
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Mode competition in a plunging foil with an active flap: A
multiscale modal analysis approach

Tso-Kang Wang and Kourosh Shoele
Phys. Rev. Fluids 7, 044701 — Published 12 April 2022

DOI: 10.1103/PhysRevFluids.7.044701

https://dx.doi.org/10.1103/PhysRevFluids.7.044701


Mode Competition in a Plunging Foil with an Active Flap: A Multi-Scale Modal Analysis Approach

Tso-Kang Wang and Kourosh Shoele∗
Department of Mechanical Engineering, Joint College of Engineering Florida
State University-Florida A&M University, Tallahassee, Florida 32310, USA

(Dated: March 29, 2022)

Flow-induced fluttering has a significant role in aircraft stability, renewable energy extraction, animal loco-
motion, and many other applications. While being a ubiquitous phenomenon, the control of the flutter response
has been primarily limited to simplified systems and, often, with the help of linear inviscid flow theories. In
this paper, we numerically investigate how the plunging response of a foil can be regulated using an active flap
to improve structural safety or enhance the energy extraction efficiency of the foil with a tightly coupled fluid-
structure interaction algorithm. A broad range of foil and flap settings was tested, and their flow dynamics have
been investigated. A novel multi-scale modal analysis technique suitable for fluid-structure interaction systems
is employed to systematically isolate the active flap-induced and flow-induced modes. It is observed that the
competition between these two modes dictates the plunging response of the foil. The active flap can modulate
the leading edge vortex shedding with larger flapping amplitude and regulate the foil heaving motion. The ratio
of the competing modal energy is proposed to evaluate the control efficacy of the morphing surface, and the
onset of the lock-in is associated with the ratio approaching unity. It is shown that the morphing flap is a good
candidate for active flow control.

I. INTRODUCTION

Flow-induced flutter has been the subject of continual fluid dynamic research since the failed attempt to fly a monoplane by
Samuel P. Langley in 1903. In his text, Bisplinghoff [1] defined the aeroelasticity as "the phenomenon which exhibits appreciable
reciprocal interactions (static or dynamic) between aerodynamic forces and the deformations induced in the structure". The
physics of flow-induced flutter is composed of interactions between the flow and elastic or inertial structures[2]. Two primary
mechanisms that specify the fluttering status of a foil are: the coupling of the torsional and heaving modes of the airfoil; and the
flow separation and reattachment on the foil surface [3]. Under right conditions, the fluttering response can lead to self-sustained
limit cycle oscillations and even cause instabilities [4–6]. In the case of instability, the fluttering motion due to the aeroelastic
interaction presents a severe threat to the airfoil structural integrity. The aeroelastic instability has become even a more critical
design factor with the development of faster and lighter airplanes [7, 8]. Structures other than aerial systems can also be affected
by aeroelasticity [9]. An example is the aeroelastic response of wind turbine blades in turbulent atmospheric flows [10]. Another
famous instance is the collapse of Tacoma Narrows Bridge due to stall flutter [11].

Flow-induced elastic oscillation is also a critical physical mechanism in many biological systems. Oscillating foils are often
applied as a prototype model of animal locomotion. For example, the beating of the caudal fins of thunniform fishes such as tuna
have been studied using pitching and heaving foil configurations [12–14]. The hovering motion of insects or miniature flying
systems is often mathematically described with rapidly oscillating foil-shaped wings. This model has been adopted to study the
efficiency of the flapping foils [15–19]. Similarly, in the past decade, the potentials of utilizing the flow-induced elastic response
for energy harvesting have been explored for various conditions [20–22]. Energy-generating devices, such as a piezoelectric
component attached to a foil can harvest energy from the flow through the self-sustained vibration. Flapping foils as energy
harvesters are environmentally friendly with fewer maintenance requirements and can be easily integrated into existing designs
[23, 24].

Different flow control techniques have been proposed to suppress the vibration or regularize the airfoil’s dynamic stall re-
sponse. Passive control methods have been suggested to suppress vibration. As an example among many other studies, Lee et
al. [25] explored whether the redistribution of the mechanical energy with nonlinear energy sinks could postpone the cascade of
heaving and pitching modes of the airfoil, and Fatimah et al. [26] demonstrated that the vibration of the structure could be alle-
viated by adjusting the stiffness between the oscillating object and an absorbing mass. Recently smart materials have been used
to produce continuous surface deflection of an airfoil and modify aerodynamic characteristics of the system [27–29]. Although
many diverse flow control techniques are proposed, it is fair to say that conceivably, the most feasible engineering solution is
still an active flap at the leading edge or trailing edge. Block et al. [30] employed Theodorsen’s flow Theorem [31] to identify
a controlling action that can stabilize the system by adjusting the angle of the trailing edge flap. Wang et al. [32] further used a
multi-input system with active control surfaces at both leading and trailing edges and designed a full-state feedforward/feedback
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controller with a high-gain observer. Experimentally, Platanitis et al. [33] employed a geometrically nonlinear controller de-
signed via Lie algebraic methods on a dual-control surface airfoil to suppress the oscillation under optimal conditions. Medina et
al.[34] experimentally investigated the physics of flow separation at the leading edges due to rapid trailing-edge flap deflection.

Many fundamental questions remain unsettled despite previous research on using control surfaces to modulate flow-induced
flutter. The model-based control methods developed for active control surfaces are often centered around inviscid flow mod-
els such as Theodorsen’s theory, in which a foil is represented with a two-dimensional inviscid plate [35–37]. These control
algorithms consider the fluid-structure interaction (FSI) dynamics as a change in the flow momentum due to small amplitude
motion around the structure’s mean position. Therefore, they cannot capture the flow change associated with the large struc-
tural deformation, unsteady vortex separations and nonlinear vortex-body interaction. Furthermore, few reduced-order modeling
techniques are available that simultaneously consider both structure and fluid responses. For example, Goza and Colonius [38]
combined fluidic and structural energy to construct hybrid proper orthogonal decomposition (POD) modes to correlate the struc-
tural motion and the induced flow features. Liberge et al. [39] interpolate the time-variant grid to a fixed grid to perform POD
on a global velocity field. Menon and Mittal [40] fix the moving frame and correct the dynamic mode decomposition (DMD)
modes with the frequency spectrum of the fixed shape foil motion. Still, certain limitations apply to these methods, like the
solid and fluid modes are not correlated or the requirement of the knowledge about the periodic structural behavior. Here, we
proposed a more general method to inspect the modal content of the flow-induced fluttering response of morphing bodies. A
conformal mapping technique is used to generate unique energy-based geometrical weights, which enable the modal analysis
to be employed for the FSI problems with morphing bodies [41]. The method has no assumption on the geometry and can be
applied posterior to the data.

This paper employs the proposed FSI algorithm based on conformal geometry mapping to investigate how an active morphing
flap modifies the flow field around a foil. In addition, a reduced-order model of the flap and foil is developed, which, unlike many
other reduced order methods, can encapsulate the deforming geometry of the bodies, the nonlinear fluid force feedback, and the
flow field created by the motion of the foil. This offers a more refined understanding of the flow-induced fluttering phenomena
and can be employed as a fast surrogate model for future controller designs. We also introduce a multi-scale modal analysis
technique [42] along with the conformal geometrical weighting [41] to isolate the competing modes in the FSI system. The
main contribution of this work can be summarized as (1) developing a high-fidelity body-conformed FSI algorithm to investigate
foil and flap system; (2) studying the flow-induced plunging response of a foil with an actively oscillating morphing flap over
a wide range of structural parameters; (3) extending the multi-scale proper orthogonal decomposition (mPOD) to FSI system
wherein the geometrical weighting is used to explain how the mode competition between the flap-induced and flow-induced
modes dictates the fluttering motion of the foil.

The rest of the paper is organized as follows: §II discusses the fluid-structure interaction method to model a foil with an active
flap system and the geometrically weighted multi-scale POD method. In §III, we present the results of the system followed by a
discussion about the flap-induced and flow-induced flow features in §IV. At the end, in §V, we conclude the current work and
present potential future directions.

II. METHODOLOGY

This section will introduce the numerical model and the modal analysis method adopted to investigate the aeroelastic response
of an airfoil with an active flap. A two-dimensional EET airfoil immersed in uniform ambient flow is chosen as a model structure.
The EET high-lift airfoil[43] was developed by NASA and has been through extensive experimental tests [44] to understand
how the multi-sectional foil design affects the lift generation. It has also been employed for studying the controllable leading
and trailing edges to improve the performance of the airfoil using linear models [45, 46]. Here, we extend these works by
incorporating the continuous shape changes of the morphing foil and its flow-induced plunging motions. As shown in Fig. 1(a),
the flow-induced fluttering characteristics of the foil are represented with a translational spring-damper system. We focus on the
heaving motion of the foil and assume it has a fixed pitching angle. The heaving displacement of the virtual attachment point
of the spring system is h, the geometrical angle of attack (AoA) of the foil relative to the incoming flow is α , and the angle
between the flap and the mean chord line of the foil is θ . Comparable models have been used previously to study the flow-
induced fluttering response [4, 20, 47, 48]. In the current study, the flap angle θ is actively adjusted to represent the morphing
flap as the simplest method of the geometrical controller.

A. Numerical Method

The numerical method is comprised of three main components: setup of the computational mesh, calculation of the dynamic
forces, and the fluid-structure interaction procedure, which has been explained in detail and verified in our prior publication [41].
Thereby, We only briefly outline the key components in the following.
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FIG. 1. (a) The cross-section of the foil and the model parameters. (b) Sample computational grid around the foil-flap model and the grid
mapping to a unit circle.

A body-fitted grid with a higher resolution near the body is employed to model the highly nonlinear flow around the foil.
Here, a conformal geometrical mapping technique [49, 50] is used to generate a time-variant body-fitted grid. The body contour
is segmented in the foil attached coordinate system into points z j = X j + iYj. The body exterior is then mapped to the exterior of
a circle with the radius λ . The cylindrical coordinate along the circle is defined as ζ = λeiφ with φ denoting the azimuth angle.
The mapping between the two coordinate systems is described with the Laurent series expansion,

z(φ) = λeiφ +a0 +
∞

∑
n=1

ane−inφ , (1)

where the coefficients an contain the radial terms an ≡ λ nbn with bn being constant coefficients. We can then obtain the mapping
coefficients and optimal coordinates by employing the orthogonality properties of series terms and minimizing the error between
the mapped and actual contour points. The grid is constructed in the transformed domain then mapped to the physical domain
with the same set of coefficients acquired from the body contour.

A sample grid generated for the foil with this algorithm is illustrated in Fig. 1(b). The grid is stretched in radial direction
logarithmically to increase its resolution near the surface where large velocity gradients are anticipated. The cylindrical grid
in the ζ plane is shown in Fig. 1(b). During the simulation, the mesh is updated based on the instantaneous flap angle. The
conformal mapping technique also offers a time-invariant grid in the transformed space, allowing the modal analysis techniques.
This will be discussed later in §II B.

The flow field is modeled with a modified Navier-Stokes equation based on the vorticity-stream function (ω−ψ) formulation
in the transformed domain. An implicit, second-order finite difference approach proposed by Guglielmini et al.[47] and Zhu et
al.[20] is used to solve the following system of equations,
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where Re is the Reynolds number and J is the temporally and spatially varying determinant of the Jacobian of ζ = ξ + iη⇒ z =
X + iY transformation. The radial and azimuthal flow velocities, vr and vφ respectively, include the time-dependent effect of the
transformation. The no-slip boundary condition is applied on the foil surface and uniform flow condition with~v = [U∞,0]T and
ω = 0 is applied at the far-field boundaries.

After the vorticity and stream function are solved in the transformed domain, the inverse mapping transformation is used to
calculate flow data in the physical domain. The non-dimensionalized pressure, hydrodynamic force, and hydrodynamic moment
exerted on the foil are then calculated using the following equations, integrated along the foil boundary in the transformed
domain:

p(φ) = p0 +
∫
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dφ , (4)
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where U and V are the non-dimensional flow velocity components in the X and Y directions in the body attached coordinate
system.

The structural heaving velocity, ḣn, is updated, through a tightly coupled algorithm, using the calculated forces F in the
vertical direction:

m f ḧ + ch ḣ + kh h = F, (7)

where m f is the mass of the foil, ch and kh are the damping and stiffness coefficients for heaving motions, respectively. The
vibration from the change of center of the mass when the flap moves is ignored in the current study as its contribution is negligible
with small flap mass and movement. However, for applications with larger deformation or when the flap occupies significant
body weight, this should be taken into account.

The fluid equations are discretized in r, φ and t and solved in the transformed domain. A second-order central difference
scheme is employed for the vorticity transport equation. The vorticity field is updated at each time step via the alternative direc-
tion implicit technique [51]. The Poisson equation is solved with a semi-spectral method, wherein the Fourier transformation is
employed along the azimuthal direction, and the second-order finite-difference method is used along the radial direction.

The proposed procedure can successfully capture the nonlinear interaction between the fluid and structure. The model has
been validated with several canonical problems in the authors’ previous publication [41]. In appendix §A, we present the grid
refinement study for the current research.

B. Geometrically Weighted Multi-Scale Proper Orthogonal Decomposition

The FSI response of the foil and flap system involves different time scales, including the flap oscillation, the plunging foil,
and the vortex shedding. To analyze this system and compare different mechanisms, we use the multi-scale POD [42] with
geometrical weighting [41, 52]. This section will summarize the main components of the method.

Geometrically weighted modal analysis (GW-MD) obtains weighting functions through the Jacobian of the conformal map-
ping, which combines the structural motion and flow structure into a single spatio-temporal basis. GW-MD permits the use of
data-driven modal analysis methods for FSI systems with deforming bodies. The procedure conserves the modal energy content
and reveals how the structure and flow interact. To identify dominant flow modes for active flap cases, GW-MD is further ex-
tended to allow multi-scale modal calculation. In particular, Multi-scale POD (mPOD) is applied in which a filter bank enables
the splitting of the frequency spectrum into different scales. The frequency spectrum is preserved within each scale, and the
corresponding optimal orthogonal eigenbases are assembled into a single mPOD basis. The following steps are done to perform
geometrically weighted multi-scale POD (GW-mPOD):

1. Selecting the flow data: in this study, we use vorticity to realize how the coherent structures form and dissipate. The n
snapshots of dimension nr×ns are rearranged into column vectors of u ∈ Rnrns×1 and assembled to form the data matrix
U ∈ Rnrns×n.
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2. Computing the correlation matrix: the correlation matrix is calculated using C = (J�U)+(J�U) wherein the Jacobian
is used as the weighting function (J ∈ Rnrns×n). Here, � denotes Hadamard product defined as (A � B)i j = Ai jBi j with i
and j being free indices.

3. Construction of the filter bank: the filter bank is formed to contain m filters, H1, ...,Hm. It is used to split C into m
non-overlapping contributions. The filter bank, in this research, is determined from the discrete Fourier transform of the
correlation matrix. The filter bank consists of a low-pass filter, a high-pass filter, and a series of band-pass filters. The
cutoff frequency of each band-pass filter is selected so that each filter contains an isolated spectral peak of the correlation
matrix. The filter bank spams the entire spectrum, so the spectral content of the data set is retained through the partition.
The data matrix is filtered in the spectral domain and transformed back to the temporal domain. POD is then performed on
each temporal partition. An example process of applying a filter bank will be shown later in §IV and readers are referred
to the pioneering paper [42] for mathematical details.

4. Decomposing the correlation data matrix: Using the m filters, the correlation matrix can be decomposed as C ≈
∑

m
i=1Ψiσ

2
i Ψ

T
i , where Ψ is the temporal structure. Moreover, with the enforcement of the orthogonality condition,

the spatial structures can be written as Φ = UΨσ−1. The spatial structures Φ are sorted in descending order based on
their contribution to the energy content.

GW-mPOD has several unique benefits over alternative modal analysis methods for the current study. POD modes often suffer
from spectral mixing. While dynamic mode decomposition (DMD) can produce modes with a single frequency for each, those
modes are not energetically relevant and not orthogonal. mPOD finds coherent structures with similar energy contents to POD
modes, but at the same time, it reduces the spectral mixing problem. When combined with the geometrical weighting method,
the analysis can identify coherent flow structures related to the structure motion and internal flow dynamics. The identified flow
features can then be compared based on their contribution to the energy content. The results will be demonstrated in §IV.

C. Problem Setup and Summary

The parameter space of the FSI system in the current study includes the structural parameters, fluid properties, and active
flap parameters. We focus primarily on how the active actuation of the flap affects the flow-induced plunging response of the
foil. Sinusoidal oscillatory motions with different frequencies and amplitudes are imposed on the flap with a particular average
angular position. Simulation parameters are defined as:

1. Flow parameters: The computational domain is extended to 15L around the foil and flap system, with L being the chord
length of the foil. A grid with a resolution of (280×256) in radial and angular directions, respectively, is applied to the
fluid domain. The ambient flow velocity U∞ is chosen as the characteristic velocity scale, and the foil chord length L is
used as the length scale. Following previous literature [47, 53], the Reynolds number based on the chord length is fixed
at Re = U∞ L

ν
= 1000. This Reynolds number is sufficiently large to allow the complex vortex shedding that drives the

fluttering phenomenon.

2. Physical parameters of the foil: The mass ratio of the foil is set to m≡ m f
ρL2 = 0.1. The rotational degree of freedom of the

foil is fixed and only the heaving motion is permitted. The spring-damper system is considered with the non-dimensional
stiffness of kh

ρU2
∞

= 1.0 and Rayleigh stiffness proportional damping of ch = λckh with λc = 0.1U∞

L . The flap length l is
selected based on the NASA design [43] as 0.12L. The roles of structural stiffness and damping on the flow-induced
motion are discussed in appendix §B.

3. Control parameters of foil: A periodic pitching motion is imposed on the flap as θ = θ0 +A sin(Ω t), where θ0 and A are
the mean angle and the amplitude of the flap relative to the chord respectively, and f = Ω

2π
is the frequency of the flap

oscillation. In the rest of this paper, we use the flap’s Strouhal number, St f =
f L
U∞

, to refer to the actuation frequency.

III. FLOW-INDUCED RESPONSE OF A FOIL WITH AN ACTIVE FLAP

The plunging response of a heaving foil subject to ambient flow and forced morphing flap motion is discussed in this section.
Representative cases are inspected to identify the reasons behind different dynamic responses. Fourier transform is employed
to find the characteristic frequencies of the heaving motion. We identify how the motion evolves and how the trajectory of the
foil motion changes in each period with the help of the phase portrait plot, a mapping between the heaving displacement h and
heaving velocity dh/dt. In addition to the structural response, the coherent structures associated with the dominant frequencies
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FIG. 2. (a) Dominant frequency of the heaving motion, (b) mean heaving displacement, and (c) rms of heaving amplitude of the uncontrolled
cases.

are examined with GW-mPOD. We will primarily consider a small angle of attack of AoA≤ 10◦ as this is within common
operating conditions.

As a baseline, we consider the uncontrolled case where the flap is fixed at a specified AoA. Figure 2(a) shows the dominant
heaving frequency of the uncontrolled cases. The dominant frequency is highly dependent on the AoA. At low AoA, the flow
is attached, and the airfoil has a minimal mean displacement and oscillation amplitude as shown in Fig. 2(b-c). When the
flow is attached, the heaving added mass coefficient for a NACA0012 airfoil is a22 ∼ 0.79 [54] as we fixed the movement
to only vertical plunging. The analytical natural frequency can be approximated as f0 = 1

2π

√
k

m f +ma
∼ 0.19, where k = 1.0

is the non-dimensional stiffness and the total virtual mass m combining foil mass m f and added mass ma is m = m f +ma =

0.1+ a22πρ0.52 ∼ 0.72. The calculated natural frequency is very similar to what we observed in Fig. 2(a) where the heaving
frequency falls in the range of 0.16 when the flow remains attached with AoA= 0. In the moderate AoA range, the continuous
vortex shedding induces vortex-induced vibration, still with a small amplitude. In these cases, a narrow-band frequency response
appears due to the alternative vortex shedding from the leading and trailing airfoil edges. The vortex shedding forms a regular
vortex street in the wake and induces a steady periodic heaving motion. Interestingly, for the flap angles higher than a certain
threshold, the apparent foil shape is modified and the periodic vortex shedding shifts to higher AoA. This response switch occurs
at an average flap angle of θ ∼ 30◦. Large mean heaving displacement and oscillation amplitude are observed at higher AoAs
due to the non-periodic vortex shedding from the leading and trailing edges and the airfoil stall at AoA∼ 50◦. The flap angle is
not a decisive factor in this regime. Instead, the vortex-induced vibration is primarily affected by the AoA.

Figure 3 shows how the foil heaving frequency fh, average heaving displacement h/L and unsteady heaving motion of the
foil varies with mean flap angle and flap frequency when the foil is at AoA= 0◦. Here, it is assumed that A/θ0 = 1. When the
amplitude is small, the flap motion does not lead to the plunging motion of the foil. At larger amplitudes, on the other hand, the
foil starts to vibrate at the exact flap frequency. No significant change in vortex shedding pattern is observed even at larger flap
amplitudes and the heaving displacement remains very small. From the uncontrolled case, we can extract the average heaving
displacement at AoA= 0◦ and compare the difference between flap angle θ = 0◦ and θ = A. It is seen that this value matches
with the heaving amplitude in the active flap case with flap frequency St f = 0.1. This implies that when the flap is moving
slowly, the change of the lift coefficient determines the heaving motion. However, when the flap frequency increases, we see a
small heaving amplitude indicating almost no vibration. What happens is that the flap moves too fast and the induced motion
from the change of lift is damped out. The cause of the small heaving motion at a higher flap frequency, with the same frequency
as the flap motion, is the added mass effect due to the flap motion.

An increase in AoA prompts substantial changes. Figure 4 plots the heaving response with AoA= 10◦ and a small flap
amplitude of A = 1.5◦. At low flap frequencies, the foil heaves at the flap frequency, while at higher flap frequencies, the foil
switches its dynamic response and instead oscillates at a terminal fixed frequency. Interestingly, a low-frequency band around
the natural vortex-induced heaving frequency ( fhL/U∞ ∼ 0.96) separates these two dynamic regions. The amplitude plot shows
that this low-frequency band coincides with the large vibration amplitude. We will take a deeper look at this region later.
Besides, similar to the zero AoA case, a narrow large heaving amplitude band is located at St f ∼ 0.1. This amplitude is similar
to the difference of the heaving displacement with different static flap angles (uncontrolled cases). The slow flap movement
changes the lift coefficient, which causes a large amplitude vibration. This effect is damped out at higher flap frequencies, but
the flap-induced vortex street creates another large-amplitude peak, as will be explained. The mean heaving displacement is only
proportional to the mean flap angle, whereas the larger mean flap deflection results in a higher lift force on the foil and larger
mean displacement.
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FIG. 3. (a) Dominant non-dimensional heaving frequency, (b) mean heaving displacement, and (c) unsteady heaving amplitude (rms) for
AoA= 0◦ and different flap positions θ0 and flap frequency St f . Flap amplitude is fixed at A/θ0 = 1.

FIG. 4. (a) Dominant non-dimensional heaving frequency, (b) average heaving displacement, and (c) heaving amplitude (rms) for AoA= 10◦

with flap amplitude A = 1.5◦ at different average angle θ0.

To further explain the characteristic dynamics of these two regions, three representative cases are discussed below. All of
these three active flap cases have the same AoA of 10◦, flap average position θ0 = 24◦ and flap amplitude A = 1.5◦, but with
different flap frequencies of St f = {0.1, 0.9, 1.2}. The selected cases are also marked in Fig. 4 (a). Figure 5 shows the heaving
displacement over a certain time interval, the power spectrum of the heaving displacement calculated from 10 flapping cycles,
and the phase portrait of these cases. The phase portrait trajectories are marked with white to black color based on its temporal
state. The uncontrolled case St f = 0.0 is also included for cross-comparison.

The uncontrolled case with no flap motion undergoes a periodic oscillation with a frequency of 0.96 due to the vortex-induced
vibration. This response mode is referred to as the flow-induced mode from now on. When the actuation is activated, we can see
that torus-like trajectories emerge for all three selected cases. The heaving time history involves large-scale oscillation and small
amplitude unsteady fluctuation. Furthermore, the spectrum clearly shows multiple distinct peaks indicating that the system is
quasi-periodic, and the observed dynamics are from mode competition between different mechanisms. In particular, St f = 0.1
case has distinct peaks at the flap frequency 0.1 and flow-induced frequency 0.96, while the other case with St f = 0.9 shows
two peaks at the frequencies of 0.9 and 0.06. Although they share a very similar heaving response and flow field (shown in
Fig. 6), in the previous study [41] we highlighted that other mechanisms are involved in these two cases. The results will later
be confirmed in section II B using the GW-mPOD analysis with extra knowledge on the energy content and the competition
between the modes. In the low flap frequencies, the flap motion does not substantially modify the downstream wake and mainly
adjusts the exit angle of the vortex wake. On the other hand, the flap motion of St f = 0.9 creates a wake structure that interferes
with the flow-induced mode. The other case of St f = 1.2 exhibits a much smaller heaving amplitude similar to the non-actuated
case and delivers a larger heaving movement closer to quasi-periodic motion.

A very different foil-fluid interaction response is observed for the flap with a large oscillation amplitude of A = θ0 (Fig. 7).
Here, the low-frequency band narrows down while the foil still undergoes a substantial heaving motion at the flap frequency
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FIG. 5. The (a) heaving motion time histories, (b) power spectra, and (c) the phase portraits of St f = 0.0, 0.1, 0.9, 1.2. Here, it is assumed that
AoA= 10◦, θ0 = 24◦ and A = 1.5◦.

outside of this band. Interestingly, two branches of the low-frequency band are observed. Furthermore, the average heaving
displacement does not increase monotonically with the average flap angle when the flap amplitude is small. Instead, it displays
a unique peak near the natural frequency range. The heaving amplitude peak at the slow flap frequency emerges again for the
same reason as before: the slow transition of the overall lift coefficient.

The time history, power spectrum, and the phase portrait of the heaving motion are shown in Fig. 8. Rows are associated with
different flap actuation frequencies of St f = {0, 0.1, 1.0, 1.1}. When St f = 0.1, the larger flap oscillation amplitude creates a
stronger pressure gradient over the flap. During the downsweep flap motion, the pressure gradient creates a new vortex behind
the trailing edge. The newly formed vortical structure then separates from the flap during the upsweep phase and merges into
the wake. The leading-edge vortex shedding is locked onto the same period due to the large suction pressure caused by the flap,
which results in the purely periodic motion at the flap frequency St f = 1.0. This can be identified from the clear resonance peaks
in the power spectrum and periodic orbit in the phase portrait. A similar lock-in phenomenon has been reported in several recent
studies of airfoils with morphing surfaces [55–57].

When the flap frequency increases to St f = 1.1, the vortex shedding from the trailing edge becomes chaotic (Fig. 9). The
leading-edge vortex shedding mode is controlled by the foil geometry, while at the trailing edge, the flow separation is dictated
by the flap motion. Since there is a discrepancy between the flap frequency and natural vortex shedding frequency at the trailing
edge, an intermittent wake structure is formed. The heaving motion is consequently chaotic, as demonstrated by the never-
repeating trajectory in the phase portrait.

The large heaving amplitude of St f = 0.1 originates from the low-frequency and large amplitude lift forces changes driven by
the continual geometrical changes. When the flap slowly varies its angle, it modifies the lift force at different vibration stages.
Consequently, the fluid-structure interaction of the foil is quasi-static, where the flap movement does not create a new vortical
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FIG. 6. Instantaneous vorticity fields over four active flap periods of St f = 0.1 and St f = 0.9. T is the flap motion period.

FIG. 7. (a) Dominant non-dimensional heaving frequency, (b) mean heaving displacement, and (c) unsteady heaving amplitude (rms) for
AoA= 10◦ with the large amplitude flap motion of A/θ0 = 0.

structure, but it still affects the foil heaving motion by modifying the instantaneous lift force. This is supported by the presence
of a spectrum peak at flap frequency f L/U∞ = 0.1. This peak is present in all three cases discussed so far, and the mechanism
behind it can be related to the uncontrolled benchmark cases.

In summary, the flap oscillating with a larger amplitude impacts the flow and heaving motion more than the smaller amplitude
cases. The larger flap amplitude substantially modifies the flow at the flap location and plays a controlling role in determining
system response compared to the smaller amplitude cases. When the flap frequency approaches the natural frequency, there is a
lock-in condition, and the foil heaves at the same frequency as the flap movement. On the other hand, when the flap frequency
increases further, there is substantial vortex shedding from the flap and foil surfaces resulting in a chaotic heaving motion of
the foil. Finally, at a specific low frequency, the slowly changing geometry leads to quasi-static relocation of the foil through
a readjustment of the flow. After observing such a diverse interaction between the flap-induced and flow-induced modes, a
question arises: is there an index that can classify the competition between these two characteristic modes and represent the
system behavior? This is achieved using the GW-mPOD analysis in the next section.

IV. MODE COMPETITION BETWEEN FLAP-INDUCED AND FLOW-INDUCED MODES

We now apply the GW-mPOD to the observed vorticity field and investigate the interaction between different fluid dynamic
modes that drive the foil’s heaving motion. More than 30 flap oscillation cycles with at least 10 snapshots per cycle are used to
perform the modal analysis for all the following cases.

Figure 10 demonstrates the GW-mPOD procedure for the foil-flap case of AoA= 10◦ and St f = 0.1. Here, flap actuation is
fixed at A= 1.5◦ and θ0 = 24◦. Fig.10(a) shows the discrete Fourier transform of the geometrically weighted temporal correlation
matrix, and based on the intensity (spectral power), the correlation matrix is partitioned with the filter bank as shown in Fig.
10(b). Conventional snapshot POD procedure [58] is then applied to each partition. The flow vorticity modes are sorted based
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FIG. 8. The heaving displacement time history, power spectrum, and the phase portrait plot of St f = 0.0, 0.1, 1.0, 1.1, respectively from the
top to bottom row. The results are for AoA= 10◦ and A = θ0 = 24◦.
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24◦.
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FIG. 10. (a) The discrete Fourier transform (DFT) of the normalized temporal correlation matrix, (b) partitioned correlation matrix. (c) shows
the spatial structure and spectrum of the leading modes of the case AoA= 10◦ with flap frequency St f = 0.1, amplitude A = 1.5◦ and average
angle at θ0 = 24◦. The modes are normalized based on their respective largest vorticity, which is the same for follwing figures.

on their enstrophy contribution. All the leading modes contain pure spectral contents and are associated with different dynamic
responses.

The GW-mPOD is employed for representative cases identified in the previous section. The first case is with a small amplitude
flap motion and St f = 0.1 (Fig. 10(c)). Here, mode 2 has the same pattern and frequency as the uncontrolled case; thereby, it
is called the flow-induced mode. On the other hand, mode 4 has the same frequency as the flap oscillation and is denoted as
the flap-induced mode. We can see that there is little extended wake in this mode, so it only affects the area close to the trailing
edge. The trailing edge vorticity field shows two non-convective vortical structures formed through the slow flap sweeping
motion. The slower motion does not create enough pressure change to force vortex shedding but can adjust the exit angle of
the flow-induced wake at the trailing edge. This is why the foil undergoes quasi-periodic motion, with two distinctive modes
superimpose upon each other. The slow modulation of the flap changes the direction of the steady vortex shedding, modifies the
lift force, and results in a low-frequency, high-amplitude heaving motion.

Similar behavior can be observed for other flap frequencies with St f ≤ 0.8 (Fig. 11(a,b)). However, when the flap frequency
reaches St f = 0.9 (Fig. 11(c)), the flap-induced vortices propagate into the wake. At higher frequencies, the flap-induced mode
has a clear extended wake as demonstrated for St f = 1.2 (Fig. 11(d)). There will be subsequent interference between the flap-
induced and flow-induced modes when the flapping frequency increases. Here, a stronger pressure gradient from the flap motion
induces a new convective wake structure and, consequently, the interference between two energetically similar wakes promotes
quasi-periodic motion of the foil.

The large flap oscillation amplitude of A = θ0 = 24◦ is considered next. Fig. 12 shows the leading flap-induced and flow-
induced modes along with the frequency spectrum of the representative cases. We observed that St f = 0.1 (Fig. 12(a)) exhibits



12

flap-induced flow-induced
Stf=0.5

Stf=0.8

Stf=0.9

Stf=1.2

(a)

(b)

(c)

(d)

fhL/U 

fhL/U 

fhL/U 

fhL/U 

fhL/U 

fhL/U 

fhL/U 

fhL/U 

FIG. 11. The spatial structures and spectra of the leading flap-induced and flow-induced modes of the case AoA= 10◦ with flap amplitude
A = 1.5◦, average angle θ0 = 24◦ and different flap frequency St f .

large-amplitude, low-frequency plunging motion similar to the case with small flap amplitude. The flap-induced mode also shows
a comparable spatial pattern, indicating that both cases are alike at modifying the exit angle of the trailing edge wake. However,
the vorticity intensity is much stronger here, and the flap-induced mode contributes more to the enstrophy than the flow-induced
mode. Once the flap frequency increases beyond St f = 0.3, an extended wake develops. At the higher flap frequency of St f = 0.8
(Fig. 12(c)), the flap-induced and flow-induced modes share the same frequency, and the system is in a perfect lock-in state.
This is different from the small-amplitude case where the flow pattern is similar, but the frequencies of these modes are different.
By increasing the flap frequency to St f = 1.2 (Fig. 12(d)), the flap and flow-induced modes separate again.

We calculated the modal enstrophy ratio between the leading flap-induced (E f p) and flow-induced (E f l) modes for the small
and large flapping amplitude and different flapping frequencies (Fig. 13). In both cases, the enstrophy ratio can be divided
into three regions. First, we consider the small-amplitude case in Fig. 13(a). At low flap frequencies, E f p/E f l ∼ 0.8, but it
suddenly jumps to much larger values of E f p/E f l ∼ 1.2 when flap oscillation approaches the flow-induced vibration frequency.
The enstrophy ratio eventually drops gradually after St f > 1 to E f p/E f l ∼ 0.85. At a much higher St f range, the ratio increases
with a much milder slope. Although the plunging motion could be classified as quasi-periodic with multiple distinct peaks
in all cases, the three regions indicate three different physical mechanisms, denoted with Roman numbers in Fig. 13. When
the flap oscillation amplitude and frequency are both small (I), the flap-induced mode is limited to adjusting the exit angle
of the flow-induced wake. At large flap frequency (III), the flap motion induces extended wake, which has higher enstrophy
and interferes with the flow-induced wake. Finally, when the flap frequency approaches the flow-induced frequency (II), the two
modes have comparable enstrophy and similar spatial structure, which indicates the lock-in phenomenon where the flow-induced
mode transports enstrophy to the flap-induced mode and hence are correlated. Recall that in Fig. 4(a) we also saw three different
regions in the heaving frequency, and the reason behind that is now clear: the flow-induced and flap-induced modes, each have
a different controlling role at different flap frequencies.

The enstrophy ratio of the large amplitude case shown in Fig. 13b reveals a different story compared to the small amplitude
case. Now, the flap-induced mode is always more energetic than the flow-induced mode. Again, three distinct regions can be
identified. The first region is associated with a large dissimilarity of the flap and flow-induced modal frequencies and E f p/E f l ∼ 4
(IV). In this region, the flap-induced and flow-induced modes co-exist, leading to quasi-periodic motion. When the frequencies
become closer, the enstrophy ratio increases to E f p/E f l > 5 (V), implying that the flap-induced mode overpowers the flow-
induced mode. The flap-induced vortex shedding dominates the flow, but the slightly mismatched leading-edge vortex shedding
results in an unsteady lift force that eventually destabilizes the heaving motion. This explains why there are two branches of
low-frequency bands in Fig. 7(a): the flap-induced mode is dominant, and the flow-induced mode is not lock-in due to the
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FIG. 12. The spatial structures and spectra of the flap-induced and flow-induced modes of the case AoA= 10◦ with flap amplitude A= θ0 = 24◦

and different flap frequency St f . The modes are normalized based on their respective largest vorticity.

larger frequency gap between them, leading to a chaotic foil heaving behavior. Within the locked in region we see that the
enstrophy ratio drops to E f p/E f l ∼ 2 (VI). Once locked in, the leading edge vortex shedding is now guided by the trailing edge
flap motion, and the two modes excite the same flow modes. In both small and large amplitude cases, we observe that the energy
is transported from the more energetic to less energetic mode. Hence, the enstrophy ratio is closer to unity. Due to the more
energetic flap-induced mode, the lock-in region is wider for larger flap amplitude cases.

We now summarize the findings from the GW-mPOD analysis. There are two competing modes: flap-induced and flow-
induced modes. When the flap oscillation amplitude is small, the two modes have a similar energy level and co-exist to create
quasi-periodic heaving motion. When the flap frequency is small, the flap quasi-statically modifies the exit angles of the flow-
induced wake, while at higher flap frequencies, the flap induces an extended wake that interferes with the flow-induced mode.
On the other hand, when the flap oscillation amplitude is large, the flap-induced mode contains considerably higher energy
and is the dominant mechanism. Mainly, when the frequencies of the two modes approach each other, a strong lock-in effect
is observed. The trailing edge motion guides the leading edge vortex shedding, and the two competing modes share a similar
energy content. The observations can also explain why, in the smaller flap amplitude cases, the flow fields look similar throughout
different actuation (Fig. 6) but in the larger flap amplitude cases, flow changes significantly (Fig. 9). Basically, in the larger flap
amplitude case, the flap-induced modes have higher enstrophy and can strongly interfere with the flow-induced modes. GW-
mPOD successfully reveals how these two passive and active modes bring rich dynamics to the system. The modal enstrophy
ratio between these modes is identified as a predictive indicator of the nature of plunging motion.

V. CONCLUSION

In this paper, we employed a strongly coupled FSI algorithm to study the flow around a deforming geometry. Different
analysis methods, including a geometrically weighted multi-scale modal analysis technique, are adopted to dissect the flow
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field. We explored dominant dynamic interaction modes that could be useful for designing control strategies to regulate the
flow-induced fluttering response. Deployment of the GW-mPOD method leads to valuable observations of this complex FSI
system, summarized as follows: (1) when the flap amplitude and AoA of the foil are small, the flap and flow-induced modes
are equally important and the interaction between them primarily creates quasi-periodic motion; (2) at larger flap amplitudes,
the flap-induced vortex shedding dominates the foil heaving motion, causing the heaving motion to lock onto the flap oscillation
frequency; (3) the ratio of the flap-induced and flow-induced GW-mPOD modal energy is a discriminative indicator of the flow
field and flow-induced vibration of the system. For the AoA considered, the active control surface is an effective mechanism in
modulating the flow and regulating the foil motion.

The proposed methodology utilizes multi-scale analysis that considers both flow and structural motion. It can be used to
dissect the flow over other actively deforming bodies to differentiate the potential role of competing modes. The energy content
of the competing modes can be used to evaluate the effectiveness of different active control methods and determine the optimal
geometry morphing.

Although it is shown that the observed dynamic response is robust with respect to the structural stiffness and damping values,
other aspects of the active flap-foil interaction such as flap size or foil geometry require further investigation before their roles
on the geometry-induced fluttering phenomena could be thoroughly explained. Another improvement would be to expand the
current study to 3D setup using differential geometry techniques. Quasi-conformal mapping techniques are proper candidates
for shape recognition and surface mapping. Methods like the discrete conformal mapping (DCM) preserve the angle of the
mesh while ensuring Laplacian conservation [59–61], which is required ingredients to extend the proposed method to 3D. In
addition, advanced tracking techniques can be employed to handle transient deforming structures [62, 63]. Finally, the proposed
modal analysis can be adapted to develop reduced-order models for studying different control strategies for morphing systems
to achieve better mobility or achieve higher energy extraction efficiency in nonuniform flow conditions.
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Appendix A: Grid Refinement Study

A grid refinement study is performed by employing coarse (140× 128), fine (560× 512) and medium (280× 256) grid
resolutions. Figure 14(a) compares the instantaneous snapshots of these resolutions at the same time instance and the same
simulation parameters (AoA= 20◦, θ0 = 22.5◦, A = 22.5◦, St f = 0.4). Similar vortex fields are obtained for the medium and
fine grids. The heaving displacement time history plotted in Fig. 14(b) confirms that the medium resolution can capture the foil
movement accurately. Based on this, the medium resolution grid is selected for the current study. We refer to a previous work
[41] for the validation of the algorithm.
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Appendix B: Effect of Structural Stiffness and Damping

Figure 15 shows the average heaving displacement and oscillatory amplitude for different flap frequencies and varied stiffness
and damping values. As anticipated, the average heaving displacement reduces inverse-proportionally with the increase of kh.
On the other hand, increasing the damping does not change the average displacement much but merely decreases the heaving
amplitude. Changing the stiffness or damping does not significantly impact the dominant frequencies, implying that the flap-
induced and the flow-induced vortex shedding are still the main driving force of the plunging motion. Hence, the observation
discussed in the current paper could be drawn to a wide range of structural parameters. However, from the preliminary analysis,
the structural properties profoundly impact the power generated when the damper is used as the energy harvesting mechanism.
The subject of ongoing work is to identify optimal combinations of structural design and active control to achieve the highest
energy harvesting efficiency.
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