilities. This hydrodynamic instability arises when a fluid
displaces another of higher viscosity in the narrow gap separating two flat, parallel glass plates of an experimental
device known as Hele-Shaw cell. The interplay of viscous and surface tension forces is responsible for the formation
of highly intricate interfacial patterns [2–5]. Despite the rich dynamical behaviors and eye-catching morphologies, the
emergence of intricate patterned structures can be detrimental for some technological and industrial applications [6–10]
due to their unpredictable, disordered growth. For instance, processes related to oil recovery [6, 7] by water flooding
method are very inefficient if viscous fingering develops at the interface separating the water and oil phases. On the
other hand, it is well-known that the emergence of these instabilities enhances fluids mixing [11] and is, therefore,
desirable in that case. These facts have stimulated research efforts to develop a fundamental understanding of the
interfacial dynamics of these systems and to find ways to control such hydrodynamic instabilities. So, methods aimed
toward either suppressing or enhancing fingering instabilities, or prescribing an ordered growth of viscous fingers are
of technological and scientific importance.

Several controlling strategies have been developed in the past years, exploiting, for instance, the manipulation
of the Hele-Shaw cell geometry [12–17], usage of elastic-walled cells [18], and employment of specific time-dependent
injection fluxes [19–29] and gap widths [28, 30–34]. More recently, researchers [35, 36] have achieved interfacial control
in Hele-Shaw cells by harnessing electro-osmotic flows generated through externally applied electric fields. Electro-
osmotic flow arises over electrically charged surfaces due to the interaction of an externally applied electric field with
the net charge in the electric double layer (EDL) [37–39]. In the context of Hele-Shaw flows, when the fluids are
brought into contact with the Hele-Shaw cell’s glass plates, the glass surface becomes negatively charged due to the
dissociation of ionic surface groups. Consequently, a thin, diffuse cloud of excess counter-ions in the liquids accumulate
near the surface, forming the so-called EDL. By applying the external electric field, these mobile ions are subjected
to a net electric force, which drives an electro-osmotic flow, in addition to the pressure-driven flow. In Refs. [35, 36],
the authors demonstrated via linear stability analysis, numerical simulations, and experiments that, depending on the
magnitude and direction of the electric current, viscous fingering instabilities can be either enhanced or suppressed.

Here, we further explore the system examined in Refs. [35, 36], but with a different goal in mind: Instead of using
electric fields to enhance or suppress interfacial instabilities, we utilize it to promote controlled evolution of an unstable
interface and also to tune interesting nonlinear behaviors. More specifically, we design a controlling strategy coupling
time-dependent electric currents with time-varying injection rates that can make the interface evolve self-similarly with
a fixed number of fingers. This was achieved previously in Refs. [19, 20, 23, 24, 28] by utilizing only a time-dependent
injection rate. However, by adding the electro-osmotic contribution to the pressure-driven flow, we demonstrate that
the role of fixing the number of fingers can be transferred from the injection rate to the applied electric current.
Therefore, the injection rate can vary “freely” (subjected to a given constraint) to tune other features of the flow,
such as the establishment of the self-similar regime (delay, promote, or suppress) and the relative finger instability
size without altering other physical parameters, including the material properties of the fluids, cell’s geometry, and
initial conditions.
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II. THEORETICAL BACKGROUND

Consider a radial Hele-Shaw cell (see Fig. 1) of gap thickness b containing two immiscible, incompressible, Newtonian
viscous fluids. Denote the viscosities, permittivities, and zeta (surface) potentials of the inner (1) and outer (2) fluids
as η1, ε1, ζ1, and η2, ε2, and ζ2, respectively, where ε0 ≈ 8.85 × 10−12 F/m is the vacuum permittivity. At the
interfacial boundary where the two fluids meet, there exists a surface tension γ. The fluid 1 is injected at the center
of the cell at a given volumetric injection rate Q = Q(t), displacing the fluid 2 radially. An electric current I = I(t)
is applied by electrodes positioned at the center and the outer edge of the Hele-Shaw cell, and an external, in-plane
electric field Ej = −∇Vj is established parallel to the flow direction, where Vj is the electric potential in fluid j
(j = 1, 2).
By considering the contribution of electric forces, and assuming a thin EDL, the motion of the fluids in the effectively

two-dimensional Hele-Shaw cell problem is described by a modified Darcy’s law [35, 36, 38, 40] for the gap-averaged
velocity vj = −Mj∇pj − Kj∇Vj , where Mj = b2/12ηj and Kj = −εjζj/ηj are the hydraulic and electro-osmotic
mobilities, respectively, and pj represents the pressure. The electric-induced flow can be either in the same or in
the opposite direction of hydraulic flow, depending on the direction of the applied electric field, which is related to
the sign of the electric current: Positive (negative) current is defined to be in the same (opposite) direction as the
flow. We point out that this modified Darcy’s law, valid for both hydraulic and electro-osmotic forces, is obtained
under traditional Hele-Shaw conditions (i.e., low flow velocities, small gap width, highly viscous displaced fluid, etc.).
Furthermore, one must also consider the additional physical requirement of EDL thickness much smaller than gap
thickness b. Given that the EDL thickness is of the order of the Debye length λD ∼ 10 nm≪ b (see Table I), the electro-
osmotic mobility Kj is expressed by the Helmholtz-Smoluchowski relation [38]. Thus Darcy’s law (total gap-averaged
velocity) is written as the sum of gap-averaged hydraulic and electro-osmotic velocities, with Kj = −εjζj/ηj.
As the electric field acts on the EDL to promote electro-osmotic flow, pressure gradients also drive the advection

of ions on the EDL, generating a streaming current. As a consequence, the total current density Jj is the sum of
streaming (pressure-induced) and Ohmic (associated with the electric field) currents, i.e., Jj = −Kj∇pj − σj∇Vj ,
where σj is the Ohmic conductivity of fluid j.
The interface motion is determined by the previous governing equations (for vj and Jj), along with the incom-

pressibility ∇ ·vj = 0 and continuity ∇ · Jj = 0 conditions, and four boundary conditions at the fluid-fluid interface.
The first one expresses the pressure discontinuity due to the interfacial surface tension γ, and it is given by the
Young-Laplace [1, 3–5] pressure boundary condition p1 − p2 = γκ, where κ denotes the curvature of the fluid-fluid
interface. Conversely, the electric potential is continuous across the interface [35, 36, 40], i.e., V1 − V2 = 0. The other
two remaining fluid-fluid conditions are the kinematic boundary conditions [1, 3–5, 35, 36, 40], which express the
fact that the normal components of the fluids’ velocities and also of the current densities are continuous across the
interface. These conditions are expressed as v1 · n̂ = v2 · n̂ and J1 · n̂ = J2 · n̂, where n̂ denotes the unit normal vector
at the interface.
Although the results depicted in Figs. 2 – 6 are obtained utilizing fully nonlinear simulations, our controlling

protocol, the main result of this work, is derived from linear theory. Linear stability analysis of the problem [35]
considers harmonic distortions of a nearly circular fluid-fluid interface whose position evolves according to R(θ, t) =
R(t)+ δ(θ, t), where R = R(t) is the time-dependent unperturbed radius of the interface, and θ denotes the azimuthal
angle in the r − θ plane. The unperturbed radius of the interface at t = 0 is denoted by R(t = 0) = R0, and the net

interface disturbance is represented as a Fourier series δ(θ, t) =
∑+∞

n=−∞ δn(t) e
inθ, where δn(t) denotes the complex

Fourier amplitudes, with integer wave numbers n, and |δ| ≪ R. Utilizing the governing equations and also the

boundary conditions of the problem, we obtain the equation of motion δ̇n = λ(n)δn (for n 6= 0) for the perturbation
amplitudes, where

λ(n) =
Q

2πbR2
(A|n| − 1)−

γ

R3
B|n|(n2 − 1) +

I

πbR2
C|n| (1)

is the linear growth rate, with electro-osmotic viscosity contrast

A =
K2

1 −K2
2 − (σ1 + σ2)(M1 −M2)

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
. (2)

Additionally,

B =
M1K

2
2 +M2K

2
1 − (σ1 + σ2)M1M2

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
, (3)

and

C =
M1K2 −M2K1

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
. (4)
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The first term appearing on the right-hand side of Eq. (1) represents the destabilizing contribution (for A > 0) coming
from the radial injection of the inner fluid, while the second term accounts for the stabilizing effect due to the surface
tension. Supplementing these usual terms related to injection-driven Hele-Shaw flows, there is also an additional term
proportional to IC, which arises as a consequence of the consideration of the electro-osmotic flow. This new term
can promote linear stabilization (IC < 0) or destabilization (IC > 0) depending on its sign. In addition, note that at
the linear level electro-osmotic effects also modify the parameters A and B, which, in the absence of electro-osmotic
effects (K1 = K2 = 0), are given by A = (η2 − η1)/(η2 + η1) and B = b2/[12(η1 + η2)], respectively.

III. CONTROLLING PROTOCOL

In contrast to what has been employed in Refs. [35, 36], instead of utilizing constant values for Q and I, which
may result in finger proliferation, here we consider that both quantities may be functions of time, i.e., Q = Q(t) and
I = I(t). At the linear level, an estimate for the number of fingers formed during the injection process is given by the
closest integer to the mode of largest growth rate nmax [2–5], found by evaluating dλ/dn|n=nmax = 0. Since we intend
to keep this number fixed, our job is to determine the functional forms of Q(t) and I(t) that keep nmax unmodified
as the interface evolves. Considering Eq. (1), dλ/dn|n=nmax = 0 is easily evaluated. Then, by solving the resulting
expression for I(t), we obtain

I(t) =
1

C

[

πbγB

R(t)
(3n2

max − 1)−
Q(t)A

2

]

. (5)

Note that it does not impose any restrictions on the functional form and values of the injection rate Q(t). Therefore,
a priori, any Q(t), including constant values, could be utilized to keep nmax unmodified as long as I(t) varies in time
accordingly to Eq. (5). However, this is not true, and we address this point in the following calculations.
By inserting Eq. (5) into Eq. (1), and evaluating the resulting expression at n = nmax, we obtain the growth

rate λ(nmax) =
1

R3(t)

[

2γBn3
max −

Q(t)R(t)
2πb

]

. Note that if one assumes that the injection process is performed under

constant rate, i.e., Q(t) = Q0, the second term inside the squared brackets dominates for larger interfacial sizes [R(t)],
and nmax becomes a stable mode [λ(nmax) < 0]. Recall that nmax is the mode of largest growth rate, so when it
becomes a stable mode, all the other modes in the dynamics become stable as well. Consequently, the interface
expands as a stable circle and not as a controlled boundary with a specific number of fingers, as we would like.
Therefore, to control the shape of the interface during injection-driven, electro-osmotic flows, one must consider not
only a time-dependent electric current [Eq. (5)], but also a time-dependent injection rate. Moreover, in order to
guarantee that nmax is an unstable mode during all the injection process, and to ensure the formation of fingered
structures, we need that λ(nmax) > 0, leading to the requirement

Q(t) < Qcrit(t) =
4πbγBn3

max

R(t)
, (6)

where Qcrit(t) is the critical injection rate at which nmax becomes stable [i.e., λ(nmax) = 0].
Expressions (5) and (6) constitute the central analytical results of this work. Based on the previous calculations

and discussions, it is clear that if one intends to control the shape of the expanding interface during injection-driven,
electro-osmotic flows, one can consider the controlling electric current (5) and perform the injection process under a
positive, time-dependent, non-zero injection rate Q(t) = αQcrit(t), with 0 < α < 1. Note that volume conservation

implies in the relation Q(t) = 2πbRṘ. Since here we utilize Q(t) = αQcrit(t), R(t) can be easily determined, and once

this is done one concludes that Q(t) ∼ t−1/3.
We also point to the fact that only the controlling electric current (5) depends on nmax, and on the physical

parameters of the system, while Q(t) can be arbitrarily chosen [as long as condition (6) is satisfied] to control other
features of the interface and tune dynamical regimes, without the necessity of changing the set of physical parameters,
initial conditions or number of fingers. We stress that these controlling features are not possible in the purely
hydrodynamic problem. When electro-osmotic effects are absent, i.e., I(t) = 0 and K1 = K2 = 0, Eq. (5) reduces
to Q(t) ≡ Qph(t) = 2πbγB(3n3

max − 1)/AR(t), which is the controlling injection rate for the pure hydrodynamic
problem [19, 20]. In this case, if one intends to induce dynamical responses of the interface by manipulating the
injection Qph(t) while keeping the number of fingers fixed (nmax), then one necessarily has to modify the physical
parameters. Likewise, if the physical parameters are kept unaltered butQph(t) is adjusted to tune dynamical behaviors,
then nmax has to change, impacting the interfacial symmetry. All of these problems are eliminated by our new
controlling protocol.
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Physical parameter Value Units

b 10−4 m

ε0 ≈ 8.85 × 10−12 F/m

η1 7.36× 10−3 Pa s

ε1 10.3ε0 F/m

ζ1 0 V

η2 109× 10−3 Pa s

ε2 49.1ε0 F/m

ζ2 −150× 10−3 V

γ 37× 10−3 N/m

σ1, σ2 155× 10−4 S/m

R0 10−2 m

A ≈ 0.87 –

B ≈ 7.16 × 10−9 m4 N−1 s−1

C ≈ −1.80× 10−8 m3 A−1 s−1

TABLE I. Values of the physical parameters utilized in the simulations depicted in Figs. 2 and 3. The material properties of
fluid 1 correspond to the oil 1-octanol with tetrabutyl-ammonium chloride (TBACl) to tune its conductivity. The concentration
of TBACl is 0.75 M. Likewise, fluid 2 corresponds to a mixture of water/glycerol (60/40 w/w) with KCl in concentrations

≤ 2× 10−3 M.

IV. CONTROLLING THE SELF-SIMILAR PATTERNS

In the framework of pure hydrodynamic, injection-driven radial Hele-Shaw flows, it has been demonstrated by fully
nonlinear simulations [19, 28] that flows performed under time-dependent injection fluxes scaling as Q(t) ∼ t−1/3, such
as the injection rates utilized in this work, evolve to a self-similar regime characterized by the emergence of radially
growing n-fold symmetric structures with preserved shapes. Since in our controlling protocol Q(t) can be arbitrarily
chosen [obeying condition (6)], we investigate its effects (if any) in the establishment of the self-similar regime, and
in the associated pattern morphologies, by utilizing our boundary integral formulation [41–43] (see Appendix A). To
strengthen the relevance of our theoretical results, in the remainder of this paper, the values of the parameters (see
Table I) used in our simulations (Figs. 2 – 6) are based on the values of the physical quantities utilized in the experi-
mental paper [36] related to injection-driven, electro-osmotic flows in a radial Hele-Shaw cell. In addition, we consider
that at t = 0 the initial interfacial shape is given by a mode mixture of sines and cosines with all the participating
modes having the same initial amplitude (R0/100), i.e., R(θ, 0) = R0 +R0/100[sin(2θ) + cos(3θ) + sin(5θ) + cos(7θ)].
A convenient way to investigate these intrinsically fully nonlinear concerns is through the time evolution of the

interfacial shape factor ∆(t)/R(t) ≡ max|R(θ, t)/R(t)−1| [19], which is computed numerically based on the maximum
deviation of the perturbed interface from the equivalent circle with the same area. In the left panel of Fig. 2, we
present the behavior of the shape factor ∆(t)/R(t) with respect to variations in the ratio R(t)/R0 for thirteen
different injection rates. The solid curves correspond to injection-driven, electro-osmotic flows performed utilizing
the controlling current (5) with nmax = 7 and injection rates Q(t) = αQcrit(t). On the other hand, the dashed curve
represents the pure hydrodynamic flow performed using Q(t) = Qph(t). In addition, in the right panel of Fig. 2, which
will be analyzed later together with Fig. 3, we depict the electric current (5) as a function of R(t)/R0 for the injection
rates utilized in the left panel.
By following the behavior of the curves in the left panel of Fig. 2, initially, one observes the growth of ∆(t)/R(t),

indicating the regime in which the interface changes its morphology while it expands radially. Nonetheless, as time
advances and the interface acquires large sizes, fully nonlinear effects dominate, making most of the curves saturate.
Small dots indicate the moment of saturation. From these points onward, the corresponding interfaces evolve self-
similarly, keeping a constant interfacial shape profile. We emphasize that this does not mean that the system reaches
a stationary state since the interfaces are still expanding radially. Note that although the curve associated with
α = 0.49 reaches the self-similar regime, it occurs for a very large interfacial size (R/R0 = 1036), and the small dot
lies outside the plot interval. On the other hand, the cases with α = 0.1 and α = 0.21 do not achieve the self-similar
regime, and the reason behind this failure in reaching such regime will be provided later when analyzing Fig. 3.
A dynamical behavior revealed by the left panel of Fig. 2 concerns the possibility of tuning the occurrence of the

self-similar regime by varying the injection rate. We observe that by properly manipulating Q(t) (or, equivalently, the
values of α) and the electric current accordingly to Eq. (5), one can tune the establishment of the self-similar regime
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FIG. 2. Left panel: Behavior of the shape factor ∆(t)/R(t) with respect to variations in the ratio R(t)/R0, for flows performed
utilizing the controlling protocol with nmax = 7 and various injection rates Q(t) = αQcrit(t). Right panel: Plot of the electric
current (5) as a function of R(t)/R0 for the injection rates utilized in the left panel.

FIG. 3. Gallery of representative fully nonlinear 7-fold patterns (see supplemental material) [44] corresponding to the cases
with (a) α = 0.49, (b) α = 0.45, (c) α = 0.3, (d) α = 0.23, (e) α = 0.21, and (f) α = 0.1, shown in Fig. 2. The interfaces (a)-(d)
are plotted at the onset of the self-similar regime, i.e., for (a) R/R0 = 1036, (b) R/R0 = 1.75 × 109, (c) R/R0 = 1.25 × 105,
and (d) R/R0 = 2.29 × 106. The patterns depicted in (e) and (f) do not reach the self-similar regime, and are plotted for (e)
R/R0 = 114 and (f) R/R0 = 1.97.

to occur at interfacial sizes as large as R/R0 = 1036 (for α = 0.49), or as small as R/R0 = 5.02× 104 (for α = 0.35).
In addition, by utilizing α ≤ 0.21, one can even stop the occurrence of self-similarity. These novel controlling features
are only possible due to the inclusion of the electro-osmotic flow in addition to the usual pressure-driven flow. To
make this point very clear, in Fig. 2 we also depict the evolution of the shape factor during a purely hydrodynamic
flow performed employing Q(t) = Qph(t). Although in this case, one also observes establishment of self-similar
evolution at R/R0 = 1.77 × 109, there are no ways of tuning its occurrence (delaying, promoting, or suppressing)
without modifying nmax, the physical parameters, or the initial conditions of the flow. In particular, we point out
that, comparing the curve related to α = 0.35 with the one associated with Q(t) = Qph(t), our controlling scheme has
promoted the establishment of self-similar evolution by reducing the required interfacial size R/R0 in about 5 orders
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FIG. 4. Left panel: Behavior of the shape factor ∆(t)/R(t) with respect to variations in the ratio R(t)/R0, for flows performed
utilizing the controlling protocol with nmax = 3 and various injection rates Q(t) = αQcrit(t). Right panel: Plot of the electric
current (5) as a function of R(t)/R0 for the injection rates utilized in the left panel.

FIG. 5. Gallery of representative fully nonlinear 3-fold patterns corresponding to the cases (a) α = 0.45, (b) α = 0.37, and
(c) α = 0.35, shown in Fig. 4. The interfaces (a) and (b) are plotted at the onset of the self-similar regime, i.e., for (a)

R/R0 = 8.2× 1010 and (b) R/R0 = 3.2× 1011. The pattern depicted in (c) does not reach the self-similar regime, and is plot-

ted for R/R0 = 1.06× 103.

of magnitude with respect to the equivalent purely hydrodynamic case.

In addition to the manipulation of the self-similar dynamics, the analysis of the left panel of Fig. 2 also reveals
another interesting fully nonlinear dynamical response of the system to variations in the injection rates employed,
namely, for a given value of R(t)/R0, the magnitude of ∆(t)/R(t) is larger for smaller values of α, indicating that
the injection rate can also be used to set the instability level of the self-similar shapes. Complementary information
about this relevant controlling feature is provided in Fig. 3, where we plot the fully nonlinear patterns related to some
of the cases presented in Fig. 2.

By inspecting the panels of Fig. 3, one immediately notes that all the fingered structures are 7-fold, confirming the
efficiency of our method to control the number of emerging fingers even at the fully nonlinear regime of the dynamics.
Moreover, it is evident that lower injection rates indeed lead to the formation of more disturbed patterns. Therefore,
by just adjusting the values of α and keeping all the other physical parameters unchanged, one can generate self-similar
patterns with considerably different relative finger sizes, ranging from almost circular, mildly perturbed boundaries
[Fig. 3(a)] to fully developed fingered structures with large perturbation amplitudes [Fig. 3(d)]. Nevertheless, if one
continues to reduce α, the interface becomes increasingly unstable, and we observe a morphological transition from
7-fold, symmetric, self-similar patterns [panels (a)-(d)], to asymmetric 7-finger structures [panels (e) and (f)]. This is
clearly illustrated in Fig. 3(e), where we observe the formation of an almost symmetric pattern that seems to evolve
towards self-similarity, but this evolution is interrupted due to the occurrence of a pinch-off event. Therefore, the
presence of pinch-off events is the cause of the suppression of self-similar evolution discussed in Fig. 2. Finally, in
Fig. 3(f), we observe the emergence of an asymmetric, intricate fingered shape dominated by electric-induced pinch-
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FIG. 6. Behavior of the shape factor ∆(t)/R(t) with respect to variations in the ratio R(t)/R0, for flows performed utilizing the
controlling protocol with nmax = 3, 4, 5, 6, and 7. Here Q(t) = 0.37 ×Qcrit(t), where Qcrit(t) is evaluated for each mode nmax

utilizing Eq. 6. The resulting self-similar shapes are depicted as insets.

off instabilities with no resemblance to the well-behaved symmetric patterns depicted in the other panels for larger
values of α. This morphological transition is explained by inspecting the right panel of Fig. 2: As α is reduced, one
diminishes the destabilizing viscous effects but also restrain the stabilization provided by positive electric currents.
When the electric current is negative, the electric field turns a destabilizing effect, ultimately leading to pinch-off
phenomena for sufficiently large values.
In Figs. 4 – 6, we show that the dynamical behaviors found in our work are general, in the sense that if one selects

other modes nmax (for instance, 3, 4, 5, or 6), the key conclusions remain qualitatively the same to the results currently
presented in Figs. 2 and 3 for nmax = 7, thus supporting the main findings of this work. In addition, we emphasize
that we have performed repeated and careful computations utilizing other general initial conditions and checked that
the resulting findings are very similar to the ones depicted in Figs. 2 – 6. And finally, in Appendix B, we extend
the linear theory derived in Sec. II to a weakly nonlinear theory. Then, we utilize it to strengthen the main findings
presented in Sec. IV.

V. CONCLUSION

Above we show through numerical simulations that dynamical control of fingering instabilities is attained by properly
adjusting both electric current and flow rate over time. Our controlling protocol differs from previous strategies
performed under time-varying flow rates because of the inclusion of a secondary electro-osmotic flow, which can
oppose or assist the pressure-driven flow. Remarkably, this simple modification has provided an improved control
over the features and behaviors of the unstable viscous fingering interface. More specifically, we are able to (i) set the
number of fingers emerging at the interface, (ii) tune the relative finger instability size of the patterns, and (iii) delay,
promote, or suppress the self-similar growth. We stress that all these features are conveniently controlled without
altering the material properties of the fluids, cell’s geometry, or initial conditions, something impossible to be realized
by utilizing conventional strategies performed solely in terms of time-varying flow rates [19, 20, 23, 24, 28].
Many extensions of our work are possible. Although we demonstrate improved interfacial control by utilizing electric

fields, our method is general and can be applied to other systems where multiple forces drive interfacial instabilities.
For instance, one could use our discoveries to control the features of a radially evolving interface by applying mag-
netic fields instead of electric fields. In that case, the fluids are magnetic and respond promptly to applied magnetic
fields [45–55]. Furthermore, given the existing types of magnetic fluids (ferrofluids and magnetorheological) [45] and
the different possibilities of magnetic field arrangements [45–55], these systems could potentially exhibit new dynam-
ical behaviors beyond the ones already disclosed here when controlled by employing our protocol. Therefore, our
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present study paves the way for other explorations concerning controlling methods exploiting the rich physics behind
“multi-field” driven interfacial dynamics.
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Appendix A: Fully nonlinear boundary integral method

In the advanced-time regime of the dynamics, where the viscous fingering instabilities are comparable to the
interfacial radius (as in Figs. 2 – 6), the time evolution of the fluid-fluid boundary can only be appropriately described
by fully nonlinear computational methods such as the boundary integral scheme presented in this Appendix. According
to potential theory [56], the solution of Laplace’s equation can be written in terms of boundary integrals. Since the
velocity φj and current density ψj potentials obey Laplace’s equation and have continuous normal derivatives across
the interface (expressed by the kinematic boundary conditions v1 · n̂ = v2 · n̂ and J1 · n̂ = J2 · n̂), these two harmonic
functions can be constructed as double layer potentials

φ(x) =
1

2π

∫

µ1(y)
∂ ln |x− y|

∂n(y)
ds(y) +

Q

2πb
ln |x|, (A1)

and

ψ(x) =
1

2π

∫

µ2(y)
∂ ln |x− y|

∂n(y)
ds(y) +

I

2πb
ln |x|, (A2)

respectively, where µ1(y) and µ2(y) are dipole densities on the interface, s denotes the interface arclength, and x

represents the position vector with the origin located at the center of the cell. Note that the kinematic boundary
conditions are automatically satisfied by these potentials. Now, we rewrite the right-hand sides of the modified Darcy’s
law and the equation for the total current density in terms of the double layer potentials (A1) and (A2), and substitute
the resulting expressions in the remaining boundary conditions for the pressure and electric potential to obtain the
integral equations

(

σ1
H1

+
σ2
H2

)

µ1(x) +
1

π

(

σ1
H1

−
σ2
H2

)
∫

µ1(y)
∂ ln |x− y|

∂n(y)
ds(y)

−

(

K1

H1
+
K2

H2

)

µ2(x)−
1

π

(

K1

H1
−
K2

H2

)
∫

µ2(y)
∂ ln |x− y|

∂n(y)
ds(y)

= 2γκ−

(

σ1
H1

−
σ2
H2

)

Q

2πb
ln |x|2 +

(

K1

H1
−
K2

H2

)

I

2πb
ln |x|2, (A3)

and

−

(

K1

H1
+
K2

H2

)

µ1(x)−
1

π

(

K1

H1
−
K2

H2

)
∫

µ1(y)
∂ ln |x− y|

∂n(y)
ds(y)

+

(

M1

H1
+
M2

H2

)

µ2(x) +
1

π

(

M1

H1
−
M2

H2

)
∫

µ2(y)
∂ ln |x− y|

∂n(y)
ds(y)

=

(

K1

H1
−
K2

H2

)

Q

2πb
ln |x|2 −

(

M1

H1
−
M2

H2

)

I

2πb
ln |x|2, (A4)

where Hj = σjMj−K
2
j (with j = 1, 2). These equations form a system of well-defined Fredholms integral equations of

the second kind, and we solve it for the dipole densities µ1(x) and µ2(x) via the iterative method GMRES [57]. Once
µ1(x) and µ2(x) are solved, we compute the normal velocity of the interface via Dirichlet-Neumann mapping [58]

V (t) =
1

2π

∫

µ1s′
(x− x′)⊥ · n(x)

|x− x′|2
ds′(x′) +

Q

2πb

x · n

|x|2
, (A5)
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where the subscript s′ denotes the partial derivative with respect to arclength and x⊥ = (x2,−x1). Finally, the
interface is evolved through

dx

dt
· n = V. (A6)

Note that in Eq. (A5), the normal velocity decreases as the interface size |x| gets large. It prohibits one from
computing the dynamics of an interface at very long times. Thus, we apply the rescaling idea [33, 34, 41, 42] to
accelerate this slow dynamics. We first introduce

x = R̄(t̄)x̄(t̄, θ), (A7)

and

t̄ =

∫ t

0

1

ρ(t′)
dt′, (A8)

where the space scaling R̄(t̄) represents the size of the interface, x̄ is the position vector in the scaled interface, and
θ parameterizes the interface. The time scaling function ρ(t) = ρ̄(t̄) maps the original time t to the new time t̄. In
addition, note that ρ(t) has to be positive and continuous. The evolution of the interface in the scaled frame can be
accelerated [41, 42] or decelerated [33, 34] by choosing differents ρ(t). A straightforward calculation shows that the
normal velocity in the new frame is expressed as

V̄ (t̄) =
ρ̄

R̄
V (t(t̄))−

x̄ · n

R̄

dR̄

dt̄
. (A9)

In the rescaled frame, we require that the area enclosed by the interface remains constant Ā(t̄) = Ā(0). Thus,

the integration of the normal velocity along the interface in the scaled frame vanishes, i.e.,

∫

Γ̄(t̄)

V̄ ds̄ = 0. As a

consequence,

dR̄

dt̄
=

ρ̄Q̄

2bĀ(0)R̄
. (A10)

By choosing ρ(t̄) = R̄2(t̄), the interface grows exponentially in the rescaled frame as

R̄(t̄) = exp

[

Q̄

2bĀ(0)
t̄

]

. (A11)

Taking µ̄1(x̄) = µ1(x)R̄(t̄) and µ̄2(x̄) = µ2(x)R̄(t̄), we rewrite the integral equations (A3) and (A4) in the rescaled
frame as

(

σ1
H1

+
σ2
H2

)

µ̄1 +
1

π

(

σ1
H1

−
σ2
H2

)
∫

µ̄1(ȳ)
∂ ln |x̄− ȳ|

∂n(ȳ)
ds̄(ȳ)

−

(

K1

H1
+
K2

H2

)

µ̄2 −
1

π

(

K1

H1
−
K2

H2

)
∫

µ̄2(ȳ)
∂ ln |x̄− ȳ|

∂n(ȳ)
ds̄(ȳ)

= 2γκ̄−

(

σ1
H1

−
σ2
H2

)

QR̄

2πb
(2 ln R̄+ ln |x̄|2) +

(

K1

H1
−
K2

H2

)

IR̄

2πb
(2 ln R̄+ ln |x̄|2), (A12)

and

−

(

K1

H1
+
K2

H2

)

µ̄1 −
1

π

(

K1

H1
−
K2

H2

)
∫

µ̄1(ȳ)
∂ ln |x̄− ȳ|

∂n(ȳ)
ds̄(ȳ)

+

(

M1

H1
+
M2

H2

)

µ̄2 +
1

π

(

M1

H1
−
M2

H2

)
∫

µ̄2(ȳ)
∂ ln |x̄− ȳ|

∂n(ȳ)
ds̄(ȳ)

=

(

K1

H1
−
K2

H2

)

QR̄

2πb
(2 ln R̄+ ln |x̄|2)−

(

M1

H1
−
M2

H2

)

IR̄

2πb
(2 ln R̄+ ln |x̄|2). (A13)

Using Eq. (A5), we are able to compute the normal velocity in the rescaled frame

V̄ (x̄) =
1

2πR̄

∫

µ̄1s̄
(x̄′ − x̄)⊥ · n̄(x̄)

|x̄′ − x̄|2
ds̄′ +

Q̄

2πb

x̄ · n̄

|x̄|2
−

Q̄

2bĀ(0)
x̄ · n̄, (A14)

where x̄⊥ = (x̄2,−x̄1). Then we evolve the interface in the scaled frame through

dx̄(t̄, θ)

dt̄
· n = V̄ (t̄, θ). (A15)
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Appendix B: Second-order, mode-coupling perturbative analysis

In this Appendix, we develop a second-order, perturbative weakly nonlinear theory for our electrohydrodynamic
problem. Our leading goal is to find a differential equation which describes the time evolution of the perturbation
amplitudes δn(t), accurate to second-order [O(δ2n)]. Therefore, we perform the same steps already presented in
Sec. II to obtain the linear growth rate of the system. However, instead of keeping terms up to first-order in δ,
we extend the linear theory by keeping terms consistently up to second-order in δ. Contrary to the usual linear
stability analysis, which essentially provides information about the stability of the interface with respect to small
perturbations, our second-order weakly nonlinear theory allows one to extract key information about the morphology
of the interfacial patterns at the onset of nonlinearity. We seek to verify and strengthen the findings already obtained
via our computational scheme (Figs. 2 – 6) by utilizing an alternative approach based on a second-order, perturbative
strategy.
During the injection process, the initially slightly perturbed circular interface can become unstable, and deform,

due to the interplay of viscous, capillary, and electric forces acting on the system. In our perturbative analysis, the
perturbed shape of the fluid-fluid boundary is described by R(θ, t) = R(t) + δ(θ, t). Recall that the velocity vj and
current density Jj fields are irrotational in the bulk. Therefore, we can state our problem in terms of the Laplacian
velocity and current density potentials [35, 36, 59]

φj(r, θ) = −
Q

2πb
log

( r

R

)

+
∑

n6=0

φjn(t)
( r

R

)(−1)(j+1)|n|

einθ, (B1)

and

ψj(r, θ) = −
I

2πb
log

( r

R

)

+
∑

n6=0

ψjn(t)
( r

R

)(−1)(j+1)|n|

einθ, (B2)

respectively.
Within this perturbative framing, we use the kinematic boundary conditions to express the potentials φj(t) and

ψj(t) in terms of the perturbation amplitudes δn(t), and their time derivatives δ̇n(t) = dδn(t)/dt. Next, we substitute
the resulting relations, the pressure jump condition, and continuity of electric potential into Darcy’s law. Likewise,
we also substitute these relations into the total current density. Then, since vj and Jj are coupled, we can insert one

of them into the other, obtaining a single expression in terms of δn(t) and δ̇n(t). In contrast to what has been done in
Sec. II to obtain the linear growth rate of the system, here we extend the linear theory by keeping terms consistently
up to second-order in δ. By doing this, we obtain the weakly nonlinear equation of motion for the perturbation
amplitudes (for n 6= 0)

δ̇n = λ(n)δn +
∑

n′ 6=0

[F (n, n′) + λ(n′)G(n, n′)] δn′δn−n′ . (B3)

In Eq. (B3), λ(n) is the linear growth rate given by Eq. (1), and the second-order mode-coupling terms appearing on
the right-hand side are given by

F (n, n′) =
|n|

R

{

Q

2πbR2

[

A

[

1

2
− sgn(nn′)

]

+ (DA− E)|n′|[1− sgn(nn′)]

]

−
γ

R3

[

B

[

1−
n′

2
(3n′ + n)

]

+ (f +BD)|n′|(n′2 − 1)[1− sgn(nn′)]

]

+
IC

πbR2

[

D|n′|[1− sgn(nn′)]−
1

2

]}

, (B4)

and

G(n, n′) =
1

R
{A|n|[1 − sgn(nn′)]− 1} , (B5)

where

D =
K2

1 −K2
2 − (σ1 − σ2)(M1 +M2)

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
, (B6)

E =
(K1 −K2)

2 − (σ1 − σ2)(M1 −M2)

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
, (B7)
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FIG. 7. Weakly nonlinear time evolution of the expanding interfacial patterns generated by utilizing the controlling protocol
for nmax = 7, and three injection rates Q(t) = αQcrit(t): (a) α = 0.25, (b) α = 0.23, and (c) α = 0.2. Here we include modes
2 ≤ n ≤ 20 and a random initial phase. The corresponding time evolution of the rescaled perturbation mode amplitudes
|δn(t)|/R(t) are shown in the bottom panels. The final times used are (a) tf = 480 s, and (b) tf = 600 s, and the remaining
physical parameters are listed in Table I.

f =
M1K

2
2 −M2K

2
1 + (σ1 − σ2)M1M2

(K1 +K2)2 − (σ1 + σ2)(M1 +M2)
, (B8)

and the sgn function equals ±1 according to the sign of its argument.

Expressions (B3)-(B8) are the second-order mode-coupling equations describing the time evolution of the interfacial
shape during a radial injection process in a Hele-Shaw cell, taking into account electro-osmotic effects. Note that
after neglecting the second-order terms in Eq. (B3), one verifies that Eqs. (B3)-(B8) agree with the simpler linear
(first-order) expression previously derived in Sec. II. In the absence of electro-osmotic effects (K1 = K2 = 0), our
second-order results also reproduce the second-order expressions obtained in Ref. [59] which analyzed radial injection
in a Hele-Shaw cell.

In order to plot the weakly nonlinear temporal evolution of the interfaces, we first consider the nonlinear coupling
of all the Fourier modes in the interval 2 ≤ n ≤ 20, and rewrite the net interfacial perturbation δ(θ, t) in terms of the
real-valued cosine an(t) = δn(t) + δ−n(t), and sine bn(t) = i[δn(t)− δ−n(t)] amplitudes. Once this is done, the shape
of the evolving interface can be easily acquired through

R(θ, t) = R(t) + δ0 +

20
∑

n=2

[an(t) cos(nθ) + bn(t) sin(nθ)],

(B9)

where δ0 = −(1/2R)
∑∞

n=1

[

|δn(t)|
2 + |δ−n(t)|

2
]

[59] is an intrinsically nonlinear constraint related to the inner fluid
mass conservation. The time evolution of the mode amplitudes an(t) and bn(t) can be obtained by numerically solving



13

the corresponding coupled nonlinear differential equations

ȧn = λ(n)an +
1

2

∑

n′>0

{

W0(n,−n
′)an′an+n′ +W0(n, n

′)an′an−n′ +W0(n,−n
′)bn′bn+n′ −W0(n, n

′)bn′bn−n′

}

, (B10)

and

ḃn = λ(n)bn +
1

2

∑

n′>0

{

W0(n,−n
′)an′bn+n′ +W0(n, n

′)an′bn−n′ −W0(n,−n
′)bn′an+n′ +W0(n, n

′)bn′an−n′

}

, (B11)

where

W0(n, n
′) = F (n, n′) + λ(n′)G(n, n′). (B12)

Eqs. (B10) and (B11) are obtained by utilizing Eq. (B3). Furthermore, we set the initial (t = 0) amplitude of all
perturbation modes as R0/600. To make the initial conditions as general as possible, we consider the action of random
phases attributed to each participating sine and cosine mode. This guarantees that the interfacial behaviors we detect
are spontaneously generated by the weakly nonlinear dynamics and not by artificially imposing large initial amplitudes
for the modes.
In Fig. 7, we utilize our second-order, weakly nonlinear perturbative approach to verify the efficiency of our con-

trolling protocol during the onset of nonlinearities. In the top panels of Fig. 7, we plot the weakly nonlinear evolution
of the interface employing the controlling current Eq. (5) for nmax = 7 and injection rates Q(t) = αQcrit(t), with (a)
α = 0.25, (b) α = 0.23, and (c) α = 0.2. The final time tf is defined as the time at which the interface unperturbed
radius has reached the same magnitude [namely, R(t = tf ) ≈ 4 cm] for each Q(t) employed. This is done in order to
make the generated patterns to have the same size at t = tf . In these circumstances, the final times are taken as (a)
tf = 480 s, (b) tf = 522 s, and (c) tf = 600 s. In the bottom panels we show the corresponding time evolution of the
rescaled perturbation amplitudes |δn(t)|/R(t).
By analyzing the top panels of Fig. 7, we observe that the three patterns evolve to 7-fold fingered structures,

regardless of the injection rate employed. In addition, note that although all the patterns have the same number
of fingers and are generated employing precisely the same initial conditions and physical parameters (see Table I),
we observe that lower injection rates lead to the formation of increasingly disturbed patterns. This effect can also
be perceived and appropriately quantified by noting that the magnitudes of the rescaled perturbation amplitudes
|δn(tf )|/R(tf ) in the bottom panel of Fig. 7(c) are larger than the magnitudes found in the bottom panels of Figs. 7(a)
and 7(b). These weakly nonlinear findings further support some of the results already presented in Sec. IV.
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