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The nonlinear Richtmyer–Meshkov instability and mixing transition induced by a Mach 1.45
shock and subsequent re-shock at an interface between two ideal gases (sulphur hexafluoride and
air) with high Atwood number are studied with second-moment analysis using data from high-
resolution compressible Navier–Stokes simulations. The analysis first addresses the importance of
two second-order moments: turbulent mass flux and density-specific-volume covariance, together
with their transport equations. These quantities play an essential role on the development of Favre-
averaged Reynolds stress and turbulent kinetic energy in this variable-density flow. Then, grid
sensitivities and the time evolution of the turbulent quantities which include the second-moments
are investigated, followed by a detailed study of the transport equations for the second-moments
including the Reynolds stress and the turbulent kinetic energy with well-resolved data before re-
shock. After re-shock, budgets of the same but large-scale turbulent quantities are studied with
the effects of the subfilter-scale stress accounted. The budgets of these large-scale quantities are
shown to have insignificant influence from the numerical regularization. Finally, the effects of the
subfilter-scale stress on the budgets of the large-scale turbulent quantities with different degree of
filtering are also examined.
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I. INTRODUCTION

The Richtmyer–Meshkov (RM) instability, or RMI [1, 2], arises in many natural phenomena and engineering ap-
plications when a shock wave traverses an interface separating two materials of different densities [3]. The RMI is
used by astrophysicists to explain the cause of turbulent mixing during supernova explosion [4–6] and is also taken
into account in many stellar models [7]. In inertial confinement fusion (ICF), it is a common belief that there exists
mixing between the capsule material and fuel due to RMI and this prohibits a useful yield obtained from a fusion
reaction for power generation [8–10]. RMI is also employed in some proposed combustion systems since it can enhance
the mixing of fuel and oxidizer in supersonic and hypersonic air-breathing engines [11, 12]. RMI is similar to the
Rayleigh–Taylor (RT) instability, or RTI, which appears when there is a gravitational acceleration pointing in the
opposite direction of the density gradient across an interface. In contrast to RTI, RMI occurs because of impulsive
acceleration and is unstable regardless of the direction of the acceleration. Turbulent mixing induced from RMI and
RTI with high density variations at the interfaces falls into the category of variable-density turbulence [13], where the
Atwood number, which is defined as the difference in the fluid densities divided by their sum, is high. Variable-density
turbulent mixing can also be triggered by other types of instabilities at an interface, such as the Kelvin–Helmholtz
(KH) instability, or KHI, at a shear layer [13].

Direct numerical simulation (DNS) [14], which resolves all flow scales using a mesh with grid spacing of at least order
of magnitude of the Kolmogorov scale, is a powerful tool for studying turbulent flows, especially flows with laminar to
turbulent transition. However, its requirements of computational resources is tremendous for high Reynolds number
flows and it is computationally too expensive for many engineering applications, even on the largest supercomputers to
date. As a result, turbulence modeling approaches are commonly adopted to avoid resolving all spatial and temporal
scales in simulations of complex turbulent flows. The large eddy simulation (LES) and Reynolds averaged Navier–
Stokes (RANS) methodologies are two popular modeling strategies [15, 16]. LES consists of modeling of small-scales
that are assumed to be more universal and self-similar, while the larger scales are resolved on the grid. On the other
hand, the entire flow structure is modeled based on statistical averaging in the RANS approach. In general, LES has
higher fidelity than RANS-based simulations for turbulent flows where unsteady large-scales play critical roles, since
the large-scale features are resolved in LES. However, LES also has larger demand on computational resources due to
constraints on grid spacing and time step size for representing the motions of the scales captured. Often, the hybrid
RANS-LES approach is chosen as a compromise between computational cost and accuracy [17].

The Besnard–Harlow–Rauenzahn (BHR) family of models based on second-moment closure represent a popular
RANS-based approach for variable-density turbulence. The first version of BHR model was proposed by Besnard et al.
[18], in which the unclosed Reynolds stress tensor in the multi-species Favre-averaged (density-weighted-averaged)
Navier–Stokes (FANS) equations is closed with the aid of additional modeled transport equations. These include
modeled equations of decay rate of turbulent kinetic energy and other second-moment quantities, such as turbulent
mass flux and density-specific-volume covariance. These second-moments play important roles in variable-density
turbulence; particularly the turbulent mass flux directly affects the development of Favre-averaged Reynolds stress.
The modeling assumptions of the first BHR model were not tested against different types of variable-density flows
until the work by Banerjee et al. [19], where simplifications of the original BHR model were also introduced. In their
model (BHR k-S-a), the Favre-averaged equations are closed with the turbulent kinetic energy transport equation
instead of the equation of the Reynolds stress tensor. The transport equation of the decay rate of turbulent kinetic
energy is also replaced with a more physically interpretable transport equation of turbulent length scale. Their model
was validated with experimental data, but the model coefficients are tuned from flow to flow. Later, the BHR-2 model
by Stalsberg-Zarling and Gore [20] was proposed. BHR-2 re-adopts the modeled transport equation of density-specific-
volume covariance instead of an algebraic model in the BHR k-S-a model, which was only strictly valid for immiscible
fluids. An improved BHR-3 model with modeled transport equations of Reynolds stress tensor and density-specific-
volume covariance was proposed by Schwarzkopf et al. [21] and was shown capable of capturing the Reynolds normal
stress anisotropy and density-specific-volume covariance well in various variable-density flows, without varying model
coefficients. The BHR-3 model was further improved by Schwarzkopf et al. [22] with two length scales to capture the
difference between the transport and dissipation turbulent scales in RTI-induced turbulence. A two-point spectral
closure model [23, 24] modified from the constant-density BHRZ model [25] for variable-density flows was analyzed
for the buoyancy-driven variable-density homogeneous turbulence [26]. The model with minimal augmentation was
further assessed for the RTI turbulence [27]. Besides the BHR family of models, there are also similar models for
turbulent mixing such as the second-moment model by Grégoire et al. [28] with Boussinesq approximation and the k-
L-a model by Morgan and Wickett [29] extended from the k-L model [30]. A literature review of different RANS-based
models for RMI and other types of variable-density turbulence is provided by Zhou [31].

Modeling based on the transport of second-moments is more popular in RANS-based approach for variable-density
flows and most proposed LES models for the subfilter-scale (SFS) or subgrid-scale (SGS) terms are based on first-
order closures [32]. These include the eddy-viscosity type SFS/SGS closure [33–35] and the stretched-vortex approach,
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such as [36, 37]. There is still a lack of research on the application of second-moments for the closure of SFS/SGS
terms in LES. Besides, the role of SFS/SGS terms on the large-scale turbulent quantities, especially the resolved
turbulent kinetic energy in variable-density flows, is still unclear. In this paper, we have performed high-resolution
RMI simulations with re-shock to provide high-fidelity data for analyzing the physical mechanisms underlying the
evolution of second-moments. The set-up of the numerical experiment follows the highest Reynolds number three-
dimensional (3D) case in our previous paper [38]. Before re-shock, the instability induced at the interface grows
nonlinearly but does not achieve mixing transition. After re-shock, the flow inside the mixing layer transitions and
remains turbulent with a wide span of scales until the end of simulation. The 3D simulation presented in this work
is advanced to higher grid resolution compared to the cases in the previous work, with number of grid cells exceeding
4.5 billion. Grid sensitivity tests show that the second-moments required for closing the FANS equations are well
grid-converged during the simulations. We also examine the budgets of the second-moment transport equations before
and after re-shock. The budgets analyzed after re-shock are based on large-scale contributions to second-moments
under the influence of the SFS stress. The budgets of the large-scale second-moments are not affected by the numerical
regularization, and the effects of SFS stress in the evolution of large-scale second-moments are studied. At last, we
also analyze the large-scale second-moment budgets at different filtering scales.

II. GOVERNING EQUATIONS

The conservative multi-component Navier–Stokes equations are solved in this study:

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · Ji, (1)

∂ρu

∂t
+∇ · (ρuu+ pδ) = ∇ · τ , (2)

∂E

∂t
+∇ · [(E + p)u] = ∇ · (τ · u− qc − qd) , (3)

where ρ, u = [u, v, w]T = [u1, u2, u3]T , p, and E are the density, velocity vector, pressure, and total energy of the
fluid mixture respectively. Yi is the mass fraction of species i ∈ [1, 2, ..., N ], with N the total number of species. Ji

is diffusive mass flux for species i. τ , qc, and qd are viscous stress tensor, conductive heat flux, and inter-species
diffusional enthalpy flux, respectively. δ is the identity tensor. Since all Yi’s sum up to one by definition, the
continuity equation for the mixture density can be derived by summing up the continuity equations of all species
given by equation (1) as:

∂ρ

∂t
+∇ · (ρu) = 0. (4)

The mixture is assumed to be ideal and calorically perfect, with:

E = ρ

(
e+

1

2
u · u

)
, (5)

p = (γ − 1) ρe, e = cvT, (6)

where e and T are respectively specific internal energy and temperature of the mixture. γ and cv are the ratio of
specific heats and specific heat at constant volume of the mixture respectively.

The multi-component diffusive mass flux of species i is given by [39]:

Ji = ρ
Mi

M2

N∑
j=1

MjD̃ij∇Xj , (7)

where Mi and Xi are respectively the molecular weight and mole fraction of species i. M is the molecular weight of
the mixture and D̃ij is the ijth element of the matrix of ordinary multi-component diffusion coefficients D̃. The mole
fraction of species i is given by:

Xi =
M

Mi
Yi. (8)

The multi-component diffusive mass flux is reduced to the Fick’s law for binary mixture:

Ji = −ρDi∇Yi, i = 1, 2, (9)
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where D1 = D2 is the binary diffusion coefficient. Note that the Fick’s law is sufficient in this work since only a
binary mixture is studied.

The viscous stress tensor τ for a Newtonian mixture is:

τ = 2µS +

(
µv −

2

3
µ

)
δ (∇ · u) , (10)

where µ and µv are the shear viscosity and bulk viscosity respectively of the mixture. S is the strain-rate tensor given
by:

S =
1

2

[
∇u+ (∇u)

T
]
. (11)

The conductive flux and the inter-species diffusional enthalpy flux [40] are given by:

qc = −κ∇T, (12)

qd =

N∑
i=1

hiJi, (13)

where κ is the thermal conductivity of the mixture. hi is the specific enthalpy of species i:

hi = cp,iT, (14)

where cp,i is the specific heat capacity at constant pressure of species i.
The equations and mixing rules for the fluid properties γ, cv, cp,i, µ, µv, κ, and Di are given in the appendices C

and D.

III. NUMERICAL METHODS

3D numerical experiments with adaptive mesh refinement (AMR) were conducted with the Hydrodynamics Adaptive
Mesh Refinement Simulator (HAMeRS) [41] supported with Structured Adaptive Mesh Refinement Application In-
frastructure (SAMRAI) library [42–46] from Lawrence Livermore National Laboratory (LLNL). The convective fluxes
of the governing equations are discretized with the explicit form of sixth-order localized dissipation weighted compact
nonlinear scheme (WCNS) [47] for shock-capturing and stabilization of solutions. The accuracy and robustness of the
WCNS family for compressible multi-fluid flows have been demonstrated in previous works [47–49]. Derivatives of
diffusive and viscous fluxes are computed with explicit sixth-order finite difference schemes in non-conservative form.
A third order total variation diminishing Runge–Kutta (RK-TVD) scheme [50] is employed for the time advancement
with a convective Courant–Friedrichs–Lewy (CFL) number of 0.5 and a diffusive CFL number of 0.25. The regions
for adaptive mesh refinement are identified with a gradient sensor on the pressure field and a wavelet sensor [51] on
the density field to detect shock waves and mixing regions, respectively. An additional sensor based on mass fractions
is also used to assist the detection of mixing regions.

IV. INITIAL CONDITIONS AND COMPUTATIONAL DOMAIN

The 3D case set-up in our previous paper [38], with physical transport coefficients for the gases considered, is
chosen in this work. In this set-up, the shock-induced mixing problem is simulated in a numerical shock tube with a
cross-sectional area of 2.5 cm × 2.5 cm. A planar shock wave of Mach number Ma = 1.45 is initialized in a sulphur
hexafluoride (SF6) region, with the Rankine–Hugoniot jump conditions to interact with a diffuse interface between
SF6 and air. A multi-mode perturbation expressed in the following equation is imposed on the interface:

S(y, z) = A
∑
m

cos

(
2πm

Lyz
y + φm

)
cos

(
2πm

Lyz
z + ψm

)
, (15)

where Lyz = 2.5 cm. The perturbation has 11 modes with wavenumber m between 20 and 30 in each transverse

direction. Constant amplitude A =
√

2×0.01 mm is used for each mode and random phase shifts φm and ψm between
0 and 2π are introduced to each mode to prevent summing up of harmonic modes. φm and ψm of each mode are
given in the Supplemental Material [52].
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The computational domain and initial conditions are shown in figure 1. Boundaries are periodic in the transverse
directions and reflective boundary conditions are applied at the end wall. The length of the domain is chosen to be
large enough such that no waves leave the open-sided boundary during the simulations. The pre-shocked gases are
stationary initially and have temperature T = 298 K and pressure p = 101325 Pa. Table I shows the initial conditions
of gases in different portions of the domain. The initial Atwood number At = (ρSF6

− ρair)/(ρSF6
+ ρair) across the

interface is 0.68.

shocked SF6

unshocked air

30 cm

2.5 cm

unshocked

2.5 cm

x

y

z

SF6

FIG. 1. Schematic diagram of initial flow field and computational domain.

TABLE I. Initial conditions of the post-shock state and the pre-shock states of the light- and heavy-gas sides.

Quantity Post-shock SF6 Pre-shock SF6 Air
ρ (kg m−3) 11.97082 5.972866 1.145601
p (Pa) 218005.4 101325.0 101325.0
T (K) 319.9084 298.0 298.0

u (m s−1) 98.93441 0 0

All simulations start at t = −0.05 ms and the shock wave is initially positioned at a location such that the shock-
interface interaction first happens at t = 0. Since the simulations are initiated in the heavy-light gas setting, the
shock wave is transmitted to the light-fluid side and a rarefaction wave is reflected back to the heavy-fluid side. After
hitting the wall, the transmitted shock is reflected back towards the interface when it hits the end wall and this
causes the re-shock of the interface. Since the shock arrives at the interface from the light-fluid side this time, a
transmitted shock and a reflected shock are generated. The reflected shock leads to a second re-shock. The end time
of the simulations is chosen at t = 1.75 ms, when the second re-shock is just about to happen, as the grid resolution
requirements become too large to accurately capture this flow stage. Figure 2 shows the space-time (x-t) diagram for
different features in a one-dimensional (1D) flow representation. This problem was studied in the previous work [38]
with both two-dimensional (2D) and 3D simulations. In this work, results from a higher resolution 3D AMR simulation
are studied for the second-moment analysis of the shock-induced variable-density instability and turbulence.

V. TRANSPORT EQUATIONS OF THE SECOND-MOMENTS

To get a statistical view of a chaotic or turbulent field, it is a common practice to ensemble average the gov-
erning equations. The conserved variables are decomposed into ensemble means and fluctuations through Reynolds
decomposition. The Reynolds decomposition of an arbitrary variable, f , rewrites the variable as:

f = f̄ + f ′, (16)

where f̄ and f ′ are the mean and fluctuation of f respectively. If the flow has homogeneous directions and the widths
of the domain in the homogeneous directions are sufficiently larger than the length scales of turbulent features, one can
estimate the ensemble mean with the mean over all homogeneous directions. For variable-density flows, after averaging
the conserved variables of the governing equations it is natural to see the Favre-averaged (density-weighted-averaged)
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FIG. 2. x-t diagram showing the propagation of material interface, shock waves, and rarefaction. Red dashed line: material
interface; black lines: shock waves; gray region: rarefaction. The blue dotted line indicates the end time of the simulations.

quantities. The Favre decomposition is given by:

f = f̃ + f ′′, (17)

where f̃ = ρf/ρ̄. The Reynolds and Favre averages of the velocity are related with:

ũi = ūi + ai, (18)

where ai = ρ′u′i/ρ̄ is the velocity associated with the turbulent mass flux ρ̄ai. The fluctuation, u′i, and the Favre
fluctuation, u′′i , have similar relation as the averages:

u′′i = u′i − ai. (19)

If we apply averaging on the continuity equation and conservative transport equation of momentum given by
equations (4) and (2) respectively, we obtain:

∂ρ̄

∂t
+
∂ (ρ̄ũk)

∂xk
= 0, (20)

∂ (ρ̄ũi)

∂t
+
∂ (ρ̄ũkũi)

∂xk
= −∂ (p̄δki)

∂xk
+
∂τ̄ki
∂xk

−
∂
(
ρ̄R̃ki

)
∂xk

, (21)

where R̃ij is the Favre-averaged Reynolds stress tensor given by:

R̃ij =
ρu′′i u

′′
j

ρ̄
. (22)

The Favre-averaged Reynolds stress tensor appears as an unclosed term in the Favre-averaged transport equation of
momentum. The development of the Favre-averaged Reynolds stress can be studied through its transport equations
given by Besnard et al. [18]:

∂ρ̄R̃ij
∂t︸ ︷︷ ︸

term (I)

+
∂
(
ρ̄ũkR̃ij

)
∂xk︸ ︷︷ ︸

term (II)

= ai

(
∂p̄

∂xj
− ∂τ̄jk
∂xk

)
+ aj

(
∂p̄

∂xi
− ∂τ̄ik
∂xk

)
− ρ̄R̃ik

∂ũj
∂xk
− ρ̄R̃jk

∂ũi
∂xk︸ ︷︷ ︸

term (III)

−
∂
(
ρu′′i u

′′
j u
′′
k

)
∂xk

−
∂
(
u′ip
′
)

∂xj
−
∂
(
u′jp
′
)

∂xi
+
∂
(
u′iτ
′
jk

)
∂xk

+
∂
(
u′jτ
′
ik

)
∂xk︸ ︷︷ ︸

term (IV)

+p′
∂u′i
∂xj

+ p′
∂u′j
∂xi︸ ︷︷ ︸

term (V)

−τ ′jk
∂u′i
∂xk
− τ ′ik

∂u′j
∂xk︸ ︷︷ ︸

term (VI)

,

(23)
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where the left hand side (LHS) consists of rate of change [term (I)] and convection [term (II)]. The right hand side
(RHS) consists of production [term (III)], turbulent transport [term (IV)], pressure-strain redistribution [term (V)],
and dissipation [term (VI)].

In the paper by Schwarzkopf et al. [21], Favre decomposition is used for the viscous stress in the Favre-averaged
Reynolds stress transport equation instead of Reynolds decomposition. However, we follow the original work
by Besnard et al. [18] to use Reynolds decomposition for the viscous stress as we believe Favre decomposition
should only be applied in the advective or convective terms. The Reynolds decomposition of the viscous stress was
also employed in the DNS analysis of Livescu et al. [53], which was later used to refine the model by Schwarzkopf
et al. [22]. Besides, the dissipation term with Reynolds decomposition on viscous stress in the turbulent kinetic energy
transport equation can be proved to be strictly negative if both shear and bulk viscosities are uniform in the domain,
while that with Favre decomposition on viscous stress cannot be proved to be strictly negative. Also, note that with
the relation given by equation (19):

∂
(
u′ip
′
)

∂xj
=
∂
(
u′′i p
′
)

∂xj
, (24)

∂
(
u′iτ
′
jk

)
∂xk

=
∂
(
u′′i τ

′
jk

)
∂xk

, (25)

p′
∂u′i
∂xj

= p′
∂u′′i
∂xj

, (26)

τ ′jk
∂u′i
∂xk

= τ ′jk
∂u′′i
∂xk

. (27)

The relations above are commonly used to interchange terms in the transport equations of R̃ij and k in many previous
studies.

In flows where the mean is 1D, such as the numerical experiment being studied in this work (where the y and z

directions are homogeneous), the transport equation of R̃11 can be simplified to:

∂ρ̄R̃11

∂t︸ ︷︷ ︸
term (I)

+
∂
(
ρ̄ũR̃11

)
∂x︸ ︷︷ ︸

term (II)

= 2a1

(
∂p̄

∂x
− ∂τ̄11

∂x

)
− 2ρ̄R̃11

∂ũ

∂x︸ ︷︷ ︸
term (III)

−
∂
(
ρu′′u′′u′′

)
∂x

− 2
∂
(
u′p′

)
∂x

+ 2
∂
(
u′τ ′11

)
∂x︸ ︷︷ ︸

term (IV)

+2p′
∂u′

∂x︸ ︷︷ ︸
term (V)

−2

(
τ ′11

∂u′

∂x
+ τ ′12

∂u′

∂y
+ τ ′13

∂u′

∂z

)
︸ ︷︷ ︸

term (VI)

.

(28)

The transport equation of R̃22 for 1D mean flow can be reduced to:

∂ρ̄R̃22

∂t︸ ︷︷ ︸
term (I)

+
∂
(
ρ̄ũR̃22

)
∂x︸ ︷︷ ︸

term (II)

= −
∂
(
ρv′′v′′u′′

)
∂x

+ 2
∂
(
v′τ ′21

)
∂x︸ ︷︷ ︸

term (IV)

+2p′
∂v′

∂y︸ ︷︷ ︸
term (V)

−2

(
τ ′21

∂v′

∂x
+ τ ′22

∂v′

∂y
+ τ ′23

∂v′

∂z

)
︸ ︷︷ ︸

term (VI)

. (29)

Note that there is no production term [term (III)] in the transport equation of R̃22. The transport equation of R̃33

is similar. In the present flow, the Reynolds shear stress components, R̃12, R̃13, and R̃23, are statistically zero due to
the homogeneity of the problem in the transverse directions.

The transport equation of the turbulent kinetic energy per unit mass, k = R̃ii/2, can be simply obtained by taking
half of the trace of the Reynolds stress tensor transport equation. For 1D mean flow, it has the following form:

∂ρ̄k

∂t︸︷︷︸
term (I)

+
∂ (ρ̄ũk)

∂x︸ ︷︷ ︸
term (II)

= a1

(
∂p̄

∂x
− ∂τ̄11

∂x

)
− ρ̄R̃11

∂ũ

∂x︸ ︷︷ ︸
term (III)

−1

2

∂
(
ρu′′i u

′′
i u
′′
)

∂x
−
∂
(
u′p′

)
∂x

+
∂
(
u′iτ
′
i1

)
∂x︸ ︷︷ ︸

term (IV)

+p′
∂u′i
∂xi︸ ︷︷ ︸

term (V)

−τ ′ij
∂u′i
∂xj︸ ︷︷ ︸

term (VI)

,

(30)
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where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS consists of production
[term (III)], turbulent transport [term (IV)], pressure-dilatation [term (V)], and dissipation [term (VI)]. Note that
the production term represents the energy transfer rate between the mean kinetic energy and the turbulent kinetic
energy and can have negative sign.

The velocity associated with the turbulent mass flux, ai, in the mean flow pressure gradient terms only appears in
variable-density or/and compressible flows. It is an important term for understanding the energetics in these kinds of
flows, as the mean pressure gradient multiplied by it is the agent for the transfer of mean kinetic energy into turbulent
kinetic energy. Correct modeling of ai can also help us close the Reynolds stress transport equations. The transport
equation of turbulent mass flux ρ̄ai is given by [18]:

∂ (ρ̄ai)

∂t︸ ︷︷ ︸
term (I)

+
∂ (ρ̄ũkai)

∂xk︸ ︷︷ ︸
term (II)

= b

(
∂p̄

∂xi
− ∂τ̄ki
∂xk

)
− R̃ik

∂ρ̄

∂xk︸ ︷︷ ︸
term (III)

+ρ̄
∂ (akai)

∂xk
− ρ̄ak

∂ūi
∂xk︸ ︷︷ ︸

term (IV)

−ρ̄
∂
(
ρ′u′iu

′
k/ρ̄
)

∂xk︸ ︷︷ ︸
term (V)

+ρ̄

(
1

ρ

)′(
∂p′

∂xi
−
∂τ ′ik
∂xk

)
+ ρ̄εai︸ ︷︷ ︸

term (VI)

,

(31)

where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS contains production [term
(III)], redistribution [term (IV)], turbulent transport [term (V)], and destruction [term (VI)]. Also,

εai = −u′i
∂u′k
∂xk

. (32)

Note that εai is ignored in the work by Besnard et al. [18] and in many turbulence models. However, εai was shown
to be non-negligible at early times in the evolution of constant acceleration RTI [53]. Here, it is also found that εai
is significant in the budgets at different times before re-shock for the flow being studied in this work.

For 1D mean flow, the transport equation of ρ̄a1 can be simplified to:

∂ (ρ̄a1)

∂t︸ ︷︷ ︸
term (I)

+
∂ (ρ̄ũa1)

∂x︸ ︷︷ ︸
term (II)

= b

(
∂p̄

∂x
− ∂τ̄11

∂x

)
− R̃11

∂ρ̄

∂x︸ ︷︷ ︸
term (III)

+ρ̄
∂ (a1a1)

∂x
− ρ̄a1

∂ū

∂x︸ ︷︷ ︸
term (IV)

−ρ̄
∂
(
ρ′u′u′/ρ̄

)
∂x︸ ︷︷ ︸

term (V)

+ρ̄

(
1

ρ

)′(
∂p′

∂x
− ∂τ ′11

∂x
− ∂τ ′12

∂y
− ∂τ ′13

∂z

)
+ ρ̄εa1︸ ︷︷ ︸

term (VI)

.

(33)

Note that a2 and a3 for 1D mean flow are statistically equal to zero. The density-specific-volume covariance, b =
−ρ′(1/ρ)′, mediates the turbulent mass flux production mechanism. The component of the production term, bp̄,1, is
crucial to the prediction of the rate of change of turbulent mass flux and requires the modeling of b.

The transport equation of b was first derived by Besnard et al. [18] in the following advection form with the
Reynolds-averaged velocity:

∂b

∂t
+ ūkb,k = −b+ 1

ρ̄
(ρ̄ak),k − ρ̄

((
1

ρ

)′
u′k

)
,k

− 2ρ̄εb, (34)

where

εb =

(
1

ρ

)′
∂u′k
∂xk

. (35)

In Schwarzkopf et al. [21], the transport equation of ρ̄b in the conservative form is derived from equation (34) with
the averaged mixture continuity equation (equation (4)) as:

∂ρ̄b

∂t︸︷︷︸
term (I)

+
∂ (ρ̄ũkb)

∂xk︸ ︷︷ ︸
term (II)

= −2 (b+ 1) ak
∂ρ̄

∂xk︸ ︷︷ ︸
term (III)

+2ρ̄ak
∂b

∂xk︸ ︷︷ ︸
term (IV)

+ρ̄2
∂
(
ρ′ (1/ρ)

′
u′k/ρ̄

)
∂xk︸ ︷︷ ︸

term (V)

+2ρ̄2εb︸ ︷︷ ︸
term (VI)

, (36)
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where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS consists of production [term
(III)], redistribution [term (IV)], turbulent transport [term (V)], and destruction [term (VI)]. For 1D mean flow, the
transport equation of ρ̄b can be simplified to:

∂ (ρ̄b)

∂t︸ ︷︷ ︸
term (I)

+
∂ (ρ̄ũb)

∂x︸ ︷︷ ︸
term (II)

= −2 (b+ 1) a1
∂ρ̄

∂x︸ ︷︷ ︸
term (III)

+2ρ̄a1
∂b

∂x︸ ︷︷ ︸
term (IV)

+ρ̄2
∂
(
ρ′(1/ρ)′u′/ρ̄

)
∂x︸ ︷︷ ︸

term (V)

+2ρ̄2εb︸ ︷︷ ︸
term (VI)

. (37)

The transport equation of ρ̄b in conservative form shown above instead of that in advection form is studied in this
work. Advection form of the b transport equation was considered in the DNS analysis of Livescu et al. [53].

VI. GRID SENSITIVITY ANALYSIS

In this section, the quality of the simulations is studied through a grid sensitivity analysis. Table II shows the grid
settings used for the problem. There are totally three levels of grids with two levels of mesh refinement in all grid
settings. The refinement ratios in each direction from the base level to second level and from second level to the finest
level are 1:2 and 1:4 respectively. Four different grid settings are tested, with number of grid points in the transverse
directions increasing from 32 points (grid B) to 256 points (grid E) on the base level. The finest level for the largest
mesh resolution case has a grid spacing of 12.2 µm. With this grid spacing, there are around 68 grid points across
the smallest wavelength among the initial modes. The 3D simulations with grids B-D were first presented in [38], but
the new simulation using the grid E settings presented here is a higher grid resolution compared to those runs and
provides more accurate statistical results. This ultra-high resolution simulation has cell counts surpassing 4.5 billion,
as shown in the appendix B. Figure 3 presents visualizations of the mixing layer at different times with grid E.

TABLE II. Different grids used for the grid sensitivity study. Three levels of grids with 1:8 overall refinement ratio are used in
all cases.

Grid Base grid resolution Refinement ratios Finest grid spacing (µm)
B 640× 32× 32 1:2, 1:4 97.7
C 1280× 64× 64 1:2, 1:4 48.8
D 2560× 128× 128 1:2, 1:4 24.4
E 5120× 256× 256 1:2, 1:4 12.2

The grid sensitivities of the integral mixing width W and the domain-integrated quantities of interests (ρ̄a1, ρ̄b,

ρ̄R̃11, ρ̄R̃22, ρ̄R̃33, and ρ̄k) in the transport equations of second moment quantities are examined in this section. The
mixing width is defined as:

W =

∫
4X̄SF6

(
1− X̄SF6

)
dx. (38)

The mixing width estimates the characteristic length of the mixing layer due to the entrainment of the fluids. Note
that since ρ̄R̃22 and ρ̄R̃33 are statistically identical, the grid sensitivity of ρ̄(R̃22 + R̃33)/2 is studied instead.

Figure 4 compares the time evolution of the statistical quantities computed on different grids. From the figure, it
can be seen that mixing width, integrals of ρ̄a1, ρ̄b, and ρ̄R̃11 are well grid-converged for the entire simulation with
the highest resolution grid. The grid sensitivity of the integral of ρ̄(R̃22 +R̃33)/2 is higher than other quantities before
re-shock but its contribution to the integral of turbulent kinetic energy, ρ̄k, is an order of magnitude smaller than
that of ρ̄R̃11. Thus, the integral of ρ̄k is also grid-converged reasonably well at all times. The grid sensitivities of the
spatial profiles of these second-moments including the turbulent kinetic energy at different times are also observed to
be small between the grid D and the grid E, which are shown in the appendix A.

As the statistical quantities of interests computed on the finest resolution grid (grid E) show very small grid
sensitivity throughout the simulation when compared with those from the next finest resolution grid (grid D), only
results from grid E are presented and discussed in the remaining sections.

VII. ANALYSIS OF THE SECOND-MOMENTS

The importance of the second-moments: ρ̄a1, ρ̄b, ρ̄R̃11, ρ̄R̃22, and ρ̄R̃33 to close the Favre-averaged momentum
equation for the mixture is discussed earlier. In this section, the time evolution of the spatial profiles of different
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(a) t = 1.10 ms (b) t = 1.20 ms

(c) t = 1.40 ms (d) t = 1.75 ms

FIG. 3. Isovolumes of the SF6 mole fraction, XSF6 , at different times in the numerical shock tube with grid E. The colorbar
indicates the value of XSF6 . The first and second (last) refinement levels of the AMR grid are shown on the side walls of the
domain for the plot at t = 1.40 ms.

second-moments including the Favre-averaged Reynolds stress and the turbulent kinetic energy is studied in details,
with an examination on their asymmetry due to the variable-density, or non-Boussinesq effects.

At each impulsive acceleration such as at first shock and re-shock, the advection velocity of the mixing layer changes
abruptly. However, the advection speed of the mixing layer between impulsive accelerations is essentially constant in
time and is close to that given by the solutions of the 1D flow representation, Ui. Besides, the mean velocity across
the mixing layer is observed to be quite uniform. Therefore, in a moving reference frame with speed Ui relative to
the simulation reference frame, ū ≈ 0 and ũ ≈ a1 statistically. All of the 1D spatial profiles of the second-moments
discussed in this section are plotted in the moving frame of the mixing layer with the x̃ coordinate system. In other
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FIG. 4. Grid sensitivities of mixing width and second moment statistics. Cyan solid line: grid B; red dashed line: grid C; green
dash-dotted line: grid D; blue dotted line: grid E.

words, the x coordinate is shifted as:

x̃(x, t) = x− xi(t), (39)

where xi is the location of the interface from the solutions of the 1D flow representation.

A. Mean density and turbulent mass flux

The mean density profiles at different times in the moving frame of the mixing layer are shown in figure 5. The
density profiles are asymmetric where the spikes penetrate into the lighter fluid more than the bubbles into the heavier
fluid due to variable-density effects that are also observed in RTI [53, 54]. The density profiles become wider over
time after first shock and re-shock due to the mixing caused by the RMI. While not shown here, the density profiles
collapse reasonably well at late times after both first shock and re-shock when they are normalized with the mixing
width W , similar to RTI [53]. Similar collapse for the mole fraction profiles was also reported in our previous RMI
work [38].

Figure 6 compares the profiles of ρ̄a1 at different times before and after re-shock. The study of turbulent mass flux,
ρ̄a1, and the velocity associated with turbulent mass flux, a1, is very important for understanding variable-density
effects in the current problem and modeling similar types of flows. The turbulent mass flux determines the growth of
the Favre-averaged Reynolds stress and turbulent kinetic energy in variable-density flows and is studied in previous
works on RMI [55–57], RTI [53, 54, 58] and buoyancy-driven variable-density turbulence [59]. From the figure, it can
be seen that there is a sudden rise in ρ̄a1, followed by its decay after each shock event. The jump in the magnitude
of ρ̄a1 is caused by the large amount of energy injected at the mixing layer at each impulsive acceleration. The
profiles of ρ̄a1 are asymmetric and have longer tails on the light fluid side. It can also be noticed that at late times
after first-shock and re-shock, ρ̄a1 peaks at a position slightly towards the heavier fluid side (slightly negative x̃).
This suggests that there is a fixed point at the same location in the mean density profiles at late times, which can
be deduced from equation (20). The fixed point can be seen and verified from the mean density profiles shown in
figure 5. A fixed point in mean density profiles was also observed in RTI [53].
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FIG. 5. Profiles of the mean density, ρ̄, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms;
green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed
line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.
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FIG. 6. Profiles of the turbulent mass flux component in the streamwise direction, ρ̄a1, at different times. Cyan solid line
in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a):
t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms;
blue dotted line in (b): t = 1.75 ms.

B. Density-specific-volume covariance

The density-specific-volume covariance, b, mediates the turbulent mass flux production mechanism. It can also be
viewed as a metric for the homogeneity of mixing. b is a non-negative quantity and b = 0 corresponds to fluids that
are homogeneously mixed. On the contrary, a high value of b indicates inhomogeneous mixing of the fluids. This
statistical quantity was extensively studied in many previous investigations on RMI [56, 60–66] and also RTI [53].
Figure 7 displays the profiles of b at different times before and after re-shock. The shapes of b have single peak and
are asymmetric at different times due to the variable-density, or non-Boussinesq effects. The shapes have longer tails
on the lighter fluid side at all times. Before re-shock, the peak appears to be on the lighter fluid side at late times
but the peak shifts to the heavier fluid side after re-shock. It can be seen that the peak of b at late times after first
shock and re-shock remains quite stationary. This slow rate of change in the magnitude of b at late times was also
observed in the RMI experiments by Balasubramanian et al. [60] and Tomkins et al. [62] after incident shock and
re-shock respectively, and RMI simulations by Tritschler et al. [64] after re-shock. Similar late-time behavior was also
seen in the RTI simulations by Livescu et al. [53].
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b can also be expressed as a sum of a series of density probability density function (PDF) moments [67]:

b =
ρ′2

ρ̄2

[
1− iρ

ρ′3

(ρ′2)3/2
+ i2ρ

ρ′4

(ρ′2)2
− i3ρ

ρ′5

(ρ′2)5/2
+ ...

]
, (40)

where iρ = (ρ′2)1/2/ρ̄. If iρ is very small, the equation reduces to the Boussinesq relation:

b ≈ ρ′2

ρ̄2
. (41)

The ratio of the left hand side (density-specific-volume covariance) and right hand side (square of density intensity)
of equation (41) can be used to test the Boussinesq approximation, where the corresponding component in turbulent
mass flux production can be approximated with density variance instead of b. Boussinesq approximation is valid when
the ratio is close to one. Figure 8 shows the variations in the ratio across the mixing region at different times. It
can be seen that the ratio varies from 0.5 to 2.5. The ratio is, in general, larger than one on the heavier fluid side
and smaller than one on the lighter fluid side, because of the skewness of the density field. The peaks are located at
the edges of the mixing layers, which indicates that variable-density effects are larger at the edges than at the central
part of the mixing layer. The same behavior is also observed in the spherical RMI simulations by Lombardini et al.
[65] with essentially the same Atwood number and the planar RTI simulations by Livescu et al. [53] with slightly
smaller Atwood number (At = 0.5). As as result, Boussinesq equations would lead to underestimation of energy
conversion rate on the heavier fluid side and overestimation on the lighter fluid side for high Atwood number flows. A
grid sensitivity analysis of the profiles of the ratio at different times is given in the Supplemental Material [52]. The
analysis shows that the differences of the profiles between the grid D and the grid E at different times are minor.
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FIG. 7. Profiles of the density-specific-volume covariance, b, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed
line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b):
t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

C. Favre-averaged Reynolds stress and turbulent kinetic energy

The Favre-averaged Reynolds stress tensor, R̃ij , appears as an unclosed term in the averaged transport equation
of momentum given by equation (21). Figures 9 and 10 respectively show the profiles of Favre-averaged Reynolds
normal stress components in the streamwise and transverse directions at different times. Immediately after first shock,
there is generation of the Favre-averaged Reynolds normal stress in the mixing region. However, the Favre-averaged
Reynolds normal stress component in the streamwise direction is much larger than those in the transverse directions
at that instance. As time advances, the ratios of the component in the streamwise direction to those in the transverse
directions decreases, but the Reynolds normal stress fields are still very anisotropic at the moment just before re-shock.
The streamwise Favre-averaged Reynolds normal stress component peaks at the lighter fluid side because of smaller
inertia to entrain the fluid from nonlinear convection. After re-shock, the Favre-averaged Reynolds normal stress
fields become more isotropic but there is still more contribution to the turbulent kinetic energy from the streamwise
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FIG. 8. Profiles of the ratio of the density-specific-volume covariance to the square of density intensity at different times. Cyan
solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line
in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b):
t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

Reynolds normal stress component until the end of simulation. The comparison of different Favre-averaged Reynolds
stress components is shown in figure 11. All Reynolds shear stress components should be statistically zero but figure 11
shows that the Reynolds shear stress components are not absolutely zero. This is due to some lack of full statistical
convergence, but the values are all negligible compared to the Reynolds normal stress components.
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FIG. 9. Profiles of the Reynolds normal stress component in the streamwise direction multiplied by the mean density, ρ̄R̃11,
at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a):
t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green
dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

The Favre-averaged Reynolds stress R̃ij can be decomposed as:

R̃ij =
ρu′iu

′
j

ρ̄
− aiaj = u′iu

′
j︸︷︷︸

term (I)

+
ρ′u′iu

′
j

ρ̄︸ ︷︷ ︸
term (II)

− aiaj︸︷︷︸
term (III)

,

where term (I), u′iu
′
j , is the definition of Reynolds stress tensor for single-species incompressible flows. This decom-

position is commonly found in previous papers on RMI, such as [55, 66, 68]. Figure 12 compares the contributions

of different terms to R̃11 at different times. We can see from the plots that, although the profile of R̃11 is very
similar to u′u′ [term (I)], the contributions of the other two terms, especially ρ′u′u′/ρ̄ [term (II)], are not negligible.
Term (II) is around 20% to 40% of term (I) within the mixing region at late times after first shock and different
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FIG. 10. Profiles of the Reynolds normal stress component in the transverse directions multiplied by the mean density,
ρ̄(R̃11 + R̃22)/2, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted
line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b):
t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.
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FIG. 11. Comparison of the Reynolds stress components multiplied by the mean density at different times. Cyan solid line:
R̃11; red dashed line: (R̃22 + R̃33)/2; green dash-dotted line: (R̃12 + R̃13)/2; blue dotted line: R̃23.

times after re-shock. −a21 [term (III)] is around one order of magnitude smaller than term (I). This is different than
the observations in [55, 66], where terms (II) and (III) are at least 100 times and 1000 times respectively smaller

than term (I). Figure 13 shows the discrepancies between R̃11 and the two different approximations: (i) u′u′ and (ii)

ρu′u′/ρ̄ = u′u′ + ρ′u′u′/ρ̄, through the ratios of R̃11 to the approximations. It can be seen that R̃11 cannot be well
represented by u′u′ alone, as the ratio can vary from 0.6 to 2.2. This is associated with the strong variable-density
effects of the flow. If ρ′u′u′/ρ̄ is included to approximate R̃11, there is a huge improvement in the approximation, as
the ratio now only varies from 0.85 to 1. Although this suggests that a1 has a small contribution to the decomposition
of R̃11, this does not mean that a1 has insignificant effect on the time evolution of R̃11. Thus, it is shown in the
next few sections that a1 plays an important role in the transport equation of R̃11 through the component of the
production term, 2a1p̄,1. A grid sensitivity analysis of the spatial profiles of different contributions to R̃11 is also
provided in the Supplemental Material [52]. The profiles only show small grid sensitivities between the grid D and
the grid E and the discussion above is not much affected by the grid sensitivities.

Figure 14 shows the profiles of the turbulent kinetic energy at different times. Before re-shock, the profiles look
similar to those of ρ̄R̃11 as most of the turbulent kinetic energy is contributed by the Reynolds normal stress component
in the streamwise direction. At re-shock, the turbulent kinetic energy is amplified by three orders of magnitude.
However, it decays rapidly due to large viscous dissipation over time.
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FIG. 12. Decomposition of the Reynolds normal stress component in the streamwise direction multiplied by the mean density,
ρ̄R̃11, at different times. Cyan solid line: R̃11; red dashed line: u′u′ [term (I)]; green dash-dotted line: ρ′u′u′/ρ̄ [term (II)]; blue
dotted line: −a21 [term (III)].
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FIG. 13. Ratios of the Reynolds normal stress component in the streamwise direction multiplied by the mean density, ρ̄R̃11,
to different approximations at different times. Cyan solid line: t = 0.40 ms; red dashed line: t = 1.10 ms; green dash-dotted
line: t = 1.20 ms; blue dotted line: t = 1.75 ms.

VIII. BUDGETS OF THE SECOND-MOMENTS BEFORE RE-SHOCK

In this section, the budgets of second-moments: ρ̄a1, ρ̄b, and ρ̄R̃11, together with ρ̄k across the mixing layer before
re-shock are studied. All budgets are computed with the results from the highest resolution (grid E) simulation, for
which the flow fields are well-resolved. A grid sensitivity analysis of the budgets is also given in the Supplemental
Material [52]. The budgets are studied in the x̃ coordinate system, equivalent to studying the budgets in the moving
reference frame of the mixing layer. The convective terms in all of the transport equations of second-moments for 1D
mean flow have the common form of [ρ̄ũ(·)],1, where (·) represents any of the second-moments (a1, b, or Rij). Using
equation (18), the convective terms can be rewritten as:

∂ρ̄ũ (·)
∂x

=
∂ρ̄ū (·)
∂x︸ ︷︷ ︸

term (I)

+
∂ρ̄a1 (·)
∂x︸ ︷︷ ︸

term (II)

, (42)

where term (I) is the convection due to mean velocity and term (II) is the convection due to velocity associated with
turbulent mass flux. In the moving reference frame of the mixing layer, it is observed that ū is quite uniformly close to
zero compared to a1. Hence term (I) can be ignored. The convective term in this section is assumed fully represented
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FIG. 14. Profiles of the turbulent kinetic energy, ρ̄k, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line
in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b):
t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

by [ρ̄a1(·)],1.

A. Turbulent mass flux

Figure 15 shows the spatial profiles of different terms in the RHS of the transport equation of streamwise component
of turbulent mass flux, ρ̄a1, given by equation (33) at different times before re-shock across the mixing layer. The
negative of the convective term of the same equation due to a1 is also shown in the figure. The rate of change term
in the LHS of the transport equation is computed by restarting the simulation at different checkpoints. In each plot,
the magenta dotted line shows the profile of the residue, which is defined as the the subtraction of the net RHS term
from the net LHS term in the simulation frame. Therefore, the residue represents the numerical effect or SGS effect
on the rate of change of conserved variable, i.e. ρ̄a1 here. From both figures 15(a) and 15(b), it can be seen that the
residue is virtually zero across the mixing layer at different times before re-shock. Note that the thin black solid line
in each plot is the sum of all of the RHS terms including the residue and the negative of the convection term due to
a1, thus it represents the rate of change of ρ̄a1 in the moving frame of the mixing layer.

From figure 15, we can see that production [term (III)], destruction [term (VI)], and turbulent transport [term (V)]
terms play important roles in the budget equation at the chosen times before re-shock: t = 0.40 ms and t = 1.10 ms.
At the two chosen times, the instability is in the nonlinear growth regime. The production and destruction terms
are not symmetric as they are skewed to the lighter fluid side with peaks also slightly positioned at that side. In the
interior part of the mixing layer, the production, destruction, and turbulent transport terms are the dominant terms.
The production term is strictly positive in the mixing region and peaks around the middle part of the mixing region.
Nonetheless, both destruction and turbulent transport terms are negative in the interior part of mixing layer to offset
the effect from production. Overall, the combined effect of the destruction and turbulent transport terms is larger
than that of the production and hence the peak of turbulent mass flux reduces over time. At the edges of mixing layer,
all RHS terms are small except the turbulent transport term, which is positive and responsible for the spreading of
the turbulent mass flux. The magnitudes of redistribution [term (IV)] and convective terms are smaller than those of
other terms but still have significant effects at different times before re-shock. The two terms have similar magnitudes
but opposite signs. The convective term decreases the turbulent mass flux on the heavier fluid side and increases that
on the lighter fluid side. The redistribution term has opposite effect to bring the turbulent mass flux from the light
fluid side back to the heavy fluid side. Opposite sign but close magnitude for the two corresponding transport terms
in the budgets of ρ̄a1 is also noticed in the RTI turbulence by Livescu et al. [53].

The composition of the production term [term (III)] is shown in figure 16. It can be seen that at the chosen times

before re-shock, the production term is mainly contributed from the component, −R̃11ρ̄,1, which is observed to be
strictly positive. Another constituent, bp̄,1, has smaller contribution to the overall term and −bτ̄11,1 is negligible. bp̄,1
transfers the turbulent mass flux from the heavier fluid side to the lighter fluid side, although this effect is hidden
in the overall production term. As for the destruction term [term (VI)], figure 17 shows that all three constituents

(ρ̄(1/ρ)′p′,1, −ρ̄(1/ρ)′τ ′1i,i , and ρ̄εa1) have similar magnitudes and are generally negative at the two times before
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re-shock.
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FIG. 15. Budgets of the turbulent mass flux component in the streamwise direction, ρ̄a1, given by equation (33), at different
times before re-shock. Cyan solid line: production [term (III)]; red dashed line: redistribution [term (IV)]; green dash-dotted
line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange dash-triple-dotted line: negative
of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid
line: summation of all terms (rate of change in the moving frame).
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FIG. 16. Compositions of the production term [term (III)] in the transport equation for the turbulent mass flux component
in the streamwise direction, ρ̄a1, at different times before re-shock. Cyan solid line: overall production; red dashed line: bp̄,1;
green dash-dotted line: −bτ̄11,1 ; blue dotted line: −R̃11ρ̄,1.

B. Density-specific-volume covariance

Figure 18 shows the spatial profiles of different budget terms that appear in the transport equation of ρ̄b given by
equation (37) before re-shock. Similar to the plots for budgets of the turbulent mass flux, the magenta dotted line
represents the residue, which is the difference between the net LHS and net RHS terms. As seen in figures 18(a) and
18(b), the residue is basically zero. This means that there is negligible numerical effect due to insufficient spatial grid
spacing on the time evolution of ρ̄b before re-shock. Before re-shock, the production [term (III)], turbulent transport
[term (V)], and destruction [term (VI)] terms are dominant, but the redistribution [term (IV)] and convective terms
cannot be neglected in the transport equation of ρ̄b either. Similar to the budgets of ρ̄a1, both production and
destruction terms are asymmetric and skewed to the light fluid side. Although there is a positive effect in the interior
part of the mixing layer from the production term to increase ρ̄b, the effect is offset by both turbulent transport and
destruction terms. The net rate of change of ρ̄b around the peak of b is small so the peak of b (similarly for ρ̄b)
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FIG. 17. Compositions of the destruction term [term (VI)] in the transport equation for the turbulent mass flux component
in the streamwise direction, ρ̄a1, at different times before re-shock. Cyan solid line: overall destruction; red dashed line:
ρ̄(1/ρ)′p′,1; green dash-dotted line: −ρ̄(1/ρ)′τ ′1i,i ; blue dotted line: ρ̄εa1 .

remains relatively constant in time compared to peaks of other second-moments, which is shown earlier. At the edges
of the mixing layer, most terms are small except the turbulent transport term, which is positive that leads ρ̄b and b to
spread. Both redistribution term and convection term due to a1 redistribute ρ̄b across the layer but they have exactly
opposite effects (redistribution term brings ρ̄ from the lighter fluid side to the heavy fluid side and convective term
vice versa). They also have similar shapes and thus roughly cancel effects from each other. A similar cancellation is
also shown earlier for the corresponding terms in the budgets of ρ̄a1.
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FIG. 18. Budgets of the density-specific-volume covariance multiplied by the mean density, ρ̄b, given by equation (37), at
different times before re-shock. Cyan solid line: production [term (III)]; red dashed line: redistribution [term (IV)]; green
dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange dash-triple-dotted
line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin
black solid line: summation of all terms (rate of change in the moving frame).

C. Favre-averaged Reynolds stress and turbulent kinetic energy

In figure 19, the spatial profiles of different terms in the transport equation of ρ̄R̃11 given by equation (28) at
different times before re-shock are compared. Similar to the budgets of other second-moments, the residue due to
spatial discretization is negligible before re-shock. The critical terms in the interior mixing region that cause the
peak of ρ̄R̃11 (slightly inclined towards the lighter fluid side) to decrease before re-shock are the pressure-strain
redistribution [term (V)], turbulent transport [term (IV)], and dissipation [term (VI)] terms. The production [term
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(III)] and convection terms are quite positive there but their combined effect is smaller than that from the negative
terms. In general, both production and convection terms are positive on the lighter fluid side and negative on the
heavier fluid side. These two terms transport ρ̄R̃11 from the heavier fluid side to the lighter fluid side. On the other
hand, the turbulent transport term helps bring ρ̄R̃11 from the lighter fluid side to the heavier fluid side and more
importantly it is also responsible for the spreading of the statistical quantity at the edges of the mixing layer.

Figure 20 shows the composition of production term [term (III)] before re-shock. It can be seen that both 2a1p̄,1
and −2ρ̄R̃11ũ,1 have large contributions to the production term, while the remaining component, −2a1τ̄11,1 , is neg-
ligible. The composition of the turbulent transport term [term (IV)] is shown in figure 21. All three constituents:

−(ρu′′u′′u′′),1, −2(u′p′),1, and 2(u′τ ′11),1 have significant contributions to the term before re-shock. The triple cor-

relation component, −(ρu′′u′′u′′),1, is the root of the spreading effect while −2(u′p′),1 and 2(u′τ ′11),1 have opposite

effects for the transfer of ρ̄R̃11 between heavy and light fluid regions. −2(u′p′),1 transports ρ̄R̃11 from heavier fluid

side to lighter fluid side and vice versa for 2(u′τ ′11),1.
Finally, the budget terms in the transport equation for the turbulent kinetic energy, ρ̄k, given by equation (30)

are compared at different times before re-shock in figure 22. The residue due to numerical discretization is negligible
at t = 0.40 ms. At later times, it becomes slightly larger relative to other budget terms although it is still small in
the budgets. At late times, the major terms in the interior part of the mixing layer are the pressure-dilatation [term
(V)] and dissipation [term (VI)] terms. In single-species incompressible flows, the pressure-dilatation term is absent
but this term plays a large role to reduce the effects of dissipation term in this variable-density decaying flow before
re-shock. At the edges of the mixing layer, the turbulent transport term [term (IV)] is relatively more important and
is responsible for the spread of the turbulent kinetic energy.
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FIG. 19. Budgets of the Reynolds normal stress component in the streamwise direction multiplied by the mean density, ρ̄R̃11,
given by equation (28), at different times before re-shock. Cyan solid line: production [term (III)]; red dashed line: press-strain
redistribution [term (V)]; green dash-dotted line: turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term
(VI)]; orange dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux;
magenta dotted line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

IX. FILTERED NAVIER–STOKES EQUATIONS AND TRANSPORT EQUATIONS OF THE
LARGE-SCALE SECOND-MOMENTS

In the present flow, mixing transition follows after the mixing layer is traversed by the reflected shock. This re-shock
deposits baroclinic vorticity at both large and small scales and rapid breakdown to fully-developed turbulence ensues.
The eddies span a wide range of length scales, where the largest and smallest eddies are estimated to be at scales of
O(1000) and O(1) µm respectively [38]. The small scales of the turbulent flow after re-shock are not well-resolved even
in the highest resolution simulation. Therefore, it is more appropriate to study the transport equations of large-scale
second-moments derived from the filtered Navier–Stokes equations at times after re-shock. The idea is that numerical
regularization is assumed to have negligible effects on large-scale second-moments that only contain scales from zero
wavenumber to a cut-off wavenumber imposed by a filter that is considerably larger than the grid cut-off wavenumber.
The analysis of the transport equations of the large-scale second-moments is useful for (1) studying the mechanisms
of the generation, destruction and spreading of the large-scale turbulent features in shock-induced variable-density
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FIG. 20. Compositions of the production term [term (III)] in the transport equation for the Reynolds normal stress component

in the streamwise direction multiplied by the mean density, ρ̄R̃11, at different times before re-shock. Cyan solid line: overall
production; red dashed line: 2a1p̄,1; green dash-dotted line: −2a1τ̄11,1 ; blue dotted line: −2ρ̄R̃11ũ,1.
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FIG. 21. Compositions of the turbulent transport term [term (IV)] in the transport equation for the Reynolds normal stress

component in the streamwise direction multiplied by the mean density, ρ̄R̃11, at different times before re-shock. Cyan solid line:
overall turbulent transport; red dashed line: −(ρu′′u′′u′′),1; green dash-dotted line: −2(u′p′),1; blue dotted line: 2(u′τ ′11),1.

turbulence, (2) examining the self-similarity of the turbulent flow, and (3) understanding how the subfilter-scale stress
can affect the resolved large-scale turbulent features in LES.

While the effects of filtering on the buoyancy-driven variable-density turbulence have been studied in [69], the focus
in current work is different. The analysis proposed here mainly focuses on the effects of SFS stress on large-scale
statistical quantities resolved on a lower resolution grid and aims at gaining insight into the suitability of using
LES data for analyzing RANS-based models. Spherical surface-averaged transport equations of different statistical
quantities were also derived with the SGS stress in [65]. Here, we present the planar surface-averaged transport
equations of the second-moments, including the Favre-averaged Reynolds stress and turbulent kinetic energy, with
the effects of SFS stress included.

The filtering operation of a variable, f = f (xi, t), with filter width, `, can be defined as:

〈f (xi, t)〉` =

∫ ∞
−∞

f (x′i, t)G (x′i, xi) dx
′
i, (43)

where 〈f〉` is the filtered value and G (x′i, xi) denotes a filter function. In variable-density flows, it is also convenient
to define the Favre-filtered value, 〈f〉L, as:

〈f〉L =
〈ρf〉`
〈ρ〉`

. (44)
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FIG. 22. Budgets of the turbulent kinetic energy, ρ̄k, given by equation (30), at different times before re-shock. Cyan solid line:
production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green dash-dotted line: turbulent transport [term (IV)];
blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise
velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms (rate
of change in the moving frame).

If we apply the filter on the mixture continuity equation and transport equation of momentum given by equations (4)
and (2) respectively, we can obtain the filtered Navier–Stokes equations:

∂ 〈ρ〉`
∂t

+
∂ (〈ρ〉` 〈uk〉L)

∂xk
= 0, (45)

∂ (〈ρ〉` 〈ui〉L)

∂t
+
∂ (〈ρ〉` 〈uk〉L 〈ui〉L)

∂xk
= −

∂ (〈p〉` δki)
∂xk

+
∂ 〈τki〉`
∂xk

− ∂τSFSki

∂xk
, (46)

where commutation terms are assumed to be negligible. τSFSij is the SFS stress tensor given by:

τSFSij = 〈ρuiuj〉` − 〈ρ〉` 〈ui〉L 〈uj〉L . (47)

If averaging is further applied on the filtered continuity equation and transport equation of momentum given by
equations (45) and (46) respectively, the following Favre-averaged filtered Navier–Stokes equations are obtained:

∂〈ρ〉`
∂t

+
∂
(
〈ρ〉`〈̃uk〉L

)
∂xk

= 0, (48)

∂
(
〈ρ〉`〈̃ui〉L

)
∂t

+
∂
(
〈ρ〉`〈̃uk〉L〈̃ui〉L

)
∂xk

= −
∂
(
〈p〉`δki

)
∂xk

+
∂〈τki〉`
∂xk

−
∂τSFSki

∂xk
−
∂
(
〈ρ〉`R̃L,ki

)
∂xk

, (49)

where Reynolds and Favre decompositions on the filtered variables (〈f〉` or 〈f〉L) are involved:

〈f〉`/L = 〈f〉`/L + 〈f〉′`/L = 〈̃f〉`/L + 〈f〉′′`/L , (50)

and R̃L,ij is the large-scale Favre-averaged Reynolds stress tensor computed with the filtered density and velocity
fields and is given by:

R̃L,ij =
〈ρ〉` 〈ui〉

′′
L 〈uj〉

′′
L

〈ρ〉`
. (51)
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In a 1D mean flow, the transport equation of 〈ρ〉`R̃L,11 is given by:

∂
(
〈ρ〉`R̃L,11

)
∂t︸ ︷︷ ︸

term (I)

+
∂
(
〈ρ〉`〈̃u〉LR̃L,11

)
∂x︸ ︷︷ ︸

term (II)

= 2aL,1

(
∂〈p〉`
∂x

−
∂〈τ11〉`
∂x

+
∂τSFS11

∂x

)
− 2〈ρ〉`R̃L,11

∂〈̃u〉L
∂x︸ ︷︷ ︸

term (III)

−
∂
(
〈ρ〉` 〈u〉

′′
L 〈u〉

′′
L 〈u〉

′′
L

)
∂x

− 2
∂
(
〈u〉′L 〈p〉

′
`

)
∂x

+ 2
∂
(
〈u〉′L 〈τ11〉

′
`

)
∂x

− 2
∂
(
〈u〉′L τSFS11

′
)

∂x︸ ︷︷ ︸
term (IV)

+2〈p〉′`
∂ 〈u〉′L
∂x︸ ︷︷ ︸

term (V)

−2

(
〈τ11〉′`

∂ 〈u〉′L
∂x

+ 〈τ12〉′`
∂ 〈u〉′L
∂y

+ 〈τ13〉′`
∂ 〈u〉′L
∂z

)
+ 2

(
τSFS11

′ ∂ 〈u〉′L
∂x

+ τSFS12
′ ∂ 〈u〉′L
∂y

+ τSFS13
′ ∂ 〈u〉′L
∂z

)
︸ ︷︷ ︸

term (VI)

,

(52)

where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS consists of production
[term (III)], turbulent transport [term (IV)], pressure-strain redistribution [term (V)], and dissipation [term (VI)].

aL,i = 〈ρ〉′` 〈ui〉
′
L/〈ρ〉` is the velocity associated with the large-scale turbulent mass flux 〈ρ〉`aL,i = 〈ρ〉′` 〈ui〉

′
L computed

on filtered fields.
The transport equation of 〈ρ〉`R̃L,22 for 1D mean flow can be reduced to:

∂
(
〈ρ〉`R̃L,22

)
∂t︸ ︷︷ ︸

term (I)

+
∂
(
〈ρ〉`〈̃u〉LR̃L,22

)
∂x︸ ︷︷ ︸

term (II)

= −
∂
(
〈ρ〉` 〈v〉

′′
L 〈v〉

′′
L 〈u〉

′′
L

)
∂x

+ 2
∂
(
〈v〉′L 〈τ21〉

′
`

)
∂x

− 2
∂
(
〈v〉′L τSFS21

′
)

∂x︸ ︷︷ ︸
term (IV)

+2〈p〉′`
∂ 〈v〉′L
∂y︸ ︷︷ ︸

term (V)

−2

(
〈τ21〉′`

∂ 〈v〉′L
∂x

+ 〈τ22〉′`
∂ 〈v〉′L
∂y

+ 〈τ23〉′`
∂ 〈v〉′L
∂z

)
+ 2

(
τSFS21

′ ∂ 〈v〉′L
∂x

+ τSFS22
′ ∂ 〈v〉′L
∂y

+ τSFS23
′ ∂ 〈v〉′L
∂z

)
︸ ︷︷ ︸

term (VI)

.

(53)

The transport equation of 〈ρ〉`R̃L,33 is similar.

The large-scale turbulent kinetic energy per unit mass is defined as kL = R̃L,ii/2. The transport equation of 〈ρ〉`kL
can be obtained by taking half of the trace of the transport equation of 〈ρ〉`R̃L,ij . In 1D mean flow, it has the following
form:

∂
(
〈ρ〉`kL

)
∂t︸ ︷︷ ︸

term (I)

+
∂
(
〈ρ〉`〈̃u〉LkL

)
∂x︸ ︷︷ ︸

term (II)

= aL,1

(
∂〈p〉`
∂x

−
∂〈τ11〉`
∂x

+
∂τSFS11

∂x

)
− 〈ρ〉`R̃L,11

∂〈̃u〉L
∂x︸ ︷︷ ︸

term (III)

−1

2

∂
(
〈ρ〉` 〈ui〉

′′
L 〈ui〉

′′
L 〈u〉

′′
L

)
∂x

−
∂
(
〈u〉′L 〈p〉

′
`

)
∂x

+
∂
(
〈ui〉′L 〈τi1〉

′
`

)
∂x

−
∂
(
〈ui〉′L τSFSi1

′
)

∂x︸ ︷︷ ︸
term (IV)

+〈p〉′`
∂ 〈ui〉′L
∂xi︸ ︷︷ ︸

term (V)

−〈τij〉′`
∂ 〈ui〉′L
∂xj

+ τSFSij
′ ∂ 〈ui〉′L
∂xj︸ ︷︷ ︸

term (VI)

,

(54)

where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS consists of production [term
(III)], turbulent transport [term (IV)], pressure-dilatation [term (V)], and dissipation [term (VI)]. Note that term

(III) represents the transfer of energy between 〈ρ〉`kL and the the mean kinetic energy computed from filtered fields,

KL = 〈ρ〉`〈̃ui〉L〈̃ui〉L/2. Besides, the combination of −(〈ui〉′L τSFSi1
′
),1 and τSFSij

′
∂ 〈ui〉′L,j contributes to the transfer

of energy between 〈ρ〉`kL and the mean SFS turbulent kinetic energy, τSFSii /2.
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In 1D mean flow, the transport equation of large-scale turbulent mass flux component in streamwise direction,
〈ρ〉`aL,1, can be simplified to:

∂
(
〈ρ〉`aL,1

)
∂t︸ ︷︷ ︸

term (I)

+
∂
(
〈ρ〉`〈̃u〉LaL,1

)
∂x︸ ︷︷ ︸

term (II)

= bL

(
∂〈p〉`
∂x

−
∂〈τ11〉`
∂x

+
∂τSFS11

∂x

)
− R̃L,11

∂〈ρ〉`
∂x︸ ︷︷ ︸

term (III)

+〈ρ〉`
∂ (aL,1aL,1)

∂x
− 〈ρ〉`aL,1

∂〈u〉L
∂x︸ ︷︷ ︸

term (IV)

−〈ρ〉`
∂
(
〈ρ〉′` 〈u〉

′
L 〈u〉

′
L/〈ρ〉`

)
∂x︸ ︷︷ ︸

term (V)

+〈ρ〉`

(
1

〈ρ〉`

)′(
∂ 〈p〉′`
∂x

−
∂ 〈τ11〉′`
∂x

−
∂ 〈τ12〉′`
∂y

−
∂ 〈τ13〉′`
∂z

+
∂τSFS11

′

∂x
+
∂τSFS12

′

∂y
+
∂τSFS13

′

∂z

)
+ 〈ρ〉`εaL,1︸ ︷︷ ︸

term (VI)

,

(55)

where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS contains production [term
(III)], redistribution [term (IV)], turbulent transport [term (V)], and destruction [term (VI)]. Also,

εaL,i
= −〈ui〉′L

∂ 〈uk〉′L
∂xk

. (56)

bL is the large-scale density-specific-volume covariance computed from the filtered fields and is given by bL =

−〈ρ〉′` (1/ 〈ρ〉`)′.
In 1D mean flow, the transport equation of 〈ρ〉`bL is given by:

∂
(
〈ρ〉`bL

)
∂t︸ ︷︷ ︸

term (I)

+
∂
(
〈ρ〉`〈̃u〉LbL

)
∂x︸ ︷︷ ︸

term (II)

= −2 (bL + 1) aL,1
∂〈ρ〉`
∂x︸ ︷︷ ︸

term (III)

+2〈ρ〉`aL,1
∂bL
∂x︸ ︷︷ ︸

term (IV)

+〈ρ〉
2

`

∂
(
〈ρ〉′` (1/ 〈ρ〉`)′ 〈u〉

′
L/〈ρ〉`

)
∂x︸ ︷︷ ︸

term (V)

+2〈ρ〉
2

`εbL︸ ︷︷ ︸
term (VI)

,

(57)

where the LHS consists of rate of change [term (I)] and convection [term (II)]. The RHS consists of production [term
(III)], redistribution [term (IV)], turbulent transport [term (V)], and destruction [term (VI)]. Also,

εbL =

(
1

〈ρ〉`

)′
∂ 〈uk〉′L
∂xk

. (58)

A truncated Gaussian filter [70] is used. At each filtering operation, 1D filters in the x-, y-, and z-directions are
applied successively to the 3D fields. The filter in the x-direction is given by:

〈fi,j,k〉`,x =
3565

10368
fi,j,k +

3091

12960
(fi−1,j,k + fi+1,j,k) +

1997

25920
(fi−2,j,k + fi+2,j,k)

+
149

12960
(fi−3,j,k + fi+3,j,k) +

107

103680
(fi−4,j,k + fi+4,j,k) ,

(59)

where the effective filter width of one filtering operation is ` = 4∆ and ∆ is the grid spacing of the finest grid
level. Filtering in the y- and z-directions are in similar forms. The Gaussian filtering operation can be applied
successively to achieve filtering with an essentially larger filter width. If the filter is applied Nf times repeatedly, the

effective filter width is ` ≈ 4
√
Nf∆. The approximated filter widths obtained on the finest grid level of grid E with

different numbers of filtering operations are shown in table III. The truncated Gaussian filter is selected because of
its positivity-preserving property for the density field.
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TABLE III. Approximated filter widths obtained on the finest grid level of grid E with different numbers of filtering operations.

Number of filtering operations Approximated filter width in ∆ Approximated filter width in physical unit (mm)
1 4 ∆ 0.049
4 8 ∆ 0.098
16 16 ∆ 0.195
64 32 ∆ 0.391
256 64 ∆ 0.781

X. EFFECTS OF THE FILTER WIDTH ON THE LARGE-SCALE SECOND-MOMENTS AND THE
SFS STRESS

The effects of filter width on the large-scale second-moments including the Reynolds normal stress in the streamwise

direction multiplied by the mean filtered density: 〈ρ〉`aL,1, 〈ρ〉`bL, and 〈ρ〉`R̃L,11 at t = 1.40 ms are shown in
figures 23(a), 23(b), and 23(c) respectively. It can be seen that the magnitudes of the large-scale quantities reduce
when the essential width of the filter applied to the density and momentum fields is increased because they are
composed of scales from zero wavenumber to a larger cut-off wavenumber. The shape of each quantity remains quite
self-similar with different filter widths. Especially the location of the peak of each quantity does not move significantly

under the effect of filtering. At large filter widths, all large-scale second-moments including 〈ρ〉`R̃L,11 have similar
degrees of changes in the magnitudes with the same filter width change.

Figure 24(a) shows the effect of filtering on the mean SFS normal stress component in the streamwise direction,

τSFS11 . It can be seen that the magnitude of the SFS stress component increases with larger filter width. In fact, it

is noticed that the sum of τSFS11 and large-scale 〈ρ〉`R̃L,11 is virtually constant under the filtering effect. The same
relation is also observed for the sum of the large-scale turbulent kinetic energy and the mean SFS turbulent kinetic

energy, τSFSii /2. The magnitude of the large-scale turbulent kinetic energy decreases while that of the SFS turbulent
kinetic energy rises when more filtering operations are applied, as seen in figures 23(d) and 24(b) respectively. These
suggest that the correlations between the small scales and large scales are negligible compared to the large-scale-large-
scale and small-scale-small-scale correlations. The effects of filter width on large-scale second-moments, SFS stress,
and SFS turbulent kinetic energy at other times after re-shock are shown in the Supplemental Material [52].

XI. BUDGETS OF THE LARGE-SCALE SECOND-MOMENTS AFTER RE-SHOCK

In this section, the budgets of large-scale second-moments computed with the filtered density and Favre-filtered

velocity fields: 〈ρ〉`aL,1, 〈ρ〉`bL, and 〈ρ〉`R̃L,11, together with 〈ρ〉`kL across the mixing layer after re-shock are exam-
ined. The chosen filter width is ` ≈ 64∆ = 0.781 mm. A grid sensitivity analysis of the budgets at this filter width is
provided in the Supplemental Material [52].

As with the unfiltered budgets before re-shock, the budgets of large-scale second-moments after re-shock are studied
in the x̃ coordinate system, equivalent to studying the budgets in the moving reference frame of the mixing layer. The
convective terms in all of the transport equations of large-scale second-moments for 1D mean flow have the common

form of [〈ρ〉`〈̃u〉L(·)],1, where (·) represents any of the large-scale second-moments (aL,1, bL, R̃L,ij , or kL). Using the

relation 〈̃u〉L = 〈u〉L + aL,1, the convective terms can be rewritten as:

∂〈ρ〉`〈̃u〉L (·)
∂x

=
∂〈ρ〉`〈u〉L (·)

∂x︸ ︷︷ ︸
term (I)

+
∂〈ρ〉`aL,1 (·)

∂x︸ ︷︷ ︸
term (II)

, (60)

where term (I) is the convection due to mean Favre-filtered velocity and term (II) is the convection due to velocity

associated with large-scale turbulent mass flux. Similar to the scenario without filtering, 〈u〉L is observed to be
uniformly close to zero in the moving reference frame of the mixing layer and the term (I) can be neglected. Thus, the

convective term is thought as fully contributed by [〈ρ〉`aL,1],1 in the analysis of this section. While only the budgets
of the large-scale second-moments at t = 1.20 ms and t = 1.60 ms are shown in this section, the budgets at two other
times after re-shock are included in the Supplemental Material [52].
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FIG. 23. Effect of filtering on the large-scale second-moments and the turbulent kinetic energy, 〈ρ〉`kL, at t = 1.40 ms after
re-shock. Black solid line: no filtering; cyan dashed line: ` ≈ 8∆; red dash-dotted line: ` ≈ 16∆; green dash-dot-dotted line:
` ≈ 32∆; blue dotted line: ` ≈ 64∆.
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FIG. 24. Effect of filtering on the mean SFS stress component in the streamwise direction, τSFS
11 , and the mean SFS turbulent

kinetic energy, τSFS
ii /2 at t = 1.40 ms after re-shock. Cyan dashed line: ` ≈ 8∆; red dash-dotted line: ` ≈ 16∆; green

dash-dot-dotted line: ` ≈ 32∆; blue dotted line: ` ≈ 64∆.
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A. Large-scale turbulent mass flux

Figure 25 shows the spatial profiles of different RHS terms in the transport equation for the large-scale turbulent
mass flux component in the streamwise direction, 〈ρ〉`aL,1, given by equation (55), together with the negative of the
convection term due to aL,1 after re-shock. Similar to the budgets before re-shock, the magenta dotted line represents
the residue which is defined as the subtraction of the net RHS terms from the net LHS term in the simulation frame.
The residue here provides a way to verify that the numerical regularization or SGS effect has negligible effects on
the budgets of large-scale second-moments at the chosen filter width. The rate of change of 〈ρ〉`aL,1 in the moving
reference frame of the mixing layer is represented by the thin black line, which is the subtraction of the convective
term due to aL,1 from the summation of the net RHS and the residue.

Similar to the times before re-shock, production [term (III)] and destruction [term (VI)] terms are asymmetric after
re-shock, as shown in figure 25. Both terms are skewed towards and have peaks at positions slightly towards the
lighter fluid side. As seen from figure 25, the production and destruction terms are the the dominant terms among all
the RHS terms in the interior mixing region after re-shock. In this region, the magnitude of the destruction is larger
than that of the production, and this drives the peak of the large-scale turbulent mass flux to diminish over time after
re-shock, as indicated by the negative rate of change at all times. At the edges of the mixing region, the turbulent
transport term [term (V)] becomes relatively more important and causes the turbulent mass flux to spread over time.
The redistribution [term (IV)] and convective terms are small across the mixing layer compared to the other RHS
terms. In fact, the redistribution term is commonly ignored in many turbulent mixing models, such as the BHR k-S-a
model by Banerjee et al. [19] and the k-L-a model by Morgan and Wickett [29]. The compositions of the production
and destruction terms are shown in figures 26 and 27 respectively. As seen from both figures, the components with

filtered molecular shear stress, −bL〈τ11〉`,1 and −〈ρ〉`(1/ 〈ρ〉`)
′ (
∂ 〈τ1i〉′` /∂xi

)
, are both zero at different times and this

indicates that the molecular shear stress has no direct effect on the large-scale turbulent mass flux through its budget.
Examining figure 26 for the composition of the production term [term (III)], it can be seen that that the shapes

and relative importance of the two components of the production term, −R̃L,11〈ρ〉`,1 and bL〈p〉`,1, after re-shock
are similar to those of the corresponding ones before re-shock. However, there is an additional term with the SFS

stress, bLτSFS11 ,1, in the composition due to filtering. In general, the component with the large-scale Reynolds stress,

−R̃L,11〈ρ〉`,1, has the largest contribution to production term and appears strictly positive. Another two constituents,

bL〈p〉`,1 and bLτSFS11 ,1, have smaller contributions and have conflicting effects. The latter largely reduces the influence
of the former on the production term. Therefore, the production term can be regarded as mainly supplied by the
component with the large-scale Reynolds stress. As for the destruction [term (VI)], it can be seen in figure 27 that
the contribution of each constituent after re-shock is similar to the corresponding one in the unfiltered budgets before
re-shock, except that the role of the component with molecular shear stress is replaced by a component with SFS

stress, 〈ρ〉`(1/ 〈ρ〉`)′(∂τSFS1i
′
/∂xi). Similar to the corresponding component with εa1 in the budgets before re-shock,

the component with εaL,1
also contributes significantly to the destruction term after re-shock.

B. Large-scale density-specific-volume covariance

Figure 28 shows the spatial profiles of different terms that appear in the transport equation for the large-scale
density-specific-volume covariance multiplied by the mean filtered density, 〈ρ〉`bL, given by equation (57) after re-
shock. As for the plots for budgets of the large-scale turbulent mass flux, the magenta dotted line represents the
residue. As seen in the sub-figures, the residue is virtually zero at different times after re-shock and this means that
there is insignificant effect of numerical regularization on the rate of change of 〈ρ〉`bL.

As seen from the figure, the production [term (III)] and destruction [term (VI)] terms are the dominant terms in the
interior region of the mixing layer. In the papers by Tomkins et al. [62] and Mohaghar et al. [66], it was also observed
in the layer interior that the production term is dominant in the budgets of density-specific-volume covariance. In
the interior part of the mixing layer, the rate of change of 〈ρ〉`bL is negative just after re-shock as the magnitude of
the negative destruction term is larger than that of the positive production term. Thus, the amplitude of the large-
scale second-moment decreases just after re-shock. Nevertheless, soon after re-shock, the relative magnitude of the
production term in the middle part of the mixing layer becomes larger, and even larger than that of the destruction
term at late times. As a result, the rate of change of 〈ρ〉`bL at the peak location turns slightly positive at later times.
Overall, the budget terms are quite balanced in the interior part of the mixing layer at late times as the production
term roughly cancel the destruction term. This is similar to the observations on the budgets of density-specific-volume
covariance in the heavy-light case of the spherical RMI [65] and the planar RTI [53]. As a result, 〈ρ〉`bL and bL have
quite stationary peaks at late times. Although the turbulent transport term [term (V)] is not small in the central
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FIG. 25. Budgets of the large-scale turbulent mass flux component in the streamwise direction, 〈ρ〉`aL,1, given by equation (55),
at different times after re-shock. Cyan solid line: production [term (III)]; red dashed line: redistribution [term (IV)]; green
dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange dash-triple-dotted
line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin
black solid line: summation of all terms (rate of change in the moving frame).
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FIG. 26. Compositions of the production term [term (III)] in the transport equation for the large-scale turbulent mass flux

component in the streamwise direction, 〈ρ〉`aL,1, at different times after re-shock. Cyan solid line: overall production; red dashed

line: bL〈p〉`,1; green dash-dotted line: −bL〈τ11〉`,1; orange dash-dot-dotted line: bLτSFS
11 ,1; blue dotted line: −R̃L,11〈ρ〉`,1.

part of the mixing layer, its effect is small compared to the production and destruction terms. However, the turbulent
transport term becomes relatively more important at the heavier fluid edge of the mixing region. The term is positive
at both edges of the mixing layer and is the vital term at the heavier fluid side for the spreading of 〈ρ〉`bL over time.

C. Large-scale Favre-averaged Reynolds stress and large-scale turbulent kinetic energy

In figure 29, the spatial profiles of different budget terms of the large-scale Favre-averaged Reynolds stress component

in the streamwise direction multiplied by the mean filtered density, 〈ρ〉`R̃L,11, after re-shock are shown. Each budget

term in the transport equation for 〈ρ〉`R̃L,11 is given by equation (52). As shown in the figure, the residue, represented

by the magenta dotted line, is basically zero at all times. Thus, the effect of numerical regularization on 〈ρ〉`R̃L,11
can be ignored.

From the figure, we can see that all terms except the convection term play significant roles on the rate of change of

〈ρ〉`R̃L,11 in the interior part of the mixing region. Similar to the budgets before re-shock, the production term [term

(III)] is positive on the light fluid side and negative on the heavy fluid side to transport 〈ρ〉`R̃L,11 from the heavier
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FIG. 27. Compositions of the destruction term [term (VI)] in the transport equation for the large-scale turbulent mass

flux component in the streamwise direction, 〈ρ〉`aL,1, at different times after re-shock. Cyan solid line: overall destruc-

tion; red dashed line: 〈ρ〉`
(
1/ 〈ρ〉`

)′ 〈p〉′`,1; green dash-dotted line: −〈ρ〉`
(
1/ 〈ρ〉`

)′ (
∂ 〈τ1i〉′` /∂xi

)
; orange dash-dot-dotted line:

〈ρ〉`
(
1/ 〈ρ〉`

)′ (
∂τSFS

1i
′
/∂xi

)
; blue dotted line: 〈ρ〉`εaL,1 .
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FIG. 28. Budgets of the large-scale density-specific-volume covariance multiplied by the mean filtered density, 〈ρ〉`bL, given
by equation (57), at different times after re-shock. Cyan solid line: production [term (III)]; red dashed line: redistribution
[term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange
dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted
line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

fluid side to the lighter fluid side. On the other hand, generally the turbulent transport term [term (IV)] has larger
magnitude but opposite effect in the interior region of the mixing layer compared to the production term. In the
same region, both pressure-strain redistribution [term (V)] and dissipation [term (VI)] terms are negative in general
and hence the overall rate of change is negative. At the edges of the mixing layer, only the turbulent transport and

pressure-strain redistribution are critical terms. Their combined effect contributes to the spreading of 〈ρ〉`R̃L,11 on
the lighter fluid side over time while there is some anti-spreading effect on the heavier fluid side for a quite long period
of time after re-shock.

Figures 30 and 31 show the compositions of production [term (III)] and turbulent transport [term (IV)] terms

respectively after re-shock. Both figures show that the components due to filtered molecular shear stress, −2aL,1〈τ11〉`,1
and 2(〈u〉′L 〈τ11〉

′
`),1, are insignificant to the budgets at different times after re-shock. Considering the composition of

the production term in figure 30, the component with SFS stress, 2aL,1τSFS11 ,1, appears as a new term compared to

the budgets without filtering before re-shock. Both constituents 2aL,1〈p〉`,1 and −2〈ρ〉`R̃L,11〈̃u〉L,1 play similar roles
to the production term. They are negative on the heavier fluid side and positive on the lighter fluid side. However,
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the former has a larger effect on the lighter side while the effect of the latter is stronger on the heavier fluid side.

The component with SFS stress has similar magnitude as −2〈ρ〉`R̃L,11〈̃u〉L,1 but opposite effect that brings 〈ρ〉`R̃L,11
from the lighter fluid side to the heavier fluid side. Inspecting the composition of the turbulent transport term, the

three constituents: −(〈ρ〉` 〈u〉
′′
L 〈u〉

′′
L 〈u〉

′′
L),1, −2(〈u〉′L 〈p〉

′
`),1, and −2(〈u〉′L τSFS11

′
),1 have significant contributions to

the term after re-shock. The triple velocity correlation component, −(〈ρ〉` 〈u〉
′′
L 〈u〉

′′
L 〈u〉

′′
L),1, and the component arisen

from filtering, −2(〈u〉′L τSFS11
′
),1, are responsible for the spreading of the 〈ρ〉`R̃L,11. On the other hand, the constituent

−2(〈u〉′L 〈p〉
′
`),1 has an anti-spreading effect.

Figure 32 shows the comparison of different budget terms in the transport equation for the large-scale turbulent
kinetic energy, 〈ρ〉`kL, given by equation (54). The residue of 〈ρ〉`kL is negligible at early times after re-shock but
becomes slightly larger at later times. At t = 1.60 ms, the residue cannot be considered as zero but is still small
compared with other budget terms. Through grid sensitivity analysis presented in the Supplemental Material [52], it
is found that the residue computed with the grid E is largely reduced compared to that with the grid D. It should be
noted again that in incompressible single-species flow, the pressure-dilatation term [term (V)] is zero. As seen from the
figure, the pressure-dilatation term in the variable-density flow being studied here is not zero. However, its influence
is generally very small across the mixing layer and its effect is roughly canceled by the convection term. The effect
from pressure-dilatation is commonly ignored in many RANS-based models [19, 29] for RMI-induced turbulence. In
the interior part of the mixing region, the dissipation dominates the overall rate of change of the large-scale turbulent
kinetic energy and the quantity decays over time. Note that the dissipation term is contributed mainly by the

component with SFS stress, τSFSij
′
(∂ 〈ui〉′L /∂xj). In the interior region of RTI [53], the production and dissipation

terms are equally important in the turbulent kinetic energy budget, while the former has small contribution for the
RMI turbulence studied in this work. The production term is large over time in RTI and buoyancy-driven variable-
density turbulence due to the continuous conversion of potential energy into kinetic energy [53, 59, 71]. However, this
mechanism does not exist in RMI.
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FIG. 29. Budgets of the large-scale Favre-averaged Reynolds normal stress component in the streamwise direction multiplied

by the mean filtered density, 〈ρ〉`R̃L,11, given by equation (52), at different times after re-shock. Cyan solid line: production
[term (III)]; red dashed line: press-strain redistribution [term (V)]; green dash-dotted line: turbulent transport [term (IV)];
blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise
velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms (rate
of change in the moving frame).

XII. EFFECTS OF FILTERING ON THE BUDGETS OF THE LARGE-SCALE SECOND-MOMENTS
AFTER RE-SHOCK

The effects of filtering on the budgets of different large-scale second-moments and turbulent kinetic energy with
` ≈ 16∆ and ` ≈ 64∆ at t = 1.40 ms after re-shock are shown in figures 33, 34, 35, and 36 respectively. Note that
the unfiltered budgets and filtered budgets with another filter width can be found in the Supplemental Material [52].

It should be mentioned that the budget of ρ̄a1 is already closed when no filtering is used and hence from figure 33,
it can be seen that the residues in the budgets of the corresponding large-scale turbulent mass flux component with
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FIG. 30. Compositions of the production term [term (III)] in the transport equation for the large-scale Favre-averaged Reynolds

normal stress component in the streamwise direction multiplied by the mean filtered density, 〈ρ〉`R̃L,11, at different times after

re-shock. Cyan solid line: overall production; red dashed line: 2aL,1〈p〉`,1; green dash-dotted line: −2aL,1〈τ11〉`,1; orange

dash-dot-dotted line: 2aL,1τSFS
11 ,1; blue dotted line: −2〈ρ〉`R̃L,11〈̃u〉L,1.
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FIG. 31. Compositions of the turbulent transport term [term (IV)] in the transport equation for the large-scale Favre-averaged

Reynolds normal stress component in the streamwise direction multiplied by the mean filtered density, 〈ρ〉`R̃L,11, at different

times after re-shock. Cyan solid line: overall turbulent transport; red dashed line: −(〈ρ〉` 〈u〉
′′
L 〈u〉

′′
L 〈u〉

′′
L),1; green dash-dotted

line: −2(〈u〉′L 〈p〉
′
`),1; blue dotted line: 2(〈u〉′L 〈τ11〉

′
`),1; orange dash-dot-dotted line: −2(〈u〉′L τSFS

11
′
),1.

different filter widths are also negligible across the entire mixing region. Similar to the effects of the filter on the
large-scale second-moments, the magnitudes of different terms in the transport equation for the large-scale turbulent
mass flux component decrease when larger filter width is applied on the mixture density and momentum equations,
but their shapes remain quite similar. From figures 34 and 35, it can be seen that the residues in the budgets
of the density-specific-volume covariance and the Reynolds normal stress component (both multiplied by the mean
filtered density) are already virtually zero when the Navier–Stokes equations are filtered with filter width ` ≈ 16∆.
The shapes of different terms in the budgets of the two large-scale second-moments also appear similar and the
magnitudes reduce with larger filter width. As for the budgets of large-scale turbulent kinetic energy, even larger
filter width, or more successive filtering operations are needed for the residue to become negligibly small, which is
indicated by figure 36. Nevertheless, the budget terms of the large-scale turbulent kinetic energy are also quite similar
for filter widths ` ≈ 16∆ and ` ≈ 64∆. From all of these figures mentioned above, it can also be noticed that the
ratios of the magnitudes between the major terms for each budget do not change much with different filter widths.
Thus, the budget terms in each transport equation are quite self-similar with different degree of filtering.

Figures 37 and 38 respectively show the effects of filtering on the compositions of the production [term (III)] and
destruction [term (VI)] terms in the budgets of the large-scale turbulent mass flux component in the streamwise
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FIG. 32. Budgets of the large-scale turbulent kinetic energy, 〈ρ〉`kL, given by equation (54), at different times after re-shock.
Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green dash-dotted line: turbulent
transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection
due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation
of all terms (rate of change in the moving frame).

direction at t = 1.40 ms. It can be seen from both figures that the magnitudes of the components with the SFS

stress in the production and destruction compositions, bLτSFS11 ,1 and 〈ρ〉`(1/ 〈ρ〉`)′(∂τSFS1i
′
/∂xi), increase when a

larger filter width is applied. Examining the production term, while there is a larger effect from the constituent with

the SFS stress, bLτSFS11 ,1 with wider filter width, the magnitude of term bL〈p〉`,1 also becomes larger to offset the

increased effect from bLτSFS11 ,1. Thus, the shape of the overall production term remains self-similar with filtering. As
for the destruction term, the corresponding component with SFS stress also increases in magnitude to provide more

destruction effect when the filter width is larger but another two constituents, 〈ρ〉`(1/ 〈ρ〉`)′ 〈p〉
′
`,1 and 〈ρ〉`εaL,1

adjust

(the magnitude of the former decreases and that of the latter increases) and hence the overall destruction term is also
self-similar with filtering.

The effects of filtering on the composition of the production [term (III)] and turbulent transport [term (IV)] terms
in the budget of the large-scale Reynolds normal stress component in the streamwise direction multiplied by the mean
filtered density are studied in figures 39 and 40 respectively at t = 1.40 ms. The component with the SFS stress in

the production term, 2aL,1τSFS11 ,1, has larger magnitude with more filtering operations but this change is offset by the

adjustment of 2aL,1〈p〉`,1 which also has larger magnitude but opposite effect compared with the former. Similarly,

the constituent with SFS stress in the turbulent transport term, −2(〈u〉′L τSFS11
′
),1, has greater magnitude as the filter

width increases but its larger influence is offset by the change of −2(〈u〉′L 〈p〉
′
`),1. In general, the overall shapes of the

production and turbulent transport terms are quite similar for different filter widths, but their compositions change
as the SFS stress plays a more important role in each of the two terms.

XIII. CONCLUSIONS

A second-moment analysis of high Atwood number variable-density mixing induced by RMI was conducted with
high-resolution 3D AMR simulation data. In the numerical experiment, the material interface separating SF6 and air
is impulsively accelerated twice and the mixing layer becomes turbulent after re-shock. The roles that the two second-
moments, turbulent mass flux and density-specific-volume covariance, play in the development of Favre-averaged
Reynolds stress were discussed through the examination the transport equations for the second-moments, including
the Favre-averaged Reynolds stress and turbulent kinetic energy. The study of the transport mechanisms of the
second-moments can foster the improvement of existing reduced-order models for closing the Favre-averaged Navier–
Stokes equations in RANS-based simulations. The quantities of interest, including the second-moments computed
with the simulation data, were found to be well grid-converged at the finest grid setting and the study of their
time evolution revealed the non-Boussinesq and anisotropic nature of the variable-density flow induced by RMI. The
transport equations of the Reynolds stress and second-moments were studied before re-shock when mixing occurs due
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FIG. 33. Effect of filtering on the budgets of the large-scale turbulent mass flux component in the streamwise direction,
〈ρ〉`aL,1, given by equation (55), at t = 1.40 ms. Cyan solid line: production [term (III)]; red dashed line: redistribution
[term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange
dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted
line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).
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FIG. 34. Effect of filtering on the budgets of the large-scale density-specific-volume covariance multiplied by the mean filtered
density, 〈ρ〉`bL, given by equation (57), at t = 1.40 ms. Cyan solid line: production [term (III)]; red dashed line: redistribution
[term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)]; orange
dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted
line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

to the instability. The relative importance of different terms in the budgets of the quantities across the mixing layer
was found to vary a lot and the origins of the generation, destruction, and spreading of the quantities of interest over
time were traced back to the corresponding budget terms. Unlike the situation where all scales in the flow are well-
resolved in the highest resolution simulation before re-shock, the wide span of scales generated due to mixing transition
after re-shock leads to under-resolved simulation results. While the budgets of some second-moments, including the
Reynolds stress, are unclosed during this time period, the budgets of large-scale Reynolds stress and second-moments
at sufficiently large scale were found to be unaffected by the numerical regularization, when the influence of the SFS
stress is taken into account. The effects of the SFS stress on the development of large-scale quantities at different
filtered scales were studied. Although the SFS stress can significantly contribute to the composition of different budget
terms when a large filter width is used, the overall budgets of large-scale Reynolds stress and second-moments remain
quite self-similar with filtering as the shapes of different budget terms and their relative magnitudes are similar with
different filter widths. This suggests that the budget analysis of large-scale quantities in LESs can be relevant for the
development and validation of RANS-based closures that model each budget term as a whole, even when the Reynolds
stress and turbulent kinetic energy are not well-resolved, provided that the effects of an accurate representation of
the SFS stress are included in the budget terms. This also addresses the importance of reconstructing the SFS
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FIG. 35. Effect of filtering on the budgets of the large-scale Reynolds normal stress component in the streamwise direction

multiplied by the mean filtered density, 〈ρ〉`R̃L,11, given by equation (52), at t = 1.40 ms. Cyan solid line: production [term
(III)]; red dashed line: press-strain redistribution [term (V)]; green dash-dotted line: turbulent transport [term (IV)]; blue
dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise velocity
associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms (rate of change
in the moving frame).
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FIG. 36. Effect of filtering on the budgets of the large-scale turbulent kinetic energy, 〈ρ〉`kL, given by equation (54), at
t = 1.40 ms. Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green dash-dotted line:
turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of
convection due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line:
summation of all terms (rate of change in the moving frame).

stress in LESs of this type of variable-density flows in order to model the development of the turbulence accurately.
Nevertheless, the study of the evolution mechanism of the SFS stress requires the analysis of its transport equation
with fully resolved turbulence data. As a result, future research of RMI-induced variable-density turbulence with
higher resolution simulations, such as DNSs that resolve all spatio-temporal scales, can largely advance turbulence
modeling in LES, RANS, and hybrid RANS-LES approaches.
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FIG. 37. Effect of filtering on the compositions of the production term [term (III)] in the transport equation for the large-scale

turbulent mass flux component in the streamwise direction, 〈ρ〉`aL,1, at t = 1.40 ms. Cyan solid line: overall production; red

dashed line: bL〈p〉`,1; green dash-dotted line: −bL〈τ11〉`,1; orange dash-dot-dotted line: bLτSFS
11 ,1; blue dotted line: −R̃L,11〈ρ〉`,1.
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FIG. 38. Effect of filtering on the compositions of the destruction term [term (VI)] in the transport equation for the large-scale

turbulent mass flux component in the streamwise direction, 〈ρ〉`aL,1, at t = 1.40 ms. Cyan solid line: overall destruc-

tion; red dashed line: 〈ρ〉`
(
1/ 〈ρ〉`

)′ 〈p〉′`,1; green dash-dotted line: −〈ρ〉`
(
1/ 〈ρ〉`

)′ (
∂ 〈τ1i〉′` /∂xi

)
; orange dash-dot-dotted line:

〈ρ〉`
(
1/ 〈ρ〉`

)′ (
∂τSFS

1i
′
/∂xi

)
; blue dotted line: 〈ρ〉`εaL,1 .

Laboratory Institutional Computing Program and the Advanced Simulation and Computation (ASC) Program.

Appendix A: Grid sensitivity analysis of the spatial profiles of second-moments

The grid sensitivities of the spatial profiles of ρ̄a1, b, ρ̄R̃11, and ρ̄k at different times between the grid D and the
grid E are shown respectively in figures 41, 42, 43, and 44. Overall, these spatial profiles have small grid sensitivities
between the two grid resolutions at different times which are consistent with the grid sensitivities of the time evolution
of the domain-integrated values.
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FIG. 39. Effect of filtering on the compositions of the production term [term (III)] in the transport equation for the large-scale

Favre-averaged Reynolds normal stress component in the streamwise direction multiplied by the mean filtered density, 〈ρ〉`R̃L,11,

at t = 1.40 ms. Cyan solid line: overall production; red dashed line: 2aL,1〈p〉`,1; green dash-dotted line: −2aL,1〈τ11〉`,1; orange

dash-dot-dotted line: 2aL,1τSFS
11 ,1; blue dotted line: −2〈ρ〉`R̃L,11〈̃u〉L,1.
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FIG. 40. Effect of filtering on the compositions of the turbulent transport term [term (IV)] in the transport equation for
the large-scale Favre-averaged Reynolds normal stress component in the streamwise direction multiplied by the mean filtered

density, 〈ρ〉`R̃L,11, at t = 1.40 ms. Cyan solid line: overall turbulent transport; red dashed line: −(〈ρ〉` 〈u〉
′′
L 〈u〉

′′
L 〈u〉

′′
L),1; green

dash-dotted line: −2(〈u〉′L 〈p〉
′
`),1; blue dotted line: 2(〈u〉′L 〈τ11〉

′
`),1; orange dash-dot-dotted line: −2(〈u〉′L τSFS

11
′
),1.

Appendix B: Time evolution of the numbers of grid cells in the simulations

Figure 45 shows the number of grid cells and weighted number of grid cells summed over all grid levels for different
AMR grid resolutions over time. The weighted number of grid cells is defined as:

lmax∑
l=0

∆xlmax

∆xl
Nl, (B1)

where Nl and ∆xl are the number of grid cells and grid spacing respectively at level l. The maximum level number
lmax = 2 is used in this work. The weighted number of grid cells accounts for the fact that the time step size is larger
for grid cells at the lower grid level from the CFL condition and has less computational cost compared to grid cells at
higher grid levels. Since larger time step sizes are used for coarser grid levels in the multi-time stepping (sub-cycling)
algorithm of the AMR code, the weighted number of grid cells is a better metric for comparing the computational cost
of different AMR simulations. From figure 45, it can be seen that both the number of cells and weighted number of
cells are the largest near the end of simulation for each grid resolution. The maximum number of cells and weighted
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FIG. 41. Grid sensitivities of the profiles of the turbulent mass flux component in the streamwise direction, ρ̄a1, at different
times between the grid D and the grid E. The profiles with the grid D and the grid E are shown with symbols and lines
respectively. Cyan circles or solid line in (a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms; green hexagons
or dash-dotted line in (a): t = 0.75 ms; blue diamonds or dotted line in (a): t = 1.10 ms. Cyan circles or solid line in (b):
t = 1.20 ms; red squares or dashed line in (b): t = 1.40 ms; green hexagons or dash-dotted line in (b): t = 1.60 ms; blue
diamonds or dotted line in (b): t = 1.75 ms.
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FIG. 42. Grid sensitivities of the profiles of the density-specific-volume covariance, b, at different times between the grid D and
the grid E. The profiles with the grid D and the grid E are shown with symbols and lines respectively. Cyan circles or solid
line in (a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms; green hexagons or dash-dotted line in (a): t = 0.75 ms;
blue diamonds or dotted line in (a): t = 1.10 ms. Cyan circles or solid line in (b): t = 1.20 ms; red squares or dashed line in
(b): t = 1.40 ms; green hexagons or dash-dotted line in (b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.

number of cells for the grid E setting are around 4.55 and 4.19 billions respectively. Both number of cells and weighted
number of cells are close to each other over time since most of the grid cells are on the finest level.

Appendix C: Transport coefficients

The shear viscosity, µi, of species i is given by the Chapman-Enskog’s model [72]:

µi = 2.6693× 10−6
√
MiT

Ωµ,iσ2
i

, (C1)

where σi is the collision diameter and Ωµ,i is the collision integral of the species given by

Ωµ,i = A (T ∗i )
B

+ Cexp (DT ∗i ) + Eexp (FT ∗i ) , (C2)
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FIG. 43. Grid sensitivities of the profiles of the Reynolds normal stress component in the streamwise direction multiplied by
the mean density, ρ̄R̃11, at different times between the grid D and the grid E. The profiles with the grid D and the grid E are
shown with symbols and lines respectively. Cyan circles or solid line in (a): t = 0.05 ms; red squares or dashed line in (a):
t = 0.40 ms; green hexagons or dash-dotted line in (a): t = 0.75 ms; blue diamonds or dotted line in (a): t = 1.10 ms. Cyan
circles or solid line in (b): t = 1.20 ms; red squares or dashed line in (b): t = 1.40 ms; green hexagons or dash-dotted line in
(b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.
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FIG. 44. Grid sensitivities of the profiles of the turbulent kinetic energy, ρ̄k, at different times between the grid D and the
grid E. The profiles with the grid D and the grid E are shown with symbols and lines respectively. Cyan circles or solid line in
(a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms; green hexagons or dash-dotted line in (a): t = 0.75 ms; blue
diamonds or dotted line in (a): t = 1.10 ms. Cyan circles or solid line in (b): t = 1.20 ms; red squares or dashed line in (b):
t = 1.40 ms; green hexagons or dash-dotted line in (b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.

where T ∗i = T/(ε/k)i, A = 1.16145, B = −0.14874, C = 0.52487, D = −0.7732, E = 2.16178, and F = −2.43787. T
is the temperature of the species. (ε/k)i is the Lennard-Jones energy parameter and Mi is the molecular mass of the
species. The values of Mi, (ε/k)i, and σi are given in Table IV.

The bulk viscosity, µv, of air is given by the linear model by Gu and Ubachs [73]:

µv = A+BT, (C3)

where A = −3.15× 10−5 kg m−1s−1 and B = 1.58× 10−7 kg m−1s−1K−1.
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FIG. 45. Number of grid cells during the simulations. Cyan solid line: grid B; red dashed line: grid C; green dash-dotted line:
grid D; blue dotted line: grid E.

The bulk viscosity, µv, of SF6 is given by Cramer’s model [74]:

µv = (γ − 1)
2
cv|v (pτv), (C4)

cv|v =

(
cv
R
− fr + 3

2

)
, (C5)

(pτv) = Aexp

(
B

T
1
3

+
C

T
2
3

)
, (C6)

where fr = 3, A = 0.2064× 10−5 kg m−1s−1, B = 121 K1/3, and C = −339 K2/3 for SF6.

The thermal conductivity of species i, κi, is defined by:

κi = cp,i
µi
Pri

, (C7)

where Pri and cp,i are the species-specific Prandtl number and specific heat at constant pressure respectively.

Mass diffusion coefficient of a binary mixture, Dij , is given by [75]:

Dij = Di = Dj =
0.0266

ΩD,ij

T 3/2

p
√
Mijσ2

ij

, (C8)

where p and T are the pressure and temperature of the mixture. ΩD,ij is the collision integral for diffusion given by:

ΩD,ij = A
(
T ∗ij
)B

+ Cexp
(
DT ∗ij

)
+ Eexp

(
FT ∗ij

)
+Gexp

(
HT ∗ij

)
, (C9)

where T ∗ij = T/Tεij , A = 1.06036, B = −0.1561, C = 0.19300, D = −0.47635, E = 1.03587, F = −1.52996,
G = 1.76474, and H = −3.89411. Mij , σij , and Tεij are the effective molecular mass, collision diameter, and
Lennard–Jones energy parameter respectively for the mixture:

Mij =
2

1
Mi

+ 1
Mj

, (C10)

σij =
σi + σj

2
, (C11)

Tεij =

√( ε
k

)
i

( ε
k

)
j
. (C12)

The values of Mi, (ε/k)i, and σi of different species are given in table IV.
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TABLE IV. Fluid properties.

Gas γi cp,i (J kg−1K−1) cv,i (J kg−1K−1) Mi (g mol−1) Ri (J kg−1K−1) (ε/k)i (K) σi (Å) Pri
SF6 1.09312 668.286 611.359 146.055 56.9269 222.1 5.128 0.79
Air 1.39909 1040.50 743.697 28.0135 296.802 78.6 3.711 0.71

Appendix D: Mixing rules

With the assumption that all species are at pressure and temperature equilibria, the ratio of specific heats of the
mixture follows as

γ =
cp
cv
, cp =

N∑
i=1

Yicp,i, cv =

N∑
i=1

Yicv,i. (D1)

The molecular mass of the mixture is given by

M =

(
N∑
i=1

Yi
Mi

)−1
. (D2)

The mixture shear viscosity, bulk viscosity, and thermal conductivity are given by

µ =

∑N
i=1 µiYi/

√
Mi∑N

i=1 Yi/
√
Mi

, (D3)

µv =

∑N
i=1 µv,iYi/

√
Mi∑N

i=1 Yi/
√
Mi

, (D4)

κ =

∑N
i=1 κiYi/

√
Mi∑N

i=1 Yi/
√
Mi

. (D5)
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