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A numerical study of convection with stress-free boundary conditions in the presence of an imposed
magnetic field that is tilted with respect to the direction of gravity is carried out in the limit of
small magnetic Reynolds number. The dynamics are investigated over a range of Rayleigh number
Ra and Chandrasekhar numbers up to Q = 2 × 106, with the tilt angle of the imposed magnetic
field vector fixed at 45◦ relative to vertical. For a fixed value of Q and increasing Ra, the convection
dynamics can be broadly characterized by three primary flow regimes: (1) quasi-two-dimensional
convection rolls near the onset of convection; (2) isolated convection columns aligned with the
imposed magnetic field; and (3) unconstrained convection reminiscent of non-magnetic convection.
The influence of varying Q and Ra on the various fields is analyzed. Heat and momentum transport,
as characterized by the Nusselt and Reynolds numbers, are quantified and compared with the vertical
field case. Ohmic dissipation dominates over viscous dissipation in all cases investigated. Various
mean fields are investigated and their scaling behavior is analyzed. Provided Ra is sufficiently large,
all investigated values of Q exhibit an inverse kinetic energy cascade that yields strong ‘zonal’ flows
with an amplitude that scales as Q1/3. Relaxation oscillations, as characterized by a quasi-periodic
shift in the predominance of either the zonal or non-zonal component of the mean flow, occur when
Ra and Q are sufficiently large.

I. INTRODUCTION

Convection in the presence of externally imposed magnetic fields, or magnetoconvection (MC), is important in stars
and planetary interiors [1]. Magnetic fields can lead to novel flow regimes relative to non-conducting fluids. Notably,
imposed magnetic fields induce flow anisotropy. The resulting change in flow structure, however, is dependent on the
direction and magnitude of the imposed magnetic field, implying that a rich variety of dynamics can be realized in
MC. In the context of planets and stars, the magnetic field tends to be self-generated through dynamo action and is
therefore spatially (and temporally) complex. It is therefore of interest to understand how field direction, in addition
to field magnitude, influences the underlying convective motions.

The periodic plane layer geometry provides a particularly simple system in which to study MC. The linear theory
of MC for the plane layer is well established and provides a useful starting point for understanding the resulting
nonlinear dynamics [2]. The constant gravitational field is denoted by g = −gẑ (where ẑ is the unit vector pointing
normal to the planar boundaries) and the uniform imposed magnetic field is B0. In the present work we focus solely
on the limit in which the induced magnetic field is weak relative to the imposed field – known as the quasi-static
limit [e.g. 3] – we therefore limit our present discussion to this case. When g and B0 are aligned, which we refer to
as vertical MC (VMC), convection is stabilized and the horizontal scale of the most unstable eigenmodes decreases
with increasing field strength. When B0 is horizontal (HMC), the preferred mode consists of two-dimensional (2D)
convection rolls with their axes aligned with B0. The general case of a tilted magnetic field (TMC) is essentially a
mixture of these two previous cases in which the most unstable eigenmodes consist of two-dimensional rolls aligned
with the horizontal component of the imposed magnetic field, but with a horizontal length scale that decreases with
increasing magnetic field strength.

The nonlinear evolution of MC has been investigated both experimentally and numerically for a variety of magnetic
field configurations. VMC dynamics has been studied for both the quasi-static limit, and for the case of arbitrarily
large induced magnetic fields using numerical simulations [e.g. 4]. In the discussion here we focus on those results
pertaining to the quasi-static limit. Given the preference for fluid to move parallel to the imposed magnetic field
direction, the vertical field geometry tends to limit horizontal mixing when the field strength is sufficiently large [5].
In confined geometries, such as cylinders, distinct flows such as convective wall modes are also present [6–8]. Heat
and momentum transport, while always weaker than non-magnetic Rayleigh-Bénard convection (RBC), both increase
at a rate that is faster than RBC [5, 8]. For sufficiently strong buoyancy forcing, VMC data appears to approach
the corresponding RBC data [5, 8, 9], which suggests an expected weakening dynamical role of the imposed magnetic
field.

Studies of HMC show that 2D rolls persist over a significant range of parameter space and can yield heat transport
that is more efficient than RBC [10–13]. The flow eventually transitions to anisotropic 3D convection that can exhibit
rich time dependent motions [14–16]. In confined geometries the lateral walls can have a significant influence on the
dynamics due to the formation of Hartmann boundary layers [11]. The stabilizing role played by these boundary
layers leads to an increase in the critical temperature gradient required to initiate convection.

In comparison to VMC and HMC, less is presently known about the nonlinear behavior of TMC. Previous 2D
studies of TMC have found mean flows and traveling wave solutions that are generated by the broken symmetry
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FIG. 1. Geometry used in the present study. The fluid layer has depth H and horizontal extent L.

associated with the tilted magnetic field [17]. This previous work suggests that the mean flows tend to travel in the
direction of the tilt, though the dependence of the amplitude of this mean flow on the input parameters, namely the
imposed field strength, has not been investigated in detail. In addition, to our knowledge the efficiency of heat and
momentum transport has been unexplored for TMC.

Rotating convection (RC) has been studied in great detail due to its relevance for planetary and stellar applications
[18]. Like MC, RC with a vertical rotation vector stabilizes the convection and yields anisotropic structures [2]. The
inverse kinetic energy cascade is prevalent in RC provided that the influence of rotation is strong; the resulting flows
are characterized by vortices that span the horizontal length of the system and are approximately invariant in the
direction of the rotation axis [19–22]. When the two horizontal dimensions are unequal, the inverse cascade is instead
manifested by the presence of large scale horizontally-directed jets [23]. Recent studies of RC with a tilted rotation
axis find that both jets and vortices are present, depending on the tilt of the rotation axis (and likely also the relative
importance of rotation and inertia) [24, 25].

In the present work we carry out a systematic investigation of three-dimensional TMC using direct numerical
simulations. Flow regimes are delineated, and heat and momentum transport are quantified over a range of imposed
field strengths and buoyancy forcing. When possible, a comparison is made with recent VMC simulations; we find
that the primary difference between TMC and VMC is the presence of magnetically constrained turbulent states in
the former. We find that TMC, like rotating convection, yields an inverse cascade of kinetic energy, characterized by
energetic (relative to the convection) mean flows that tend to be dominated by a meandering, alternating jet structure.
In some cases we also find that these jets can become unstable and give rise to relaxation oscillations.

II. METHODS

We employ a periodic plane layer geometry, as shown in Fig. 1. The Cartesian coordinate system is denoted by
x = (x, y, z). The fluid layer has depth H and horizontal extent L. The spatially uniform imposed magnetic field
vector is given by

B0 = B0η̂, (1)

where we define the vector

η̂ = η1 x̂ + η3 ẑ, (2)

with η1 = sin θ and η3 = cos θ. The angle θ is measured relative to the vertical and fixed in the present study to
θ = 45◦.

The fluid is Oberbeck-Boussinesq with density ρ, kinematic viscosity ν, thermal diffusivity κ, thermal expansion
coefficient α, magnetic diffusivity λ, and vacuum permeability µ. The dimensional temperature difference between
the bottom and top boundaries is denoted by ∆T > 0. The governing equations are non-dimensionalized with length
H, viscous diffusion timescale (H2/ν), flow speed (ν/H), magnetic field B0, pressure ρ(ν/H)2, and temperature ∆T ,
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to give

Dtu = −∇P +
Ra

Pr
T ẑ +Q η̂ · ∇b +∇2u, (3)

0 = η̂ · ∇u +∇2b, (4)

DtT =
1

Pr
∇2T, (5)

∇ · u = 0, (6)

∇ · b = 0, (7)

where t is the non-dimensional time, the material derivative is denoted by Dt(·) = ∂t(·) +u · ∇(·), u = (u, v, w) is the
velocity field, b is the induced magnetic field, T is the temperature, and P is the reduced pressure.

The non-dimensional parameters appearing in the above equations are the Rayleigh number, the thermal Prandtl
number, and the Chandrasekhar number defined by, respectively

Ra =
αg∆T H3

κν
, Pr =

ν

κ
, Q =

B2
0H

2

ρνµλ
. (8)

In all cases presented here the thermal Prandtl number is fixed at Pr = 1, whereas Ra and Q are both varied.
The quasi-static magnetohydrodynamic equations (3)-(4) represent the physical scenario in which the induced

magnetic field is asymptotically smaller than the imposed magnetic field. Denoting the magnetic Prandtl number
as Pm = ν/λ, the induced magnetic field is of size O(Pm), and the limit Pm → 0 is taken in the governing
equations. A consequence of this approximation is that the Lorentz force becomes linear and the induced magnetic
field adjusts instantaneously to the velocity field, as indicated by the lack of a time derivative in equation (4). The
quasi-static approximation is well-satisfied in laboratory experiments that use liquid metals in which Pm = O(10−6)
[e.g. 11, 15, 26–28]. For further details on this approximation we refer the reader to Refs. [3, 29, 30].

The mechanical boundary conditions are impenetrable and stress-free, constant temperature and electrically insu-
lating, which can be written as

w =
∂u

∂z
=
∂v

∂z
= 0 at z = 0, 1. (9)

The thermal boundary conditions are constant temperature

T = 1 at z = 0, T = 0 at z = 1. (10)

Electrically insulating electromagnetic boundary conditions are used such that the current density j = ∇× b is zero
within the insulator. With these boundary conditions the magnetic field at z = 0 and z = 1 must be matched to a
potential field; the numerical details of this matching procedure can be found in Ref. [31].

All flow variables are assumed to be periodic in the horizontal dimensions. Both the velocity and magnetic fields
are represented in terms of poloidal and toroidal scalars such that the solenoidal conditions are satisfied exactly. The
resulting equations are solved numerically with a pseudo-spectral algorithm using Fourier series in the horizontal
directions and Chebyshev polynomials in the vertical direction. A third-order implicit-explicit Runge-Kutta time
stepping method is used. Further details of the code are given in Ref. [32].

An important parameter for the simulations is the aspect ratio of the computational domain, defined by

Γ ≡ L

H
. (11)

For the simulations we scale the horizontal length in integer multiples (n) of the (dimensionless) critical horizontal
wavelength, λc, such that L = nλcH. The aspect ratio then becomes

Γ = nλc. (12)
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The critical wavelength is determined from linear stability theory, as detailed in Ref. [2]; here we provide a brief
overview. Upon linearizing the governing equations, and assuming normal mode solutions with horizontal wavevector
k = (kx, ky), the most unstable eigenmodes consist of longitudinal rolls oriented parallel to the imposed magnetic
field (i.e. kx = 0) with marginal Rayleigh number [2]

Ram =

(
π2 + k2y

)
k2y

[(
π2 + k2y

)2
+ π2η23Q

]
. (13)

Minimizing the above expression gives

2kc
6 + 3π2kc

4 − π4η23Q− π6 = 0, (14)

where kc = 2π/λc is the critical horizontal wavenumber. For the field strengths used in the present study, Q =
(2 × 103, 2 × 105, 2 × 106), we find kc ≈ (5.6842, 12.8343, 18.9823) with corresponding critical Rayleigh numbers
Rac ≈ (1.5207× 104, 1.0784× 106, 1.0281× 107). We found that n = 10 is sufficient for convergence of bulk quantities
such as the heat transport. Thus, this value is used unless stated otherwise. For the imposed field strengths used in
the present study, the aspect ratios corresponding to n = 10 are given by Γ ≈ (11.1, 4.9, 3.3). In section III.4.1 we
report on the effects of varying the aspect ratio.

For future reference it is also helpful to investigate the asymptotic limitQ→∞. In this limit the critical wavenumber
and the critical Rayleigh number are given by, respectively,

k(a)c →
(

1

2
π4η23Q

)1/6

, Ra(a)c → π2η23Q. (Q→∞) (15)

II.1. Definitions

Various forms of averaging are used to present the results. For some generic scalar quantity, f(x, t), horizontal
averages are defined by

f(z, t) =
1

Γ2

∫
(x,y)

f(x, t) dx dy. (16)

Other averages will be denoted with an overline and a superscript to denote the dimension in which the quantity is
averaged. For instance, the zonal average is defined by

f
y
(x, z, t) =

1

Γ

∫
f(x, t) dy. (17)

Averages in time and in the direction of the magnetic field are similarly defined. Volume and time averaged quantities
are denoted with angled brackets,

〈f〉 =
1

t′Γ2

∫
(t′,x)

f(x, t) dx dt, (18)

where t′ is the time interval.
The Reynolds number is defined by Re = UH/ν, where U is a characteristic speed. We find it useful to com-

pute Reynolds numbers that utilize both the three-dimensional velocity field (denoted by Re) and only the vertical
component of the velocity (denoted by Rez). In the non-dimensionalization used here these Reynolds numbers become

Re =
√
〈u2 + v2 + w2〉, Rez =

√
〈w2〉. (19)

The Nusselt number quantifies the non-dimensional global heat transport across the layer and is defined as

Nu = 1 + Pr〈wT ′〉, (20)

where T ′(x, y, z, t) = T (x, y, z, t)− T (z, t) is the fluctuating temperature.
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FIG. 2. Parametric overview of the simulations, as characterized by the ratio Ha/Rez, where Ha =
√
Q is the Hartmann number

and Rez is the Reynolds number based on the rms of the vertical component of the velocity field. The critical Rayleigh number
is denoted by Rac. The ratio Ha/Rez represents the relative size of the Lorentz force and inertia: cases with Ha/Rez & O(1)
are considered magnetically constrained.

III. RESULTS

III.1. Parametric overview and flow regimes

We investigate imposed magnetic field strengths of Q = (2 × 103, 2 × 105, 2 × 106), which were chosen so that the
critical Rayleigh number, Rac, for each field strength corresponds with those used in recent VMC simulations [5].
We explore Rayleigh numbers up to Ra ≈ (132Rac, 28Rac, 7Rac) for each of the three values of Q. Data for the
simulations is summarized in Table I. While spatial resolution requirements are significant for many of the simulated
flows, we find that the primary limiting factor for the computations done at larger values of Q and Ra is the presence
of slowly evolving relaxation oscillations that require extremely long computation times to obtain converged statistics.

A useful measure for characterizing the relative importance of the imposed magnetic field is the ratio, Ha/Rez,
where the Hartmann number is defined as Ha =

√
Q. The ratio Ha/Rez represents the relative influence of the

Lorentz force to inertial forces in the quasi-static limit [e.g. 3, 29]. By restricting the Reynolds number to only
include the vertical component of the velocity field, we are attempting to better characterize the relative influence
of the magnetic field on the small scale convection. As discussed later, mean flows develop that have magnitudes
significantly larger than the vertical component of the velocity field. Fig. 2 shows this ratio for all of the simulations.
Cases in which Ha/Rez � 1 are considered magnetically constrained in the sense that the Lorentz force enters the
leading order force balance [cf. 5]. For values of Ha/Rez . 1, inertia plays a leading order dynamical role and the
resulting motions are only weakly influenced by the imposed magnetic field. In the present study we only find cases
with Ha/Rez . 1 for the smallest field strength of Q = 2× 103; for these cases we find that the convective structures
are no longer aligned with the (tilted) magnetic field.

To illustrate the structure of the flow field as both Q and Ra are varied (and therefore also Ha/Rez) we show volu-
metric renderings of the fluctuating temperature in Fig. 3 for each of the three values of Q and three particular values
of Ra. As predicted by linear theory, for Ra ≈ Rac, we observe anisotropic convective rolls that are predominantly
aligned with the x-component of the imposed magnetic field – these structures are evident in Fig. 3(a) and to a lesser
degree in panels (d) and (g). As the Rayleigh number is increased we find that the rolls develop a large scale, kx = 1,
modulation; with our aspect ratio this corresponds to a wavelength of λ = 10λc. This modulation interacts nonlinearly
with the convective rolls and leads to the formation of a large scale mean flow that is discussed in more detail below.
Further increases in Ra lead to the development of convective columns that are aligned with the imposed magnetic
field. These structures are particularly evident in the Q = 2 × 105 and Q = 2 × 106 cases, e.g. Figures 3(e,f,h,i).
These cases also show that the convective structures are elongated in the x-direction. For Q = 2 × 103 the tilt of
the convective structures is less noticeable; in Fig. 3(b) some tilt is observable, though for sufficiently large Rayleigh
number the tilt is no longer obvious (Fig. 3(c)). Despite the lack of constraint in simulations with Ha/Rez . 1, we
find that the magnetic field still plays an important dissipative role, as discussed in the next section.
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Q Ra Nu Re Rez ∆t Nx ×Ny ×Nz

2 ×103 1.53 ×104 1.012 ± 0.000 0.822 ± 0.000 0.719 ± 0.000 10−3 96× 96× 48

2 ×103 2 ×104 1.30 ± 0.03 5.05 ± 0.19 4.16 ± 0.18 10−3 96× 144× 48

2 ×103 2.5 ×104 1.54 ± 0.04 8.29 ± 0.24 6.61 ± 0.21 10−3 144× 192× 48

2 ×103 4 ×104 2.19 ± 0.04 17.86 ± 0.24 11.34 ± 0.30 5× 10−4 144× 192× 48

2 ×103 6 ×104 2.83 ± 0.05 30.98 ± 0.35 16.47 ± 0.36 2× 10−4 192× 288× 72

2 ×103 1 ×105 3.75 ± 0.05 54.80 ± 0.37 25.12 ± 0.43 1× 10−4 288× 288× 144

2 ×103 2 ×105 5.22 ± 0.07 103.43 ± 0.71 40.81 ± 0.66 4× 10−5 288× 384× 144

2 ×103 4 ×105 7.06 ± 0.09 179.71 ± 0.79 63.67 ± 1.03 4× 10−5 384× 576× 144

2 ×103 6 ×105 8.38 ± 0.09 229.58 ± 1.90 81.39 ± 1.14 2× 10−5 576× 576× 144

2 ×103 1 ×106 10.35 ± 0.11 285.17 ± 2.17 110.31 ± 1.25 1× 10−5 768× 768× 192

2 ×103 2 ×106 13.42 ± 0.12 214.17 ± 2.16 154.75 ± 1.39 5× 10−6 768× 768× 288

2 ×105 1.1 ×106 1.024 ± 0.006 2.11 ± 0.29 2.01 ± 0.28 10−5 96× 144× 96

2 ×105 1.3 ×106 1.17 ± 0.02 8.13 ± 0.52 7.16 ± 0.55 10−5 96× 144× 96

2 ×105 1.5 ×106 1.31 ± 0.02 13.84 ± 0.54 10.73 ± 0.67 10−5 144× 192× 96

2 ×105 1.7 ×106 1.46 ± 0.03 20.69 ± 0.62 14.33 ± 0.79 10−5 144× 192× 96

2 ×105 2 ×106 1.72 ± 0.03 32.44 ± 0.63 19.53 ± 0.92 10−5 192× 192× 96

2 ×105 2.2 ×106 1.87 ± 0.04 41.26 ± 0.64 22.65 ± 0.96 10−5 192× 192× 96

2 ×105 2.5 ×106 2.10 ± 0.04 55.79 ± 0.70 27.05 ± 1.02 10−5 192× 192× 96

2 ×105 3 ×106 2.45 ± 0.04 81.53 ± 0.76 34.23 ± 1.11 10−5 192× 288× 96

2 ×105 4 ×106 3.11 ± 0.07 134.82 ± 1.32 47.60 ± 1.70 10−5 288× 384× 96

2 ×105 6 ×106 4.24 ± 0.13 240.66 ± 1.88 70.43 ± 3.00 10−5 288× 384× 144

2 ×105 8 ×106 5.18 ± 0.16 344.60 ± 2.37 90.74 ± 3.77 5× 10−6 576× 576× 192

2 ×105 1 ×107 6.55 ± 0.27 323.43 ± 72.48 112.83 ± 3.82 5× 10−6 576× 576× 192

2 ×105 1.5 ×107 8.30 ± 0.38 548.14 ± 114.34 154.27 ± 6.46 2× 10−6 576× 576× 288

2 ×105 3 ×107 12.67 ± 0.40 921.73 ± 195.51 251.40 ± 6.44 2× 10−6 576× 768× 288

2 ×106 1.04 ×107 1.015 ± 0.000 2.651 ± 0.000 2.575 ± 0.000 10−6 96× 144× 144

2 ×106 1.1 ×107 1.07 ± 0.01 6.75 ± 0.37 6.54 ± 0.35 10−6 96× 144× 144

2 ×106 1.3 ×107 1.21 ± 0.01 16.17 ± 0.75 13.33 ± 0.76 10−6 144× 192× 144

2 ×106 1.5 ×107 1.37 ± 0.02 29.24 ± 0.91 20.16 ± 1.20 10−6 144× 192× 144

2 ×106 2 ×107 1.81 ± 0.03 73.14 ± 1.03 36.13 ± 1.59 10−6 144× 288× 144

2 ×106 2.5 ×107 2.25 ± 0.04 125.88 ± 1.29 51.13 ± 2.28 10−6 192× 288× 144

2 ×106 3 ×107 2.64 ± .06 184.21 ± 1.91 63.98 ± 3.06 10−6 288× 288× 144

2 ×106 4 ×107 3.41 ± .07 305.61 ± 2.88 89.59 ± 4.62 10−6 384× 384× 192

2 ×106 5 ×107 4.14 ± .10 422.72 ± 5.20 113.64 ± 5.24 10−6 384× 576× 192

2 ×106 7 ×107 5.46 ± .14 663.70 ± 3.09 156.39 ± 8.06 10−6 576× 576× 288

TABLE I. Details of the simulations. Q is the Chandraskehar number, Ra is the Rayleigh number, Nu is the Nusselt number,
Re is the Reynolds number, Rez is the Reynolds number based only on the vertical component of the velocity, ∆t is the
timestep size and Nx ×Ny ×Nz denotes the physical space resolution. The thermal Prandtl number is fixed at Pr = 1 for all
simulations.

III.2. Heat and momentum transport

Fig. 4 shows the Nusselt number, where both the new TMC data and the VMC data from Ref. [5] are shown for
comparison. The slope of the Nu-Ra data increases with Q, similar to VMC. However, in VMC there is a steeper
increase in Nu near the onset of convection and a subsequent reduction in the growth rate of Nu with increasing
Ra. This difference between VMC and TMC is exhibited in the corresponding compensated value, Nu/(Ra/Rac),
as shown in Fig. 4(b). The Nu ∼ Ra/Rac scaling behavior is independent of viscous dissipation, which might be
expected in the limit Q → ∞ [e.g. 33]. However, we find that viscous dissipation becomes important in all cases
just after the onset of convection, which suggests a possible explanation for why such a scaling is not observed. For
sufficiently large values of Ra/Rac, both VMC and TMC show similar scaling behavior in Nu, at least for Q = 2×103

and Q = 2× 105.
Vertical profiles of the rms temperature fluctuation are shown for all values of Q in Fig. 5. For a fixed value of

Q we find that the temperature fluctuation within the interior begins to decrease for sufficiently large Ra/Rac once
robust thermal boundary layers form; the growth of T ′ with increasing Ra/Rac is then achieved within the vicinity
of the thermal boundary layer. Comparing the profiles for different values of Q reveals that the rms temperature
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Volumetric renderings of the fluctuating temperature for various cases. Top row (Q = 2 × 103): (a) Ra/Rac = 1.3;
(b) Ra/Rac = 13.2; (c) Ra/Rac = 132. Middle row (Q = 2× 105): (d) Ra/Rac = 1.4; (e) Ra/Rac = 7.4; (f) Ra/Rac = 27.8.
Bottom row (Q = 2 × 106): (g) Ra/Rac = 1.5; (h) Ra/Rac = 3.9; (i) Ra/Rac = 6.8. The orientation for all visualizations is
shown in panel (a).

fluctuation is generally a decreasing funtion of Q, as predicted by asymptotic theory [34–36]. Although not shown,
we find that for all values of Q the horizontally averaged temperature shows a trend toward a nearly isothermal bulk
with well developed thermal boundary layers as Ra is increased. These results indicate that, like RBC and VMC [5],
the heat transfer is ultimately limited by the thermal boundary layers in TMC. This data suggests that the initial
rapid growth in Nu for small Ra/Rac is due to the formation of thermal boundary layers.

The Nusselt number and the energy dissipation are related via

(Nu− 1)
Ra

Pr2
= εu + εb, (21)

where the viscous and ohmic dissipation are given by εu = 〈ζ2〉 and εb = Q〈j2〉, respectively. The vorticity vector is
denoted by ζ = ∇× u.
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(a) (b)

FIG. 4. Nusselt number data: (a) Nu versus Ra; (b) compensated Nusselt number, Nu(Rac/Ra), versus Ra/Rac. Tilted
magnetoconvection cases are denoted by TMC, and the vertical field cases from Ref. [5] are denoted by VMC.

It is helpful to define the ratios of viscous and ohmic dissipation according to

φu =
εu

εb + εu
, φb =

εb
εb + εu

, (22)

where we note that φu + φb = 1. The dissipation ratios are shown in Fig. 6 for all values of Q. For all cases, near
the onset of convection we observe a rapid decrease (increase) in the ohmic (viscous) dissipation ratio as Ra/Rac is
increased. For Q = 2×103, there is an approximate saturation in both dissipation ratios in the range 25 . Ra/Rac .
75. For the largest value of Ra/Rac ≈ 132 we find a slight increase (decrease) in the ohmic (viscous) dissipation ratio.
We note that within the saturated regime we find significant mean flows, though the mean flow is negligibly small at
the largest value of Ra/Rac ≈ 132. This increase (decrease) in the ohmic (viscous) dissipation ratio may be due to
the strongly 3D flow that occurs, thus leading to significant induced magnetic field and associated current. The data
suggests that viscous dissipation is important for all Q, though it is always smaller than ohmic dissipation.

To examine the depth-dependence of the dissipation we compute horizontally averaged profiles of the squared

vorticity and current density, i.e. ζ2 and Qj2. Fig. 7 shows these profiles, normalized by the total dissipation, for
Q = 2 × 103 and three different values of Ra. Due to the stress-free mechanical boundary conditions, we find that
viscous dissipation is dominant within the interior of the domain, and momentum boundary layers are evident. In
contrast, we find that ohmic dissipation is dominant near the boundaries though we do not observe obvious boundary
layer regions even for the largest values of Ra/Rac. As a result, it is not relevant to separate the ohmic dissipation
into interior and boundary layer contributions.

The convective flow speeds, as characterized by the Reynolds number based on the vertical component of the
velocity, Rez, are shown in Fig. 8(a). For the VMC data we show the total Reynolds number, as derived from Ref. [5],
though the vertical component of the velocity is larger than the corresponding horizontal components so long as the
Lorentz force remains dominant [e.g. 34]. We find that the scaling of the convective flow speeds are qualitatively
similar in both TMC and VMC where there is a rapid rise in amplitude near the onset of convection, and a slower
growth for larger Ra/Rac. There is a general trend of increasing Rez with increasing Q for both data sets – we find a
good collapse of the data by rescaling the convective flow speeds according to Rez Q

−1/4, as shown in Fig. 8(b). This
Q1/4 scaling was used in the asymptotic models of [35, 36], though only single mode (i.e. single wavenumber) solutions
were analyzed. Asymptotic behavior is only expected in the magnetically constrained regime in which Ha/Rez � 1;
as previously mentioned, for Q = 2× 103 the cases with Ra/Rac & 10 are characterized by Ha/Rez = O(1).

The anisotropy in the velocity field can be characterized by computing the ratio of the volumetric rms of each
velocity component to the total volumetric rms velocity (Re); the resulting data is shown in Fig. 9. Near the onset
of convection, in which the flow consists of two-dimensional rolls, we find that the vertical component of the velocity
dominates. However, we find a rapid decrease in the relative size of wrms as the large scale flow forms and the y-
component of the velocity field, vrms, dominates. All cases show a region in parameter space in which a saturation of
vrms/Re occurs within the magnetically constrained regime. Moreover, this saturation is observed to occur at smaller
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Vertical profiles of the time-averaged temperature for all cases. Top row (a)-(c): horizontally averaged temperature.
Bottom row (d)-(f): rms temperature fluctuation. (a,d) Q = 2 × 103; (b,e) Q = 2 × 105; (c,f) Q = 2 × 106. Darker greyscale
lines correspond to larger Rayleigh numbers.

(a) (b) (c)

FIG. 6. Dissipation ratios: (a) Q = 2 × 103; (b) Q = 2 × 105; (c) Q = 2 × 106. Note the difference in scale on the horizontal
axis.

values of Ra/Rac as Q increases. The relative size of urms/Re exhibits a slow but steady increase with Ra/Rac and
we find that the standard deviation also increases. For Q = 2 × 105 we find relaxation oscillations (discussed more
below in section III.4.2) for supercriticalities Ra/Rac & 7.5 – in this regime both urms and vrms become of comparable
magnitude and exhibit large amplitude variations with time.

III.3. Horizontally averaged mean fields

As previously noted, mean flows form in TMC for all values of Q investigated here. These mean flows take various
forms and are associated with corresponding mean magnetic fields. In the present section we analyze mean fields,
both velocity and magnetic, that are defined by averages over the entire horizontal plane. In the next subsection we
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(a) (b)

FIG. 7. Normalized dissipation profiles averaged in time for select cases from Q = 2× 103. (a) normalized viscous dissipation;
(b) normalized ohmic dissipation.

(a) (b)

FIG. 8. Reynolds number data for both TMC and VMC. Rez is shown for TMC and Re is shown for VMC. (a) Reynolds

number Rez versus Ra/Rac; (b) Rescaled Reynolds number, Rez Q
−1/4, versus Ra/Rac.

examine the dynamics of what we refer to as zonal flows, which are y-directed flows averaged only in the y-direction.
We restrict the present analysis to the x-component of the mean velocity field, u, and the associated magnetic field

bx, since the y-components are observed to be significantly smaller in magnitude and approach zero for sufficiently
long time averages. The mean momentum equation in the x-direction is given by

∂tu+ ∂z(u′w′) = Qη3∂zbx + ∂2zu, (23)

where u′ = u− u, etc. The corresponding mean magnetic field is governed by

0 = η3∂zu+ ∂2zbx, (24)

so that vertical shear in the mean flow is associated with a mean magnetic field.
The computed time-averaged x-components of the means fields, u and bx, are shown in Fig. 10 for a range of Ra

and all three values of Q. In a subset of the Q = 2 × 106 simulations we observed a depth invariant (i.e. constant)
component of u; this component of the flow was subtracted off from all of the data presented since it has no dynamical
significance. We find that the magnitude of the mean fields increases with Ra/Rac, with the singular exception of
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(a) (b) (c)

FIG. 9. Time-averaged velocity ratios: (a) Q = 2 × 103; (b) Q = 2 × 105; (c) Q = 2 × 106. All quantities are volumetric rms
values and the error bars show the standard deviation. Note that the scale of the horizontal axis is different for each figure.

(a) (b) (c)

(d) (e) (f)

FIG. 10. Time and horizontally averaged x-component of the velocity field and magnetic field: (a,d) Q = 2 × 103; (b,e)
Q = 2× 105; (c,f) Q = 2× 106. Darker lines correspond to higher Rayleigh numbers.

the case (Q = 2 × 103, Ra/Rac = 132), which shows a sudden decrease; profiles for this case are indicated by the
darkest shade in panels (a) and (d). This latter case has reached sufficiently large Rayleigh number such that the
magnetic field is no longer constraining the motion. We find that the x-components of the mean fields are robust in
the sense that they maintain a similar structure with varying Q and Ra, and evolve on a timescale much longer than
the underlying convection.

The mean velocity is observed to point in the positive (negative) x-direction for z > 0.5 (z < 0.5) for nearly all cases
investigated. The direction of the mean flow is controlled by the Reynolds stress term, u′w′, appearing in equation
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(23). This component of the Reynolds stress represents the vertical flux of x-directed momentum. Because of the
propensity for the convection to align with the direction of the imposed magnetic field, one expects u′w′ > 0 in both
upwelling and downwelling regions and this behavior was confirmed in the simulation data. Thus, a net vertical flux
of x-directed momentum implies the mean flow should be positive in the upper half of the fluid layer (z > 0.5), and
the corresponding deficit of x-directed momentum in the bottom half of the layer (z > 0.5) yields a negative mean
flow in this region.

III.3.1. Scaling analysis

Estimates for the sizes of the various terms in the above equations can be made, and help to explain some of the

numerical findings shown in Fig. 10. We scale vertical derivatives of mean quantities as ∂z → `
−1
z , where `z is some

characteristic length scale in the vertical dimension, and the arrow is used to denote the scaling form for a particular
operation or term in the governing equations. In what follows we assume η3 = O(1), and the symbol ‘∼’ is used to
indicate a balance of terms in the governing equations. Equation (24) then gives

u ∼ bx

`z
. (25)

If, for the purpose of the present scale analysis, we interpret the overline as also including a time average, then we
have three terms in the mean momentum equations to consider, which we scale as

∂z(u′w′)→
u′w′

`z
, Qη3∂zbx →

Qbx

`z
, ∂2zu→

u

`
2

z

. (26)

Using relationship (25) in the above Lorentz force term we then have

Qbx

`z
→ Qu. (27)

Balancing the mean Lorentz force with the mean viscous force would imply `z ∼ Q−1/2, which is the well-known
Hartmann boundary layer scaling. We assume that such a strong dependence on Q is only relevant within the
Hartmann layer, and not in the bulk of the domain. We do observe a Hartmann boundary layer in the horizontally
averaged fields, though its effects appear to be small. Outside of the Hartmann layer it is unclear that there should
be any Q-dependence on the vertical length scale with regards to mean quantities. Therefore, as a first approximation
we neglect any Q-dependence on this length scale and the mean Lorentz force can then only be balanced by the
divergence of the Reynolds stress in the bulk; the resulting balance gives

bx ∼
1

Q
u′w′. (28)

This result shows that Reynolds stresses are directly responsible for the generation of a mean magnetic field. Using
the mean induction equation then gives a relationship between the mean flow and the Reynolds stresses,

∂zu ∼ −
1

Qη23
∂2z (u′w′). (29)

Assuming `z = O(1), the above balance leads to

u ∼ u′w′

Q
, (30)

so that both the mean velocity and mean magnetic field scale similarly with Q. These relationships suggest that we
require knowledge on the asymptotic size of the fluctuating velocity components in order to estimate the asymptotic
size of both u and bx. Fig. 8 suggests that w′ = O

(
Q1/4

)
and, though not shown, we also find that the u′ = O

(
Q1/4

)
,

which suggests that

u = O
(
Q−1/2

)
, bx = O

(
Q−1/2

)
. (31)

Figs. 11(a) and (c) show rms values of the mean velocity and magnetic field, respectively. The corresponding
rescaled components are given in Figs. 11(b) and (d). The collapse of the rescaled quantities suggests that the scaling
arguments given above lead to good estimates for the asymptotic dependence of these mean fields. These results
suggest that the mean flow (and associated mean magnetic field) becomes less significant dynamically in the limit
Q→∞.
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(a) (b)

(c) (d)

FIG. 11. Scalings of the rms values for the horizontally averaged quantities: (a) urms; (b) urms Q
1/2; (c) bx,rms; (d) bx,rms Q

1/2.

III.4. Zonal flow dynamics

The horizontally averaged fields analyzed in the previous section represent one particular component of the mean
flows that are observed in TMC. However, the strongest mean flows observed in the simulations are dominated by
horizontal wavenumber kx = 1, and such motions are eliminated by a horizontal average over the entire horizontal
plane. These mean flows are a combination of ‘zonal’ (y-directed) flows and large scale vortices that result in a
meandering jet structure. For a fixed value of Q, we find that the y-component of the flow dominates, though for
sufficiently strong forcing for Q = 2×105 the non-zonal (x-directed) flow becomes comparable to the zonal component
and relaxation oscillations occur. Given the directional dependence of the flow it is helpful to average in only a single
horizontal direction, either x or y. Here we focus only on the zonal, or y-directed, mean flows since they are observed
for all values of Q and tend to dominate over much of the parameter space investigated here. A brief description of
the relaxation oscillations is given in the next section.

As Q is increased we find that the zonal flow quickly becomes the dominant component of the velocity. To illustrate
this behavior, Fig. 12 shows instantaneous volumetric renderings of the y-component of the velocity, v, for Q = 2×106

and three different values of Ra, increasing from left to right. Just beyond the onset of convection we find a mode
with kx = 1 appears, as shown in panel (a), which suggests the formation of the zonal flow. As Ra increases in panels
(b) and (c), this zonal flow becomes stronger and eventually becomes energetically dominant relative to the small
scale convection by which it is driven.

Figs. 13(a)-(c) show instantaneous views of vy(x, z, t) in the x-z plane for all three values of Q with values of Ra
chosen such that the zonal flow is energetically dominant (relative to the convection). For all values of Q we find
that the zonal flow is aligned with the imposed magnetic field, and dominated by a kx = 1 structure at all depths.
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(a) (b) (c)

FIG. 12. Volumetric renderings of the y-component of the velocity, v, illustrating the development of the zonal flow for
Q = 2 × 106 and increasing Ra: (a) Ra = 1.04 × 107; (b) Ra = 1.1 × 107; (c) Ra = 1.3 × 107. The orientation for all
visualizations is shown in panel (a).

Corresponding top-down views of v at depth z ≈ 0.5 are shown in panels (d)-(f), where the meandering structure of
this mean flow can be seen. Comparing the y-averaged flows shown in (a)-(c) with the full field in (d)-(f) shows how
the action of y-averaging removes much of the small scale features present in (d)-(f).

III.4.1. Scaling analysis

The scaling behavior of the zonal velocity is shown in Fig. 14(a) where rms values are plotted for all values of Q.
We observe a trend of increasing magnitude with both increasing Ra/Rac and increasing Q. As shown in Fig. 14(b),
the data can be collapsed by scaling the zonal velocity as vy = O

(
Q1/3

)
. As done previously for the horizontally

averaged mean flows, the cause of this zonal flow scaling can be found by analyzing dominant balances in the zonal
momentum equation.

The alignment of the zonal flow with the imposed magnetic field suggests that the use of a non-orthogonal
(i.e. skewed) coordinate system is helpful. Such a coordinate system was used, for example, in Ref. [37] for studying
the asymptotic behavior of rapidly rotating convection with a tilted rotation axis. We follow Ref. [37] and define the
non-orthogonal coordinate system with unit vectors x̂, ŷ, and η̂ and coordinates (x̃, ỹ, η). The relevant transformations
between the orthogonal and non-orthogonal variables are given by

x̃ = x− η1
η3
z, ỹ = y, η =

1

η3
z (32)

ũ = u− η1
η3
w, ṽ = v, w̃ =

1

η3
w. (33)

Similarly we have b̃y = by. The y-component of the momentum equation can now be written as

∂v

∂t
+ ∂x̃ (ũv) + ∂y(v2) + ∂η (vw̃) = −∂yP +

(
1

η23
∂2x̃ + ∂2y +

1

η23
∂2η − 2

η1
η3
∂2x̃η

)
v +Q∂ηby. (34)

Averaging in the y-direction, η-direction, and in time yields

ũ
yη
∂x̃v

yη
t

+ ∂x̃(ũ′v′)
yηt

=

(
1

η3
− 2

)
∂ηv

yt

∣∣∣∣1/η3
0

+
1

η23
∂2x̃v

yηt. (35)

Here the fluctuating terms are given by v′ = v − vyη, etc. We note the absence of the Lorentz force in the above
equation, indicating that it plays an indirect role in the zonal dynamics. The first term on the left side represents
advection by the mean whereas the first term on the right side contains boundary terms associated with averaging
the viscous force along η; the numerical simulations show that both of these terms are small in comparison to the two

other terms present in the above equation. Advection by the mean is small because ũ
y

is not generally aligned with
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(a) (b) (c)

(d) (e) (f)

FIG. 13. Structure of the zonal flow from representative cases. (a,d) Q = 2×103, Ra = 1×105; (b,e) Q = 2×105, Ra = 8×106;
(c,f) Q = 2× 106, Ra = 7× 107. The top row shows instantaneous views of the zonal velocity, vy, and the bottom row shows
instantaneous views of the y-component of the velocity, v, in the horizontal plane at depth z ≈ 0.5.

η̂. In addition, because vy is aligned with η̂, the η-averaged value of ∂ηv
y is expected to be small. Therefore, the

largest terms are the Reynolds stress term and the viscous force,

∂x̃(ũ′v′)
yηt
∼ 1

η23
∂2x̃v

yηt. (36)

Furthermore, if we let `
yη

denote a length scale associated with y and η-averaged quantities, we find

vyηt ∼ `yη (ũ′v′)
yηt
, (37)

where we have dropped the factor of η23 since it is of order unity. In all simulations in which a zonal flow is observed
we find that the zonal flow grows to fill the domain and is dominated by a kx = 1 structure. As mentioned previously,
as Q is varied we fix the total number of horizontal critical wavelengths in the domain to be n = 10. Since the critical
wavelength changes with Q, i.e. λc ∼ Q−1/6 as Q becomes large, this implies that the horizontal (and vertical) scale
of the zonal flow is also changing as we vary Q in our simulations. Therefore, we can scale the characteristic zonal
length scale as

`
yη ∼ nλc ⇒ `

yη ∼ nQ−1/6. (38)

Combining this scaling with relationship (37) then yields

vyηt = O
(
Q1/3

)
, (39)

where we have again used the numerical data that indicates (ũ′, v′) = O
(
Q1/4

)
.

The zonal length scaling relation (38) implies that for a fixed value of Q the zonal flow magnitude increases linearly
with the horizontal dimension (as quantified by n) of the simulation domain. Fig. 15 shows various measurements
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(a) (b)

FIG. 14. Scaling behavior of the rms value for the zonal flow: (a) raw data; (b) rescaled data.

(a)

FIG. 15. Behavior of various measurements of flow speed with increasing horizontal dimension of the simulation domain for
Q = 2 × 105 and Ra = 6 × 106. The horizontal length of the simulation domain is represented by the number of unstable
horizontal wavelengths, n; the aspect ratio for the cases shown is Γ = (3.31, 4.30, 4.97, 5.63, 6.62). Dotted lines show the
corresponding least squares fits to the data.

of flow speed as a function of n for Q = 2 × 105 and Ra = 6 × 106. This particular combination of parameters is
used since it shows significant zonal flows. The linear dependence between Re and n, as well as vyrms and n, is clearly
observed, as is the independence of Rez on n. This linear dependence between the large scale flow and the horizontal
domain size is in agreement with a previous investigation of the inverse kinetic energy cascade in rotating convection
where the same scaling was observed [38].

III.4.2. Relaxation Oscillations

Relaxation oscillations were observed in simulations with Q = 2× 105 and 10Rac . Ra ≤ 30Rac, where 30Rac was
the highest supercritical Rayleigh number achieved for this value ofQ. Relaxation oscillations were also found for a case
with Q = 2×106 but no statistics were collected due to the long time integration required. The relaxation oscillations
are characterized by a zonal flow magnitude that exhibits large oscillations in time. Figs. 16(a) and (b) show the
Reynolds number and Nusselt number, respectively, as a function of time for Q = 2×105 and Ra = 1.5×107. During
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(a) (b)

FIG. 16. Times series data illustrating the temporal behavior of relaxation oscillations for Q = 2 × 105 and Ra = 1.5 × 107:
(a) Reynolds number, Re(t); (b) Nusselt number, Nu(t).

times when the mean flow is strong (weak), the Nusselt number is generally smaller (larger) than the corresponding
time-averaged value. Fig. 17 shows how the horizontal components of velocity change when the Reynolds number
goes from increasing to decreasing. The y-component of the velocity decays rapidly and the x-component of velocity
grows to be the dominant velocity component.

IV. CONCLUSION

The direct numerical simulations reported here have shown that magnetoconvection with a tilted magnetic field
(TMC) has both dynamic similarities, and key differences with magnetoconvection with a vertical field (VMC). For a
meaningful comparison between these two cases we have chosen imposed field strengths that yield critical parameters
that are identical to those used in an analogous VMC study [5]; i.e. the strength of the vertical component of the
imposed magnetic fields are identical for our chosen values of Q. The simulations span dynamical regimes that are
characterized as magnetically constrained, in which Ha/Rez � 1, and those that might be considered magnetically
influenced when Ha/Rez = O(1). Like VMC, we find that when Ha/Rez � 1 and for sufficiently strong buoyancy
forcing, the convective structures consist of anisotropic ‘columns’ that align with the direction of the magnetic field.
This alignment is no longer obvious when Ha/Rez . O(1).

The heat transport for TMC is qualitatively similar to VMC in which there is a rapid increase in the Nusselt number
near the onset of convection that is associated with the formation of the thermal boundary layers, and the growth of
Nu with increasing Ra/Rac slows beyond this regime. We do not observe a clear power law scaling of the Nusselt
number for TMC over our investigated range of parameter space. Ohmic dissipation dominates viscous dissipation
in all simulations, including those in which Ha/Rez = O(1). However, viscous dissipation remains important and
represents approximately 40% of the total dissipation as the Rayleigh number is increased.

Convective flow speeds, as characterized by the Reynolds number based on the vertical component of the velocity,
Rez, show behavior that is similar to VMC. However, it is unclear whether Rez exhibits power law behavior due to
the limited range of parameter space accessible in the present simulations. We find that an asymptotic scaling of
Rez ∼ Q1/4 describes the Q-dependence of the convective flow speeds. This scaling is the same that was used in
the asymptotic models of Refs. [35, 36]. Further investigation, particularly simulations with larger values of Q, is
necessary to confirm the robustness of this scaling.

Mean flows, and associated mean magnetic fields, form for all values of Q investigated. We find and study two
distinct forms of mean flows, as characterized by the horizontal wavevector k. Those mean flows in which k = (0, 0)
(i.e. averaged over the horizontal plane) are dominated by the x-components, u and bx. The propensity for convective
structures to align with the magnetic field yields a vertical flux of x-directed momentum that generates a positive
mean flow above the mid-plane (i.e. z > 0), and a negative mean flow below the midplane (z < 0). The simulations
show that the rms value of u is a decreasing function of Q; a balance analysis suggests that u = O

(
Q−1/2

)
, which is

in agreement with the numerical findings. An identical scaling holds for bx, suggesting that this particular component
of the mean fields becomes less significant dynamically as Q is increased.
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(a) (b)

(c) (d)

FIG. 17. Instantaneous plots of the horizontal velocity components illustrating relaxation oscillations for Q = 2 × 105 and
Ra = 1.5×107. The two plots on the left (a,c) are taken at time t = 5.200, just prior to the peak in Reynolds number. The two
plots on the right (b,d) are taken at time t = 5.228, just after the Reynolds number reaches a peak. (a,b) y-velocity component;
(c,d) x-velocity component.

The energetically dominant mean flows are characterized by a meandering jet structure that tends to be aligned
with the tilt of the imposed magnetic field. These mean flows are dominated by either k = (1, 0) at lower values
of Ra/Rac, or exhibit relaxation oscillations that shift between the k = (0, 1) and k = (1, 0) modes for sufficiently
large Ra/Rac and Q > 2 × 103. We find that the ‘zonal’ flows scale strongly with Q, i.e. vy ∼ Q1/3; this scaling
is the result of the Q-dependent Reynolds stresses and the fact that the zonal flow magnitude scales linearly with
the horizontal dimensions of the simulation domain. The zonal flows become energetically negligible for sufficiently
large Ra/Rac, since then Ha/Rez . 1 and the convection is no longer aligned with the imposed magnetic field. The
relaxation oscillations evolve on the timescale of a large scale viscous diffusion unit and therefore require substantial
computational resources to study.

It is interesting to note that several phenomena observed here for convection in a tilted magnetic field are also
observed for rotating convection [24, 25]. In convection with a tilted rotation vector, the fluid structures tend to
align along the tilt axis of the rotation, much like how the fluid structures in this investigation were aligned along the
magnetic field. In addition, a strong shear flow arises in convection with a tilted rotation vector that closely resembles
the mean flow found for convection in a tilted magnetic field. We anticipate that scalings for the strength of the mean
flow and convective flow speeds can be found in tilted rotating convection, as was done in the present investigation
for magnetoconvection.

The structure of the observed mean flows in the present work is a manifestation of the plane periodic geometry
that was used. Confined geometries will yield mean flows of different structure. However, the present work has shown
that a robust inverse kinetic energy cascade is nevertheless present in TMC, and there is no a priori reason why such
a cascade would not also be present in confined geometries such as cylinders or cubes. We might expect that the
inverse cascade would manifest itself in the form of only large scale vortices in confined geometries, but future work
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is necessary to confirm this assertion.
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